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KNOWI.EDGE AND DATA ENGINEERING

INTRODUCTION

According to Webster’s dictionary [/], data refers to numerical information suitable for
computer processing, while knowledge refers to the sum or range of what has been per-
ceived, discovered, or learned. Knowledge can be considered data at a high level of abstrac-
tion and can be processed by a computer when it is represented as data. The distinction be-
tween these two concepts in terms of computer processing is usually vague [2,3]. For exam-
ple, a statement that data engineering is a growing field is a piece of knowledge. This state-
ment has to be substantiated by facts (or data) or by algorithms (or programs) that can gener-
ate the supporting evidence. Since the amount of data necessary to characterize a piece of
knowledge can be infinite in size, so the meaning of a piece of knowledge can be imprecise
or uncertain. In general, knowledge can be considered as a compact and sometimes impre-
cise way of representing a body of data.

Data and knowledge engineering collectively refers to the methods, algorithms, and
systems for design, utilization, and maintenance of data and knowledge. This involves (a)
methods for automated acquisition and learning of new data and knowledge, (b) modeling,
design, access, control, and evaluation of data and knowledge engineering systems, (¢) rep-
resentation, language, and architectural supports, and (d) deployment, evolution, mainte-
nance, and standardization of data and knowledge engineering systems with existing and
emerging technologies. The problems involved in the area of knowledge and data engineer-
ing are continuously evolving, as new applications arise and emerging technologies become
mature.

Different degrees of abstraction of a given problem in knowledge and data engineer-
ing may be required, depending on the complexity of the problem involved. Some problems
require less abstraction and therefore can be implemented easily in hardware/software. An
example of this type of problem is the design of a hardware selection unit for a relational
database. Other problems are more complex and require a hierarchy of abstraction to sim-
pler problems before they can be solved. These simpler problems by themselves may not
represent realistic, efficient, or realizable implementations. An example is a distributed da-
tabase that can handle concurrent accesses and updates. The concurrency control problem is
extremely complex if all characteristics of the physical distributed system and user behavior
have to be considered. To solve this problem, a simplified model of the communication
network, processors, and user behavior has to be assumed. A concurrency control algorithm
is then developed for the simplified model, and the algorithm is mapped onto the physical
distributed system. Since simplifying assumptions have been made in developing the algo-
rithm, the algorithm actually implemented on the physical system may not be totally effi-
cient.
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FIGURE 1. Problems of various levels of abstraction in knowledge and data engincer-
ing

Figure 1 is a conceptual view of problems.in knowledge and data engineering and the rela-
tionship to applications and technologies. Examples of problems with varying degrees of
abstraction are also illustrated in the figure.

The early years of computing research were dominated by information processing.
Loosely speaking, information refers to bits that are stored in computer memories. These
bits include data, software, and knowledge represented in data and software. In von
Neumann computers, for example, data and prograrms are stored in the same memory areas.
Therefore, data can sometimes be interpreted as programs, while programs are sometimes
considered as data. Since knowledge can be treated as a general class of data, its characteri-
zation may be uncertain or imprecise. Knowledge can be represented in computers as data
or software, or as a mixture of both.

With the growing complexity of applications, it was soon discovered that techniques
for designing and processing software were quite different from techniques for processing
data, and that techniques for acquiring and managing knowledge were different than tech-
niques for data processing and information processing. This discovery led to the develop-
ment of structured programming, database processing [4,5], and artificial intelligence [6,7]
in the 1960s and 1970s. Early data and knowledge processing systems were small in scale:
modeling, design, and management could be handled by one or a few experts.

The ever-increasing complexity of applications and information processing systems
in the 1980s and the increasing need to capture and manage abstract knowledge require the
collective effort of a large numiber of experts. Data and knowledge can no longer be handled
by individuals alone, and its management must be treated as an engineering discipline.
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Data and knowledge engineering systems are feasible because of recent advances in
technology and computer architecture. Existing technologies, such as VLSI, VHSIC and
fiber optics; and emerging technologies, such as lightwave technologies, sea of gates, three-
dimensional VLSI, and superconductivity, promise faster computers, more memory, and
higher networking bandwidth. Research on multiprocessing and distributed processing also
allow faster and parallel computers to be utilized efficiently.

