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11.1. INTRODUCTION

The evolution in Very-Large-Scale-Integration (VLSD) technology has had
a great impact on computer architecture (114). Many existing algorithms in
pattern recognition and image and signal processing can be implemented on
a VLSI chip using multiple, regularly connected processing elements (PEs)
to exploit the great potential of pipelining and multiprocessing in applications
in command, control, and communications systems (4). This type of array
processor has been referred to as a systolic array, and the concept was
introduced in the pioneering paper of H. T. Kung and C. E. Leiserson
(67, 69). A good survey on the state of the art is provided by Ullman (1 16}.
A list of the sample problems for which systolic solutions exist is shown in
Table 11.1 {486).
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Table 11.1 A Sample of the Applications for Which Systolic Arrays Are
Available

Signal and image processing and pattern recoguition
FIR, IR filtering and 1-D convolution®?!-24-33.57.69.82)
2-D convolution and correlation18:84:65.73.77.52
discrete Fourier transform®31:22.57.58.69.71.123)
interpolation®
1-D and 2-D median filtering™®
geometric warping ®:'8 129
feature extraction®!!
order statistics7*
counters®?
minimum distance classifier*>
covariance matrix computation®*®
template and pattern matching®?:36-82
seismic signal classification
cluster analysis'®
syntactic pattern recognition®*”
radar signal processing®®%*®"
curve detection®®
dynamic scene analysis®"
image resampling'**
scene matching®™®

Matrix arithmetic
Toeplitz matrix—vector multiplication®”
matrix—matrix multiplication34.63.82.119)
matrix triangularization®326
QR and LU dccompositions“-35-4952»82‘112.115)
sparse-matrix operations®®>
solution of triangular linear systems!* >4
polynomial multiplication/division®”

Nonnumeric applications

data structures-—stacks and queues,C® searching, (12769299 orting and priority
queues

graph algorithms—transitive closure,? minimum spanning trees,® connected
components!'®*

language recognition("'s""n’m"°°" 1

dynamic programming!“>#3-*

arithmetic arrays@?4%

relational database operations(10:323 1661131

algebra®to®

An example of a systolic array for multiplying matrices A and B to
form C is shown in Figure 11.1. The dataflows of the three rhomboidal data
blocks are in three directions: A moves toward the north, B moves toward
—120° north, and C moves toward —60° north. During a clock cycle, each
PE receives three data items from threc different pipes and executes a mul-
tiply-add operation. These data items advance into neighboring PEs along
their own pipes synchronously in the next clock cycle.
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Figure 11.1 The systolic processor for two-dimensional matrix multiplication. (a)
Systolic processor. (b) Structure of PE,

One of the many advantages of the systolic approach is that each input-
data item can be used a number of times once it is accessed, and thus a high
computational throughput can be achieved with only a modest bandwidth.
Other advantages include modular expandability, simple and regular data
and control flows, and simplicity and uniformity of PEs.

Svstolic arrays have been classified into semisystolic arrays with global
data communications and pure systolic arrays without global data com-
munications (67). In a semisystolic array, a data item accessed from memory
is broadcast to and used by a number of possibly nonidentical PEs concur-
rently. Although this approach is potentially faster than systolic arrays with-
out data broadcast, providing (or collecting) a data item to (or from) all the
PEs in each cycle requires the use of a global bus that may eventually slow
down the processing speed as the number of PEs increases. On the other
hand, a pure systolic array eliminates the use of broadcast buses and im-
plements the algorithm in pipelines extending in different directions. Several
data items flowing along different pipes with the same or different rates may
meet and interact. The PEs operate synchronously with one or more clocks,
and all the necessary operands to be processed by a PE in each computational
step must arrive at this PE simultaneously. This mode of pipelining is re-
ferred to as systolic processing.

One of the important design problems in systolic processing is the
development of a systematic methodology for transforming an algorithm
represented in some high-level constructs into a systolic architecture spec-
ified by the timing of data movements and the interconnection of processing
elements such that the design requirements are satisfied. In this chapter, we
survey 19 methodologies proposed in the literature. The applicability, ca-
pabilities, and resuits derived for each methodology are identified.
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11.2. Systematic Methodologies for Designing Systolic

Arrays

The common characteristic of most previously proposed methodologies is
the use of a transformational appreach——i.e., systolic architectures are de-
rived by transforming the original algorithm descriptions that are unsuitable
for direct VLSI implementation. Distinct transformational systems for sys-
tolic-architecture design (hereafter referred to as transformational systems)
can be characterized by how algorithms are described, what formal models
are used, how systolic architectures are specified, and what types of trans-
formations are used on and between these respresentations. In other words,
we can visualize cach transformational system as a three-dimensional space,
where dimensions (or axes) are associated with the algorithm representation,
algorithm model, and architecture specification. To the axis of algorithm
representation, we associate different forms or levels to present an algorithm
to the transformational system. The axis of algorithm model shows different
levels of abstraction used to represent relevant features of the algorithm.
The axis of architecture specification is associated with the hardware model
or level of design in which the systolic array is described.

