CHAPTER 13 .

ARCHITECTURES FOR STRATEGY
LEARNING*

Pankaj Mehra and Benjamin W, Wah

T INTRODUCTION

Recent years have wimessed a sharp rise in the quantity and quality of knowl|-
edge that can be captured in automated systems, Artificial intelligence (Al)
research in the 1980s has focused on the issve of utomatic knowledge acqui-
sition ot fearning. Learning tasks are perhaps the most complex problems that
Al tesearchers attempt to solve. Concomitant developments in the area of arti-
ficial neural systems (ANSs) have also prompted research in machine legmn-
ing—mainly by providing for learning systems an inherently parallel model
of implementation, one in which generalization and constraint satisfaction are
spontaneous. This chapter is an attempt to analyze and iltustrate how various
models (old and new) can be applied to complex learning tasks in strategic
problem solving.

In his famous essay, The Architecture of Complexity [207), Simon outlined
the nature of complexity in problem solving by comparing it to a search through
4 maze. Subsequently, Simon and Newell formalized the search space mode}
of problem solving. From the very beginning of this work, it was clear that
the complexity of a problem (and the associated search) was due mainly to the
large number of alternatives at cach step. Simon pointed out that

*This research was supported by the National Science Foundation under Grant MIP-88- 10598, and by
National Acronawtics and Space Administration under Grant NCC 2-481.

395

396 ARCHITECTURES FOQR STRATEGY LEARNING

the trial and error [in exploring the alternatives] is not completely random or blind;
it is in fact rather highly selective. . .The setectivity derives from various rules of
thumb, or heuristics, that suggest which paths should be tried first and which leads
are promiising. :

This treatment of problem solving led to work in the theory of heuristic search
[166, 167], which resulted in very general models of problem solving on onc
hand and efficient, general algorithms for search on the other {252]. Research
suggested that search algorithms draw their power from the expressiveness and
efficiency of problem representation, as well as from search control knowledge
encoded in heuristic rules. Work on expert systems later confirmed this assess-
ment [85], and it was realized that oé_do:z:m the knowledge acquisition bot-
tleneck was the key to designing powerful programs. With this realization, the
focus in problem solving shifted from powerful search algorithms to learning
of heuristic knowledge for problem solving.* _

Various algorithms for learning have been proposed and implemented dur-
ing the last decade and several general paradigms of learning have arisen.
However, most of the algorithms were demonstrated on small, well-defined
domains, such as game-playing [120, 144, 240], the blocks world [142], sym-
bolic integration [147], and high school arithmetic [51, 206]. Furthermore, the
complexity of the other applications was due more to the structure ol their
environments than to the dynamic variability of their parameters [148]. Our
recent aftempts at solving certain complex problems in resource allocation
have been frustrated by the inadequate learning model assumed by existing
atgorithms. In order to correct this deficiency in a systematic way, we have

L. studied the origins of complexity in strategy learning, using various

aspects of complexity to identify difficult problem classes,

analyzed the applicability of several well-known learning algorithms to

various problem classes, and

3. proposed a model of learning systems that applies to a class of complex
problems.

[

The rest of this section introduces the fundamental concepts of strategy
learning systems, . .

1.1 Problem Solving Strategy oo

A problem solver has a variety of knowledge about its domain. The procedural
component of this knowledge is available as primitive pieces of procedural
code called operators. Each operator is defined by the way it transforms a
problem situation (or state) into another. A strategy for solving a problem is

* The complementary question of autematic acquisition of problem representation and its rlaticaship
to the steategy acquisition process is beyond the scope of this chapter (See Section 1.7).

INTRODUCTION 397

a body of abstract procedural knowledge stated in terms of operators, The
problem itself is a generic description of several problem instances. It is stated
in terms of parameters, constraints, and objectives, Each instance is defined by
its initial situation, that is, by the initial assignment of vaiues to parameters. A
solution to a problem instance is typically stated as a partial order on a set of
operators, When applicd to the initial description, a solution generates another
description that satisfies the constraints and meets the objective. A problem-
solving strategy, in this respect, is a systematic method for generating solutions
to the instances of a problem,

1.2 Strategic Knowledge

The object level search space of a strategy learning system is defined by the
knowledge of the problem and its instances. The heuristics and strategies form
the first level of metaknowledge. Traditionally, metaknowledge has been made
available to programs directly {27] and accounts for much of their problem-
solving capability. However, in some domains metaknowledge is essential ly
empirical and varies from one context to another; it is thus necessary to acquire
this component automatically, The acquisition of metaknowledge is calied
strategy learning. Construction of strategics is accomplished USIng i progess
for leaming strategic metaknowiedge; the knowledge controlling the strategy-
learning process can be called the meta-metaknowledge of the problem (Figure
13.1).

1.3 Learning

The study of learning is the study of adaptive systems, and for the last decade
the modern view of Icarning systems has followed developments in cognitive
science, artificial intelligence, and adaptive control systems theory. A lewrning

Learning System Metaknowledge
(Represenzation of Heuristics and Strategies,
and their Relation to Obiective and Initial
State)

Problem Salving Metaknowledge
(Heuristics, Straregies)

Problem Domain Knowledge
(Problem Parameters, Objectives,
Consiraints and Operators)

Figure 13.1 Hierarchy of knowledge in
strategy-feaming systems.

388 ARCHITEGTURES FOR STRATEGY LEARNING

system adapts over time by making changes that improve its performance.
Under Feigenbaum’s knowledge hypothesis (Knowledge is power) [61, 128],
learning has become synonymous with knowledge acquisition. For insightful
discussions of the fundamental issucs in machine learning, the reader is referred
to articles by Simon {213], Minsky [140], Schank et af. [204], Langley [118],
and Berliner [27]. :

1.4 Nomenclature of Strategy-Learning Paradigms

A strategy-learning paradigm is a way to represent and acquire metaheuristic
knowledge for problem solving. Different learning paradigms make different
assumptions about the learning process; these paradigms affect the architec-
ture of the problem solvers, which, in turn, influences the performance of
the overall system. Following Dietterich, we shall attempt to analyze strategy-
learning systems at the knowledge level [54, 155]. In what follows, we view
strategy leamning as a search process; just as the first level of metaknowledge
is useful in searching for solutions at the object level, so the second level of
metaknowledge is useful in searching for heuristics and strategies at the first
level. Second-level search is more difficult, however, because its objectives
are determined only partially by the objectives of search at the object level. The
constraints at the second level include the time taken by a strategy when it is
applied to a problem instance, the quality of the object-level solutions produced
by the strategy, and constraints on the applicability of strategies. The operators
at this level are called strategy modifiers or strategy constructors, The meta-
heuristic knowledge involved in the process is called the credit assignment
policy. The strategy modifiers constitute a body of knowledge known classi-
cally as the learning element; the metaheuristic knowledge is implemented in
a component known classically as the critic (see next section; also see Chapter
14, vol. 3, 21).

It is important that the critic be sensitive both to the objectives and con-
straints of the object-level problem and to the constraints of the meta-level
problem. If the critic is implemented procedurally, the strategy-learning pro-
cess is called analytical. If the critic’s sensitivity to the domain-level objective
is acquired by observing the effect of a domain-level strategy on a reactive
environment, the process is called empirical. Finally, if the critic is imple-
mented so that it has background knowledge of the relationship between the
objectives at the object level and the explicitly represented solutions found by
strategies at the meta-level, the process is said to be knowledge-based.

1.5 Architectures for mﬁq&mns._.mmqa:m Systems

The components of the problem-solving and learning system and their over-
all arrangement constitute the architecture of a strategy-learning system,
Fundamental issues in the design of such architectures have been addressed
by Dietterich [52], Minsky [139], and Mitchell {144, 215]. Our research has

INTRODUCTION 399

caused us to reassess the architecture proposed by Dietterich; other architectural
issues arise from recent developments in ANSs [1].

Dietterich’s classical model has a learning element, a performance element,
and a critic (see Figure 13.2). The performance element consists of the problem
solver and associated bodies of knowledge, which include the basic search con-
trol rules, such as heuristics for selecting, ordering, and pruning of alternatives.
At each decision point, the heuristic knowledge is invoked to determine what
operator to apply to find the best path to the goal. Because the set of heuris-
tics may be incomplete or inaccurate, the selected action may not be the best
option; it is the job of the critic to evaluate either the action or, more com-
menly, the environment that results from its application. The evaluation is
passed to the learning element, which edits the heuristic knowledge so that
subsequent selections may yield better evaluations. Consequently, the learn-
ing element must know how the performance element works, inclading how it
represents knowledge and what inference schemes it uses. This knowledge cun
be specified procedurally either in the form of a learning algorithm such as that
used by LEX [146], or declaratively in the form of editing rules such as those
in LS-1 {217], SAGE.2 [119], EURISKO [i26], ODYSSEUS [246, 247], and
Cupr {106]. Learning systems differ in the amounts of explicit and implicit
knowledge that go into the design and interaction of these components.

A popular model of strategy learning proposed by Langley [120] is an
instance of the Dietterich model. In it, the performance element is called
the behavior generation component, the leaming clement is called the behar-
ior modification component, and the critic is called the behavior assessment
component. We shall refer to systems based on this model as belonging to the
Dietterich madel, .

performance
assessment

Learning Element -l _/

(LB) W,

Critic/
Evaluator

peeformance
modification

Performance Etement -

(N
(PE)

J\

input/situation output/response

Figure 13.2 Dietterich's model of leaming systems.

400 ARCHITECTURES FOR STRATEGY LEARNING

Environment

Reinforcement
Machine

Trainer

U

Adaptive Critic/
Second Reinforcement Generatop

Figure 13.3 Minsky’s reinforcement learnting model.

An older and perhaps less restricted model of learning systems is that of
Minsky [140] (see Figure 13.3).

Z is the external reinforcement; Z = +1 for reward/extinction. The function
¢x = {2p; — 1) is monotonic with the probability p, of producing response R
to stimulus . The reinforcement machine tries to have a high value of p, if
Z is expected to be high, and vice versa. This can be achieved by adjusting ¢
after every reinforced trial so that the correlation between ¢ and Z approaches
unity. The reinforcement machine adjusts ¢ by maintaining 2 moving average
of past reinforcements; for example, °

H .
Cos1 =(1—0) > "7, where @ -0
i=0

which is the exponentially decreasing average, or

1 [, . e
Cier =1 — N cn + %N_: where N varies with time

which is the uniform weighted average. The term a_ can be viewed as the
sensitivity of the average to new data items.

2’ is the expected reinforcement such that the probability P(z = 7'|E) is
high, where E is the current state of the environment. Sometimes z may not
follow £, in which case 7' may be used. When z is available, the sccondary
reinforcement machine may be so adaptive that the difference between 7 and
z’ approaches zero. zy is a positive feedback connection in the secondary
reinforcement machine. It could be used to predict more than one step ahead,
but positive feedback may cause instability,

INTRODUCTION 401

The Dietterich model originated in knowledge-intensive Al systems, wherens
the Minsky model originated in knowledge-lean domains, The Minsky model
is distinctive because its critic is adaptive and requires only a small amount
of implicit knowledge about its environment. This feature may sometimes
be a drawback: if a partial internal model is avaitable, the model has no
way to use this knowledge. Samuel's Checker Player is a classic example
of the Minsky model [202, 203], and other examples of the Minsky model
include the REINFORCE model of Williams [248], the drive-reinforcement
model of Klopf [104], and the reinforcement learning model of Barto et
al. [22, 23, 226). Even though this model of learning was proposed by
Minsky, he was not convinced that such a machine could be at the heart
of an intelligent system, except in the case of truly statistical environments,
However, with recent advances in the ability to represent search behavior in
such systems, the model has become much more applicable. We maintain
that the learning paradigm in this model js more general than the learning
paradigm in the classical model, even though its representations are somewhat
restrictive.

. In this chapter, we propose a model of learning systems that clearly defines

the role played by the critic and the learning. element, making explicit the
knowledge they use during evaluation and editing (see Scction 7). We also
propose a generic scheme for training that makes it possible to acquire that
knowledge automatically. Thus far, such knowledge has been programmed
manually, making the resulting learning systems brittle when the training
environment changes. Our mode! can adapt to changes in both the problem-
solving objectives and the environmental reaction to the problem solver's
actions.

1.6 Methods for Probiem Solving

Problem solving modeis have become more general and powerful since the late
1960s. The first such model was proposed by Ernst and Newell 57} in their
GPS program. More recently, the SOAR project {117] has put this modet into a
more uniform framework, In SOAR, all activity occurs as cycles of claboration
of memory, rule selection, and rule firing. Rules of preference encode ali con-
trol knowledge, giving the system an ability to introspect and learn. Problem
spaces and search schemes can be defined dynamically. Learning in SOAR
is based on a simple, universal tearning mechanism called chunking {115].
This system has been demonstrated in a wide variety of environments and on z
variety of tasks: designing algorithms [222], simulating expert behavior [192],
and simulating other leaming mechanisms {193y,

Simultaneous developments in purallel problem solving have led 1o the
blackboard mode] of problem solving and learning [158]. Problem solving in
this class of models (also known as BR* models) occurs through cooperative
interaction among several parallel knowiedge sources that communicate Vi
a shared memory data structure called the blackboard. Recent extensions to

402 ARCHITECTURES FOR STRATEGY LEARNING

the model [84] cover sources of control knowledge that make decisions at the
strategic, policy, and scheduling levels, using a distinct control blackboard.

All the models described so far involve knowledge represented explicitly in
a prescribed syntactic format. Connectionist problem solvers work differently
[4, 11, 134, 198]. In these, problem entities are represented by a set of nodes.
{Distributed, coarse-coded representations [87, 194] can provide robustness
and generalization.) Connectionist systems model the search process by start-
ing in an initial state and allowing the system to converge to some stable state
[59, 88]. The long-term storage of relations among entities is encoded in the
weights linking various units; the short-term state in the activation levels of
individual units [196]. Typically, exploration of alternative solutions is made
possible by introducing stochastic units [4, 11].

Connectionist problem solvers cannot easily represent quantifiers or pred-
icate expressions of arbitrary complexity. One approach is to design increas-
ingly complex ANSs for solving problems in variable binding and rule activa-
tion [50, 229, 230]. Our approach is to start with well-understood primitive
networks (pattern classifier [197], autoassociator {3, 92], and bidirectional het-
ero-associative memory [111]) and to explore how a complex problem can be
solved by an architecture composed of these basic units.

Heuristic knowledge in problem solving consists of associations between
problem and solution entities. For example, if a connectionist network rep-
resents an association between the set of problem parameters and the set of
operators, then it encodes heuristics for selection, ordering, and pruning of
alternatives.. Yet another network can learn a state evaluation function, thus
supplying feedback to the action selection network [11, 12]. Note that this view
of heuristic knowledge is consistent with the heuristic classification theory of
problem solving [41]. Thus, we conjecture that the model used in this chap-
ter will suffice for classification problems involving propositional variables. It
has been shown by Clancey [40] that several decision problems are members
of this class. For complex problems in planning and optimization, however,
our results may not apply directly. In Section 5, we consider an important
class of problems called dynamic decision problems, which give rise to some
interesting problems in strategy learning,

1.7 Problem Representation

Choice of representation is an important determinant of problem solving per-

formance [8, 9, 76, 98, 101]. However, a program must understand the role
of representation to be able to adapt its representations automatically [127].
Because there has been no theory of representation in problem solving, it has
been customary for designers to procedurally encode the knowledge of prob-
lem representation. Recently, however, researchers have tried to automate the
process [66, 131, 151, 187, 188, 223]. This research stems from the work of
Amarel {9, 10], who formalized the role of representation in problem solving;
Davis [46], who used a methodology of metarepresentation in TEIRESIAS;

INTRODUCTION 403

and Simon [211}, whose UNDERSTAND program [209] was able to construct
representations for problems stated in natural language.

Automatic acquisition of problem representation is beyond the scope of
this chapter. Future developments may, however, significantly change the
nature of strategy-learning systems. We consider the issue of representation
complementary to the theme of this chapter.

Because we are experimenting with ANSs, a few remarks are in order
regarding their powers of representation. The model assumed in this chapter
is not as general as the problem space model of SOAR. We assume that ANS
units collectively represent the set of problem parameters, A given network will
apply to all instances of the same problem; but different networks will arise for
different problems. It is possible to construct more general problem solvers by
introducing an additional mapping network, but this will create complications
because of unsolved problems in variable binding and unification. The simple
model is sufficient to illustrate the utility of what we propose in this chapter,

There is another sense in which ANS-based models might be superior to
conventional models. Conventional models assume fairly high-level primitive
parameters and propositions that represent complex facts. There is little scope
for partial or dynamically defined refationships between these facts. Tt is possi-
ble in muliilayered ANSs both to construct abstract parameters of description in
the. internal hidden layers, and to represent partial relationships between prim-
itive and abstract parameters [197]. This constructive element of ANSs lets
them create complex descriptive parameters and form relationships between
these and other variables of a problem [11].

1.8 Problem Solving Environment

A problem description covers only some of its instances. It does not include
the environment of problem solving. Either the particular machine on which 4
problem is solved or the probability distribution of input variables may influ-
ence the optimality of a strategy. The problem solving environment consists
of the world being modeled in the learning system, and the trainer (if there is
one).

As an example of the influence that environment can have on learning,
consider a computer with a two-level memory [253, 254} It is possible that
because of the high latency of accesses to the secondary memory, a depth-firss
search strategy (which has low memory requirement) might be preferable to
a best-first search strategy (which has a high memory requirement), Without
taking the memory latency into account, a best-first search may always seem
preferable. The choice is obviously dependent on a context variable, namely,
the amount of primary storage. In the rest of this chapter, we assume that
the initial description is augmented with those context variables that affect the
performance of a problem solver.

The environment plays an important role in strategy-learning systems
because it reacts to the problem solver’s actions. This reaction serves as feed-

404 ARCHITECTURES FOR STRATEGY LEARNING

back to guide future changes in the performance element. The nature of the
feedback is an important characteristic of the environment. If the environment
reacts immediately to every action, it has immediate Jeedback. Otherwise, it
has delayed feedback, and the environment is said to be slow reactive. Bock
(28] has suggested that feedback after a synthesized sequence of responses
improves learning, when compared to systems with immediate feedback, The
feedback takes the form of a desired response in a supervised learning environ-
ment, or of a periodic reinforcement in a reinforcement learning environment.
In the former case, the feedback is said to be corrective, and in the latter,
evaluative. In the case of delayed, evaluative teedback, the learning system
needs an internal model of delay (hereafter called the persistence model). Tt
uses the model to associate feedback with the actions causing that feedback,

Typically, the causal knowledge between actions and effects has an envi-
ronment-dependent component. If this component is not known, the causal
model of the system is incomplete. However, the causal model is important for
proper attribution of feedback. Therefore, every lcarning system must have an
internal model of its environment that captures the causal relationships between
actions and effects, as well as the nature of the delays in the feedback process
(in a persistence model). : .

An additional source of complexity in the organization of a strategy-learning
system in a slow-reactive environment is the asynchronous behavior of the
learning component. If the environment supplies inputs in the form of asyn-
chronous events (which is typical of nonstationary dynamic environments), the
problem solver must have an asynchronous architecture as well,

Finally, the environment controls the probability distributions of inputs.
These in turn influence the applicability of various heuristic rules. This depen-
dence can be easily represented by making the heuristic rules adaptive, and
learning them through training in a specific environment.

Most of the existing learning systems have a fixed internal model of their
environment. In Section 6, we examine the assumptions implicit in the design
of the critic in several of these systems. In light of these assumptions, most
existing systems work only in a limited range of situations. In particular, we
show a class of strategy-learning problems that are hard to solve using the
existing models. .

1.9 - Overview of This Chapter

In this chapter, we survey architectures for strategy learning. The survey is
integrated with a classification of strategy-learning problems (Section 4) on the
basis of several aspects of complexity introduced in Section 3. In Section 6,
several architectures based on the Dietterich and Minsky models are examined.
An improved model is proposed in Section 7. Unlike the Dietterich model, it
does not rely on precise, complete, precoded knowledge of the environment;
unlike the Minsky model, it can use whatever knowledge becomes available,
It constructs dynamically an internal model of the environment. With this and

THE NEED FOR STUDYING STRATEGY-LEARNING SYSTEMS 405

other variations, our model is applicable to a certain class of problems that
lies beyond the scope of both Dietterich and Minsky models.

The most crucial extensions of the classical model concern ill-defined objec-
tives and delayed reinforcement. The classical model makes certain conceptual
simplifications to eliminate these problems. We examine the deficiencies of sev-
eral architectures based on this model by identifying a large class of problems
that they cannot solve. We also study several systems based on Minsky’s rein-
forcement learning model. These systems work well for small problems but
require too many ad hoc decisions to work correctly on larger problems. We
attempt to identify and explicitly represent the abstract bodies of knowledge
acquired during learning. Our approach is illustrated with SMALL~a system
that learns strategies for load balancing in multiprocessor systems [7. 24, 25].
As shown in Sections 4 and 3, load balancing belongs to a class of complex
problems in our taxonomy,

2 THE NEED FOR STUDYING STRATEGY-LEARNING SYSTEMS

Even after almost two decades of prolific research in the design of intelligent
machines, the applications have usually been demonstrated for simple domains.
Attempts to construct complex real-world applications have been hampered by
numerous factors, mainly attributed to the knowledge acquisition bortleneck.
We cxamine several issues in knowledge acquisition that necessitate a reassess-
ment of the available systems for strategy learning (Table 13.1).