In this article we provide an overview of the research and development directions in
knowledge and data engineering. We classify research problems and approaches in this
area, and discuss future trends. We do not attempt to survey all related work and references
in the area, as the scope of work in this area is extremely broad. Further, because knowledge
and data engineering have been applied in many areas, it is not possibie to provide a com-
plete discussion of each application.

CHARACTERIZATION OF KNOWLEDGE/DATA
ENGINEERING PROBLEMS

Solutions to problems in knowledge and data engineering applications depend on the char-
acteristics of these problems. In this section, problems are classified according to three at-
tributes: (a) completeness of knowledge or data in the environment, (b) accuracy of knowl-
edge or data available in the environment, and (¢) knowledge about the objective and/or
constraints of the problem. Table 1 shows the eight possible combinations of these three
attributes and offers examples for each class. Possible techniques in solving problems in
each class are also indicated.

Knowledge/data available in the environment can be complete or incomplete. When
it is complete, no additional knowledge is needed to solve the problem. In contrast, when it
is incomplete, heuristics must first be applied to find a complete set of knowledge/data. In
some cases, the amount of knowledge may not be very large or unbounded, and heuristics
must be applied to define a restricted set of knowledge/data that can be used in solving the
problem. For example, in proving a theorem, it may not be pos sible to define all of the nec-
essary axioms, As a result, the original problem has to be heuristically modified to prove the
theorem based on the available axioms.

The knowledge/data available in the environment may be exact or inexact. When itis
exact, it can be represented in numerical or logical form. Data/knowledge is inexact when
the number of possible cases is infinite, and it is impossible to enumerate or represent all of
them. In such cases, before the problem can be solved, heuristics must first be applied to
either define a finite number of possibilities or redefine the meaning of exactness so that
what is available can be treated as exact.

For example, the birthdays of people in a group are points in a tite spectrum, which
must first be converted into real numbers of finite precision before the youngest person can
be found. In a second example, recognizing an object in a given image involves incomplete
data, because there is an infinite number of possible orientations and features of the object
concerned. To solve the problem, it is necessary to identify a finite and reasonable number
of features of the object and heuristically match them with those found in the image. As
another example, finding points with the lowest energy in a bounded amount of space is a
problem with incomplete and inexact data. Although there is a finite number of particles in
such a space, it is not possible to examine the energy value of each. Measurements of a finite
degree of precision will be made for a reasonable number of points, and interpolations will
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be made for intermediate points. Heuristics are, therefore, applied to redefine the meaning
of exactess and completeness in the original problem.

After knowledge/data used in solving the problem is defined or restricted, the prob-
lem can be solved by finding a solution in the given solution space. This can be represented
as the objective of what the solutions must achieve and the constraints that the solutions
must satisfy.

An objective of a problem may be well-defined or ill-defined. A well-defined objec-
tive can be represented exactly in terms of the measurable parameters of the problem envi-
ronment so that it is possible to compare the quality of one solution with another. An ill-
defined objective may involve either parameters that cannot be expressed in measurable
terms or an unknown relationship among measurable parameters. As aresult of these condi-
tions, it is not possible to compare the quality of alternative solution. An ill-defined objec-
tive must first be heuristically transformed into a well-defined one before the problem can
be solved. This may involve restricting consideration to measurable parameters and defin-
ing the objective as a function of these parameters.

The constraints that the solution must satisfy may also be either well-defined or ill-
defined. In a well-defined set of constraints, it is possible to enumerate all candidate solu-
tions. In an ill-defined set of constraints, a potentially infinite solution space is defined.
Problems with ill-defined constraints must first be heuristically transformed so that all con-
straints are defined precisely in terms of measurable parameters of the environment.