This three-dimensional space can be graphically depicted as a Y chart
(Figure 11.2), where directed arcs can be drawn to illustrate transformations
that map a given representation into another representation in the same axis
and level (a self loop), in the same axis and different level, or between distinct
dimensions.! Arcs drawn in full lines represent systematic transformations,
whereas those drawn in broken lines represent ad hoc transformations. The
Y charts allow us to classify and describe the large number of approaches
taken to design systolic arrays. Before we do this, we will use the Y chart
in Figure 11.3 to explain Kuhn's approach (63).

Kuhn’s methodology starts with a naive high-level language cyclic-loop
program—i.e., an algorithm written without regard to how it is implemented
in VL.SI. In an ad hoc manner, additional subscripts for variable referencing
are introduced such that the possibility of broadcasts of variables does not
exist. The algorithm model assumed in Kuhn’s method is a set of compu-
tation nodes (which correspond to the loop-body assignment statements)
indexed by the vector value of the indices of the iteration when they are
computed (Figure 11.3). The structural information is modeled by the di-
mensionality of the iteration space and the dependency vectors (which are
the vector difference of the indices of dependent computation nodes). The
geometry of the algorithm is represented by the iteration space and how
different variables are associated to points in that space. This model is de-
rived from the program in a systematic manner by using analysis techniques

' We borrowed from Gajski's paper (47) the idea of using Y charts to improve the clarity
of our presentation; however, our Y charts are minimally refated to those used in that reference.
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Figure 11.2 Y-chart for transformational systems.

similar to those used in optimizing compilers. A re-indexing transformation
is then sought in an ad hoc fashion until a favorable set of dependencies is
obtained. Once this transformation is known, one can systematically gen-
erate not only the new dependency vectors but also the range of the new
indices of the loops and the subscript functions used to reference variables.
By projecting the new iteration set into all but one of its dimensions, and
by identifying the iterations in which input variables are used, the size,
dimension, and input/output ports of the architecture can be systematically
generated.

Each point in the projected space corresponds to a PE in the array
whose function is totally described by the statements in the loop body. The
interconnections and the direction, speed, and timing of data movements
are systematically derived from the new set of dependencies that resulted
from applying the re-indexing transformation. This completes our example
of the use of Y-charts to explain a methodology. We defer the analysis of
the capabilities of Kuhn’s method until after we introduce a classification
of the different approaches in terms of the Y-charts,
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Figure 11.3 Kuhn’s method.

The various methodologies can be grouped into the following classes:?

1. Those that allow transformations to be performed at the algorithm-re-
presentation level and that advocate a direct mapping from this level to
the architecture specification. These include:

Cohen, Johnsson, Weiser, and Davis’ method
Lam and Mostow’s method

2. Methods that prescribe transformations at the algorithm-model level and
that require procedures for deriving the model from the algorithm repre-
sentation (analysis) and for mapping the model into hardware (synthesis).
These include:

Gannon’s method
H. T. Kung and Lin's method 1
Kuhn’s method ' i
Moldovan and Fortes’ method

2 The order in which the methodologies are described is chosen at random. §
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Miranker and Winkler’s method
Cappello and Steiglitz’s method
S. Y. Kung's method
Quinton’s method
Ramakrishnan, Fussell, and Sillberschatz’s method
Li and Wah’s method
Cheng and Fu’'s method
Jover and Kailath’s method
Schwartz and Barnwell’s method
Ibarra, Kim, and Palis’ method
3. Methods that transform a previously designed architecture into a new
architecture. We will consider only one work in this class:
Leiserson, Rose, and Saxe’s method
4. Methods that abstract the function implemented by a given systolic ar-
chitecture and that use symbolic manipulations and transformations to
prove the correctness of the design. Two studies in this class are
considered:
Chen and Mead’s method
Kuo, Levy, and Musicus’ method

In the following sections, we will describe these methods in an arbitrary
order, show their applicability, discuss their capabilities, and summarize the
major results. The discussion in some of these studies may be vague, and
we have tried to infer their results from our understanding of the published
work.