Metaknowledge Not Available Strategy-learning systems have begun to
require increasing amounts of metaknowledge from their designers. This
knowledge is implicit in abstract parameters of representations and parameters
of learning algorithms. The additional knowledge required to make learning
system work correctly has been called bias. The need for bias in learning
Systems has been recognized by several researchers {Watanabe {238, 239],
Lenat [126], Davis [46], Utgoff [232, 2331, Mitchell [143] and Rendell {184,
185]). Thesc studies have quantified {183] the biases implicit in the choice of
representations and in the meta-level architecture for rational setting of atgo-
rithm parameters. However, the critic has evaded similar analysis. Except for
the work of Barto et al. [23], David Ackley [4], and P. J. Werbos [2421,
it has retained some very severe assumptions. A comprehensive treatment of
the role of a critic in a leamning system has been carried out by Dietterich
and Buchanan [52]. Our approach is to make explicit the role of knowledge
in credit assignment. Doing this enables us to analyze the critic at the knowl-
edge level. Unlike most approaches based on the Dictterich model, we do not
assume that the knowledge for credit assignment is available a priori.

The Need for Quick, Intefligent Decisions In real-time problem solving,
strategic decisions must be made in limited time. using limited resources.

406 ARCHITECTURES FOR STRATEGY LEARNING

TABLE 13.1 Desiderata for Strategy Learning Systems,

Existing Systems Proposed System

Algorithmic bias in the
credit assignment process

Explicit representation of the knowledge
required for doing credit assignment

Fixed strategies Adaptive strategies

Abstract model of cost for
learning and problem solving

Eun_.::o.%nnio model of cost for
learning and problem. solving

Assumption of stationary
distributions

Adapting to time-varying distributions

Assumption of synchronized and/or Ability to learn under asynchronous
immediate feedback delayed feedback

TCA with implicit heuristics for Explicit, automatically-acquired
persistence model of persistence

SCA with fixed, user-supplied Dynamically varying causal model

causal model acquired automatically

Implementation on von Neuman Asynchronous, parallef connectionist
architectures architectures L

The need to make quick decisions prohibits searching large search spaces,
whereas the need to make intelligent decisions requires that good solutions
must not be left unexplored. Moreover, the objectives of the problem may
not be stated explicitly. These may have to be acquired or approximated by
learning. Such constraints necessitate the inclusion of a learning component in
any fast, intelligent prablem solver. Learning and problem solving should be
integrated so that they share processing power and other resources. Scheduling
of resources is inevitable in these systems. The importance of a scheduler in a
learning system was suggested by Wah and Yu [254] and in several blackboard
control architectures [84, 158]. .

Studies of resource-constrained inference in Al have been restricted to con-
sidering some abstract performance parameters of measurement such as depth
of chaining, number of states explored, the number of states memorized, the
tength of proposed solution, and/or the number of comparisons made, These
parameters are meaningful only if they can be related to real measures of per-
formance such as turnaround time on a task. Most researchers tend to ignore
this issue because these relationships are machine-specific.

Consequently, most Al systems lack a machine-specific model of cost.
Such knowledge can drastically change the evaluation of a strategy, because
abstract measures of performance do not always produce a valid evaluation, An
adaptive, explicit mechanism must be studied to acquire realistic performance
parameters through training on the target machine. Our study in Section 7
includes the description of a systern that addresses this problem. Qur strategy-

THE NEED FOR STUDYING STRATEGY-LEARNING SYSTEMS 407

learning system can, therefore, make use of machine-specific information in a
structured fashion,

Nonstationary Dynamic Environment Many problems in the real world have
too many parameters to be modeled exactly. Our focus is on computer archi-
tecture and performance evaluation. Traditionally, strategic problems in this
area have been solved by approximation through stochastic modeling, but with
the advent of large multiprocessor architectures, even approximate analytical
modeling has become too cumbersome. Moreover, the environment in multi-
processor systems has been found to vary dynamically.

Recent experiments in the design of load-balancing strategies [7, 25, 163]
have highlighted the need for dynamic decision making and, hence, for
learning in real time. This, in turn, has posed the problems of resource-
constrained and time-limited inference, Most existing learning systems do not
have a real-time scheduling component and are therefore not applicable under
these conditions. .

Adaptive Strategies Strategic problem solving is needed when there is a large
space of alternatives to explore and no mechanism is known for generating
optimal or near-optimal solutions. Therefore, unlike earlier researchers (Slagle
[214], Georgeft [72, 73] and Sacerdoti [201]), we do not assume that sirategies
are available a priori. This assumption must be dropped because of the need to
make intelligent decisions quickly, and because of the lack of knowledge about
the problem environment. Another reason is that computing environments
change continuously, and it is impossible to estimate the goodness of a decision
completely at any point in time. Thus, strategies should be adaptive in order
to be really efficient and generally applicable. :

Slow-Reactive Environments Leaming is possible in the first place because
the effect of every action becomes manifest in the state of the environment
following that action. However, real environments are neither infinitely fast
nor synchronous. The credit assignment process in most of the ¢xisting learning
systems is based on the assumption of immediate feedback. Thus, feedback
needs to be distributed only structurally among the various decisions causing
an obscrved effect. In the case of delayed reinforcemcnt, the credit assignment
problem acquires an extra dimension: time! The feedback must he distributed
temporally among several memorized decisions, before being distributed strue-
turally among their individual causes.

Temporal Credit Assignment Temporal credit assignment (TCA)} is the
mechanism by which feedback resulting from several decisions is divided
among the individual decisions constituting the episode. It entails associating
observed effects with a history of actions. (See Sutton’s thesis {223] for a com-
prehensive discussion of the origins and solution techniques of this problem.)
The existing approaches to TCA mainly deal with persistence of effects caused
by individual actions. They employ heuristics such as recency (that the more

408 ARCHITECTURES FOR STRATEGY LEARNING

recent an action is, the more eligibile it is to receive feedback) and frequency
(the more frequently an action occurs during the episode leading to feedback,
the greater its eligibility).

- Although we follow the example of Sutton [{1, 23, 225] in separating
the temporal and structural components of credit assignment, we relax the
assumptions about persistence models. In particular, the model of strategy
learning we propose to study has an explicit model of persisterice and retains an
explicit memory of past actions. In Section 7, we give details of a mechanism
for dynamically learning persistence models of various actions and effects,

Structural Credit Assignment Structural credit. assignment (SCA) is the
mechanism by which feedback for an individual decision is divided among the
rules causing that decision. SCA has been simplified in Al systems by assum-
ing explicit representation of cause-effect relationships, as in the preconditions
and postconditions of STRIPS-like operators. In nonstationary environments,
this assumption leads to a loss of accuracy. We propose an architecture that
dynamically acquires the causal model relating mn:nsm and effects.

Asynchrony in the Learning Environment In real-time systems, which tend
to be event-driven, and in reinforcement learning systems, which tend to be
driven by reinforcement, all behavior is inherently asynchronous. Therefore,
the problem solver and the learner should be able to process asynchronous
inputs and asynchronous feedback, respectively. Thus, our system must have
an asynchronaus architecture {84, 161]. We explore ANSs because asynchrony
and concurrency are inherent traits of the connectionist model,

3 A TAXONOMY OF STRATEGY-LEARNING PROBLEMS

In this section, we study the factors that make some, strategy-learning problems
more difficult to solve than others. Our purpose is to identify the significant
characteristics of the strategy-learning task and to show relationships among
the problems studied by other rescarchers. Assuming that problems involving
simtlar bodies of knowledge require similar knowledge acquisition technigues,
we develop a knowledge-level specification of solutions to several classes of
problems. Certain strategy-learning problems are complicated by o:mamoam.mm.znm
that require that more knowledge be represented and reasoned with explicitly.
These characteristics, along with the considerations discussed in Section 2,
allow us to recognize those problems to which existing models of learning
systems do not apply.

3.1 Nature of the Objective Function

‘The objective function of a probletn is a generic description of the set of desired
solutions. During credit assignment, the critic uses this description to assess

the quality of a solution. However, the speci
include a crisp definition of its objective. We

specification of problem objectives (see Table 13.2).

A TAXONOMY OF STRATEGY-LEARNING PROBLEMS 400

fication of a problem might not
explore several possibilities for

Single Buittin Objective The specification of the objective function is

implicit in a credit assignment procedure
recognition procedure (as in Meta-DENDR

provided by the user. Usually, a
AL [311) is supplied for testing the

extent to which a solution meets the criteria of a desired state. The Strategy-

learning task involves finding heuristics to gener
them with the given procedure

ate candidate states, testing
» and generalizing these heuristics empiricaly.

The generalization capabilities are implemented by the leaming element. The
credit assignment policy recommends the heuristics that generate acceptable
states and censures those that do not. Consequently, the critic is simple to

implement. This kind of system is useful in highly constr
where the specification of a desired solution is often too ¢
declaratively, However, such specification restricts the
learning system to just one problem domain. Also, some
is embedded in the recognition procedure, and it cannot

because of the procedural encoding.

ained environments
omplex to be stated
applicability of the
heuristic knowledge
be modified easily

Assumed, General Objectives This class of learning scenarios are churacter-
ized by the parametric form of their recognition procedure. A classic example

TABLE 13.2 Effect of Objective Function Specification.

Type

Examples

Credit Assignment

Stiategy Learning

Built-in
single
objective

Meta-DENDRAL

Sufficient prior knowi-
edge for procedural im-
plementation of credit
assignment policy

Passible to use
nonadaptive
strategies

Assumed,
general
objective

Utiity-driven
classification

Credit assignment policy
nst be sensitive to
parameters computed
externally

Strategies should
adapt to changes
pa-

rageters

Flexible,
explicit
specification

Planning

Need to consider dy-
namic data structures
representing causal in-
formation, such as goal
hierarchies

Strategies must
be decluratively
represented and
dynamically inter-
preted

Abstract,
implicit
specification

Reinforcement
learning

Need 1o consteuet un in-
termal mode! of the ob-
Jective function; also
need to acquire a causal
model dynamically

Strategies must
be adaptively de-
fined; learning of
causal models in-
terleaved with
Strategy learning

410 ARCHITECTURES FOR STRATEGY LEARNING

of this class of problems is utility-driven classification, wherein the assumed
objective is to minimize the probability of misclassification. Yet another exam-
ple is MEA (means end analysis), in which the assumed goal is to minimize
the difference between current state and the goal state. Learning in this case
resembles an analytic optimization procedure [58]. The critic can be imple-
mented procedurally. It computes an evaluation based on an objective built
into the body of the procedure. Credit assignment involves the relative evalu-
ation of states before and after each move, and assignment of credit based on
the change in that evaluation.

Flexible Objectives, Explicit Goal Specification The objective in this case
is defined dynamically. As a result, there can be no predefined procedure for
evaluating an individual state. The critic must base its judgment on an acquired
measure of goodness. The classic example of this line of problems is planning
{200]. The first complication in these learning problems is that strategies have
to be tagged with the preconditions of application. Each strategy is applicable to
specific goals and specific problem situations. The critic tests the preconditions
for overgenerality or overspecificity. It uses the causal model to identify the
action{s) responsible for credit or blame. The learning element must understand
the internal representations, and should be able to cdit the preconditions and
actions of a strategy. '

Implicit Objectives, Abstract Goal Specification The definition of objective
function is implicit in a periodic. reinforcement signal. This class of learning
situations is complicated because the trainer evaluates a complete solution path
rather than evaluate each state on that path individually. The reinforcement can
be interpreted as the net change in a hypothetical static evaluation function
from the first state on the path to the last state. Learning involves starting
out with unbiased random behavior, and"then biasing it towards increasing
reinforcement. The critic learns relationships between actions and subsequent
reinforcement. It uses a causal model of the environment, but the model must
be acquired automatically. The learning of the causal model is interleaved with
the learning of strategies [23]. Examples include problems in reinforcement
learning, such as learning to balance a pole in a cart-pole system [43, 139],
(A negative reinforcement signal is given every time the pole is so far off
balance that it falls off.) In this example, the objective is to find a sequence of
balancing actions that avoids a negative reinforcement si gnal for the maximum
length of time. . .

A similar class of problems arises when objective function values are avail-
able for a sufficiently large set of problem situations but the form of this func-
tion is not known. The critic must induce an internal model of the objective
function using these problem situations as examples.

Learning of the objective function can precede leaning of strategies. An
example is the blackbox optimization problem discussed by Ackley [4]. This
case is more complicated than the case of parametric objective functions dis-
cussed earlier, because the parameters must be Jearned while searching.

A TAXONOMY OF STRATEGY-LEARNING PROBLEMS 411

In this last class of problems, structural credit assignment (Section 2) is more
difficult because both the acquired causal model and the acquired heuristics are
responsible for subsequent evaluation. A scheme must be devised so that credit
or blame can be assigned to the component where the acquired knowledge is
in error.

3.2 Immediate Feedback versus Delayed Feedback

Three classes of learning situations can be considered (Table 13.3);

Feedback after Every Decision 1In this class, the feedback from the cnvi-
ronment is made available after every decision. Examples of learning from
immediate feedback are strategies employing the greedy henristic—choose the
locally best decision at each decision point. However, a strategy for solv-
ing a problem that is not solvable directly (in one step) involves a sequence
of decisions. Immediate feedback can tmprove sequential behavior only by
improving each decision in isolation, assuming that the net effect on the
global strategy will be favorable. There is no need for TCA because there
is no ambiguity about the action responsible for the fecdback, Several com-
plex problems can be reduced to this class after temporal resolution of credit
or blame (52, 120]. In real-world learning situations, immediate feedback is
impractical because it slows down the problem solving system. Besides, real
learning environments are not reactive enough to produce feedback after every
decision.

Feedback after Every Solution Path These problems involve learning
episodes; each episode consists of the complete solution of a specific training

TABLE 13.3 Effect of Feedback Latency.

Type of Credit Strategy
Feedback Example Assignment Learning
Each decision Possible 1o ignore
tmmediate Back-propagation waaamzna in the E_zvcn.__
[196} isolation structure of an
episode
Using prior infor- Knowledge of
Systems based on mation abowt the “temporal structure
Synchronous, . .
the classical model temporal structure must be supplied
delayed . .
1147] of learning epi- externatly
sodes
Need access to a Learning of a
rsistence model sist
Asynchronous, Reinforcement persisten ¢m persistence 3.2_2
. for dynamic tem- interleaved with
delayed learning [23] . .
poral resolution of strategy fearning
feedback

412 ARCHITECTURES FOR STRATEGY LEARNING

instance and the feedback. TCA uses its knowledge of a solution to extract
the temporal relationships implicit in that structure. In this case synchronous
delayed feedback* is available only after a complete solution path has been
found. The critic has a procedural component for TCA. Abstractly, the deci-
sions leading down the solution path are reinforced positively while those
leading away from it are reinforced negatively. This type of feedback has been
investigated by Langley [120] and Sleeman et al. [215]. The critic needs to
memorize the solution path and.the branches leading away from it. In some
cases, TCA may involve additional search [145]. Tt is assumed, however, that
the knowledge needed for TCA is made available to the learner before any
learning takes place. Thus, even though these problems require some knowl-
edge, such knowledge does not need to be learned.

Feedback at Arbitrary Intervais Most complex problems involve asyn-
chronous delayed feedback. In these problems, there is no concept of a learning
episode. A good approximation is to consider (imaginary) episodes delimited
by successive reinforcements. In order to distribute the feedback the critic
must memorize recent actions. However, the structure of episodic memory is
not well defined. The memory consists of situation-action pairs along with the
justification for each résponse. Because the critic has no knowledge of the
internal structure of episodes, TCA is more difficult. Feedback is distributed
among actions depending on their eligibility [139]. The eligibility of an action
to receive feedback is computed as a fuiction of the persistence of its effects,
The more persistent the effects of an action are at the time of reinforcement,
the greater is its eligibility to receive feedback. During learning, persistences
of effects are maintained and associated with corresponding actions; these ‘are
updated in response to later actions, later events, and the passage of time,
Thus, the critic needs aceess to a persistence model, which maintains and
updates persistences in response to events and actions, and which accounts
for the decay of persistence with the passage of time. The problem of learning
strategies for pole balancing is an example of this type of feedback. In this
problem, the feedback is available only when the pole falls off to one side.
This feedback summarizes the evaluation of all the balancing actions since
the last time such failure occurred, Morcover, this kind of fuiture cannot be
predicted, given the knowledge of the problem.

3.3 Background Knowledge of the Environment

Background Knowledge Available We have already seen that some prob-
lems may require the knowledge of an internal model of the environment. In
knowledge-rich domains, for example, expert systerns and planners for finite
worlds, one can assume complete, consistent knowledge. Learning in such

* The word syirchironons refers 1o the timing of the feedback relative to the timing of the decision-
making process. Feedback is called asynchronous if one cannat predict its time of occurrence in ferms
of the latest decision that will be followed by feedback,

A TAXONOMY OF STRATEGY-LEARNING PROBLEMS 413

domains involves operations like macro-operator formation and construction of
censors and proposers for heuristic rules. Gaps in heuristic knowledge can be
detected by inference based on background knowledge and evidence, The critic
may incorporate a deductive component for explaining success and faiture.
When prior knowledge is not assumed to be consistent andlor complete, the
critic should be capable of nonmonotonic inference.

Background Knowledge Not Available In knowledge-lean domains, such as
control problems for physical systems, there is little background knowledge.
The intemal model must be constructed by the learner through observation and
experimentation. The critic may need to process stochastic data when cither
the distribution or some parameters of distribution are unknown, Leaming in
such domains involves constructing causal relationships based on the statisticul
analysis of dependence and the observation of temporal contignity between
actions and effects. The complexity of such analysis may be controlled by
prior knowledge about a causal mechanism between certain actions and certiin
effects. Credit assignment prefers actions that are more likely to have such
effects on the environment and are frequently associated with a better
evaluation.

3.4 The Nature of Feedhack

Abstract Advice If the feedback is in the form of abstract advice, then learn-
ing involves operationalizing this advice—rendering it usable for search by
translating it into concrete advice. This may require knowledge for interpreting
the abstract advice and repeatedly refining the interpretation until the advice
can be stated in terms of the available heuristics. Examples include the FOO
program [150]. This type of feedback requires that the trainer {advice giver)
have perfect knowledge. Therefore, this type of feedback is not applicable
when the environment varies dynamically.

Prescriptive Feedback If the feedback takes the form of a description of
desired output, the critic computes error by matching. The credit assign-
ment process assigns high evatuation to actions that minimize the mismatch.
Examples of this kind of learning include systems based on inductive leurning.
The trainer needs to know the best answer (any good answer if the learning
system tolerates noise) for specific instances drawn randomly from a population
of problem situations.

Explanation If the feedback is an explanation of a solution in terms of reccnt
behavior, the learner tries to generalize that explanation while maintaining
consistency with other knowledge. Not only does the trainer need to know the
correct response for randomly chosen problem situations, but also it needs to
know why the response is correct. The learner, given an explanation in terms
of its background knowledge, must isolate those components of knowledge that

414 ARCHITECTURES FOR STRATEGY LEARNING

will be useful in general. Such techniques are applicable only to knowledge-
rich domains.

Evaluative Feedback If the feedback takes the form of reward or punish-
ment, the critic prefers actions that result in the maximum reward (minimum
punishment). It needs to form an internal model of the reward generation
mechanism. One approach is to translate the evaluative feedback into prescrip-
tive feedback by learning an objective function that takes high values for pos-
itive evaluation and low values for negative evaluation [5]. This type of learn-
ing occurs in several dynamic control problems because they require minimum
knowledge on the part of the trainer.

3.5 Strategy Selection versus Strategy Construction

A heuristic is modular, whereas a strategy is prescriptive [189]; this implies
that heuristic-learning systems can consider decisions in isolation, but strategy-
learning systems must deal with a decision in its context, Thus, heuristic
learning systems are classified as strategy learners only in the case of delayed
feedback. If they choose between several available heuristics, they are called
strategy . selection systems, whereas if they construct new heuristics, they
are called (piecewise) strategy constructors. The knowledge used for credit
assignment in each case is described next.

Strategy Selection Strategy selection problems are simpler than the corre-
sponding construction problems. The selection problem requires knowledge
of evaluation techniques only. If the learning problem involves evaluation
of predefined operator sequences, then the critic needs to know only the
extent to which the application of a sequence leads to a state that satisfies the
abjective, -

Strategy Appfication 1f the problem involves learning of complex precon-
ditions for assessing the applicability and the utility of predefined operator
sequences, the credit assignment process must include an analysis of violated
preconditions and their eventual rectification. Since the preconditions for indi-
vidual operators are available, the role of each operator in a sequence may
need to be assessed by the critic. .

Strategy Construction A strategy - construction problem requires knowl-

edge of composition and evaluation of search control heuristics. If the learn-.

ing task requires generation of complex sequential behavior, the critic needs
the causal mode! and another component for constructing complex operator
-sequences. The latter component consists of operators for compesition of
operators and meta-level heuristics for the application of these composition
operators.

A TAXONOMY OF STRATEGY-LEARNING PROBLEMS 415

3.6 Uncertain and Incomplete Information

If the problem knowledge is uncertain or incomplete, information must be
weighted by some measure of belief, and beliefs must be revised based on
evidence. Strategic knowledge in these problems depends on the state of the
belief system, and needs to be revised in response to new evidence, The cor-
rectness of a strategy in the presence of uncertain parameters requires a statis-
tical interpretation. The revision mechanism entails an explicit representation
of the dependence between problem parameters, heuristic knowledge, and the
net error due to uncertainty in either or both of these.

Uncertainty in Input Uncertainty in input may arise because of noisy, incom-
plete, or time-varying information. Noisy inputs force strategics to have some
tolerance in the checking of preconditions. Incomplete inputs require that deci-
sion making should be possible even under partial information. If the problem
includes time-varying parameters, belief in the latest measured values of those
parameters should decrease with the time elapsed.