The querying of a statistical database is an example of a problem with an ill-defined
objective because one can only obtain probabilistic rather than precise answers to queries.
The recognition of natural language from a voice pattern is a problem with inexact data and
ill-defined objective because the inputs are represented as analog signals that are prone to
errors, and because there are an infinite number of possible pronunciations of a word. In
these conditions, the constraints of the solution space cannot be defined precisely. For this
problem, only a finite number of possible pronunciations can be tested. The decision of
where a task should be performed in a distributed computer system is another problem with
an ill-defined objective because the relationship between the objective (minimizing the re-
sponse time) and the measurable parameters (workload statistics) is unknown. A heuristic
function relating the response time and the measurable quantities must first be defined be-
fore the problem can be solved. Finally, the prediction of weather is a problem which may
involve an infinite amount of inexact input data and ill-defined objectives and constraints.

RESEARCH ON KNOWLEDGE AND DATA ENGINEERING

The goal of research in knowledge and data engineering is to study and design systems to
support knowledge and data engineering applications. Approaches to achieving this goal
range from theoretical analysis, mathematical modeling, simulations, and prototyping, to
complete system integration,

The design process of a knowledge and data engineering system is extremely com-
plex and iterative. It is not possible to classify all of the variations of this process without
oversimplifying it. However, the resulting design has notable characteristics depending on
its starting point, which usually dictate the nature of the final result and can be used as a
classification scheme for results in this area. The starting point can be either application
driven or technology driven.

In an application-driven or a topdown approach, research is focused on first identify-
ing and refining the requirements of the problem. The knowledge necessary for solving the
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problem is then acquired, and algorithms are designed and mapped to physical systems. In
this approach, the capabilities of the resulting system are a good match for the requirements
of the application. However, in some instances, the requirements are specified in such a way
that a system cannot be physically realized. In this case the design process has to be iterated
through repeated refinement of the requirements and designs.

In contrast, a technology-driven or a bottom-up approach determines technological
capabilities and limitations first. These limitations lead to the design of realizable systems
on which the applications can be mapped. Tradeoffs on performance are then evalvated, and
one of the candidates is selected as the target system. The problem with this approach is that
the resulting design may not be a perfect match for the application requirements. The design
process has to be iterated by modifying the design until the application requirements arc
satisfied.

Research on data and knowledge engineering addresses the theory, analysis, design,
development, evaluation, and maintenance of new data and knowledge management tech-
niques, methodologies and systems that can support specialized applications in a cost-
effective manner. It also emphasizes a better understanding of problem-solving methods
with respect to the applications concerned. Related issues in accomplishing these goals in-
clude studies on the theoretical aspects, design tools and methodologies, design tradeoffs,
representation and programmability, algorithms and control, reliability and fault tolerance,
and designs using existing and emerging technologies. In the following text, we discuss
cach of these issues by stating its goals and showing some representative examples. It must
be pointed out that all of these issues must be considered in designing a complete working
system.

Figure 2 depicts a hierarchical organization of studies in knowledge and data engi-
neering. The problem to be solved may be specified in an imprecise form and must be suc-
cessively refined into a form that can be implemented physically. Applicable methods for
such refinement include synthesis, analysis, optimization, verification, validation, testing,
and maintenance. Representation on a higher level is influenced more by the applications,
while representations on a lower level are influenced by technological constraints. Table 2
shows examples of problems that are studied in each issue.

Theory

Theoretical studies involve abstracting the problem domain and studying the properties and
limitations of the abstract problem. Such an abstraction is often necessary transform the
original problem, which is too complex to be studied in its entirety, into a simpler and more
manageable form. Moreover, because the abstract model may cover a number of different
problems in the class, the results developed will be applicable to these problems as well.
Theoretical results can be used to guide the selection of algorithms and design tradeoffs,

Programmability and Representation

This issue involves choosing or designing the appropriate knowledge and data representa-
tion schemes and developing the necessary hardware and software support mechanisms. A
choice must be made between using an existing representation scheme, such as one that is
declarative, procedural, functional, or object-oriented; or designing a new representation
scheme. The scheme may have to take into account uncertain, fuzzy, or incomplete knowl-
edge and data in the application, and may need to support data and knowledge engineering
applications in a sequential or parallel environment.
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FIGURE 2. Design of knowledge-based and data-based systems.