11.2.1. Cohen, Johnsson, Weiser and Davis’ Method (33, 57-59, 119)

Description

Starting from a mathematical expression involving subscripted variables,
which conceptually represent data sequenced in time or space, this method
begins by deriving a new expression where a well-defined operator Zis used
to model displacements in time (e.g., the storage of data) or shifts in space
(e.g., the allocation of a data stream to PEs). Symbolic manipulation is used
to transform the derived mathematical expression into equivalent ones by
using the properties of the Z operator and the functional operators in the
expression. From a particular expression, the execution order of the op-
erations can be derived from known precedence rules. The number, place-
ment, and interconnection of operator PEs can also be derived. Timing and
storage requirements are inferred from the placement of delay PEs (which
correspond to the Z operators) (Figure 11.4).

Applicability
This method seems to be best applicable to algorithms that can be described
by relatively simple and concise mathematical expressions.
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Figure 11.4 Cohen, Johnsson, Weiser, and Davis’ method.

Capabilities

Computational rate, performance, delay, modularity, and size can be easily
derived from the equations; interconnection and communication character-
istics can also be derived when the architecture is regular. This method may
yield implementations with both parallel and sequential features, requiring
hardware of a size smaller than the problem size. The method treats control
signals in the same way as data signals. The optimal design is searched in
an ad hoc manner.

Results

Formal derivations have been reported for architectures intended for the
following problems: finite-impulse-response (FIR) filters, discrete Fourier
transform (DFT), matrix-vector product, string matching, solution of tri-
angular linear equations, product of band matrices, synthetic aperture radar
(SAR), and multiplication and division of polynomials. A set of data-set
operators defined in terms of the Z operator was also proposed for treating
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sets of data as wavefront entities in expressions and their graphical
representation.

11.2.2. Lam and Mostow’s Method (SYS) (78, 101)

Description

SYS accepts as input an algorithm suitable for systolic implementation—
i.e., an algorithm obtained by software transformations from a high-level
specification that results in segments of code executed repeatedly with a
regular pattern of data accesses. The algorithm is mapped into a systolic
design described by a structure and a driver. The structure describes the
hardware PEs (which are functionally equivalent to code segments), inter-
connections, and input—output ports. The driver defines data strcams in
terms of the original variables in the algorithm. The mapping of iterative
algorithms uses three basic allocation schemes named sequential, parallel,
and compositional. SYS has a special language for representing a given de-
sign. Initially, SYS generates a simple-minded implementation of the given
algorithm. Systematic and user determined transformations are then used
to optimize and to obtain new designs (Figure 11.5).

Applicability

SYS can process algorithms with simple FOR loops and BEGIN-END
blocks, simple unnested function calls, and scalar and array variables. As
reported in the references, SYS cannot deal with conditional execution,
computed iteration bounds and array indices, and other high-level software
constructs.

Capabilities _

SYS can derive the structure and driver of a systolic design. Specification
of the structure includes the number and dimensionality of ports of PEs,
hierarchical definition of PEs, arrays and compounds of PEs, and intercon-
nections among them, including broadcasts and directional links. The driver
describes data streams and timing schemes that include delay, skew of
streams, and ready time (time allowed between two consecutive inputs to
the structure),

Resulis

Reported designs obtained by SYS include two systolic arrays for polynomial
evaluation and a circuit for computing the greatest common divisor of two
polynomials. Other nonsystolic designs using a transformational system re-
lated to SYS include a chip for color shading and hidden-surface elimination
and a multichip switching network for marker passing semantic networks.
All designs were previously known.
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Figure 11.5 Lam and Mostow’s method,

11.2.3. Gannon’s Method (48)

Description

From a given algorithm, a functional specification s derived by using vector
operators that explicitly represent parallelism. These vector operators are
defined in terms of basic functions thay correspond to smal] units of ge-
quential computatiop and that map directly into the functional Specification
of the PEs of the systolic architecture. The vector operators include a prod-
Uct operator, which Fepresents the toncurrent operation of basic functions,
pPermutation and data-movement operators; a chajn Operator, which repre-
sents the iterative composition of basic functions; and the systolic-iteration
operator, which describes basjc functions that are “‘reused.”’ The global
functional specification of the algorithm s viewed as g dataflow graph which,
depending on the properties of the functions and operators used, can be
mapped into g Systolic architectyre. Different architectures resyjy from ex-
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Applicability

This method seems to be suitable to those algorithms that can be reexpressed
by vector operators. For these algorithms, the methodology seems hard to
apply without human assistance.

| Capabilities

The functional description of PEs and the interconnection topology can be
easily derived. Additional information such as data movement and timing is
present in implicit form.

Results

A previously known design of a recurrence solver was rederived. The for-
malism used proved the theoretical result that systolic versions of compu-
tation graphs perform asymptotically as fast as fully concurrent execution
of the original dataflow graph.