Uncertainty in Heuristic Knowledge Uncertainty in heuristic knowledge may
arise due to either an inconsistent or an incomplete model of the cnvironment.
Strategies based on such knowledge have inherent uncertainty. The critic uses
its error function and suggests modifications that minimize the expected error.

3.7 Resource and Time Constraints

Constraints on Object-Level Solutions Knowledge of resource and time con-
straints is made available to the critic so that it can reject strategies that violate
them. In the presence of such constraints, the strategies must follow the prin-
ciple of bounded rationality [208], which asserts that in real-world problems,
there is a tradeoff between the optimality of a solution and the time spent dis-
covering it. Optimality must be sacrificed sometimes. Any acceptable strategy
must be capable of generating an answer within a predefined time.

Constraints on Learning The strategy-learning tusk should be completed in
limited time, Learning algorithms that account for resource and time constraints
require a substantial amount of scheduling knowledge and resource altocation
heuristics. This knowledge may be implicit in the design of the problem solver
and the strategy learner or may be made available in separate knowledge
sources,

3.8 Types of Learning Techniques

A learning technique is said to be supervised if it involves a trainer and
unsupervised if it does not. In between, there are technigues that reduce the role

416 ARCHITECTURES FOR STRATEGY LEARNING

of the trainer; these are called senisupervised. Different learning techniques
place different burdens on the learner and the trainer. In general, unsupervised
learning is harder than supervised learning. Also, most of the supervised
learning techniques rely on episodic learning, that is, learning under immediate
or synchronous feedback.

Learning from Exampies In the case of inductive learning of strategies from
examples, the examples may be supplied externally along with the feedback.
Such learning typically leads to problems in Strategy selection. However, the
critic’s role is minimal because the evaluation is supplied externally.

Another form of supervised leaming is called explanation-based learning,
This type of learning is common in knowledge-rich domains. The critic has
sufficient knowledge and inference machinery to construct a proof of the
labeling (positive or negative) of the cxample. This proof serves as a causal
model and is generalized by the learning element to extract the sufficient
preconditions of the example solution. This technique constructs the causal
model by inference on its domain theory. It needs explicit assumptions about
persistence to work correctly in a time-varying environment [36].

Semisupervised Learning This type of learning uses the environmental feed-
back to generate more feedback internally. It is common in systems based on
the Minsky model. It leads to problems of strategy construction.

Learning by experimentation is a semisupervised learning method. It typi-
cally uses a type of metaheuristic knowledge known as instance-perturbation
heuristics, in order to generate examples internally. Controlled experimenta-
fion is a very powerful leamning method in knowledge-lean domains as well as
in knowledge-rich domains with inconsistent or incomplete theories [176-178].
The critic identifies candidate decisions whose ambiguity might be reduced by
further experiments. It uses an explicitly represented causal model in order
to detect such ambiguities. The type of feedback used is synchronous and
prescriptive,

Learning in the presence of a critic (also called reinforcement learning)
relies on evaluative feedback. The critic translates an evaluative measure into
a preseriptive one by incorporating a prediction mechanism for reinforcement,
which is refined after every prediction, based on a prescriptive measure: the
error of prediction. The critic leams to predict reinforcement and induces a
change in the direction of maximum reinforcement. The critic needs access to
a causal model (in order to choose eligible candidates) and a persistence model
{for temporal distribution of feedback).

Unsupervised Learning Unsupervised fearning in the form of learning by
doing is a useful way of minimizing reliance on an external trainer. This
mechanism leads to integration of learning and problem solving. However, it
may not be sufficient by itself because of the training time required. The critic
must be able to create and evaluate hypotheses for explanation of unexpected

COMPLEXITY CLASSES FOR STRATEGY LEARNING 417

success or failure. The learning element integrates accepted hypotheses with
the metaknowledge of the problem.

Another form of unsupervised leamning, known as self-supervised learning,
involves extra knowledge about when to learn, An example of this type of
learning is apprenticeship learning, wherein fearning occurs solely as a result
of expectation failures.

Learning by Analogy Analogy is a general form of learning, It can be
supervised or unsupervised, depending on how the strategies are generated
initially. The problem solver has an explicit memory of solution schemata
seen or derived in the past. It employs a reminding mechanism to retrieve
a past instance in response to a new problem instance. The concept of a
learning episode is crucial to this technique. If the storage and reteieval uni
for the learning episodes is too large, then the memory requircments will
grow and generalization abilities will drop, leading in the extreme case to a
meo-finction implementation of the problem solver. On the other hand, if
the unit is too small, the retrieved solution wilt not have enough information to
Justify the overheads of a reminding mechanism. The critic’s role is to detect
(by matching) when a past strategy may be applicable. The learning element
makes changes to the recalled strategy based on the match detected by the
critic.

4 COMPLEXITY CLASSES FOR STRATEGY LEARNING

In the previous section, we saw how the complexity of strategy learning
depends on some features of the problem class and the problem solving
environment. Among the most important features are the nature of the objec-
tive function and the delay between an action and resulting feedback. In this
section, we study several problem classes and relate them with various learn-
ing environments, This classification presents an integrated view of some well-
known classes and well-researched leaming environments (Sce Table 13.4). It
allows us to assess the complexity of a strategy-learning problem in a gjiven
environment. It is also useful in studying the scope of existing learning mod-
els in terms of the problems and environments supported. We will intvoduce
class of complex learning problems in Section 5. The extensions to the clus-
sical learning models entailed by this class are studied in Section 7. For now,
we focus on how various aspects of complexity are combined for some well-
known problem classes.

As a general rule, problems requiring strategy construction subsume the
corresponding problems of strategy selection; problems of leaming under eval-
uative feedback subsume the corresponding problems of leaming under pre-
scriptive feedback; tearning under resource constraints is usually more complex
than learning without any constraints, and may require a radically different
approach to learning and problem solving,

418 ARCHITECTURES FOR STRATEGY LEARNING

TABLE 13.4 Strategy-Learning Problems.

Complexity of

Problem Class . Simple Aspects Difficult Aspects Learning
Learning Well-defined ob- Time-intensive
strategies for jective, immediate Large search knowledge-lean
_combinatorial prescriptive feed- spaces learning

search back

Dynamic learning of
Complex objectives | objective function

Learning . NI -
real-tima m:mamw-mm_wn:o? _w%_a: in evalua- and persistence
scheduling few aiternatives tive feedback, . models, only need
resource constraints | knowledge for
strategy selection
) Background knowl- Knowledge-intensive,
Traditional edge available, Dynamicatly time-intensive learn-
learning-to- explicit objectives, defined objectives, ing; needs knowledge
plan problems | immediate feedback delayed feedback for strategy eonstruc-
: ' tion
Knowledge-intensive,
Dynamically time-intensive learn-
defined objectives, ing: needs knowl-
Reactive L asynchronous, edge for .m:.mamw .
plan revision Explicit objectives mo_mwoa feedback, construction; requires -
incomplete knowl- ronmonotonic tem-
edge, resoarce poral reasoning, per-
contraints sistence models sup-

plied externally

Knowiedge-lean

Partial knowledge learning; requires
Adaptive . nm complex non- _.nmmo:mm,_m with
control Strategy selection Jincar mappings, pacerlainty @,
problems uncertain informa- mmE.E.:m nonlinear

tion, asynchronous | asseciations between

feedback {ime-varying, real-

valued quantities

Uncertain information entails noisy or partial descriptions. It may not nec-
essarily complicate learning, because uncertainty is inherent in learning and
prediction. Hypotheses for explaining evidence naturally undergo revision in
the learning process. It is possible to have a more elegant, uniform learning
mechanism if data and inferences are allowed to be uncertain, Even though
uncertain inputs and heuristic knowledge may require an expanded repre-
sentation, they could actually reduce the complexity of learning and problem
solving.

COMPLEXITY CLASSES FOR STRATEGY LEARNING 418

Among several possible training paradigms, learning with a critic under
asynchronous delayed feedback requires the maximum knowledge. The critic
has memory of several decisions not necessarily belonging to the same solu-
tion path, and it must isolate those that could have caused the feedback.
Reinforcement learning with synchronous delayed feedback is less complex,
because the critic has complete knowledge of temporal relationships within the
sequence. As a result, the persistence model is considerably simplified. The
critic does not need to resolve causal dependency betweer memorized actions
and the feedback because all actions on the solution path are candidates for
receiving credit or blame. Supervised learning with immediate feedbuck is
substantially less complex because the learner does not need an internal model

- of persistence; it processes one decision at a time.,

Learning Strategies for Combinatorial Search Problems Problems with
well-defined objective function and immediate, prescriptive feedback are
among the easiest learning problems in terms of metaheuristic knowledge
This class includes combinatorial decision problems and combinatorial opti-
mization problems. A decision problem involves finding any solution satisty-
ing the problem constraints, whereas an optimization problem requires finding
the best solution. Consequently, optimization problems are harder than the
corresponding decision problems [69].

Real-Time Scheduling Problems Problems of learning while scheduting in
real time are complicated by the presence of resource constraints. The objective
function is often too complex to be stated explicitly. Instead, these problems
are solved by making the feedback evaluative, so that an improvement in
resource usage without significant loss of optimality is reinforced. Feedback
is generated (either externally in case of supervised or reinforcement learning,
or internally in the case of self-supervised tearning) by taking into account
the resources used by the proposed solution, as well as the extent 10 which
scheduling constraints have been satisfied,

Planning Problems Problems in operational planning are characterized by
the presence of complex logical constraints on the solution. Plans are usu-
ally discovered by inference with a causal model. Planning problems chunge
character from constructive to selective if past planning episodes are stored
and generalized. In the simplest case, an abstract pian is made availuble 10
the planner for operationalization by repeated refinement. This is a case of
feedback by absiract advice. Learning in these situations has a strong deduc-
tive element and needs substantial background knowledge. Learning problems
vary in complexity from those in which the background knowledge is assumed
complete and consistent to those in which both these assumptions are dropped.
Inconsistent knowledge requires default reasoning and nonmonotonic revision
of beliefs. Learning is easier if the trainer supplies an explanation far errors

* In terms of hewristic knowledge required, these may well be the hardest solvable problems [1325,

420 ARCHITECTURES FOR STRATEGY LEARNING

than if the system needs to maintain multiple possible explanations and the
assumptions under which each holds,

Reactive planning, or planning in-real time with resource constraints, has
been the focus of recent research. Problems of this type are the most complex
planning problems, because they involve time-varying parameters. Learning
to plan in these domains involves constructing persistence models of various
parameters. These models must account for unplanned changes in persistence
caused by asynchronous external events.

Control Problems Unlike planning problems, most problems in control
involve a large number of numeric, time-varying parameters. Control prob-
lem compiexity grows from the level of system identification to that of policy
design, The problem of system identification roughly corresponds to supervised

learning of a function from input-output behavior samples. Adaptive learning

of control policy has several features of complex strategy-learning problems:
uncertainty, delayed feedback, and strategy construction, Problems in control
have traditionally been solved using analytical techniques. Adaptiveness is lim-
ited to changes in parameters of a general model (such as the transition prob-
abilities in a Markov process). These analytical techniques, however, require
some serious assumptions about the distribution of inputs,

It is not our goal to design a fully general system capable of solving all
kinds of problems, but we would like to demonstrate a technique for solving
some complex problems in strategy learning. Our focus throughout the rest
of the chapter is on a class of problems called dynamic decision problems,
which share several complexity traits with the most difficult problems in our
taxonomy.

5 DYNAMIC DECISION PROBLEMS

In this section, we define characteristics, cite examples, and identify com-
ponents of solution for dynamic decision problems. This category includes
many practical instances of problems, stochastically modeled, especially those
whose parameters are not stationary with time, Many problems that can be
modeled approximately by queuing theory fall into this group. Problems in
computer networks, such as flow control, routing control, and congestion
control, are all based on anticipated information that may not be collected
accurately. Stochastic distributions are used as an approximation. Solutions of
these problems can be improved using the deterministic information acquired
by learning algorithms. Many problems in computer performance evaluation,
such as buffer management, disk head management, and scheduling, are mod-
eled stochastically (Table 13.5).

Dynamic decision problems can be further subdivided into policy design
problems and reactive planning problems. A policy design problem is char-
acterized by the need for fast decisions to be made from a small group of
stereotypical decisions. Decision making in this case is too frequent to allow

DYNAMIC DECISION PROBLEMS 421

TABLE 13.5 Strategy Learning for Dynamic Decision Probiems.

Dynamic Decision Problem

Corresponding Strategy-Learning Problem

Load-balancing problem
* Send jobs from compulers
with high workload to
computers with low work load
* Find a method to communicate
information

* Finding attributes to adaptively charac-
terize jobs, workload, and network traftic

*+ Learn a model to evaluate effects of
balancing decisions on response time

* Find decision rules for reducing
the response time

‘Page replacement problem
* Replace the page that is not
going to be referenced for
the fongest time

+ Adaptively predict page usage
+ Find attributes on which o base
predictions

* Find decision rules bused on
predicted usage

Instruction scheduling in
pipelined computers

* Prefetch the insteuctions for + Adaptively predict page usage
the branch that is most + Find auributes on which to base
likely to be the target of predictions
~ the next conditionat junp + Find decision rules based on branch
* Find a schedule that keeps the predictions
pipeline fulf

time for searching among alternatives. In a typical scenario, any one of 3 few
available alternatives is implemented, and performance measurement is possi-
ble only through statistics accumulated over many decision points. Examples
in this class are problems of load balancing in distributed computer systems,
page replacement for a virtual memory hierarchy, and prefetching for instruc-
tion level scheduling of a pipelined computer. In contrast, a reactive planning
problem [74] involves the dynamic construction of goal-secking behaviors in
the face of a nonstationary environment, in which asynchronously generated
events may violate some goal conditions achicved by past actions. Such prob-
lems are common in robotics and assembly line planning, They require more
effort on the part of the problem-solver/learner because no efficient strategies
are defined a priori, and it is not possible to completely predict the environ-
ment in which the plan is going to execute.

Since the strategies to be developed are different in each subclass. different
methods may have to be applied to leam the strategies. Examples of renctive
planning arise in domains in which there are multiple autonomous problem
solvers and none of them has a complete internal model of the other. Further
examples include the open-ended cooperative planning problem of Konolige
(107], and the blocks-and-baby problem of Schoppers [205].

422 ARCHITECTURES FOR STRATEGY LEARNING

5.1 Characteristics of Dynamic Decision Problems

Dynamic decision problems may possess a combination of the following char-
acteristics. .

Nondeterminism and Dynamic Decision Making The decisions imvolved in
solving these problems may require dynamic run-time information and infor-
mation about characteristics -of the problem instance being solved. Attempts
at these problems are known to benefit substantially from the use of adaptive

strategies. The best strategy for solving the problem instance cannot always be
found a priori.

Multipie Strategies Typically, there is a large (and often intractable) number
of alternative ways for getting a “good” solution. None of these ways can be
selected a priori as the best one, because identification of the best strategy may
depend on the problem being solved as well as on the values of certain time-~
varying parameters of the particular instance (possibly some environmental
parameters). The enumeration of possible strategies to solve a problem under
all possible conditions is generally infeasible.

Incomplete and Uncertain Information Complete information needed for
making an accurate decision may be unavailable because either the overhead
of collecting this information is too high or the information is heuristic and
uncertain. The solution process should be able to accommodate incomplete
and uncertain information and maximize the use of information as it becomes
available. .

Resource Constraints In a practical system, the available time and physical
resources are limited, It is desirable that the best (as defined by the evaluation
criteria) answer or strategy be found as quickly as possible. The large search
space of candidate solutions and strategies prohibits an exhaustive search of all
possibilities. An intelligent assignment of resources, both tme and physical,
must be made.

Delayed Evaluation The cxact effect of making a decision may not be known
until many decision points later. This requires a history of information to be
maintained in order to predict the effect of a strategy. This problem of TCA
is more difficult than is usually the case in current machinc learning research,
primarily because of the asynchrony in delayed feedback,

Dynamic decision problems include the problem of learning strategics for
real-time scheduling and reactive planning discussed in Section 4. Certain
complex problems in nonlinear adaptive contro}, such as the pole: balancing
problem, are also members of this class. Because of the presence of resource
constraints, this class does not include learning of strategies for optimization
problems. However, for decision problems, the approach taken here is more
realistic than traditional approaches such as decision theory (which considers

DYNAMIC DECISION PROBLEMS 423

each decision in isolation), or artificial intelligence (which usuaily assumes
substantial prior knowledge), Also, the formulation of control problems here
does not require prior knowledge of parameter value distributions. In recent
past, some of these problems have been addressed by research in the aren of
ANSs. However, we focus on explicit consideration of delayed feedback and
the role played by knowledge of the problem environment in credit assignment,

5.2 An Example of Dynamic Decision Problems

Dynamic decisions are almost inevitable in real-world problem solving. As
already mentioned, the problems in policy design require different prablem
solving techniques than the problems in reactive planning. We restrict our
attention to the former class in order to illustrate the proposed model in some
detail.

As an example, consider the problem of designing a load balancing strategy.

This type of strategy makes decisions about the distribution of jobs to various

sites on a local area network so that some user-acceptable combination of the
following objectives is optimized: overall job throughput, maximum comple-
tion time, average completion time, total communication cost, and average
utilization of processors [37, 38, 156, 157, 237]. The information that can be
measured includes processor utilization, number of disk requests perunit tine,
number of local and remote jobs that are pending, and status of communication
links. These meirics are sensed periodically and used at each decision point,
The set of conditions for determining the action to take at decision points
constitutes the decision policy of the system. A load balancing strategy is,
therefore, a combination of the metrics used and the decision policy [71.

A system for learning load balancing strategics should adapt to changes
in its environment. This means that new combinations of low-levei policy
decisions and revised preconditions for applying various strategies, based on
revised expressions of the measurable metrics, should be tried. Any changes
should lead towards the desircd goal of the system. When jobs are perfectly
balanced, the interprocessor communication is at a minimum, and the overail
throughput is high. ,

This problem belongs to the class of policy design problems. It involves run-
time decision making; multiple strategics are available for sotving the problem;
the strategy-learning process must be executable within the time and resource
constraints of the multiprocessing system; the information or metrics for the
workload may not be up to date or may be uncertain; and the effect of a
particular strategy does not become known until many decision points later.

We return to this problem in Section 7 following a survey of past rescarch
and a discussion of the new model of strategy-learning systems, This problem
is also the subject of a prototype implementation [235] under developwent at
the University of lllinois. However, it is only a representative problem. In
general, other members of the problem class will have different objectives,
decision variables, constraints, and entities, For instance, the three problems
shown in Table 13.5 have similar knowledge-level learning requirements. All

424 ARCHITECTURES FOR STRATEGY LEARNING

three have (1) a temporal aspect, which is manifest in the associated prediction
problems; (2) a causal aspect, which is manifest in the construction of relevant
attributes; and (3) the basic strategy selection aspect, which is manifest in the
need for learning decision rules. .

The methodology for the design of strategy-learning systems proposed in this
chapter is motivated not so much by the specific constraints of any particular
problem, but instead by the general characteristics of the entire problem class,
Various aspects of complexity (Section 3) and our focus on the defining traits of
dynamic decision problems (Section 5.1) undetlie our survey of past research
-(Section 6). .

6 SURVEY OF STRATEGY-LEARNING SYSTEMS

It is possible to classify learning systems along many dimensions. Three such
dimensions were introduced by Michalski et al. [137]: (1) the role played by the
learner (and the trainer, if there is one) and the amount of inference required; (2)
the representation of acquired knowledge; and, (3) the domain of application of
the performance systen. Classification scheme (1) may be useful because the
mechanisms of a specific learning model can be explained more conciscly by
examining the role of each component in a learning system, and by identifying
the assumptions on which its design is based. Systems belonging to the same
category under scheme (1) will employ similar mechanisms of acquisition. In
strategy-learning systems, the representation of strategic knowledge exhibits
substantial uniformity within a domain. Schemes (2) and (3) are equally good.
The classification in this section employs scheme (3) at the top two levels and
(1) at the bottom two* (See Figure 13.4)

The learning systems studied in the past have originated in domains as
diverse as cognitive science, psychological decision theory, statistical decision
theory, automated classifier systems, expert systems, and parallel distributed
processing (or connectionism). It is interesting to note that the bodies of
knowledge involved are very similar at an abstract level. Our view is that these
systems are the implementations of one of the two learning models we have
already introduced. When we identify a learning system or a class of learning
systems as implementations of a model, we expect that the basic assessment of
the model will carry over. We will, however, be careful to point out exceptions
where appropriate.

Figure 13.4 shows the broad categories of learning paradigms we have
studied. The hierarchy in the figure follows the general pattern

* Recall that the knowledge-level nomenclature introduced in Section §.4 classifies tearning paradigms
primarily on the basis of the abstract acquisition mechanism employed. Specific systems specialize the
abstract mechanism into an implementation scheme that is highly dependent on the represertation wsed.
Because there are fower abstract acquisition mechanisms than representation schemes, we choose to
classify by problem demains first.

SURVEY OF STRATEGY-LEARNING SYSTEMS 425

Strategy Lenrning Systems

Cognitive
Seience

LChoice

Anplogy

227

Knowledge Based

ShBL

x:ss._oﬂ._ma EBL Apprenlice
Compilation Leaming
M ~
N ~
Cancept Planning Syntactic)
Learning

Figure 13.4 Strategy-learning paradigms

domain — problem — extensions.