Many of the issues of representation should be considered early in the design process
when the problem semantics are still available. An essential issue to consider is specifying a
minimal amount of information to allow control to be carried out efficiently in an imple-
mentation. This knowledge should preferably be specified in a form that is independent of
the computer architecture on which the knowledge and data management system is imple-
mented. Detection of this information for efficient control may have to be delayed until run
time when more accurate knowledge about the resources is available.

Design Tools and Methodologies

The design of a knowledge-based and database system is a complex task, which can be
greatly simplified by using computer-aided design tools. Systematic methods must be used
for analyzing requirements, representing specifications, partitioning problems into a man-
ageable size, designing algorithms, mapping algorithms into physical data and knowledge
management subsystems, and maintenance of these systems. The process is iterative and
stops when problem requirements, such as flexibility, extendibility, reconfigurability, user
friendliness, reliability, and evolvability, and technological limitations, such as chip size,
bandwidth, and packaging, are met.
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TABLE 2. Examples of Data and Knowledge Engineering Issues

Theoretical Basis

Recursive queries

Database models [8-10]

Logic databases [17,12]

Logic and problem solving [13]

Nonrmonotonic database and knowledge base [14]

Programmability and Representation

Truth maintenance [{5]

Object-oriented models [16]

Query, design, and visualization languages
Knowledge and data representation schemes [77]

Design Methods and Tools

Design methodology
Life-cycle mainienance
Computer-aided design tools [18]

Design Tradeoffs

Standardization

Performance evaluation techniques and tools
Integrated voice, image, and data processing [19]
Intensional versus extensional data processing [20]

Algorithms and Control

Testing

Load balancing

Hashing techniques

Deadlock detection

Integrity maintenance

Transaction processing

Reconfiguration strategies

Concurrency control [27]

Integrity and consistency checks

Query processing and optimization [22]

File partitioning, replication, and allocation [23]
Garbage collection and virtual memory management
Fault detection, isolation, checkpointing, and recovery

Emerging Technologies

Optical computing system
Artificial intelligence computers [24]
Database and knowledge-base coprocessor




234 Knowledge and Data Engineériﬁg

Design Tradeoffs

Design tradeoffs for data and knowledge management systems involve tradeoffs on hard-
ware and software implementations, representation schemes, use of software languages,
computational power of processors, communication bandwidth, storage capacity, cost, de-
sign of specialized functional units, operating system environment, and use of hardware
technologies. A judicious selection of the components to be used in the system must be
made in order to obtain a high-performance system with acceptable cost.

Algorithms and Control

This issue involves the design and evaluation of algorithms and control strategies for effi-
cient and reliable operations in data and knowledge management systems. It also involves
methods to acquire, test, store, access, and maintain reliable data and knowledge for a given
application.

The design process is usually hampered by imprecise or incomplete knowledge at
design time, which necessitates developing and using heuristics for control. These heuris-
tics may underutilize resources and cause anomalous behavior with respect to resources. In
the latter case, increasing the resources available to a system may result in worse perform-
ance by the heuristics (with respect to the objective).

Another problem in the design of algorithms is that they depend largely on the charac-
teristics of the application involved and the experience of the designers. Automated meth-
ods for designing and evaluating algorithms are not available at this time. Computer-aided
tools, such as antomated learning methods, may be very useful in adapting existing algo-
rithms 10 new applications.

Emetrging Technologies

This issue involves exploration of the limitations and impact of emerging technologies on
the design, evaluation, programmability, and application span of data and knowledge en gi-
neering systems. Emerging technologies, such as optical processing [25], artificial neural
networks [26], high bandwidth optical links, new packaging technologies [27], large mem-
ory devices, and new architectural concepts, may impact the ways that design tradeoffs are
performed and algorithms are developed. They may also result in different design methods,
problem-solving strategies, and control algorithms for future data and knowledge engineer-
ing systems and impact the evolution of current systems.