5_
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11.24. H. T, Kung and Lipn's Method (70)

Description

This method starts by deriving a straightforward and obviously correct al-
gebraic representation from the mathematical representation of the algo-
rithm. The canonica] algebraic Teépresentation consists of two matrical
expressions of the form (@)v<eAv + bx, and )y = ¢Ty, where x represents
the input, y represents the output, and ¢ represents variables generated by
implicit functions. The (n X n) matrix A and the column vectors p and ¢

and each entry is either 0 or 7 ~*, where % corresponds to the number of
delays. For €xample, the j-th component of v in Expression (a) is

v}_(__‘z—a‘-’;vl + e F Z—ai.nvn + Zhng,
which means that
v{t) = filvite - aial, ..., vt —~ a;.), x(t — ]

for some implicit function fi associated with node ;. To this canonica] re-
presentation, algebrajc transformations are then applied, There are two
major types of transformations, retiming and “k-slowing,’* which can also
be described algebraically. These transformations determine the distribution

an edge for each variable and a node for each computation, Each edge is
labeled by Z—* jr k delay cycles (i.e., registers) exist between the availability
of the variable and its use as an operand or output (Figure 11.7).

Applicability
The method is suitable for algorithms for which a canonical algebraic re-
presentation can be found.

Capabilities

Functiona] description of PEs, interconnectlons, and timing for input/output
and data communication can be derived systematically; designs and trans-
formations can be expressed algebraically; theoretical results on retiming
and k-slowed designs can be proved easily by algebraic manipulation.
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Figure 11.7 H. T. Kung and Lin’s method.

11.2.5. Kuhn's Method (62, 63)

Description
As described early in this chapter.

Applicability
This method is best suited for algorithms described as cyclic-loop programs
with constant execution time and dependencies in loop bodies.

Capabilities

Size, dimension, topology, input-output ports, execution time, data move-
ment, timing, and functional descriptions of PEs of an architecture can be
systematically derived. However, nothing can be said about the optimality
of the design, and the choice of transformations is done in an ad hoc manner.
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Results

Designs for the following problems were derived using this method: matrix—
matrix multiplication, matrix—vector multiplication, recurrence evaluation,
solution of triangular linear Systems, constant-time priority queue, on-line
sort, transitive closure, and LU decomposition.

11.2.6. Moidovan and Fortes’ Method (3741, 96-99, 100, 104)

Description

From a program or a set of recurrence equations, an aigebraic model of the
algorithm is derived by using systematic techniques similar to those used in
software compilers. This model consists of a structured set of indexed com-
putations that operate on a set of inputs to obtain a set of outputs. Typically,
programs include loops, and indexing of computations is related to the loop
indices. However, unlike Kuhn's approach, which associates the body of
loops with the corresponding loop indices, each computation has an index.
| The algebraic representation of the algorithm is then transformed by local
i and global transformations. Local transformations are used to rewrite com-
putations that are mapped into the functional and structural specifications
of the PEs of the systolic architecture. Global transformations composed of
time and space transformations are used to restructure the algorithm. They
are chosen in such a way that the new algorithm has a set of dependencies
that favors VLSI implementation. Time transformations determine the ex-
ecution time of the algorithm and the timing for data communication. Space
transformations determine the interconnections and the direction of data
movement. The projection of the index set of the algorithm into space de-
termines the size, dimension, I/O ports, and geometry of the architecture
(Figure 11.8),

Applicahility
This method is best suited to algorithms described by either programs with :
loops or recurrence equations.

Capabilities

Because this method is an extension of Kuhn’s approach, it has the same
capabilities as that method. Additionally, it allows or eliminates broadcast-
ing, designs fixed-size architectures for arbitrarily large algorithms, imple-
ments fault-tolerance schemes, and optimizes execution time.

Results
Systematically obtained designs have been reported for matrix—matrix mul-

tiplication, LU Gaussian elimination, dynamic programming, partitioned
matrix-vector multiplication, convolution, partitioned QR-eigenvalue de-
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Figure 11.8 Moldovan and Fortes’ method.

composition, and partial differential equations. Theoretical results include
the necessary and sufficient conditions for the existence of global transfor-
mations and broadcasts, sufficient conditions for the partitionability of al-
gorithms, and a method for finding optimal linear schedules for systolic

algorithms.

11.2.7. Miranker and Winkler's Method (95)

Description
This method is an extension of Kuhn’s method and is similar to Moldovan’s

method. An algorithm is represented as either a mathematical expression or
a cyclic-loop program. One extension is to allow the rewriting of mathe-
matical expressions by using the properties of the operators in an ad hoc
fashion. The other extension is to use the graph embeddings based on the
knowledge of the longest path of the computation graph when this graph is
too irregular and simple matrix transformations are not useful (Figure 11.9).
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Figure 11.9 Miranker and Winkler’s method,

Applicability
Theoretically, it can be applied to any algorithm, although systematic desigp
seems possible only for those algorithms described by programs with ioops.