The dotted lines in the figure represent approximate or indirect relationships,
Some branches in the tree are short either because there is not enough variation
in the abstract category. or because we are not aware of more than a few
examples. In any case, this survey is meant to be representative rather than
exhaustive. A quick ook at the figure will, however, reveal thar the strategy-
learning problem has a vast scope and, thercfore, a large number of Eczzm:cmv_
are available for solving it. We examine some of these techniques next and

discuss their capabilities in terms of the aspects of complexity introduced
earlier.

426 ARCHITECTURES FOR STRATEGY LEARNING

6.1 Cognitive Models of Skill Learning

The first models of EcEaE solving behavior were motivated by a aom:m. to
understand human problem solving. Newell ef al. [154] laid the foundation
for a theory of intelligent problem solving by proposing the _QBE.nE space
model. The information processing theory of human _unoc_ma m.o?.Em H.Eo_
paved the way for later developments on the role of _m.mﬂ_:m in intelligent
bebavior [118]. It provides common ground for comparing several strategy-
learning paradigms. Even though the initial theory was built E.Q.Sa the GPS
program [57], which had a fixed general strategy of problem mo_smm _ummm.a on
means-end analysis, subsequent refinements of the theory were increasingly
oriented towards a production system model of learning.

The development of a cognitive theory of learning to moca problems was
motivated by the search for general principles of _25:.:@_ which 40::._ remain
invariant across learning situations. Six ingredients of all learning situations
were identified by Langley and Simon [118): (1) feedback about the improve-
ment or degradation of the performance element, (2) wm_giax m%m&:.c:, that
is, the ability to explore alternative strategies, (3) a mechanism for n_‘.&:\v?im
assignment, {(4) the ability to memorize past performance m_a.ﬁ.o reassess .:m
goodness in the light of subsequent reinforcement, (5) the m_u___.Q to acquire
the examples, learning algorithms, and the causal anor.g being told, and,
finally, (6) continued practice of acquired skills. Uownna:_.m o:.:a nature &.
{5) above, the model can be classified as a variant of Dietterich model (if
feedback is always told), a Minskian mode! (if feedback must be extrapolated
from recent instances of being told), or neither (if the causal model Eﬁ En
persistence models are learned by means other than being 8_5.. ,Eamm criteria
show that the abstract view of learning is the same in cognitive science and
artificial inteliigence. Only the motivations differ. For an insightful treatment
of motivation for learning, see the discussion by Simon [213]. . .

In 1979, Anzai and Simon [17] proposed a theory of learning by doing
that was centered around an adaptive production system [240]. That theory
has been successfully demonstrated to acquire strategies :S.moﬂ a complex
problem (steering a ship). The basic hypothesis of this theory is that .?.oZmE
solving proceeds by generation of problem spaces and m.mm_d: for goals in En..a.

- The theory applies whether or not the problem solver is o.%mc_n. of mn:o_.ua:m
an initial problem space. In case the initial problem is ill ammw&_ _ﬁ.ﬂ:_mm
by doing can include understanding by doing. For example, it is possible to
acquire the cansal knowledge between actions and effects aw.zmﬁ_om__@. .

According to the theory, the basic unit of knowledge acquisition in strategy
learning is the pruning heuristic, which allows the problem ma.v?aa to ignore
some parts of the search space during search. (For a ooiucﬂzozu_ approach
to this kind of learning, the reader can refer to Yu’s thesis [253].) _H.,rn
strategy-learning program is implemented as a rule &%o.ﬁQ mwmaa. much like
Lenat’s AM [124, 125] program, which employs heuristics for the a_mnoﬁwQ of
heuristics. Learning by doing is capable of handling time lags between action

SURVEY OF STRATEGY-LEARNING SYSTEMS 427

and effect as well as problems with ill-defined objective functions. The theory,
when augmented with the understanding-by-doing model, is capable of cousal
attribution and persistence modeling. Its reliance on domain knowledge and
rules of discovery are a handicap in terms of speed. On the positive side, the
theory is very general and applies across a variety of domains, The implemen-
tations of this theory lie outside the scope of Dietterich’s model because of the
understanding-by-doing component, and outside the scope of Minsky’s model
because of the ability to deal with metaknowledge for strategy acquisition, If
implemented in full generality, following Simon’s suggestion of employing
recursively applicable heuristic rules for discovery, this theory can leam to
solve any problem that is solvable by the production system representation.
However, recent results in computational learning theory suggest that such a
mechanism may not be able to learn within polynomial time [228]. In fact, such
criticism applies to several other strategy-learning paradigms that are equally
general (for instance, SOAR [116, 117} and ACT [14, 15, 152},

There are several cognitive models of strategy-learning systems bused on
adaptive production systems with hardwired learning mechanisms in the form
of procedures for composition of rules by chunking and proceduralization.
These include learning by composition [13, 15], lcaming by knowledge com-
pilation, the work of Lewis [129], and learning by chunking [191]. Although
these systems are capable of constructive experimentation, they suffer from
reliance on deep causal models of the problem domain, and the assumption of
immediate feedback (for instance, p. 203 of reference [15]).

Still another class of cognitive models of strategy-ltearning systems arc capa-
ble of learning problem solving skills from examples. In these systems, the
dependence on background knowledge is minimized. The nature of feedback
is prescriptive. Examples of this paradigm include the PET system for learning
problem solving heuristics [103, 172, 174, 173) and the ALEX system for learn-
g to solve textbook-algebra probiems [153]. In a system based on ACT thea-
ry, Lewis and Anderson [130] consider the effect of delay on performance of
human subjects. Their analysis seems to suggest that the Knowledge needed for
TCA is crucial to human learning, although no model of learning under delayed
feedback is proposed. Most of these systems (except Anzai’s learning by doing
[18]) have been demonstrated on problems having a few completely specified
parameters, an exact objective function, and immediate foedback for learning,

6.2 Strategy-Learning Systems for Making Choices

These systems have their origins in the psychology of decision making. Even
though both psychological and statistical decision-making theorics revolve
around the concept of maximization of-expected utility of the outcome by cost-
benefit analysis, there is a major difference in their view of the learnin 2 process:
statistical decision making is normative (how people should choose), whereas
the psychological model is descriptive (how people do choose) [2). Unlike the
models of skill acquisition discussed above, these models take into account

428 ARCHITECTURES FOR STRATEGY LEARNING

the uncertainty inherent in making strategic decisions, The major difference
between the two models, insofar as their treatment of uncertainty is concerned,
is their interpretation of probability. Psychological models use a :o:_,..mn_:wz-
tistic interpretation, whereas statistical models use a m.nn_:m::m.nn _Enﬁassa:
[86]. The psychological decision theory models restrict Ew information pro-
cessing model by imposing the constraint of bounded B:o:w:@ [212]. As
a result, these models account for time and resource constraints. However,
the temporal component of strategic behavior is played down; decisions are
restricted to choices and preferences between options. Thus, these anmmm are
usually more appropriate for strategy selection and acquisition of guidance
heuristics.

Einhom and Hogarth {55, 56] identified cases in which feedback can lead
to suboptimal performance. This is roughly equivalent to :mﬁzm no causal
models. They also. comment on how uncontrolled time-varying parameters
make learning difficult. Both of their criticisms can be countered if a system
is able to learn causal and persistence models dynamically. If there is some
regularity in the variation of environment parameters, then .En learner should
be able to acquire a model of such variations by ogm_ém:.o.: and 8::.0:&
experimentation. While the researchers in psychological decision theory and in
the psychology of learning [35] have both realized that the problem of delayed
reinforcement is harder than the one with immediate feedback, there has been
no attempt to construct a model that explains the temporal apportionment of
feedback in delayed reinforcement learning. .

Psychological models of choice under ::nm:mmnaw are a rich source .Om
possible representations of heuristic knowledge, providing models of .:mc:m:nm
that are invoked under resource constraints, and taking into account important
-variables of problem environment (see, for example, references Gﬁ 99, Emr
199, 231, 26]). Their limited applicability in a computational environment is
partly due to a lack of machinery for temporal credit assignment, Ea. partly
due to their extreme dependence on a knowledge-rich learning mechanism.

6.3 Strategy-Learning Methods in Statistical Decision Theory

As already mentioned, decision-theoretic mechanisms .mmsoa the 8:63&
aspects of strategies. They focus on the search for m:m:._m:é means of achicv-
ing a set objective by ordering the alternatives according to some preference
criterion [162]. In contrast, Al problem solving is concerned with n_d_u_m.am
that cannot be solved directly. Sequential behavior and explicit consideration
of temporal aspects are central to Al problem solving. Thus, even though
learning mechanisms in statistical decision theory are ?::a.ma on sound ._ns.s-
ing rules, the major handicap of these approaches lies in :E_.q representation —
only direct decision rules can be acquired. Decision-theoretic .mvﬁqomnrom :.m:_o
found their way into Al in the form of mechanisms for mmm_mnaos_.. fusion,
and propagation of beliefs during uncertain inference, and for learning rules
of selection.

SURVEY OF STRATEGY-LEARNING SYSTEMS 492G

The two major contenders for the use of decision-theoretic techniques in Al
are the Bayesian nets of Pearl [168] and the reasoning systems based on the
Dempster-Shafer theory of evidence combination [79]. These approaches are
useful in Jearning from examples. However, the convergence and optimality of
the rules depend on careful analyses of independence among the parameters.
Especially, the Dempster-Shafer calculus js an excellent framework for per-
forming resource-constrained inference [81], and can become an integral part
of the performance element in a learning system. Numerous examples of Al
systems using utility theory for assessing the value of a problem solving deci-
sion can be found in the literature (62, 67, 93, 195, 63).

Another class of limited strategy selection problems that can be solved using
Statistical decision theory techniques involve decision trees. These models
assume that the decision tree is given o priori and that probuabilities and
utility values of leaf nodes are known. These techniques can tolerate some
imprecision in the initial assignment of prior probabilities and utility values,
and produce an optimal strategy, represented as a path in the decision
tree [245].

The CART methodology of Breiman ef al. [30] introduces mechanisms for

automatic construction of classification trees from a tearning sample. These

- mechanisms are nearly as general as conventional classifiers, and together with

regression trees, they provide an efficient framework for managing dynam-
ically varying representation of classes. They can be used in an adaptive
action-selection network (performance element -+ learning element) in a data-
intensive domain. Although the decision tree framework is more general than
the single-decision model of choice, it requires complex mechanisms for prop-
agation of belief. Because credit assi gument can be viewed as revision of beljef,
these approaches can be applied to problems in which feedback is provided
immediately after the last decision (leaf node) of a solution path is executed
(synchronous delayed feedback).

We have criticized the decision-theory model for its lack of temporal struc-
ture, but there are a few exceptions. For instance, Kuipers [] 13] presents a
strategy for dividing a complex (strategic) decision into a sequence of choices.
Pollack et al.f171] have provided an overall architecture for integrating plan-
ning, belief revision, and choice., Decision-theoretic techniques are, there-
fore, promising as a model for data-intensive learning for strategy selection.
Mechanisms that use explicit causal models in the form of dependency
graphs (such as Pearl’s Bayesian nets) appear useful for problems not involv-
ing delayed feedback. However, their neglect of temporal structure renders
them unsuitable for dynamic decision problems. Recent advances in connec-
tionist learning techniques of Sutton [227] and Werbos [241] have extended
these models to include a mechanism for temporal prediction. In theory,
all connectionist research can be interpreted statistically [77]. Therefore,
statistical networks could be used for soiving dynamic decision problems

involving possibly nonlinear relationships between numerous time-varying
parameters.,

430 ARCHITECTURES FOR STRATEGY LEARNING

6.4 Strategy-Learning Methods in Artificiai _nﬁm_wmmmzoo

In Al strategy-learning systems have been buift for mv.._u:nmzo:m such as board
games, problem solving, planning, and scheduling., Approaches have fallen
into four broad classes:

L. Empirical learning technigues rely largely on syntactic similarity of
examples in order to form general concepts. This approach can be further clas-
sified into (@) similarity/difference-based learning (SDBL), which works by
generalization of logic expressions and structural descriptions given as exam-
ples of the concept; (b) probabilistic SDBL, which operates by forming regions
in feature space through splitting and merging; and (¢) genetic fearning and
other learning by experimentation methods, which use perturbation techniques
to generate examples automatically.

2. Analytical learning techniques are based on extensive analysis of prob-
lem solving behavior with respect to one particular representation and a specific
problem solving method.

3. Knowledge-based approach is used for acquisition of inference strategies
in knowledge-rich domains such as expert systems, planning, and problem
solving. Four learning techniques that belong to this class arc: (a) compila-
tion, which translates declarative heuristic knowledge into procedural solutions
embodying the heuristics; (b) explanation-based learning (EBL), which acquires
a general strategy from an explanation of a particular episode; (c) plan revision,
which constructs and refines abstract descriptions of solutions; and (d) apprei-
tice learning techniques, which employ learning by watching to fill gaps in the
knowledge base,

4. Analogical learning technigues can be used in conjunction with any of
the other learning techniques. Similarity between a new problem and an old
problem, for which a solution is in memory, is exploited in order to system-
atically transform the recalled solution into a solution to the new problem.

In this section, we describe these learning methods in detail, Section 6.4.5
covers hybrid learning systems, which cannot be placed into any one class,
Interested readers are also referred to survey papets exclusively dedicated to
Al methods for strategy acquisition, by Keller [102], Mitchell [145], Sridharan
and Bresina [219], and Langley {120].

6.4.1 Empirical Learning Techniques, Empirical methods rely on similar-
ity/difference-based learning techniques to acquire heuristics and strategies.
The primary categories within this class are systems that lear from examples
and those that leamn by experimentation. The critic in the first category of
systems needs only know how to interpret examples; in the second category,
however, it should be able to generate its own examples. Mitchell [145,
147] discusses a version-space approach for learning heuristics. The LEX
system incorporates a flexible representation for partially learned rnzlm:mm,
i which two boundary elements describe the least and most generally consis-

SURVEY OF STRATEGY-LEARNING SYSTEMS 431

tent heuristics with respect to the examples seen. The system can use learn-
ing by experimentation to restrict the version space. Its TCA employs time-
bounded search, and the performance measure used is the processing time,
which gives the system a machine-specific model of cost, However, the sys-
tem relies on synchronous feedback. It uses procedurally encoded knowledge
of the causal structure of the problem-solving episode. In dynamic decision
problems, episodes do not have a predefined structure, LEX is based on the
classical model of learning systems and therefore cannot be applied to problems
involving asynchronous feedback. . .

The SAGE.2 [119] system’s mechanism for credit assignment is flexible

for both immediate and delayed feedback, It incorporates a framework for

proposing rules for strategy learning. However, the system is very conservative
in learning from examples. When a move is labeled undesirable, the system
does not generate a negative example unless there is another move from the
same state that has not been labeled as undesirable.

Another program that learns strategies from examples is ALEX [153], a
nonfeedback leamning system that relies on a form of precondition analysis. It
uses a means-cnd analysis-based learner that only trains for differences between
specific initial and final states. Credit assignment is based on whether the state
is closer to the goal after applying an operator. The system has u condition
creator to construct preconditions both from those pairs in successive states
that cannot be explained by the current set of heuristics, and from information
about the context of problem solving. Each step in the example is examined
in isolation.

ALEX is also capable of learning strategies while solving problems. It
learns from failure by specializing operator schemata through difference-based
learning. Examples of failed episodes are examined for differences with similar
situations that worked. This idea originated in the near-miss concept of Win-
ston’s ARCH program [250] and has recently been formalized by Falkenhainer
[60]. Another example of this kind of learning is the discrimination learning
mechanism in SAGE.2 [119].

Yu and Wah have developed TEACHER-1, a system that learns, by exper-
imentation, the dominance relations in combinatorial searches [254]. The Sys-
tem generates alternatives by examining different parts of a search tree und
proposes dominance relations based on positive and negative examples found.
Credit assignment is based on the processing time expended, and the num-
ber of dominance heuristics found in an allocated time quantum. Dominance
heuristics are hypothesized using domain-independent and domain-dependent
knowledge. Because combinatorial search problems are well defined, and pos-
itive and negative examples are easily verified in the problem domain, domi-
nance relations as good as those obtained by theoreticians have been found for
a number of search problems.

Syntactical logical expressions can be generalized using Michalski's AQ
program [138] and other generalization techniques [169]. These techniques
have been used in various rule induction programs, such as Meta-DENDRAL
[31], Poker Player [240], and UPL [160], for inducing rules from specific

432 ARCHITECTURES FOR STRATEGY LEARNING

episodes of chaining inference. Generalization of structural descriptions can be
used for learning macro-operators, Among several well-known programs for
structure induction are ARCH [250] and INDUCE and its extensions [243].
Empirical techniques for learning macro-operators have been demonstrated by
Whitehall [244] and Andrae [16]. Their systems generalize problem solving
traces either generated internally or supplied by the user. The essential concept
in this case is that of a problem solving episode. As we have already seen, in
-problems with asynchronous delayed feedback, the concept of an episode is
very different, and so these methods do not apply directly. The same comment
applies to other macro-operator learning systems, such as Macro Problem
Solver [108] and FM [135]. .

Probabilistic methods employ numeric performance measures in making
decisions, The PLS1 [180] system forms clusters of problem instances for
which similar heuristics apply. Strategy learning is transformed into concept
learning, and the objective function maps into the utility function of concept
learning. The problem space is partitioned into rectangular regions by clustering
techniques. These techniques are appropriate only when the EoEoB..%mno
parameters have smooth variations with respect to the applicable rmczmaom.
(See, however, recent work on constructive induction [181, 186] as a possible
counter argument,)

Zhang and Zhang [255] view search as a statistical sampling process,
Learned strategies are encoded as weights on the nodes of the search space
being explored. Evaluation functions of nodes that are unlikely to lead to solu-
tions have weights added. Likewise, if a hypothesis is accepted, weights are
added to all competing hypotheses. The likelihood of selection of a hypothe-
sis varies inversely as its weight. The adjustment of weights on hypotheses
amounts to learning.

- Another class of search techniques use dynamic weighting. With heuristic
estimates that are guaranteed lower bounds of the true goodness, branch-and-
vound [114] methods can be used to implement learning while searching; even
if the heuristics are not lower bounds, techniques such as the HPA dynamic
weighting algorithm [170] and adaptive search {136] can be used to improve
efficiency. .

Besides being used to learn operator schemata and guidance rules, empirical
methods have been also used for learning binary preference predicates [234],
predicting the length of solutions [175], and for learning problem classes [19].

A class of empirical leamning methods called learning prediction has much
significance for learning in the Minskian model., The leamer tries to learn a
weighted evaluation function that remains invariant along the solution um.:r
and that accurately predicts the assessment of the terminal node on the solution
path [39]. The earliest example of such methods is Samuel’s checker playing
program [202] and its extensions [203]. Its equations have nearly the same
form as the equations of the Minskian learning model in Figure 13.3. A
uniform weighted average is used for maintaining the c;’s. The parameter
N model is so set that oscillations are avoided during the early phases and

SURVEY OF STRATEGY-LEARNING SYSTEMS 433

overfitting is avoided later (V is 16 until the 32nd trial, 32 uwntil the 64ih
trial, and so on, until it stabilizes at 256). Samuel’s technique is quite ad hoc.
Variants of this technique formalizé the exponential decay factor [225] and the
iterative prediction procedure, For instance, the Bayesian updating scheme is
used by Lee and Mahajan [123], and linear regression is used by Rosenblatt’s
perceptron [190] and by Korf [110].

In subsequent research on prediction by temporal difference methods, Sur-
ton [227] has presented a class of parameterized procedures cafled TD(A). The
A parameter is the exponential decay factor set by the user, A similar proce-
dure had earlier been implemented in the Adaptive Critic Element [23], which
can solve strategy-learning problems in knowledge-lean domains, using rein-
forcement learning under asynchronous delayed feedback. It includes a fori=on
parameter that defines the relative importance of making a correct prediction in
the immediately following time instance versus the importance of the expanen-
tially weighted sum of all the future predictions ad intinitum. These methods
resolve the question of temporal credit assignm®nt in a single-action machine
by making the assumption that the eligibility of an action to receive feedback
decreases exponentially with the time elapsed since the action was performed.

Genetic algorithms simulate nature’s evolutionary mechanism to learn rules

~ in propositional classifier systems. The classifier rules together constitute the

performance element of these leaming systems. This framework {90] has been

. augmented with iearning based on genetic algorithms for discovery of new

classifiers [29]. A novel TCA process called the bucket-brigade algorithm
[91, 249] has been extended so that credit can be distributed structuralfy and
temporally, using a synchronous delayed feedback paradigm of learning,
Each rule has an associated value called strength, and another parameter
called its specificity, which is the fraction of the propositional literal popuia-
tion referred to in its antecedent. During problem solving, the bid of u ruic is
directly proportional to its strength and specificity. Among the eligible bidders
(i.e., those whose preconditions are satisfied), some high bidders are selected
for action. Credit is allocated cither when external feedback is received from
the environment, or when a rule causes another rule to be activated. Credit
takes the form of increments proportional to the strength of the recommended

tule, Sutton [227] notes that this algorithm results in exponentially decaying

feedback, although this has not been established analytically. This algorithm
is selective about the actions chosen to recejve feedback, in some sense using the
causal model implicit in the rules of the classifier system. It treats TCA and SCA
uniformly. The eligibility of an action to receive feedback varies exponentially
as its depth in the causal chain relative to the rule that draws the reinforcement.
Under the assumption of infinite parallelism, the persistence model of this TCA
policy is the same as that of Sutton’s TD(A) family of procedures.