FUTURE TRENDS

Improvements in knowledge and data engingering systems can come from faster technolo-
gies, better representation schemes, more efficient algorithms, automated software design
methods, and better hardware/software architectures integrated with the available technolo-
gies.

Emerging Technologies

The basis for any computer system is the technology in which itis implemented. The design
of a system is often driven by its cost, hence, the fastest technologies, subject to cost con-
straints, are used. New technologies may give higher performance, but often are prohibi-
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tively expensive. These improvements will likely bring a two to three orders of magnitude
improvement in computational speeds in the next decade.

Knowledge Representations

Many new representation schemes have evolved in the recent past. These schemes may fea-
ture tools for knowledge and data capture and management. However, they are usually not
directed toward any specific applications and many have to be modified or extended to tai-
lor to the applications and computational environment. Another major problemis the lack of
an overall technique to guide the evaluation and selection of a representation scheme. Re-
search in this area could prove extremely valuable. Learning techniques for incorporating
new knowledge about application domains into current solutions in a knowledge-intensive
application may also impact knowledge and data engineering.

Algorithms

Research in the area of application-specific algorithms will have the greatest potential for
speeding the solution of the given application. The development of new and improved algo-
rithms for an application can be seen as finding alternative ways to incorporate knowledge
about the application domain and the technology into the computer solution.

The design of better algorithms and knowledge representation schemes is an impor-
tant complement to the tremendous potential offered by emerging technologies. Extension
in the limit of processing power by new technologies is valuable, especially for real-time
systems. However, the two to three orders of magnitude speed improvement offered by
these technologies in the next decade will not greatly impact the size or type of knowledge
and data engineering applications that are addressed today. Many of these applications in-
volve huge search spaces of an exponential size; two to three orders of magnitude increase
in computational speed will do Yitle to extend the size of a solvable instance of such a prob-
lem [28].

Table 3 shows, for a given problem, the extension in problem size that can be solved
by faster or parallel computers in the same amount of time as a single computer solving the
same problem and assuming that linear speedup is possible. It illustrates that, for more com-
plex algorithms, faster computers and parallel processing alone are only useful to improve
the turnaround time of algorithms that can already be evaluated on existing computer sys-
tems.

TABLE 3. Extension in Problem Size Due to Parallel Processing Assuming Linear
Speedup and the Same Amount of Time as Sequential Processing

Number of processors

Algorithm complexity 1 2 N

N N 2N N2

N2 N V2N N1.3

Nk N 214N N1+
2N N N+1 N+logaN
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Software Architecture

Software architecture is an integral part of a knowledge and data management systern. Gen-
eration of new software environments, tools, and languages will probably rely on amalga-
mation of known representation techniques and software design methodologies. Software
development systems and automated intelligent assistants represent prime areas for ad-
vancement of data and knowledge engineering applications. The problems of verification
and validation and continuous maintenance of programs, knowledge, and data are important
related topics.

Hardware Architecture

As with software, hardware architectures are often based on known design techniques such
as parallel processing and pipelining. Innovation for new architectural concepts may be
made possible by new and emerging technologies, which affect the cost effectiveness of
previous designs.

New hardware architectures are best utilized for operations that the computer per-
forms frequently. Counter to intuition, identification of these tasks is very difficult. Opera-
tions may be instructions, parts of instructions, groups of instructions, or frequently recur-
ring tasks. Identification of new and valid areas for development of new hardware architec-
tures is an important area of research.

System Design

System-level design is often based on an overall design philosophy and may contain, for
example, a mix of different computational models, and general and special-purpose func-
tional units. An important driving force is the cost effectiveness of the design and its techno-
logical feasibility. A major difficulty, however, lies in integrating designs with different
knowledge representation schemes, software architectures and hardware components, and
evolving systems as technologies change.
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