Capabilities
Size, dimension, topology, data movement, timing, functional description
of PEs, and execution time can be systematically derived.

Results

Designs of architectures for the computation of discrete Fourier transform
and the solution of a triangular linear system of equations were systemati-
cally derived.

11.2.8. Cappello and Steiglitz’s Method (15-17)

Description
Starting from a set of recurrence equations describing the algorithm, a ca-
nonical representation is obtained by adjoining an index representing time
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to the definition of the recurrence. Each index is associated with a dimension
of a geometric space, where each point corresponds to a tuple of indices on
which the recurrence is defined. To each such point, a primitive computation
is associated, and its implementation is left unspecified. Primitive compu-
tations are mapped directly into functional specifications of PEs in the sys-
tolic architecture. From the geometric representation and an ordering rule,
the topology and size of the architecture and the timing and direction of
dataflows are derived systematically. By selecting different geometric trans-
formations, distinct geometric representations and their corresponding ar-
chitectures can be derived (Figure 11.10).

Applicability
This method is best suited to algorithms described by recurrence equations.

Capabilities
Geometric representations help the designer’s understanding of a systolic
architecture, and geometric transformations are easily and succinctly rep-
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Figure 11.10 Cappello and Steiglitz’s method.
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resented as matrix transformations. The presence of broadcasts, data pipe-
lining, topology, area, and timing of the architecture are easily perceived
from the geometric representation.

Results

Designs of architectures for matrix—vector multiplication, convolution, ma-
trix—-matrix product, and matrix transposition were formally related and re-
derived. For some, it was shown that they are asymptomatically optimal,
and for others, alternative designs were provided.

11.2.9. S.Y. Kung's Method (74, 75)

Description

Given a Signal Flow Graph (SFG) representing an algorithm, this method
starts by choosing basic operational modules that correspond to the func-
tional description of PEs of the architecture. Localization rules are then
applied to derive a regular and temporally localized SFG. The localization
procedure consists of selecting cut-sets of the SFG and reallocating scaled
delays to edges ‘‘leaving” and ‘‘entering’” the cut-set in such a way that at
least one unit of time is allowed for communicating a signal between two
nodes. Delays are combined with operational modules to obtain a full de-
scription of the operation of a basic systolic module, The resulting SFG
maps straightforwardly into the systolic array by mapping basic modules
into PEs and edges into interconnections. Timing and data movements can
be derived from the basic modules due to the localized spatial and temporal
characteristics of the SFG (Figure 11.11),

Applicability
This method is applicable to all algorithms described by computable SFGs
with some regularity.

Capabilities

Size, dimension, functional, and structural description of PEs, timing, di-
rection of dataflow, and interconnections of the architecture can be derived L
from the SFG of the algorithm. Design verification can be done by applying
Z-transform techniques to the SFG.

Results

Systolic arrays have been derived from SFGs for autoregressive filter, matrix
multiplication, banded-matrix—full-matrix product, banded-matrix multipli-
cation, and LU-matrix decomposition. Theoretical results include the proof
that all computable SFGs are temporally localizable and the equivalence
between SFGs and dataflow graphs.
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Figure 11.11 S. Y. Kung's method.

11.2.10. Quinton’s Method (1086, 107)

Description

Given a system of » uniform recurrence equations defined over some convex
subset D in ZM and with some characteristic dependency vectors, (which,
together define a dependency graph), this method starts by finding a timing
function that maps points of D into time. This requires the identification of
a convex space of feasible timing functions from which one can be chosen
heuristically. Such space can be found systematically from the knowledge
of the dependency vectors and D(D can be thought of as the index set of
the recurrence). Next, an allocation function is chosen, which projects D
into space along a preselected direction such that two points in D with the
same image under the timing function do not map into the same point in
space. Once the timing and allocation functions (which are quasi-affine func-
tions) are known, the systolic array can be systematically generated from
D. Each point of D is mapped into a PE that computes the recurrence func-
tion, and receives and sends data from and to PEs that are the image of
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points dependent and depending on the point under consideration, with de-
lays given by the timing function (Figure 11.12).

Applicability
The method is specifically intended for algorithms described by uniform
recurrence equations.

Capabilities

The functional description of PEs, the size, dimension, and topology of the
array, and the execution time, direction, and timing of data communication
can all be derived systematically.