The genetic learning model is easily extended to environments with asyn-
chronous delayed feedback [29], aithough the question of memorization of
past decisions has not been addressed explicitly, and it is also a problem that
the model’s persistence model is a procedural component of the critic. This

434 ARCHITECTURES FOR STRATEGY LEARNING

paradigm assumes 2 fixed objective function and a precoded Scwm.ﬁ model,
although the causal model can be augmented by application of genetic opera-
tors, such as crossover, inversion, and mutation. These genetic operators are
the strategy modifiers discussed in Section 1.4, The metaheuristics for the
.application of genetic operators are procedurally encoded in the critic.

Classifier systems share a lot of representational inadequacies with ANSs,
Among them are restrictions concerning the number of propositional variables
(which remains fixed throughout the learning and performance periods) and the
inability to represent quantified predicates. The metaknowledge (the heuristics
for classification problem solving) is expressed declaratively, and the learning
technique is quite general,

Other examples of genetic leaming systems for strategy learning are LS-1
[217] and PLS2 {179, 182]. . :

6.4.2 Analytical Learning Techniques. Analytical methods are based on
extensive analysis with respect to one particular problem representation and a
specific problem solving technique. A typical example of this class is the Uo.wm
system [58]. It is geared towards problems and operator representations specific
to the General Problem Solver (GPS). It might be intractable on larger prablems
because it ends up examining all instances of an operator initially, instead
“of manipulating parameterized descriptions of operators. Strategy learning is
reduced to automatic construction of triangular connection tables for GPS.
The method takes as inputs the invariants of the procedure implementing
an operator, and outputs difference-reducing connection tables. Two specific
principles, namely, that the hardest difference must be reduced first, and that
differences should not be reintroduced, are programmed into the strategy-
learning mechanism,

An extension of DGBS [96) has been used for automatically acquiring
heuristics for a robot planning problem. This method analytically derives
subgoal-ordering heuristics and uses them on relaxed subproblems to get a
heuristic estimate for the A* search procedure.

Other methods in this class include the heuristic generation method of
Dechter and Pearl [48] for constraint satisfaction problems, the state-table anal-
ysis technique [112] for automatic completion of partial operator sequences,
and the problem-relaxation technique of Gaschnig [70]. The major &mm&-
vantage of this type of method is the explicit dependence on restrictive
representations. They assume that strategy construction meta-metaknowledge
is understood so well that it can be implemented procedurally.

6.4.3 Knowledge-Based Methods. Knowledge-based methods are used for
Anommoi:m with explicitly represented knowledge. A strategy-learning mecha-

nism in these environments can either result in the acquisition of new control

(meta)knowledge, which can be subsequently used for controlling inference, or
it can result in the re-representation of prior control knowledge so that infer-
ence becomes more efficient. The second set of methods are referred to as
knowiedge compilation.

SURVEY OF STRATEGY-LEARNING SYSTEMS 435

Knowledge Compilation in Inference Systems This class of methods gives i
general model for improving performance with practice. These methods apply
well to problems with declarative representation of heuristic knowledge. The
aim of the process of operationalization is to reformulate this knowledge so
that the resulting procedures embody the heuristic knowledge and are directly
stated in terms of the problem operators.

Operationalization may be applicable in two strategy-learning scenarios:
abstractly stated strategic information to be translated into solutions, and
abstractly stated objective functions to be translated into methods for achiev-
ing them. Note that learning must occur in a knowledge-intensive environment,
with feedback taking the form of either abstract advice or abstract specification
of problem objectives.

The first set of situations occurs, for example, in rule-based systems in
which strategies are stated declaratively. An example is the ACT system [14],
which employs two mechanisms called composition and proceduralization.
Proceduralization eliminates matching and retrieval from long-term memory
by instantiating variables in a constrained fashion while simultancously drop-
ping the constraining clauses, thus reducing the amount of information needed
in working memory. Composition works either by collapsing two produc-
tions that follow each other and eliminating the intermediate goal, or by col-
lapsing the preconditions and actions of a number of sequenced productions
into one macro-production. The original productions are not destroyed during
compilation. Other examples of this technique can be found in Section 6.1.
In these systems, the composition and proceduralization mechanisms are the
strategy modifiers. Storage economy is maintained by empirical generalization,
and validity is maintained by specialization through difference-based discrim-
ination,

The second category of systems are called advice-taking systems. Mostow
{150} provides a comprehensive treatment of operationalization, which refines
heuristic advice expressed declaratively into a procedure that incorperates the
advice, The strategy modifiers in this case consist of reformuldation operators
and metaheuristics. The metaheuristics prune those alternatives unlikely to
lead to an operational sotution. An example of this category of techniques is
Dietterich’s test incorporation theory [53]. The Incorporation Problem Solver
(IPS) is a solution construction process that transforms deciaratively specified
tests and naive generators into constrained, procedural, intelligent generators
with little or no testing. The IPS is itself a problem solver employing test incor-
poration operators like serialization of subgoals (called seed growth), and non-
repetitive enumeration (called trigngle generation, a generator implemented as
a function with memory), The lcarning element in these systems knows the
internals of the generator and performs test incorporation based on transformed
heuristic advice.

Compilation techiques can be used for solving problems with abstract,
implicit objective functions in knowledge-rich domains. Objectives arising out
of the consideration for resource constraints usually take this form. For exam-
ple, it is usually clear what can be measured (recall metrics in load balancing),

436 ARCHITECTURES FOR STRATEGY LEARNING

and it is usually clear what needs to be optimized, at least abstractly (e.g., the
average turnaround time of jobs in Joad balancing). However, the nature of the
relationship between the abstract objective and the observable metrics is not
clear. This theory assumes that such a relationship can be inferred by deduction,
This is a useful way of incorporating a machine-specific model of cost into
strategy-learning systems for knowledge-rich domains. Another system that
uses compilation to operationalize abstract objectives is MetalLEX —a system
for improving the performance of LEX. The metaknowledge is stated explicitly
in two forms: target concept knowledge (i.e., the concept of a successful move)
and performance-system knowledge. The latter includes an internalized model
of the environment, an abstract description of objectives, and the performance-
system internals. MetaLEX compiles this metaknowledge and memorizes those
parts of the compiled description that arc particularly difficult to extract from
the abstract objective.

For dynamic decision problems, these mechanisms of leaming cannot be
applied, primarily becanse of a lack of sufficient background knowledge. The
form of the relationship between certain objective functions and observable
parameters can at best be approximated by stochastic modeling, which requires
analytical, machine-specific knowledge.

Knowledge Compifation in Problem Solving Perhaps no discussion of
knowledge compilation would be complete without a discussion of macro-
operators. We have already seen some mechanisms such as proceduralization
(in rule-based systems) and learning of procedures from traces (in empirical
learning systems). Explanation-based generalization as a mechanism for macro-
operator formation is discussed in the next section. In the STRIPS/MACROPS
system for learning and problem solving [65], triangle tables map problem
situations to sequences of operators, They are constructed by learning while
searching: any plan constructed ab initio can be stored in a triangle table.
Plans arc generalized using a method similar to the EGGS algorithm [148]. All
constants in a triangle table are replaced by variables. The (overgeneralized)
precondition in this-{ifted table, which contains all uninstantiated operators, is
constrained by repeating the support proof. Only necessary instantiations of
variables occur,

A recent extension to this framework introduces hierarchy in its notion of
action. The tables can be used to map situations into sequences of abstract
actions, which can have further internal structure [159]. These extended tables
can be used in a hierarchical, asynchronous and concurrent control architec-
ture. Triangle tables are suitable only for primitive actions representable as
STRIPS operators—using add-lists and delete-lists to represent their effects.
Their applicability to dynamic decision problems is, therefore, restricted to
reactive planning problems.

- Another method for compilation of macro-operators while searching is due
to Korf [108, 109]. It has been used for solving problems with nonserializable
subgoals. In such problems the problem objective has interacting, conjunctive

SURVEY OF STRATEGY-LEARNING SYSTEMS 437

subgoals that cannot be achieved by a problem solver that tries to achieve
them one at a time. Korf's technique uses macro rables, which are triangle
tables compiled to learn mappings from the initial state of a variable to jts
final state. Each entry in the table is a macro that leaves intact (as an end
result) all previously achieved subgoals, and achieves one more subgoal. Itis s
weak method, capable of learning ali the relevant macro-operators in the same
order of time as is required to solve the same problem without any heuristic
knowledge. It can be used for eliminating search from finite-space, discrete-
domain planning problems. In reactive planning, goals achieved previously
may be affected by future changes in the problem environment. For policy
design problems, this method has limited applicability because of the presence
of time-varying parameters,

Explanation-Based Methods The strategy-lcarning methods in this cluss rely
on extensive domain knowledge. They work by explaining why a purticular
search path leads to success or failure. This explanation is generalized (some-
times specialized), and a sufficient set of preconditions inferred under which the
same line of reasoning will apply. Acquired strategies, stored as schemas, are
applied whenever their preconditions are satisficd. Scarch can be substantially
reduced as learning proceeds and strategies grow in numbers and specificity,

The LEX2 system [145] uses goal regression to explain the success of prob-
lem solving episodes, and generalizes the resulting explanations. Applications
of operators along the optimal solution path are the posttive examples, and
those ieading away from the optimal path are the negative examples.

The EGGS generalization procedure {49, 148] reduces the problem of gen-
eralizing the explanation to a unification problem—that of matching the cor-
responding variables from adjacent rules in the explanation. EGGS can be
viewed as an optimization procedure, Its goal is to maximize the number of
models of its causal chain. The constraints on this procedure require that (1)
the structure of the causal chain is preserved, and (2) the general explanation
s0 obtained is valid.

The PRODIGY system [142] employs strategic information in the form
of metarules (selection, rejection, and preference) to guide its search. The
approach is unique in that it learns from successful solutions, failures. and
goal interactions. Moreover, it leamns by recursively specializing proof trees
instead of generalizing ground proofs, which is the usual approach in EBL.
It leamns the weakest preconditions in ‘which the schema represented by the
particular solution is applicable. It is also able to handle disjunctive concepts
(alternate paths to the goal), Carbonell and Gil [33] have incorporated learning
by experimentation into the PRODIGY system. Their system is able to learn
missing preconditions and postconditions of search control rodes, and uses
reactive experimentation to repair its strategies.

A major problem with explanation-based methods is their reliance on exten-
sive knowledge, which is not always available. A learning system should be
designed so that it does not always rely on complete and perfect information,

438 ARCHITECTURES FOR STRATEGY LEARNING

but it should be capable of using domain-specific information when available.
Most of the EBL systems fit well into the classical model of learning systems
for knowledge-intensive domains with synchronized delayed feedback.

Planning Methods Planning methods are useful when the problem objec-
tives are not directly achievable. They are suitable for reasoning about action,
anticipating the world resulting from the consequences of an action, and gen-
erating behaviors for achieving the goals, Plans are constructed from the basic
operators of the problem and other plans. Three methods for construction of
plans are sequencing, iteration, and recursion. The distinction between goals
. and preconditions is important. Goals are the conditions that the planner tries
to achieve, whereas preconditions are used by the planner only for checking
the applicability of a plan. Goals can be complex requirements like protect-
ing certain conditions through the plan body, preventing certain others from

becoming true, or maintaining seriality constraints on the actions of the plan. -

In the literature, two kinds of techniques have emerged: planning as theorem
proving and planning as problem solving. The former approach, also known
as the deductive approach [133], views planning as proving theorems about
the goals (such as there exists a sequence of actions applicable 1o the initial
state that will achieve the goal state). The problem solving approach [200)
views planning as a search in the space of plans, wherein the choice points
result from the large number of applicable operators. .

The strategic level in a planning systern tackles the problem of metaplanning
[221]. It was evident from the failure of early planners to solve some problems
in conjunctive subgoals (e.g., see Sussman’s anomaly [224]) that planners
should aveid overcommitment. Thus, one commonly found heuristic at the
meta-level is the strategy of least commitment, This and similar heuristics
can be used to limit the plan construction search space. The basic operators
available to the planning process include subgoaling (setting up new goals to
complete a partial plan), temporal extension (editing old plans by extending
them in either direction), and specialization (by making abstract actions more
concrete, typically by instantiating some variable).

The following general learning scenarios in traditional planning have been
identified by Collins [42}: (1) caching and generalization, so that there is no
need to replan in similar situations in the future; (2) repairing failed plans, that
is, detection, characterization, and removal of failure by plan transformation;
(3) apprentice learning, that is, noticing the unplanned satisfaction of certain
goals during planning, possibly leading to the discovery of some new plans;
and (4) learning from observation, wherein the planner follows causal chains
resulting from environmental events or another agent’s actions, and memorizes
those that achieve any of its goals.

The ability to plan is inherently related to the ability to detect and construct
causal links. Therefore, the causal model of the planner is the immediate
target of learning mechanisms. Learning to plan involves modification of causal

SURVEY OF STRATEGY-LEAANING SYSTEMS 439

mechanisms that lead to an erroneous action. It can be called strategy learning
in Ea:zﬁm_ because it creates or modifies the pieces of a strategy for plan
construction.

Learning to plan in dynamic domains is still an open problem. Time-
varying parameters require that the planner have a persistence model of various
conditions, because conditions previously achieved may be violated in the
future. Detection of failures in planning, and their attribution to causes, is more
compiex due to the added responsibility of TCA. The problem of maintaining
persistence models for planning has recéntly received a lot of attention [47,
82, 149).

Planning approaches provide an excellent framework for TCA by intro-
ducing explicit persistence models. However, the theories of reasoning with
persistence models also need heuristics in order to get accurate projections.
Several such metaheuristics are based on the least commitment principle. Some
examples are discussed in the following:

L. Persistence circumscription [100]. The approach is to define an explicit
termination predicate Clip, and to assert the persistence of a fact £ as follows,

Hold(r, /) — Hold(r + 1,) @ Clip(r + 1, f)
The aa:,awnaumc: of Clip is then solved in the theory, which includes the

causal rules, the persistence axiom stated above, and the chronicle of events
known to have occurred. Among all the minimal models, the one that hss the

longest persistence for facts is preferred.

2. Motivated actions [149]. A motivated action is one that is in all models
of a temporal reasoning theory instance. In this approach, the models with the
fewest unmotivated actions are preferred. Heuristically, this approach assumes
that no action occurs unless it rust,

3. Probabilistic Notions of Persistence [47). When reasoning about the
persistence of fact P, let £p be the set of events that makes P true, and E_p the
set that makes P false. Letting f{r) equal the probability p(< Ep,t >) and g()

the probability p(< E_p, ¢ >), the persistence of P at time f can be defined
as:

1

. !
PI< Pt >) = .ﬁ flzye 2620 1 — %mﬁ.ﬁ.va‘« dz
z

-—r

This model counts some events more than once. The probability of occumrence
of an event increases exponentially after the occurrence of a supporting event,
and decreases similarly after an interfering event.

440 ARCHITECTURES FOR STRATEGY LEARNING

4. Evidential model of persistence [47]. This model takes into account
several factors influencing the truth of a fact P at time r. These include a natuwral
attrition factor, such as exponential decay, and a causal accretion factor,
such as effects due to any element of Ep or E.p. Evidential reasoning uses
the maximim entropy principle as a heutistic for deriving a least-commitment
assignment of probabilities, :

In short, planning systems explicitly represent their persistence and causal
models. They use meta-level heuristic knowledge to reason with these models.
It is not possible to directly apply this kind of reasoning to policy design
problems, but the model is suitable for reactive planning problems. Because
our survey has been limited to the study of planning systems for dynamic
decision problems, we may have overlooked some otherwise important aspects
of planning. An excellent overview of planning techniques is given by Georgeff
[75].

Learning Apprentice Systems These systems do not require explicit training.
Instead, they just watch their users interact with a knowledge-based system.
The apprentice embodies certain expectations at the meta-level of the problem.
Learning opportunities arise when an expectation fails due to a discrepancy
between what the apprentice expects and what the user does. Such systems are
also called lazy generalizers [174].

Apprentice learning can be combined with knowledge-based inference
mechanisms in several interesting ways. The PROTOS system employs
an exemplar-based categorization technique in which specific examples are
retained, and these guide difference-based learning in the face of discrepancies.
Another system employing this technique has recently been proposed by
Wilkins {247]. The ODYSSEUS system learns by trying to complete expla-
nations for failure of expectations. In the process of explaining a failure, it
discovers gaps in its knowledge. New knowledge is hypothesized in order to
fill this gap. The validity of the new knowledge is established by a confirmation
theory built into the system. The apprentice learner of BBI [83] learns new
scheduling heuristics when its preferences are overridden by a human expert.

All these systems are discrepancy-driven. They exhibit learning with asyn-
chronous immediate feedback in knowledge-rich domains, and derive their
power from rich, explicit knowledge of abstract control metarules. They rep-
resent perhaps the most pragmatic of all knowledge-based learning paradigms,
in spite of their complete reliance on generic knowledge sources that monitor
the application of heuristic knowledge.

6.4.4 Analogy-Based Methods. Analogical methods rely on knowledge of
solutions for problems already solved. As a generic paradigm, analogy is
closely related to generalization. However, in the context of knowledge-based
learning systems, analogy has come to’acquire a rather specialized meaning.

SURVEY OF STRATEGY-LEARNING SYSTEMS 441

The method is specifically interpreted as a mechanism for the recall of past
solutions, based on the similarity between the new and the old problems,
including transformation of old solutions for application in the new situation.
An analogical mapping is derived by comparing the two situations and their
respective contexts of application. Part of the old solution is transferred
under this mapping to the new problem situation, Analogy-based learning
is practical when there is sufficient previous experience in solving similar
problems. . ,

Analogy is a very general learning mechanism applicable to almost any
problem solving and leaming technique. Gaschnig [70] describes an example
of analytical analogy, Winston [251] discusses empirical structural leaning
by analogy, Carbonell [32] discusses planning by analogy, Davies and Rus-
sell {45] describe a deductive approach to reasoning by analogy, and Grein-
er [80] proposes an analogy-based approach that can be easily combined
with EBL.

6.4.5 Hybrid Methods. Recently, various researchers have attempted to
reduce EBL’s reliance on perfect domain theory. Pazzani [165] uses the sim-
ilarity of explanations to induce generalized explanation schemas, thus dovis-
ing a method for explained empirical classification. Flann and Dietterich have
proposed another extension to standard EBL, an approach that can handle
multiple examples. This approach is called IOE. It involves constructing indi-
vidual explanations for each example, generalizing over explanations, pruning
away dissimilar subproofs, and compiling the generalized explanation into a
schema.

Star [220] has proposed a method of combining EBL, similarity-based lean-
ing, and decision theory. His method, called T-BIL (Theory-Based Induc-
tive Learning), has been applied to a reactive planning problem in robotics.
Feedback in this system is in the form of explanations, The technique can
handle multiple examples: after the first time, all subsequent explanations are
used for generating observation reports. These veports are then used 1o update
the probabilities of causal rules using a Bayesian updating mechanism.

Mitchell [147] (who called this approach analyrical learning) proposed a
method for combining EBL with an empirical approach based on the version-
space method. The version-space method maintains a partial description of
a heuristic in the form of two propositional descriptions S and G, which
correspond to the most specific and the most general instances in a propositional
Boolean lattice of the set of examples seen so far. The S and G descriptions
found by the empirical leaming program LEX are analogous to the necessary
and sufficient conditions for application of the heuristic, as derived by the
analytical leaming program LEX2. Thus, the conditions derived by LEX2
could be used as positive instances for generalizing S. The resulting hybrid
method was applied to simplifying integration formulae,

The UNIMEM system [122] uses similarity-based learning to infer the
plausibility of causa! relationships before applying EBL. Danyluk [44] has atso

442 ARCHITECTURES FOR STRATEGY LEARNING

explored the idea of combining empirical and analytical learming techniques.
His technique differs from UNIMEM in that structural descriptions are matched
and that inexact matching is allowed.

The idea of applying EBL as a verification step has been proposed by
Golding et al. [78]. Their system learns strategies from expert advice. It works
by asking an expert for advice when it cannot proceed during a problem-
solving episode. The advice is followed, and the steps leading to the solution
are retained, verified, and generalized by chunking.

Other methods include the precondition analysis technique used by Silver
(206] in his heuristic learning system LP, and a more general method suggested
by Desimone [51]. Both methods are more general than SDBL becausc they
analyze examples by reasoning about the purpose of each step, and less
powerful than EBL because they consider only the preconditions of rules rather
than their interactions [148). Silver’s approach can only learn a linear sequence
of rules. Desimone extends his approach to nonlinear solution trees using
dependency graphs. These methods have been demonstrated on high-school
algebra problems. ,

Rajamoney [176, 177] uses a combination of EBL and learning by experi-
mentation to refine an initially imperfect domain theory. His technique relies
on a form' of causal isolation known as factoring [71]. Controlled experi-
ments are designed from the partial description of failed instance of strategy
application. One of the causal mechanisms (or processes) is allowed to dom-
‘inate each experiment. Factoring simplifies the design of the critic and the
learning element. This technique is applicable to knowledge-based learning

_for control problems. :
In Section 6.4.3, we have discussed the PRODIGY system of Minton et
-al. [142]. Not only does this system learn from positive examples of strategy
application, it also learns from explanation of failure, This techntique combines
EBL with compression analysis [141], a knowledge compilation technique that
performs a utility-guided search through a space of plausible explanations. It
results in more effective explanations, whose operationalization results in more
efficient strategies,

The methods discussed in this section demonstrate that no learning technique

is sufficient by itself. While efpirical leaming techniques exploit syntactic
~and numeric similarity, explanation-based learning uses similarity of causal
structure. Apprentice learning techniques are adept at patching knowledge
gaps, and so are learning-by-experimentation methods. Knowledge -compila-
tion improves efficiency by priming patterns of inference, and planning tech-
niques have the constructive element necessary for creation of new strategies,
Effective learning must employ a hybrid of these methods. The spectrum of
learning techniques in Al is the richest, most implementable, and also the most
well researched of all domains. However, existing learning mechanisms must
be combined in order to design more useful and more generally applicable
techniques, .

SURVEY OF STRATEGY-LEARNING SYSTEMS 443

6.5 Connectionist Methods

Connectionist methods also address the problem of representation and acqui-
sition of strategic metaknowledge, but the perspective here is different. The
assumed underlying model of intelligence is a massively paralie] problem-
solving model. All computation emerges from the collective activity of a
large number of simple and richly interconnected units. Such systems for
problem solving and learning are variously known as parallel distributed
processing (PDP) systems, neural networks, or artificial newral systems
(ANSs). A comprehensive review of the paradigm can be found in the refer-
ences [1, 196].

What are ANSS? A connectionist network (Figure 13.5) can be viewed as an
active data structure consisting of unizs interconnected by weighted Haks. Some
designated units act as sensors, so that input to the system can be supplied by
influencing the states of these units, Other units act as effectors, so that the state
of these units can be used to direct actions. The remaining units (appropriately
called knowledge aroms by Smolensky [218]) capture the relationships among
sensors, between sensors and effectors, and among effectors. The global short-
term state of the system is captured locally by the activation of each unit. The
interconnections among units allow interaction between states. The long-term
memory of the system lies in weights on the links between units. Leaming in
these systems occurs by the modification of these weights.

B O Relationships O e O

among sensors

O O...Ownsmoa O O

Sensory Input Moter Qutput

Figure 13.5 A typical cornectionist network.

444 ARCHITECTURES FOR STRATEGY LEARNING

Connectionist Primitives Connectionist primitive is a generic term for the
various types of knowledge that can be represented using ANSs. The following
primitives are discussed and used in this chapter:

1. Pattern classifier, which is capable of judging whether or not a pattern
of inputs is a member of a class;

2. Fattern associator, which learns (possibly bidirectional) associations
between input and output patterns;

3. Auto-associator, which is capable of learning how to complete partial
patterns of input, based on the memory of patterns scen in the past; and

4. Competitive activation, which uses competing units with mutual
inhibitory connections, to select the most strongly activated unit.

Learning in ANSs A connectionist learning paradigm is a method for modi-
fying weights (also called synaptic weights)'in response to a pattern of chang-
ing activations. Among the several well-known paradigms for adjustment of
weights with experience, we shall cite one for each kind of primitive unit
discussed. Rumelhart et al. [197] have developed the back- -propagation algo-
rithm for learning in pattern classifiers; Kosko [[11] has developed the Adap-
tive Bidirectional Associative Memory (ABAM) framework for learning pattern
assoclations; Kohonen [105] has developed the Learning Vector Quantization
(LVQ) framework for self-organizing auto-associative memories; and Gross-
berg [34] has developed the Adaptive Resonance Theory (ART2) framework
for competitive learning.

ANSs for Strategy Learning Although only a few applications of ANSs to
strategy learning exist, this approach has some distinct advantages over others.
In particular, decision making under partial information is easier. Connectionist
networks have spontaneous generalization that results in a transfer of expertise
to problems with similar values for parameters of representation. They are ideal
for storing nonlinear, time-varying associations between situations and actions,
The disadvantage, on the other hand, is that all knowledge is implicit and
cannot be translated into other representations. Thercfore, there is a tradeoff
between flexibility and performance between connectionist and conventional
representations.

Anderson’s thesis [11] presents a comprehensive treatment of search prob-
lems using connectionist neoral networks. Two separate networks are used:
one for learning the state-action mapping, and the other for learning the state-
evaluation function. A partial solution to the TCA problem is presented in
the form of a feed-forward connection between the input layer and the state-
‘evaluation Jayer. This allows the system to plan at least one move ahead
of its output. The pole-balancing problem [12] is used to demonstrate the
applicabitity of modular neural networks to complex decision problems. The
system learns discriminatory features of parameter space that lead to useful
representations of inputs from the perspective of strategy selection.

SURVEY OF STRATEGY-LEARNING SYSTEMS 445

There are some important points to be learned from this approach. It demon-
strates the feasibility of neural networks for learning state-action mappings, and
more importantly, for learning continuous-valued evaluation functions using a
fixed set of parameters. This means that for certain strategy-learning problems
in which numeric parameters abound and the evaluation function depends in a
complex way on these parameters, it might be worthwhile to sacrifice explicit
knowledge of problem objectives for greater ability to learn. For problems
with ill-defined objective functions, the objective function can be acquired
during the course of learning through external evaluation of certain result states.
Connectionist systems might be the only fesort for such problems, because
none of the other systems work without an explicitly stated goal.

Learning

Element

Critic _AI:

N S External

Modifications| | “ ﬁmoé_&mo

o the ources
Performance " Persistence |+ “
Element w Model |
| | Causal [T]
Mode! [A “
|

nteenak ana_
of the
Environment Y

History of [
/ | recent behavior g

3

Performance
Element

Y

Learning System
Components

. Knowledge/
Data Structures

Figure 13.6 Proposed model of a learning system.

446 ARCHITECTURES FOR STRATEGY LEARNING

7 A PROPOSED MODEL OF LEARNING SYSTEMS

In this section we describe a learning model that solves complex problems in
temporal credit assignment using explicit knowledge (see Figure 13.6). Instead
of using the same network for storing past decisions, heuristics, and eligibilities
of decisions, our model works with an explicit memory containing tuples that
have the following abstract form:

< problem instance, decision >

The system is trained incrementally, in stages. In the first stage, a model of
the reinforcer’s objective function is acquired by repeatedly observing the rein-
forcement resulting from a single controlled action, and learning an association
between the effects of that action and the feedback.* Learning in this stage
involves relating an abstract specification of objectives with some observable
parameters of the system. In a typical dynamic decision problem, there are
50 many observable parameters that (1) it is impossible to represent all the
associations using just one network, and (2) it is not feasible to vary them
simultaneously in a controlled fashion. Therefore, this stage is further divided
into substages, each corresponding to the learning of a partial description in
terms of a small group of parameters known to be mutually dependent. This
is one way of using background knowledge in designing pattern classifiers
with a large number of input parameters —letting the connectivity of the net-
work reflect the top-down expectation of high covariance among related inputs.
Several such partial associations are used to incrementally estimate the structure
of a complete association. This scheme is appealing because it parallels the
general pattern of evolution of complex, hierarchical systems [207]. Learning
stays within resource and time bounds, and knowledge of complex associations
can be accumulated incrementally.

In fact, this principle of layered information compression (term due to
Rendell [181]) is also applied to the overall training phase. The remaining
bodies of knowledge are acquired in subsequent stages. Each stage of learning
a complex association is further subdivided by recursively applying the layering

principle. The causal and persistence models are learned separately using

controlied experimentation on the environment. The causal model is acquired
first by varying the environmental control variables and -performing random
actions, one at a time, and acquiring associations of the form:

Actions X Perceived World — Hypothesized World.

The next stage in learning is to acquire the persistence model. Once again
the control variables of the environment are varied over trials, First the envi-

* This approach can be replaced by the Sutton-Barie model [23] for acquiring the weights of the
adaptive critic element, which, with small modifications, can be used to acquire the objective function
by performing multiple actions at a time, However, the heuristics implicit in that mode! will cause
problems in Jearning.

A PROPOSED MODEL OF LEARNING SYSTEMS 447

ronment is allowed to reach quiescence following a randomly chosen action.
The action is performed and the change in the effect, as well as its average
decay rate following the action, are observed. These are used to update the
causal accretion and narral attrition components of the persistence model.
The spontaneous causation component is acquired by probabilistically choos-
ing an event, letting it occur, and observing the change in the particular effect
under study. This stage results in the acquisition of associations having the
form: i

Events x Hypothesized World — Hypothesized World,
Hypothesized World X Time — Hypothesized World,
Actions X Hypothesized Werld — Hypothesized World.

The final part of the training phase involves experiments for learning search
control heuristics. In this phase, the acquired objective function, the causal
model, and the persistence model all remain fixed, External feedback can be
supplied by comparing the heuristic performance against the best nonheuristic
performance. Alternatively, some of the feedback can be generated internally
using secondary reinforcement-learning algorithms. The feedback is appor-
tioned, first temporally according to weights in the persistence model, and
then structurally according to weights in the causal model, At the end of this
phase, the performance element is also trained.

We have now begun to operationalize (to borrow a term from knowl-
edge-based learning) our knowledge-level specification of the model. In this
section, we have shown how the problem of learning can be reduced to
a problem of acquiring complex associations. We have also proposed &
generic layered information compression paradigm for training. Our descrip-
tion is still coarser than an implementation-level specification. This discus-
sion, therefore, is applicable to almost all the implementation models of
learning systems discussed in Section 6. In the following, we propose 1 con-
nectionist implementation of our model, for solving a representative dynamic
decision problem.

ANS-Based Implementation of the Proposed Model The implementation
schematic shown in Figure 13.7 shows how the variety of associations that
need to be acquired may be represented using connectionist primitives. Figure
13.8 shows the connectionist implementation of the critic. Tt differs from the
secondary reinforcement-generation mechanism of Minskian models in that it
has hooks for using explicitly represented causal and persistence models. It
is different from the classical mode! because of its predictive reinforcement
mechanism and the flexibie structure of its episodic memory.

The performance element is implemented using a pattern classifier network.
A competitive network is used for selecting an action given a problem instance,
The causal model is realized in an ABAM (adaptive bidirectional associative
memory). The persistence model and the memory of recent decisions are imple-

448 ARCHITECTURES FOR STRATEGY LEARNING

Heuristics for (Competitive)

pruning and choice
..m..:._.n._.mmolianl mmﬁo:ﬂ » To
| L .m environment
| -7 Hypothesized
_ “ | world
_ I | =
|
Inputs _ } T
— | _
. “ ' P W | i] m ; _ : Feedback
mﬁmo.s.__:nn v [e 1o | il
f element : | “ i1l | Acquired
| v | © I A [] objective
| n Causal } function
" | aan e
> el |
=55 =

Persistence
Action network
trigger

Feed-

™o ¢ |U¢ ﬂ@ I
Y

Perceived
word [
H] /@ Gutes
{ . , O/@ Blocks
Memory

Figure 13.7 Schematic of ANS implementation,

mented using auto-associators. Numerous triggers and gates help synchronize
the operation of the ANS ensemble.

Learning Strategies for Load-Balancing We view the load balancing prob-
lem as a search problem. Let migrate (¢, /, j) denote the operator that migrates
a task r from processor i to processor j. A balancing decision can then be seen
‘as mapping the set of operators migrate (7, i, neighbor(i)} to processor i. The
system makes migration decisions based on local workload information and
task parameters.

‘The leaming system for workload characterization and workload distribution
is based on connectionist learning systems [89]. These have been successfully
demonstrated to learn complex associations without being given any

A PROPOSED MODEL OF LEARNING SYSTEMS 449

Actual Predicted From
Reinforcement | A Reinforcement | Memery
N
|
|
|
b “
| | | Reset
I | _—t Memo,
h_ I Secondary Reinforcement | H .__.. v
i “ “ i Counter/ T~~~
“ “ OO “ __ Sequencer __|....||.|Y
] tq=———=r4 |R
i i T i~ eset
“] O O. O i ! ! Hypothesized
! B atmte oy oS S| i i World
| 4 L
| Feedvack Hypothesized _ ,
+ Trigger éu%a el Next + ¢_u§uomma
Memory Feedback

Figure 13,8 Schematic of the eritic.

knowledge of the parametric form of the association. They construct abstract
features of the input parameter space in their internal layers (also calied hidden
units). Learning and problem solving can be easily integrated in these systems,
because learning proceeds by modification of weights in the problem solving
component. It has been shown [23] that reinforcement-learning systems imple-
mented as connectionist networks can withstand delays in feedback. Finally,
the .connectionist model of problem solving is inherently asynchronous and,
once trained, can provide quick answers by parallel examination of various
attributes making up the state.

The Learning System Two kinds of learning arc addressed. The search
space learner is a learning component implemented separately at each site
in the distributed system that learns the workload characteristics of that site.
These characteristics can be nonlinear functions of the available primitive
measurements and inputs. The acquired workload parameters define an abstract
search space. The search heuristics learner learns the relationship between
workload information and the corresponding load balancing decisions. This
component is essential because some of the attributes in the abstract search
space are not directly available and their relationship with decision making
changes dynamically.

The system operates in three distinct phases: (1) training for workloal
characterization, (2) training for worklouad distribution heuristics, and {3)
application. Phases (1) and (2) involve learning,

Controfled experimentation is used for learning in phase (1). The response
time of the system is observed for a wide variety of controlled tasks. For
each experiment, the task remains fixed. Learning is further simplified by only
lcarning a formula for the relative change in response time, rather than tearning
the response time function itself.

450 ARCHITECTURES FOR STRATEGY LEARNING

Learning in phase (2) is more complicated because a history of past actions
must be maintained. Moreover, explicit justification must be maintained for
cach action. When external feedback is provided, it is distributed temporally
and structurally. The information needed for doing credit assignment depends
critically on the nature of feedback.

In our system, feedback is generated by comparing the improvement in
response time for various decisions. The information for structural credit assign-
ment is stored in the cqusal model, and that for temporal credit assignment in the
persistence model. During training, the weights in the causal model are adjusted
to reflect relationships between load balancing decisions and workloads, This
is achieved by running controiled experiments—both the task and the load bai-
ancing action are control variables. The weights in the persistence model are
acquired by controlled experimentation too. They represent the relationship
between workload information and load balancing decisions on one side, and the
time for which the effects of balancing persist on the other,

Controlled generation of problem situations in load balancing gives rise
to other problems. One such problem is that of synthetic workload gener-
ation. We have developed synthetic generators for various computational re-
sources—CPU, disk, and memory. Using these and an intelligent sampling
technique, the learning program can sample the critical portions of the input
parameter space.,

When the inputs are gated into the heuristic networks, many action units may
simultaneously try to go on. In this case, competition among these units results
in the selection of some unit with strong backing from guidarice heuristics and
weak opposition from pruning heuristics. This action is used to update the
persistence of effects it is known to cause. After this, if no action occurs,
then the natural attrition component of the persistence mode! takes over. If we
allow asynchronous external events to influence persistences, then a sudden
change in environment, measured as a differential between the current state of
the perceived world and the state immediately preceding, can also change the
persistence of certain effects.

As soon as the competition between actions is resolved, the action trigger
goes on, and the state of the perceived world and the chosen action are
gated into the memory. This process continues until an asynchronous external
feedback signal becomes available. The learner shuts its perception and focuses
on learning rather than acting. The feedback is, meanwhile, backed up to the
individual effects of the hypothesized world via the objective function model,
where it stays till the end of the learning phase.

The learning phase occurs in cycles of recall and modification. The recall
phase involves selecting a memory instance and gating the memorized inputs
to the input lines. The network corresponding to the memorized action is
selected for update. The persistence-weighted feedback is propagated back
via the causal model of that action. The forward propagation of perceived
inputs through the heuristic mechanism (but not the competition mechanism)
is followed by a pass of the standard back-propagation method. This allows

CONCLUSION 451

the feedback to be distributed among the weights of the heuristic mechanisim,
This cycle repeats until all the memories have been exhausted or the tithe runy
out for the learner, * ,

During phase (3), the weights in the action selection network are used for
deciding the next action. The search for the actions proceeds asynchronousiy
and concurrently as jobs originate. Conflicts are resolved by winner-tuke-all
[64] networks. Al the weights (in the causal and persistence models, and in
the action selection network) remain fixed during this phase.

Load balancing is a difficult problem in parallel search. The problem
relies greatly on statistical prediction of patterns inherent in the environment,
However, any predictive solution in a stochastic environment is at best
approximate. Formal proofs and determination of the accuracy of approxima-
tion will be carried out in the future.

The unique feature of our system as compared to past solutions on work-
load characterization and distribution is that strategies are not built in. This
allows the system to adapt to instaliation-specific and architecture-dependent
parameters of workload —an activity traditionally performed by human experts.
The systems reported so far, such as Engineering Computer Network [94, 95],
MACH [20], Locus [235], and University of California, Los Angeles’s Locus
{236] and System V, depend on user-defined worktoad metrics for muking
load balancing decisions. This is not only nonadaptive, but also not portable
to systems of different configuration.

We have suggested an adaptive approach to designing a system for learning
load balancing strategies. The top-down development illustrates our design
methedology for strategy-learning systems. The basic steps can be summarized
as follows.

I. Analysis of the knowledge-level requirements of the learning task;

2. Study of the knowledge-level Junctionality in available learning systems:

3. Systematic mapping of various bodies of knowledge to suitable leaming
mechanisms;

4. Principled design of a training scheme using layered information com-
pression,

8 CONCLUSION

In this section, we summarize our opinions on various issues pertaining to the
architecture of strategy-learning systems. These conclusions are based upon
an cxtensive survey of architectures, covering diverse domains and a variety

* It is possible to be more intelligent about the whole learning process if we also maintain, in the
history, persistence of each action. ‘This value shouid be set to its maximum vatue (say, |3 a1 the time
of gating an action into the memory. Each time one of the original effects of an action is updated, the
persistence should be decremented by an amount proportional to the magnitude of the change.

452 ARCHITECTURES FOR STRATEGY LEARNING

of techniques. Perhaps the most important issues we have identified are the
effects of delayed feedback and ill-defined objectives on the design of learning
systems. Such learning situations are inherent to a large class of problems
called dynamic decision problems. We have identified the bodies of knowledge
involved in intelligent credit assignment for such probiems and illustrated how
such knowledge may be acquired automatically. We have attempted to advance
the field of machine learning by indicating a general methodology for learning
to acquire strategies in complex domains under difficult learning situations.

We end this chapter with observations central to the architecture of strategy
learning systems for complex domains.

Learning in Complex Domains Perhaps the most important variable in real-
world domains is time; it also happens to be the most neglected variable in
research on leaming strategies for solving problems. Considerations of delay
had recently led to significant changes in learning strategy, as exhibited by
Sutton’s work. However, even though a few learning heuristics (such as recency
and frequency) had been proposed and included in a learning algorithm, the
knowledge for designing such heuristics for other complex problems was not
explicitly available. The knowledge involved is analogous to persistence axioms
being used in systems for temporal planning. This observation is being used to
improve the design of learning systems by reducing the bias. This lcads to systems
that represent this knowledge explicitly and attempt to acquire it automatically
for specific domains and/or learning environments, It also suggests a technique
for implementation of temporal planning using connectionist systems similar to
the ASE/ACE system studied by Barto et al. 11, 23, 227].

A Second Qpinion on the Design of ANS Learning Algorithms The trend
i the design of leaming algorithms for connectionist systems has been to keep
them simple and local. While these goals are the crux of the argument for
connectionism, they have been misinterpreted by recent research as an argu-
ment for doing all the learning in their systems through intelligent, heuristic,
local, and simple algorithms. This should remind us of the classic heuristic
problem solver of Slagle [214] in the beginning days of AL The next stage
in Al was its most progressive one; and the one characteristic that separated
the Al systems of this age from those of its early days was the separation
of knowledge from the algorithmically implemented inference component. 1s
it not obvious that if connectionist systems are to implement anything like a
general purpose learning substrate, they should explicitly represent as much
knowledge as possible? The human learning system, which, for now, con-
tinues to guide these developments, works in slow learning environments, in
the presence of distractions, in the presence of varying amounts of defay, and
in situations where goals (objectives) are set dynamically in response to asyn-
chronous, sporadic reinforcements. Realizing that any heuristic component of
learning algorithms that is associated with a dynamically varying feature of the
learning environment must be flexible and available for introspective modifi-

CONCLUSION 453

cation, we can immediately form an argument against all the learning being
done algorithmically. .

Our mode! suggests how connectionist systems may continue to use simple
algorithms and still remain sufficiently flexible to be abie to learn in com-
plex environments. The major idea of our methodology is to translate complox
learning into phases of knowledge acquisition. So, what should be the next
stage in the design of intelligent connectionist architectures? Our answer would
be: the development of modular knowledge-level architectures for leaming.
Systems employing heuristic learning algorithms are important in their own
right because they establish the need for certain kinds of knowledge. However,
from an architectural point of view, they only illustrate the need for an addi-
tional module rather than a change in a learning algorithm. General learning
in complex situations is achievable not through more complex leaming algo-
rithms, but through more advanced interactions among dynamically acquired
bodies of knowledge,

If some bodies of knowledge cannot be acquired or represented by currently
existing ANS primitives, that should motivate the search for new learning
algorithms -and primitives. Examples of such primitives have been set forth
by Touretzky et al. [230] in the domain of connectionist rule-following sys-
tems [229]. It is our conjecture that future connectionist architectures will be
modular, motivated by a knowledge-level analysis of the learning scenario,
and that the search for new algorithmically implemented connectionist learn-
ing procedures will only be motivated by the lack of a connectionist substrite
to implement one or more types of knowledge modules. This conjecture is
consistent with the fundamental tenets of connectionism as well as Al

Reassessment of the Design of Multiprocessor Operating Systems Our
expetience with distributed systems in the recent past has indicated a need
for automation in the management of these systems. Traditionally, complex
problems in the design of multiprocessor operating systems have been solved
algorithmically. Many of these problems. fit into the framework of dynamic
decision making. The problem of learning a load balancing strategy is rep-
resentative of this class. Adaptiveness in the design of these systems is an
essential step towards complete automation. It is quite plausible to think of
a neural network on every processor making complex scheduling or routing
decisions in response to the changing operating environment, The advent of
neural networks opens exciting avenues for designing faster, more efficient
multiprocessors, .