Results

Derived architectures include arrays for convolution (including a block con-
volver and a ring convolver) and matrix product. Extensions of the method
allow the derivation of arrays for LU decomposition and dynamic
programining.
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Figure 11.12 Quinton’s method.
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11.2.11. Ramakrishnan, Fussell, and Sillberschatz’'s Method
{108, 118)

Description
This method starts with a dataflow description of the algorithm (an acyclic

program graph), which is partitioned into sets of vertices that are mapped
into the same PE (this partitioning is called diagonalization). A syntactically
correct mapping is then used to map computation vertices onto PEs and
time steps, and the labels and edges to map communication delays and in-
terconnections (Figure 11.13).

Applicability
The method applies only to homogeneous graphs with connectged subgraphs
that satisfy certain properties. Moreover, the method can only be used to

generate linear arrays.
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Figure 11.13 Ramakrishnan, Fussell, and Sillberschatz’s method.
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Capabilities

The method yields the number of PEs, their functional description, and the
number of I/O ports. Additionally, it gives the direction of data communi-
cation, time used, and timing.

Results
Linear-array designs were synthesized for band matrix-vector mutltiplica-
tion, convolution, dynamic programming, and transitive closure.

11.2.12. Li and Wah'’s Method (85—-88)

Description

Starting from an algorithm described as a set of linear recurrence equations,
this method derives three classes of parameters: velocities of dataflows,
spatial distributions of data, and periods of computations. The relationships
among these parameters are represented as constraint vector equations that
must be satisfied in a correct design. The performance of a design can also
be expressed in terms of the defined parameters. Performance can be defined
as execution time or the product of the square of execution time and the
number of PEs. Optimal designs are then searched in the space of solutions
that satisfy the constraint equations. This search is done by ordered enu-
meration over a limited search space in time polynomial to the problem size.
The functional description of the PEs is derived from the definition of the
recurrence equations. The interconnections among PEs are found from the
defined parameters (Figure i1.14).

Applicability
The method is best suited to algorithms that can be described by sets of
linear recurrences.

Capabilities

Functional description of PEs, timing and spatial distribution of dataflows,
execution time, number of PEs, and interconnections can be systematically
derived. Optimal designs can be found.

Results

Systematically derived architectures include systolic arrays for finite-im-
puise-response {FIR) filtering, matrix multiplication, discrete Fouriler trans-
form, polynomial multiplication, deconvolution, triangular matrix inversion,
and tuple comparison.

11.2.13. Cheng and Fu’s Method (26-30)

Description
Starting from a recursive formula with several indices or a program-loop
with a simple expression, this method starts by designing the basic PE to

S
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Figure 11.14 Li and Wah's method.

compute the simple expression. This basic PE is then expanded in time and
space in such a way that indices of the loop (or recursion) become associated
with time and space. This expansion is done according to rules that maintain
the consistency of time and space. Time-space expansion can be applied in
any degree varying from full-time expansion (i.e., purely sequential single-
processor architecture) to full-space expansion (i.e., fully parallel single-time
execution). Time and space expansions implicitly determine dataflow timing
and direction as well as PE interconnections (Figure 11.15). The method can
be implemented at the gate level, register level, processing-unit level, and
system level. Because there is no restriction on the dimensionality of the
processing array, the method can be applied to design high-dimensional
V1SI architectures. A computational model and partition rules can be de-
rived that partition any problem suitable for the method and implement the
problem on a fixed-size VLSI architecture.

Applicability
The method is suitable for algorithms described by recurrence eXpressions
or programs with loops.
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Figure 11.15 Cheng and Fu’s method.

Capabilities
Functional description of PEs, timing and directions of dataflows, intercon-
nections, execution time, and number of PEs can be systematically

generated.

Results
This method has been applied to construct computational structures for com-

puting vector inner product, matrix multiplication, convolution, comparison
operations in relational databases, fast Fourier transform, hierarchical scene
matching, transitive closure, string matching, pattern matching, recognition
of hand-written signals, and recognition of context-free languages.

11.2.14. Jover and Kailath’s Method (60)

Description
This method is based on the use of Lines Of Computation (LOCs) to de-

termine whether a given topology is suitable for VLSI implementation, LOCs
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are directional straight lines with several equally spaced nodes, and can be
r ¢ interpreted either as the history of how a given value was computed or as
a stream of values in different stages of a computation. Because of the prop-
erties of LOCs, one can easily check if the LOCs chosen for a given algorithm
define a systolic array or a systolic-type array (not necessarily planar and
fully regular) (Figure 11.16).

Applicability
Suitable for algorithms from which one can easily identify LOCs.