The research reported here can be viewed as a marriage between [eaming
and architecture. New developments in architecture that might lead to fas,
general implementation of connectionist primitives can be used for efficient,
low-overhead learning, and new developments in the field of fearning can lead
to the design of intelligent, efficient multiprocessor architectures that will be
spending less time controlling themselves. This view has begun to be shared
by other researchers in the field [68, 121, 163].

454 ARCHITECTURES FOR STRATEGY LEARNING

Relationship with Psychological Models of Learning We have taken an
engineering approach to the design of learning systems. Psychological mod-
els, on the other hand, describe how human beings behave and Icarn. The
complex human leaming system and its methodology can guide the engineer-
ing approach. Thus, one direction in which we hope that our survey of cogni-
tive models will benefit learning research is clear, In the opposite direction,
(design issues in the architecture of learning systems might shape research in
psychology by providing a model and vernacular for the description of human
learning. :]

Learning under delayed reinforcement is not a ‘well-understood topic in

psychology. Indeed, as we have indicated earlier (Section 6.1), some psycho-
logical evidence points against the incidence of such learning during simple
controtled episodes of solving simple problems. However, there are complex
learning phenomena that occur over prolonged periods of time and cannot
be tested in a laboratory setting. Indeed, Anzai's model for skill acquisition
(18] includes delay models that have not been understood and explained in a
problem-independent way. .
. Inseveral psychological models there is an implicit assumption that learning
occurs when the learner is prepared to learn. This preparedness has not been
characterized well. It is our hypothesis that the acquisition of causal models and
persistence models sets the stage for learning of problem-solving heuristics.
It is unfortunate that because of the lack of proper terminology, Anzai [18]
includes both kinds of knowledge in what he calls causal knowledge, We hope
that our model will help further the productive exchange of ideas in these two
disciplines by providing a common vocabulary,

Issues Not Addressed Several issues need to be resolved before general
purpose connectionist systems can be constructed. Among the most important
issues are scaling (How well does an architecture scale up to larger and more
complex problems?) and generalization (How well does the system perform
on problems it has not been trained on?). These issues are the subject of
ongoing research [6]. Another issue is the design of network architecture. It is
obvious that there is design bias implicit in the choice of a network architecture
and size. Also, the choice of an encoding for continuous-valued or integer-
valued parameters leads to representational bias. The choice of a learning
mechanism that incorporates more than just the internal representation used by
the performance element gives rise to algorithmic bias.

We have not identified any new connectionist primitives, although, as
indicated by Touretzky et al., the existing set might be inadequate for modeling
all intelligent behavior. Yet another topic that needs more attention is the desi en
of a serializing component (scheduler, one might say) in order to map the
large number of simultancously active bodies of knowledge onto a constrained
architecture, and to achieve this mapping and management at a small overhead.
Finally, the symbolic interpretation of the activities of an ANS remains an open
question, and more work is needed on that front.

REFERENCES 455
9 ACKNOWLEDGMENTS

We cxpress our thanks to the members of the staff at the R11 division of NASA
Ames Research Center for supporting our research activities in the summer
of 1987 and 1988. Thanks are also due to Dr. Katherine Baumgartner for
sharing the results of her extensive study on the resource allocation problems
in distributed systems, and for providing the skeleton for the load balancing
testbed; and to Albert Yu for interesting discussions leading to the formulation
of dynamic decision problems. This research was supported by the National
Science Foundation under grant MIP-88-10598, and by the National Aeronau-
tics and Space Administration under grant NCC 2-481. This chapter has bene-
fitted from critical comments of Mark Gooley, Larry Rendell, Chris Matheus,
Peter Haddawy, Carl Kadie, and Munidar Singh.

REFERENCES

i

DARPA Neural Network Study, Lincoln Laboratory, Massachusetts Institute of Tech-

_ nolegy, Lexingten, MA, July 1988, .

2. R. P. Abelson and A. Levi, “Decision Making and Decision Theory.” Handbook of
Social Psychology, 1983,

3. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A Learning Algorithm for
Boltzmann Machines,” Cognitive Science, vol. 9, pp. 147-169, 1985.

4. D. H. Ackiey, A Connectionist Machine for Genelic Hitlelimbing, Klewer Academic
Publishers, Boston, 1987,

5. D. H. Ackley, “Reinforcement Learning with Back Propagation,™ Abstracts of Newral
Networks for Computing, April 1988,

6. S. Ahmad, “Scaling and Generalization in Neural Networks: A Cuse Study,” Proc.

1988 Connectionist Models Sunmmer School, eds. D. Touretzky, G. E. Hinton, and T.

1. Sejnowski, Morgan Kaufmann, Palo Alto, CA, 1988,

7. R. Alonso, “The Design of Load Balancing Strategics for Distributed Systems,” Fiure
Directions in Computer Architecture and Software Workshop, pp. 1-6, Seabrook
Island, SC, May 5.7, 1986,

S. Amarel, J, S. Brown, B, G. Buchanan, P. Hart, C. Kulikowski, W, Martin, and
H. Pople, “Report of Panel on Applications of Artificial Intelligence,” Proc. [JCAL-77,
Pp. 9941006, 1977,

9. S. Amarel, “On Representations of Problems of Reasoning about Actions,” Readings
in Artificial Intelligence, eds. B. L. Webber and N. Nilsson, pp. 2-22. Morgan
Kaufmann, Los Altos, CA, 1981.

10. 8. Amarel, “Program Synthesis as a Theory Formation Task: Problem Representations
and Solution Methods,” Machine Learning: An Artificial Intelligence Approach), eds,
R. 5. Michalski, J. G. Carboneil, and T, M. Mitchell, Morgan Kaufmann, Los Altos,
CA., 1986.

1. C. W. Anderson, “Learning and Problem Solving with Muktifayer Conectionist Sys-
tems,” Ph.D. thesis, University of Massachusetts, Amberst, MA, 1986,

12, C. W. Anderson, “Strategy Learning with Multilayer Connectionist Representations,”
Proc. 4th Int"l Workshop on Machine FLearning, pp. 103-114, June 1987,

&

456

ARCHITECTURES FOR STRATEGY LEARNING

1. R, Anderson, J. G. Grezno, P. J. Kiine, and D. M. Neves, “Acquisition of Problem-
Solving Skill,” Cognitive Skills and Their Acquisition, ed, }. R. Anderson, Lawrence
Erlbaum Associates, 198].

J. R. Anderson, “Knowledge Compilation: The General Learning Mechanism,”

Machine Learning: An Artificial Intelligence Approach, eds. R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, Morgan Kaufmann, Log Altos, CA, 1986,

1. R. Anderson, “Skill-Acquisition: Compilation of Weak-Method Problem Solutions,”
Psychological Review, vol, 94, pp. 192-210, 1987.

P. M Ardrae, “Constraint Limited Generalization: Acquiring Procedures from Exam-

" ples,” Proc. Nat'l Conf. on Artificial Inielligence, pp. 6-10, 1984.

20.
21
22,

23

24.

25.

27

28.

29,

32.

33,

Y. Anzai and H. Simon, “The Theory of Learning by Doing,” Psychological Review,
vol. 36, pp. 124-140, 1979,

Y. Anzai, “Doing, Understanding, and Learning in Problem Solving,” Praducrion
System Models of Learning and Development, ed. Kilahr et al,, MIT Press, 1987.

A. A, Araya, “Learning Problem Classes by Means. of Experimentation and General-
ization,” Proc. Nar'l Conf. on Artificial Intelligence, pp. 11-15, 1984,

R. V. Baron et al., MACH Kernel Interface Manual, Pittsburgh, PA, Jaruary 1987.
A. Barr and E. A. Feigenbaum, William Kaufmann, Los Altos, CA, 1981, 1982,

A. G. Barto and R, S. Sutton, “Landmark Learning: An lllustration of Associative
Scarch,” Bivlogical Cybernetics, vol, 42, pp. 1-8, 1981,

A. G. Barto, R. 5. Sutton, and C, W. Anderson, “Neuronlike Adaptive Elements that
Can Solve Difficult Leaming Control Problems,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. SMC-13, pp. 834-846, 1983.

K. M. Bauragartner and B, W. Wah, “Load Balancing Protocols on a Local Computer
System with a Multiaccess Bus,” Proc. Int'l Conf. on Parallel Pracessing, pp. 851-
858, University Park, PA, August 1987.

K. M. Baumgartner, Resource Allocation on Distributed Computer Systems, West
Lafayette, IN, May 1988, .

L. R. Beach and T. R. Mitchell, “A Contingency Model for the Selection of Decision
Strategies,” Academy of Management Review,vol. 3, pp. 439-449, 1978,

H. J. Berliner, “Some Necessary Conditions for a Master Chess Program,” Proc. 3rd
int’l Joimt Conf. on Artificial Intelligence, pp. 73-85, 1973,

P. Bock, “The Emergence of Artificial Intelligence: Learring to Learn,” Af Magazine,
pp. 180-190, Fall 1985,

L. B. Booker, D, E. Goldberg, and 1. H. Holland, “Classifier Systems and Genetic
Algorithms,” Technical Report 8, Cognitive Science and Machine Intelligence Labo-
ratory, University of Michigan, April 1987.

L. Breiman, J. H, Friedman, R. A. Olshen, and C. . Stone, Classification and
Regression Trees, Wadsworth International Group, Belmont, CA, 1984,

B. G, Buchanan and T. M. Mitchell, “Model-Directed Learning of Production Rules,”
FPattern-Directed Itference Systems, eds. D. A. Waterman and F. Hayes-Roth, Aca-
demic Press, 1978,

1. G. Carbonell, “Experiential Learning in Analogical Problem Solving,” Proc. Nat'l
Conf. on Artificial Intelligence, pp. 168-171, 1982.

1. G. Carbonell and Y. Gil, “Learning by mx_umz.am:,m:o?: Proc. 4ith Int'l Machine
Learning Workshop, pp. 256-266, 1987.

35,
36.

37

38.

39

5

41

42,

43.

44

45,

46

47

48

49

30.

51.

54.

REFERENCES 457

G. A. Carpenter and S. Grossberg, “ART 2 Self-organization of Stable Category
Recognition Codes for Analog Input Patterns,” Applied Optics, vol. 26, pp. 4919~
4930, December. 1987,

A. C, Catania, Learning, Prentice Hall, Englewood Cliffs, NI, (979,

S. A. Chien, “Extending Explanation-Based Learning: Failure Driven Schema Refine.
ment,” Technical Report No. UILU-ENG-87-2203, University of Hlinois, 1987

T. C. Chow and J, A. Abraham, “Load Balancing in Distributed Systems,” Trans. ou
Saftware Engineering, vol. SE-8, pp. 401412, July 1982.

Y. C. Chow and W, Kohler, “Models for Dynamic Load Balancing in a Heterogeneous
Muitiple Processor System,” Trans. on Computers, vol, C-28, pp. 334-361, May
1979.

J. Christensen and R, E, Korf, “A Unified Theory of Heuristic Evaluation Functicns
and lts Application to Learning,” Proc. 5th Nat' Conf. on Artificial huelligence AAAI-
86, pp. 148-152, 1986. .
W. Clancey, “Heuristic Classification,” in Artificial Inteliigence, vol. 27, pp. 289-350,
Amsterdam, 1985, .
W. }. Clancey, “Classification Problem Solving,” STAN-CS-84-1018, Stanford Uni-
versity, CA, July 1984,

G. C. Collins, “Plan Creation: Using Strategies as Blueprints,” Ph.D. Thesis, Yule
University, 1987,

M. E. Connell and P, E. Utgoft, “Learning to Contro] a Dynmamic Physicn)
System,” Proe. 6ih Nar’l Conf. on Artificial intelligence, pp. 456-60, Seattle, WA,
June 1987,

A. P. Danyluk, “The Use of Explanations for Similaity-Based Leaming,” Proc, 10th
Ine't Joint Conf. on Artificial Intelligence, pp. 274-276, Milan, Ttaly, 1987,

T. R. Davies and §. I, Russell, “A Logical Approach to Reasoning by Analogy,”
Proc, 10th Int'l Joint Conf. on Artificial Fnteltigence, pp, 264-270. 1987,

R. Davis and R, B. Lenat, Knowledge-Based Systems in Artificial Inrelligence,
MecGraw-Hill, New York, 1982,

T. Dean and K. Kanazaws, “Probabilistic Temporal Reasoning,™ Proc, Nar'l Con/.
on Artificial Intelligence AAAL-SS, pp. 524-528, 1988,

R. Deciiter and J, Pearl, “Network-Bused Heuwristics for Constraint-Satisfaction Prob-
lems,” Artificial Intelligence, vol, 34, pp. t-38, 1988,

G. F. DeJong and R. J. Mooney, “Explanation-Based L carning: An Alternative View,”
Machine Learning, vol, I, pp. 145-176, 1986.

M. Derthick, “Counterfactual Reusoning with Dircet Models,” Proc. Narl Conf. on
Artificial Intelligence AAAI-S7, pp. 346-351, July 1987.

R. Desimone, “Learning Control Knowledge within an Explanation-Based Learning
Framework.” Progress in Machine Learning, eds. 1. Bratko and N, Lavrac, pp.
107-119, Sigma Press, Cheshire, UK., 1987.

T. G. Dietterich and B. G. Buchanan, “The Role of Critic in Learning Systems.”
Technical Report No, STAN-CS—81-891, Stanford University, CA, December 1931,
T. G. Dietterich and J. S. Bennett, “The Test Incorporation Theory of Problem Soly.
ing.” Proc. Workshop on Knowledge Compilation, Oregon State University, Depart-
ment of Computer Science, pp. 145-159, September 1986,

T. G. Dietterich, “Learning at the Knowledge Level,” Machine Legrning, vol. 1, pp
287-316, Boston, 1986,

458 ARCHITECTURES FOR STRATEGY LEARNING

55. H, I, Einhorn, “Learning from Experience and Suboptimal _ﬂin.a in Decision Zw.xmzm.:
Cognitive Processes in Choice and Decision Behavior, ed. T, Wallsten, Erfbaum,
Hillsdale, NJ, 1980.

56. H. J. Einhorn and R, M. Hegarth, “Behavioral Dectsion Theory: Processes of Judgment
and Choice,” Annual Review of Psychology, vol. 32, pp. 53-88, 1981.

57. G. Ernst and A, Newell, GPS: A Case Study in Generality and Problem Solving,
Academic Press, 1969. .

58, G. W, Emst and M. M, Goldstein, “Mechanical Discovery of Classes of Problem-
Solving Strategies,” J. of the ACM, vol. 29, pp. 1-23, January 1982. .

59. S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski, “Massively Paratlel ?ﬁ::mn.é.%
for AL: NETL, Thistle, and Boltzmann Machines,” Proc. Nat'l Conf, on Ariificial
Intelligence, pp. 109113, 1983, . ,

60. B. Falkenhainer, “The Utility of Difference-Based Reasoning,” Proc. Nat'l Conf. on
Ariifictal Intelligence AAAI-88, Ann Arbor, Michigan, 1988, -

61. E. A. Feigenbaum, “The Art of Artificial —Eo_:mouooi.;maw.m m:a Oumm. Studies of
Knowledge Engineering,” Proc. Sth Int'l Joint Conf.- on Artificial Intelligence, pp.

1014-1029, Los Altos, CA, August 1977,

62. 1. A, Feldman and Y. Yakimovsky, “Decision Theory and ?&mnmm_ Intelligence: I
A Semantics-Based Region Analyzer,” Artificial Intelligence, vol. 5, pp. 349-371,
1974. . |

- 63. J. A. Feldman and R. F. Sproull, “Decision Theory and Artificial Intefligence 11

The Hungry Monkey,” Cognitive Science, vol. 1, pp. 158-192, Norweod, NI,
1977. . .

64. J. A. Feldman, “Dynamic Connections in Neural Networks,” Biological Cybernetics,
vol. 46, pp. 27-39, 1982, . .

65. R, .E. Fikes, P. E. Hart, and N. J, Nilsson, “Learning and mxmoc::w.onzﬁ..a_mma
Robaot Ewa.: Readings in Artificial Intelligence, eds. B. L. Webber and' N. Nilsson,
pp. 231-249, Morgan Kaufmann, 1981, .

66. N. 8, Flann, “Improving Problem Solving Performance by Example o.:ann_ Reformu-
lation of Kunowledge,” Proc, st Workshop on Change of Representation, 1988.

67. L. ‘M. Fu and B. G. Buchanan, “Enhancing Performance of Expert Systems by

. Automated Discovery of Metarules,” Technical Report No. Ivv-mawwm, Stanford
University, CA, 1984.

68. 8. Fujita, “Self-Organization in Distributed Operating mu.\ma_s.: Abstracts 1st Annual
INNS Meeting, (Neural Networks), vol. 1 (supplement 13, p, 93, 1988, ,

69. M. R. Garey and D, S, Iohnson, Computer and Intractability: A Guide 10 the Theory
of NP-completeness, San Francisco, CA, 1979. N .)

70. 1. Gaschnig, “A Problem Similarity Approach to Devising :mm:mn._nm” First Results,
Readings in Artificial Intélligence, eds. B. L. Webber and N. Nilsson. pp. 21-29,
Morgan Kaufmann, Los Altos, CA, 1981. .

71. M. R, Genesercth and N, J. Niisson, Logical Foundations of Artificial Imelligence.
Morgan Kaufmann, Las Altos, CA, 1987, o .

72. M. P. Georgeff, “Search Methods Using Heuristic Strategies,” Proc. Int’l Joint Conf.
on Artificial Intelligence IJCAI-81, pp. 563-568, 198].

73. M. P. Georgeff, “Strategies in Heuristic Search,”™ Artificial fntelligence, vol. 20, pp.
393-425, 1983.

REFERENCES 459

M. M. P, Georgelf amd A. L, Lansky, “Reactive Reasoning and Planning,”™ Moc, o
Nar't Conf, on Artificial helligence, pp. 677-82, Scaule, WA, June 1957,

75. M. P. Georgelf, “Planning,” Annuat Review af Computer Science, pp. 35900,
Annual Reviews Ine., Palo Alo, CA, 1987,

76. A. Ginsberg, “Representation and Problem Solving: Theoretical Foundations,” Tech-
nical Report No. CBM-TR-141, Rutgers University, October 1984,

77. R. M. Golden, “A Unified Framework for Connectionist Systems,” Biologicaf Cvber-
netics, vol. 58, no. 2, p. 109, 1988,

78. A. Golding, P. §. Rosenbloom, and J. E, Laird, “Learning General Search Control
Rules from Qutside Guidance,” Proc, 10t Int'l Joint Conf. on Artificial Imelligence,
pp. 334-337, Milan, laly, 1987,

79. 1. Gordon and E. H. Shortliffe, “A Methad for Managing Evidential Reasoning in
a Hierarchical Hypothesis Space,” Artificial huelligence, vol. 26, pp. 323-337,
1985,

80. R. Greiner, “Learning by Understanding Analogies,” Technical Report CSRI-188,
University of Toranto, August 1986,

81. P. Haddawy, “A Variable Precision Logic Inference System Employing the Dempsier-
Shafer Uncertainty Calculus,” Technical Report No, UIUCDCS-F-86-939, Department
of Computer Science, University of Tliinois, Urbana, IL, 1986,

82. S. Hanks, “Representing and Computing Temporally Scoped Beliefs,” Proc. Nag't
Couf, on Artificial Intolligence AAALSS, pp. S01-305, 1988,

83. B. Hayes-Roth and M. Hewett, “Learning Contral Heuristics in BBL,” Technical

Report No. KSL 85-02, Knowledge Systems Lab., Stanford Univessity, CA, January
1985.

84. B. Hayes-Rath, “A Blackboard Architecture for Control,” Artificied Imteltigence, vol,
26, pp. 251-321, July 1985.

85. F. Hayes-Roth, D. A, Waterman, and D. B, Lenat, Building Expert Systems, Addison-
Wesley, Reading, MA, 1983,

86. L. Hendricks, H. Oppewal, and C, Vlek, “Relutive Importance of Scenario nfon

versus Frequency Information in the Judgment of Risk,” Technical Report, Univer sity
of Gronigen, The Netherlands, 1987.

87. G. E. Hinton, “Distributed Representations,” Technical Report No, 84-157. Depunt-
ment of Computer Science, Carnegie-Mellon University, October 1984,

88. G. E. Hinton, T. 1, Sejnowski, and D. H, Ackley, Boltzmann Machine: Con-

straint Satisfaction Nemwvork that Learns, Carnegie-Melton University. Pinsburah,
PA, 1984,

89. G. E. Hinton, “Connectionist Learning Procedures,” Artificial Intelligence, vol. 40,
pp. 185-234, 1989,

90. 1. H. Holland and J, S, Reitman, “Cognitive Systems Based on Adaptive Algorithms,”
Pattern Directed Inference Systems, eds. D, A, Waterman and F. Hayes-Roth, Acy-
demic Press, 1978, .

91. I. H. Holland, “Esea ing Brittleness: The Possibilitics of General-Purpose 1, rrming
Algorithms,” Machine Learning I, eds, R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell. pp. 593-623, Morgan Kaufmann, 1986,

92. 1. J. Hopfield and D. W, Tank, “Computing with Neural Circuits: A Model,” Scicnce,
pp. 025-633, August 1986,

460 ARCHITECTURES FOR STRATEGY LEARNING

93. E. 1. Horvitz, “Reasoning about Beliefs and Actions under Oo:.%.:.s.zoza mmnmo:_.nm
Constraints,” Proc. 3rd AAAI Workshop on Uncertainty in Artificial Intelligence,
Seattle, WA, July 1987, :

94. K. Hwang, B, W, Wah, and F. A. Briggs, “Engincering Computer Network Amnz.v"
A Hardwired Network of UNIX Computer Systems,” Proc. Nat't Computer Conf.,
pp. 191-201, May 1981. . . .