Capabilities

The topology of the systolic array can be easily derived from LOCs. Ad-
ditionally, throughput, efficiency, data interval, initial conditions, interval
and external delays, and pipeline ability can also be found from LOCs and
the knowledge of execution times of basic operations.

l\% Results
Three designs for matrix multiplication were derived.
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11.2.15. Schwartz and Barnwell’s Method (5, 110) '

Description

This method starts with an algorithm described as a fully specified flow
graph—i.e., a directed graph in which nodes represent operations and edges
represent signal paths. Node operations are fundamental operations per-
formed by the PEs of the architecture. For a given flow graph, it is possible
to derive a bound in the sampling period and a bound in the static-pipeline
sampling period (i.e., the minimum sampling period achievable if the graph
is implemented as a static pipeline). Different systolic solutions are generated
by distributing delay nodes throughout the flow graph such that correctness
is preserved and data transfers can be simultaneous. The transformations
of flow graphs consist of data interleaving and the cut-set of delay trans-
formation that are shown to preserve equivalence. The transformed flow
graph is mapped into a systolic array by mapping nodes intc PEs and delays
and edges into interconnections (Figure 11.17).
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Figure 11.17 Schwartz and Barnwell's method.
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! Applicability
This method can be used with algorithms representable as shift-invariant
flow graphs.
Capabilities

The following information about the systolic architecture can be system-
atically derived: number and functional description of PEs, interconnections,
. data movement, and time. The optimality of the resulting designs can be
i analyzed.

Results
Previously known and new architectures have been derived for FIR and IIR
filters and two multiplier Markel-Gray lattice filters.

11.2.16. Ibarra, Palis, and Kiim’s Method (55, 56)

Description

Sequential-Machine (SM) models are used to simulate linear and orthogonal
Systolic Arrays (SAs). Given an algorithm, this methodology starts by gen-
erating an SM characterization that consists of a serial program for a simple
sequential machine with a single PE and an infinite array of registers (called
the ‘‘worktape(s)’’). SM characterizations that are obtained heuristically are
easier to program and analyze than their SA counterparts. The conversions
from SM to SA characterizations and vice versa are done systematically
(Figure 11.18}.

Applicability

This method seems to be best applicable to algorithms that can be easily
programmed in an SM model. These are likely to be relatively simple and
regular algorithms.

Capabilities

Because one starts with a given type of systolic array, certain features of
the architecture (e.g., number, placement, direction of interconnections, and
inputs) are known beforehand. In this sense, the methodology synthesizes
or maps a given algorithm into a type of systolic array. From the SM pro-
gram, the functional description of the PEs and the direction and timing of
data movement can be derived automatically. The search and selection of
the best type of systolic array and the best SM algorithm is done in an ad
hoc manner.

Results
Systolic architectures and algorithms have been reported for priority queues,
real-time bitwise multiplication, and language recognition. For linear systolic
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Figure 11.18 lbarra, Kim, and Palis’ method.

arrays, several general results on speedup, computational power, the ef-
fects of adding global control, and the use of one- and two-way commu-
nications were reported.

11.2.17. Leiserson, Rose, and Saxe’s Method (81-84)

Description

This method starts with the design of a synchronous circuit (not necessarily
systolic) whose correctness is either obvious or easily verifiable. This design
is modeled as a finite, rooted, vertex-weighted, edge-weighted, directed mul-
tigraph, where nodes represent functional PEs and edges represent inter-
connections. Weights represent delays of nodes and register delays of in-
terconnections. Transformations are then applied to the original design to
obtain a systolic design without global broadcasts (Figure 11.19). The trans-
formations applied include retiming, k-slowdown, broadcast and census
elimination, coalescing, interlacing, code motion, resetting, register elimi-
nation, and parallel/serial compromises.




Systematic Design Approaches 483

Algorithm Algorithm
representation  Retiming, k-slowdown, model
broadcast and census
elimination, coalescing,
interlacing, and others

Maultigraph

Systolic [4
circuit

Entry: Synchronous 4
circuit

Architecture
specification

Figure 11.19 Leiserson, Rose, and Saxe’s method.

Applicability
It applies to any synchronous system.

Capabilities

The function of PEs, layout, and number of pins are preserved by the trans-
formations. Optimal retiming transformations can be selected either by re-
ducing this problem to an efficiently solvable mixed-integer linear-program-
ming problem such that the transformed circuit has the smallest clock period,
or by solving a linear-programming dual of a minimum-cost flow problem
such that the total number of registers is minimum. Extensions of the op-
timization procedures used can also take into account fanout, interconnec-
tion-bus width, multiple hosts, host timing constraints, and geometric con-
straints like the number of registers per interconnection.

Results
Systolic designs were derived from synchronous versions of a digital cor-
relator and palindrome recognizer. Other derived circuits include priority
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gueues, search trees, priority multiqueue, counters, matrix—vector multi-
plication, matrix—matrix multiplication, and LU decomposition.

11.2.18. Chen and Mead's Method (19, 25)

Description

The goal is to verify that a given systolic design computes the function for
which it was intended instead of the generation of a systolic architecture to
compute a given function. However, one can see this method as the veri-
fication component of a design methodology in which systolic architectures
are designed heuristically. Given a systolic architecture, the method gen-
erates a CRYSTAL program that describes the algorithm executed by the
architecture as a set of space-time equations (19). This representation con-
sists of several equations describing processes executed by local PEs, equa-
tions describing connections between PEs, functions representing data
streams, and functions describing the relation between the structure of input
and output data and the systolic-array structure. From fixed-point theory,
the mimmum solution of the system of recursive equations is the function
computed by the systolic architecture (Figure 11.20).

Applicability

The generality and power of the formalism used makes the methodology
widely applicable; however, for the same reason, it is not clear how practical
and feasible it is to automate the steps and reasoning involved in this method.

Capabilities
Any systolic array with homogeneous or heterogencous PEs and intercon-
nections, and synchronous and self-timed systems can be verified.

Results
The method has been demonstrated in verifying the correctness of published

designs for synchronous and self-timed systolic architectures for matrix—
matrix multiplication.

11.2.19. Kuo, Levy, and Musicus’ Method (20)

Description ‘

This method starts from the knowledge of the action and position of each
PE in the systolic array, the data “‘waves’’ present, their movements, and
the way their components are indexed, A ‘‘wave’’ is simply a collection of
related data that moves as a block during execution such that the relative
positions are preserved {e.g., a matrix). By inspection, Space-Time-Data
(STD) equations can be derived for each data wave. These equations relate
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Figure 11.20 Chen and Mead’s method.

the PE coordinates, time, and indices of data for each wave. Two functions
can be derived from the STD equations: the position function and the mem-
ory function. The position function gives the coordinates of the PE at which
some indexed data arrive at a given instant of time. The memory function
is the inverse of the position function and gives the index of the data that
arrives at a given PE at a given time. The direction and speed of data move-
ment are described by velocity vectors that correspond to the difference
between the coordinates of a PE receiving the data and those of the PE
sending the same data. Verification is done by simulating the systolic net-
work to either (a) track the activity of each PE over time by using the memory
functions to identify the data being used at any given time, or (b) track each
wave of data through the array by using the position functions to identify
the PE being visited by a piece of data and the memory functions to identify
other data present in that PE. If this simulation does exactly the same Op-
erations on the same data as the original algorithm, systolic algorithm is
correct (Figure 11.21).
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Figure 11.21 Kuo, Levy, and Musicus’ method.

i Applicability

g This methodology is best suited for verifying spatially invariant systolic ar-
rays for which data flows are independent of the values computed by the
PEs. In practice, this means that the systolic algorithms must have regular
dataflows through an array with regular geometry.

Capabilities

b Computational wavefronts can be rigorously described by position and mem-
} ory functions that are linear functions of time, data indices, and PE
E coordinates.

Results {
The verification of matrix—matrix multiplication on a hexagonal array has E

been reported.
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11.3. Final Remarks

In this chapter, we have surveyed 19 systematic methods for synthesizing
algorlthmlcaliy specified VLSI computational arrays. From a global point
of view, it is clearly indicated that the two greatest limitations in the state
of the art of existing transformational systems are the nonexistence of pow-
erful systematic semantic transformations and the inability to systematical-
ly achieve optimality in the resulting designs. This will be the directions
of future research in designing better methodologies.

Problems

1. Starting with an algorithmic description of matrix—matrix multiplication,
derive the systolic array design of Figure 11.1 using the following meth-
ods: (a) Moldovan and Fortes’ method, (b) Li and Wah’s method, and
() S. Y. Kung's method. (Hint—review references (75, 88, and 96.)

2. In **A mathematical model for the verification of systolic networks’ by
R. G. Mehlem and W. C. Rheinboldt (SIAM J. Comp., Vol. 13, No. 3,
August 1984), a methodology is proposed for the verification of the cor-
rectness of systolic designs. Derive the Y-chart for this methed and com-
pare it with the verification methods mentioned in this chapter.

3, In reference (67), six systolic designs are described for the convolution
problem. For each of the methodologies mentioned in this chapter, re-
derive those designs. (Review the relevant references for each method-
ology because most of them consider convolution as an example.)

4. (Project.) For each of the applications mentioned in Table 11.1, use the
methods described in this chapter to verify, design, or redesign the sys-
tolic architectures described in the corresponding references. Compare
the power, versatility, and effectiveness of the methods with respect to
each application. List the main limitations and advantages of each

E method.
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