95. K. Hwang, W. I. Croft, G. H. Goble, B. W. Wah, E. A. w.,_mmm‘ W. R, m_B__womm.._
and C, L. Coates, “A UNIX-based Local Computer Network with Load wm_wsn_sm‘
Computer, vol. 15, pp- 55-66, April 1982. Also in Titorial: Computer Architecture,

" eds. D, D. Gajski, V. M. Milutinovic, H. I. Siegel, and B. P. Furht, pp, 541-552,
IEEE Computer Saciety, 1987. . N

96. K. B. Irani and J. Cheng, “Subgoal Ordering and Goal Augmentation .a.o,. Em:.._m:.n
Problem Solving,” Proc. 10th Int'l Joint Conf. on Artificial Imtelligence, pp.
1018-1024, Milan, Italy, 1987. _ .

97. E. J. Johnson and I. W, Payne, “Effort and Accuracy in Choice,” Managemeny
Seience, vol. 31, April 1985. .

98. B. Julish, F. Klix, R. Klein, W, Krause, and F. Kukla, “Some Experimental
Results Regarding the Effect of Different Representations.. in- Human Problem
Solving,” Human and Artificial Intelligence, ed, F. Klix, North-Holland,

1979. ‘ .

99. D. Kahaeman and A. Tversky, “Choices, Values, and Frames,” American Psychola-
gist, vol. 39, pp. 341-350, 1984. N .

100. H. A, Kauwtz, “The Logic of Persistence,” Proc. Nat'l Conf. on Artificial Intelligence
AAAI-86, p. 401, 1986. . . .

101. D, S, Kay and J. B. Black, “The Evolution of Knowledge _Nn?,mwm:p.ﬁ_o:m with
Increasing Expertise in Using Systems,” Proc. Cognitive Science Society Annual
Meeting, University of California, Irvine, 1985, .

102. R. M. Keller, “A Survey of Research in Strategy >35m:_o=m, Technical Report DCS-
TR-115, Department of Computer Science, Rutgers University, May 1982.

103, D. Kibler and B. W. Porter, “Episodic Learning,” Proc. Nat'l Conf. on Artificial
Inteliigence AAAI-83, pp. 191-196, 1983, o 5

134. A. H. Klopf, “Drive-Reinforcement Learning: A Real-Time Mechanism for Classical
Conditioning,” Proc. [CNN, pp. 1I-441-11-445, 1987, . .

105, T. Kohonen, Self-Crganization and Associative Memory, 2nd ed., Springer-Verlag,
1988, , . . N

1G66. M. M, Kokar and W. W, Zadrozny, “A Logical Model of Machine Learning,” Proc.
I'st Workshop on Change of Representation, 1988,

107. K. G. Konelige, “Experimental Robot _u.&n:o_omw,: Technical Report No. 363, SRI
International, Menlo Park, CA, November 1985. ,

108, R. E. Korf, Learning to Solve Problems by Searching for Macro-Operators, Pilman,
Boston, 1985. o .

109. R. E. Korf, “Macro-Operators: A Weak Method for Learning,” Artificial intelligence,
vol. 26, pp. 35-77, 1985, . o .

118, R, E. Korf, “Heuristics as Invariants and its Application to _..mmE_:.m. Enn..zma.
Learning: A Guide 1o Curremt Research, pp. _m.ml_om. eds. T. M. Mitchell, J. G.
Carbonell, and R. §. Michalski, Kluwer Academic, Boston, 1986.

REFERENCES 461

1. B. Kosko, “Adaptive Bidirectional Assoctative Memaories,” Applied Optics, vol, 26,
pp. 49474960, December 1987,

112, T. Kramer, “Auvtomated Analysis of Operators on State Tables: A Technigue
for Intelligent Search,” Journal of Awlomated Reasoning, vol, 2, pp. 127-151,
1986. :

113. B. 1. Kuipers, A. J, Moskowitz, and J. P, Kassirer, “Critical Decisions under Uncer-
tainty,” Al TR87-61, University of Texas at Austin, August 1987,

114. V. Kumar, “Branch-and-Bound Search,” Technical Report AT TR85-11, Universily of
Texas at Austin, August 1985,

135, J.E. Laird, P, S. Rosenbloom, and A, Newell, “Towards Chunking as a Generat Learn-
ing Mechanism,” Proc. Nat'l Conf. on Artificial Intelligence AAAL34, pp. 188-192,
1984,

116. J. E. Laird, P. §. Rosenbloom, and A, Newell, “Chunking in Soar: The Anatomy of
a General Learning Mechuaism,” Machine Learning, vol. 1, pp. 11-46. 1986,

117. J, E. Laird, P. S, Rosenbloom, and A. Newell, “Soar: An Architecture for General
Intelligence,” Artificial fntefligence, vol. 33, pp. 1-64, 1987,

118. P. Langley and H. A. Stmon, “The Central Role of Learning in Cognition,” Cognirive
Skills and Their Acquisition, ed,], R, Anderson, Lawrence Erlbaum Associates, 1981.

H9. P, Langley, “Leaming Effective Scarch Heuristies,” Proe., Sttt Joine Cong, on
Artificial Inielligence, pp. 419421, Los Altos, CA, 1083,

120. P. Langley, “Learning to Search: From Weak Metheds 1o Domain-Specitic Heuristics.”
Cognitive Science, vol, 9, pp. 217260, 1985,

121, D, Lawson and B. Williams, “A Newral Network Implementation of a Page-Swapping

Algorithm,” Abstracts of the Ist Arnwal INNS Meeting (Neural Networks), vol, |
(supplement 1), p. 451, 1988,

122, M. Lebowitz, “Integrated Learning: Controliing Explanation,” Coguitive Science, pp.
219-240, 1986,

123. K. F. Lee and §. Mahajan, “A Pattern Classification Approach to Evaiuation Function
Learning,” Artificial Intelligence, vol. 36, pp. 1-25, 1988. .

124. D. B. Lenat, “HEURETICS: Theoretical and Experimental Study of Heuristic Rule
Proe. Nat'l Conf. on Artificial Intelligence AAAIL-S2, pp. 159-163, 1982,

125. D, B. Lenat, “The Role of Heuristics in Learning by Discovery: Three Case Studics.”
Machine Learning: An Artificial Intelligence Approach, eds. R. S, Michalski. J, G.
Carbonell, and T, M. Mitchell, Pp. 243-306, Morgan Kaufmann, Los Altos, CA, 1983,

126, D. B, Lenat, “Theory Formation by Heuristic Searchy The Nature of Heuristics 1I;
Background and Examples,” Artificial Intelligence, vol, 21, pp. 31-59, 1983,

i27. D. B. Lenat and I. S. Brown, “Why AM and EURISKO Appear to Work,” Artificial
Intelligence, vol. 23, pp. 269294, 1984,

123. D. B. Lenat and E, A. Feigenbaun1, “On the Thresholds of Knowledge,” Proc, iom
Inr'l Joint Conf. on Artificial Inteliigence, pp. 1173-1182, 1987,

129, C. Lewis, “Composition of Productions,” Production System Models of
Development, ed. Klahr et al. , MIT Press, 1987,

130. M. W, Lewis and }. R. Anderson, “Discrimination of Operalor Schemata in

vmozm_:mo_iam" rﬁ:.a:m:o_:mxu__%_nm_: Coguitive Psychology, voi. 17,
pp. 26-65, 1985, :

y..:

“Learting and

462 ARCHITECTURES FOR STRATEGY LEARNING

131. M. R. Lowry, “The Logic of Preblem Reformulation,” Proc, Workshop on Krowled;e
Compilation, ed. T. G. Dietterich, 1986, .

132, F. Maitioli, “The Complexity of Combinatorial Optimization Algorithms and the
Challenge of Heuristics,” Combinatorial Qptimization, pp. 107-128, 1979, .

133, Z. Manna and R. Waldinger, “A Theory of Plans,” Reasoning about Actions and
Plans, eds. M. P. Georgeif and A. L. Lansky, pp. 1145, 1987.

134, J. L. McClelland, “The Programmable Blackboard Model of Reading,” Paralle!
Distributed Processing: Psychological and Biological Models, eds. 1. L. McClelland
and D. E. Rumelhant, pp. 122-169, MIT Press, 1986,

135, T. L. McCluskey, “Combining Weak Learning Heuristics in General P.oc._ma Solv-
ers,” Proc, I0th Int’{ Joint Conf. on Artificial Inteliigence, pp. 331-333, Milan, [taly,
1987. N .

136. L. Mero, “A Heuristic Search Algorithm with Modifiable Estimate,” Arificial Intelli-
gence, vol. 23, pp. 13-27, 1984, . , , . -

137. R. S. Michalski, J. G. Carbonell, and T. M, Mitchell, Machine Learning: An Artificial
Imelligence Approach, 1983, . . .

138. R. S. Michalski, “A Theory and Methodology of En_snﬂ?m g&.:.n.m. Machine
Learning, ed. R. 8. Michalski, J. G. Carbonell, and T. M. Mitchell, Tioga, Emw..

i39, D. Michie and R. Chambers, “BOXES: ?,H mxuoaan:.ﬂ in >mm_u:<m Control,” inn__:zn
Intelligence 2, pp. 137-152, eds. E. Dale and D. Michie, Oliver and Boyd, Edinburgh,
Scotland. . .

140. M. Minsky, “Steps toward Artificial Intelligence,” Computers and Thought, eds. E.
A, Feigenbaum and J. Feldman, McGraw-Hill, New York, 1963. » .

141. S. Minton, J. G. Carbonell, C. A. Knoblock, D. Kuokka, and H. Nordin, “Improving
the Effectiveness of Explanation Based Learning,” Proc. Workshap on Knowledge
Compilation, pp. 77-87, 1986.

142. S. Minton and J. G. Carbonell, “Strategies for Learning Search ﬂo:.:.om Wc_wﬁ An
Explanation-Based Approach,” Proc. 10th Inr'l Joint Conf. on Artificial Intelligence,
pp- 334-337, Milan, Italy, August 1987. ‘ .

143, T. M. Mitchell, *The Need for Biases in Learning Generalizations,” CBM-TR-117,
Rutgers University, Comyputer Science Umnu,::_m:r £980. .

144. T. M. Mitchell, P, E. Utgoff, B. Nudel, and R. Benerji, _.rmmmsﬁm _u..oEmB-wo?_:m

Heuristics through Practice,” Proc. 7th Int’l Joint Conf. on Artificial Intelligence, pp.
127-134, Los Altos, CA, 1981, .
145. T. M. Mitchell, “Learning and Problem Solving,” Proc. 8th int’l Joint Conf. on
Artificial Intelligence, pp. 1139-1151, Los Altos, CA, August 1983. . .
146. T. M. Mitchell, P. E. Utgoff, and R. B. Banerji, :ronﬂ.._..,zm by mu.ﬁa:_.mm::_:oun
Acquiring and Refining Problem-Solving Heuristics,” Machine Learning, eds, R, S.
Michalski, J, G. Carbonell, and T. M. Mitchell, Tioga, 1983. .
147. T. M. Mitchell, “Toward Combining Empirical and Analytical Zﬁ:..o% for F@.::m...
Artificial and Human aelligence, pp. 81-103, eds. R, B. Banerjt and T, Elithorn,
o . Mechani d Its Application
ey, “A General Explanation-Based Learning Mechanism an \pplic
- MM. Wmﬁwm“owcaﬂmsu&sm.:_u.H.no:ans_ Report UILU-ENG-87-2269, University of
Hlinois, Urbana-Champaign, December 1987.

REFERENCES 463

149, L. Morgenstern and L. A. Stein, "Why Things Go Wreng: A Formal Theory of Causal
Rensoning.” Proc. Nar'l Conf. on Artificial Intelligence AAAL-8S, pp. 518-523, 1988.

{50, D. J. Mostow, “Machine Transformation of Advice into a Heuristic Search Procedure,”
Machine Learning: An Artificial Intelligence Approach, eds, R. . Michalski,). G,
Carbonell, and T, M. Mitchell, pp- 367404, Morgan Kaufmann, Los Altos, CA,
1983,

151. B. A. Nadel, *Representation Selection for Constraint Sutisfaction Problems: A Case

Study Using n-Queens,” DCS-TR-208, Laboratory for Computer Science Research.
Rutgers University, NJ, 1987,

52. D, M. Neves and J, R. Anderson, “Knowledge Compilation: Mechanisms for the
Automatization of Cognitive Skills,” Cogaitive Skills and Their Acquisition, ed, . R.
Anderson, Lawrence Erlbaum Associates, 1981, :

153. D. M. Neves, “Learning Procedures from Examples and by Doing,” Proc. sl Joint
Conf. an Artificial Intelligence, pp. 624-630, 1983.

154. A. Newell and H. A. Simon, Human Problem Solving, Prentice Hall, Englewoay
Cliffs, Ni, 1972,

155, A. Newell, “The Knowledge Level,” Anificial Inelligence, vol. 18, pp. §7-127,
1982, :

156. L. M. Niand K. Hwang, “Optimal Load Balancing Stategies for a Multiple Processor
Systern,” Prec. 10th Int’f Conf. on Parallel Processing, pp- 352-357, August [98].

t57. L.M. Ni,C.-M. Xu, and T. B, Gendreau, “A Distributed Drafting Algorithm for Logd
Balancing,” Trans. on Sofiware Engineering, vol, SE-11, pp. 1153-1161, Ociober
1985,

158. H. P. Nii, “Blackboard Systems, Blackboard Application Systems, Blackboard Sys-
tems from a Knowledge Engineering Perspective,” Al Magazine, pp. 82-106, August
1986,

159. N, L Nilsson, “Triangle Tables: A Proposal for a Robot Programming Language,”
Tecknical Note 347, SRI International, Menlo Park, CA, February 1985.

160. S. Ohlsson, “A Constrained Mechanism for Procedural Learaing,” Proc. fnt'l Joins
Conf. on Artificial Intelligence, pp. 426428, Los Altos, CA. 1983,

161. P, S. Ow, 5. F, Smith, and A. Thicez “Reactive Plan Revision,” Proc. {0
Nat'l Conf. on Artificial Intelligence AAALSS, vol. |, pp. 77-82, Suint Paul. MN.
1988.

162. V. M. Ozernoi and M. G. Gaft, “Methods for the Best Solutions Sewrch in Muli-
objective Decision Problems,” Proc, fnr'l Joint Conf. on Artificial hitelligence 1ICA-
75, pp. 357-361, Moscow, USSR, 1975.

163.). C. Pasquale, “Intelligent Decentralized Contiol in Large Distributed Con
Systems,” Ph.D. Thesis, University of California, Berkeley, April 1988,

164, J. W. Payne, J. R. Bettman, E. J, Johnson, and E. Coupey, “Selection of Heuristics
for Choice: An Effort and Accuracy Perspective,” Minois tnterdiseiplinars Workshop
on Decision Making, 1988,

165. M. J. Pazzani, “Explanation and Generalization Based Memory,” Proc. Anunal Meer-
ing of the Cagnitive Science Society, pp. 323-328, Irvine, CA, 1983,

166. J. Peart, “Some Recent Results in Heuristic Search Theory,” Trans, on Panery
Analysis and Machine Intelligence, vol. PAMI-6, pp. 1-13, January 1984,

464 ARCHITECTURES FOR STRATEGY LEARNING

167.). Pearl, Heuristics—Intelligent Search Strategies for Computer Problem Solving,
Addison Wesley, Reading, MA, 1984,

168. I. Pearl, “Bayesian Networks: A Model of Self-Activated Memory for Evidential
Reasoning.” Proc. 7th Annual Conf. of Cognitive Science Seciety, pp. 329-334,
August 1985,

169. G. D. Plotkin, “A Note on Inductive Generalization,” Machine Imtelligence, ed.
Meltzer and Michie, pp. 153-163, Edinburgh University Press, Edinburgh, Scotland,
1970. . . :

170, 1. Pohl, “The Aveoidance of (Relative) Catastrophe, Heuristic Competence, Genuine
Dynamic Weighting, and Computational Issues in Heuristic Problem Solving,” Proc.
of IJCAI-73, pp. 12-17, Stanford, CA, 1973,

171. M. E. Pollack, D. J. Israel, and M, E. Bratman, “Toward an Architecture for Resource-
Bounded Agents,” CSLI-87-104, Center for the Study of Language and Information,
Menlo Park, CA, August 1987,

I72. B. Porter and D. Kibler, “Experimental Goal Regression: A Technique for Learning
Heuristics,” Technical Report AITR 86-20, Department of Computer Science, Univer-
sity of Texas, Austin, 1986.

173. B. W. Porter and D. F. Kibler, “Learning Operator Transformations,” Proc. Nat'l
Conf. on Artificial Intelligence AAAI-84, pp. 278-282, 1984.

174. B. W. Porter and R, E. Bareiss, “PROTOS: An Experiment in Knowledge Acqgu
tion for Heuristic Classification Tasks,” Technical Report Al TR-86-35, A.l. Lab.,
University of Texas ai Austin, September 986. ’

175. 1. R. Quinlan, “Predicting the Length of Solutions to Problems,” Proc. Int'l Joint
Conf. on Artificial Intelligence IJCAIL-75, pp. 363-369, 1975.

176. 8. Rajamoney, G. Delong, and B. Faltings, “Towards a Model of Conceptual _Amﬁoé_-
edge Acquisition through Directed Experimentation,” Working Paper 68, Artificial
Intelligence Research Group, Coordinated Science Lab., University of illinois, 1985.

177. 8. A. Rajamoney and G. F. Delong, “Active Ambiguity Reduction: An Experiment
Design Approach to Tractable Qualitative Reasoning,” Technical Report No, UILU-
ENG-§7- 2225, University of 1llinois, April 1987,

178. 5. A. Rajamoney, “Exemplar-Based Theory Rejection: An Approach to the Experience
Cansistency Problem,” Machine Learning, pp. 284-289, Boston, Kluwer, (989,

179. L. Rendell, “Conceptual Knowledge Acquisition in Search,” Computational Models
of Learning, ed. L. Bolc, Springer Verlag, 1987.

180, L. A. Rendeil, “A New Basis for State-Space Learning Systems and a Successful
Implementation,” Artificial Intelligence, vol, 20, pp. 369-392, 1983,

181. L. A. Rendell, “Substaatial Constructive Induction Using Layered Information Com-
pression: Tractable Feature Formation in S¢arch,” Proc. Int'l Joint Conf, on Artificial
Inelligence [JCAI-85, p. 63, 1985.

182, L. A. Rendell, “Genetic Plans and the Probabilistic Reasoning System: Synthesis
and Results,” UIUCDCS-R-85-1217, Department of Computer Science, University of
Hlinois, 1985,

183. L. A. Rendell, “A Framework for Induction and a Study of Selective Induction,”
Machine Learning, vol. 1, June 1986.

184, L. A. Rendell, “Representations and Models for Concept: Learing,” UIUCDCS-R-
87-1324, Department of Computer Science, University of lllinois, 1987.

185.

186

187.

188,

189.

190
191,

192.

193.

194

195.

196.

197.

198,

199

200,
201.
202,

203,

REFERENCES 465

L. A. Rendell, R, Seshu, and D, Tcheng, “Layered Concept Learning and Dynamically
Variable Bias Management,” Proc. Int'l Joint Conf. on Artificial Intelligence DCAL-
87, Milan, Italy, 1987,

L. A. Rendell, “Leamning Hard Concepts,” Evnropean Workshop in Learning (E\WSL.
§8), 1988, ‘

P. J. Riddle, “An Overview of Problem Reduction: A Shifi of Problem Repre-
sentation,” Proc. Workshop on Knowledge Compilation, ed. T, G. Dietterich, 1986.

P. . Riddle, “An Approach for Learning Problem Reduction Schemas and Iteratjve
Mucro-Operators,” Proc. Ist Workshop on Change of Representation, 1988,

M. H. Romanycia and F. J. Pelletier, “What Is & Heuristic?,” J. Compruational
Intelligence, vol. 1, pp, 47-58, Toronto, 1985,

F. Rosenblatt, Principles of Neurodynantics, Spartan Books, New York, 1962,

P. Rosenbloom and A, Newell, “Learning by Clunking: A Production Systemn Mool
of Practice,” Production System Models of Learning and Development, ed. Klahs ¢l
al., MIT Press, 1987,

P. 8. Rosenbloom, 1. E. Laird, J. McDermott, A. Newell, and E. Owciuch. “Ri-
Soar: An Experiment in Knowledge-Intensive Programming in a Problem Solving
Architecture,” IEEE Trans. en Paitern Analysis and Machine Intelligence, vol. PAMI-
7, pp. 561-369, 1985,

P. 5. Rosenbloont and J. E. Laird, “Mapping Explanation-Based Generalization outo
SOAR,” STAN-C5-86-1111 (also KSL.-86-46), Departnient of Computer Science,
Stanford University, 1986, .

R. Rosenfeld and D. 8, Touretzky, “Four Capacity Models for Coarse-Coded Symbal
Memories,” Technical Report No. CMU-CS-87-182, Computer Science Department,
Camnegie-Mellon University, Pittshurgh, PA, December 1987.

1. Rosenschein and V. Singh, “The Utility of Metalevet Effort,” HPP-83-20, Sunford
University, CA, March 1983,

D. D. Rumelhart, G. Hinton, and J. L. McClelland, “A General Framework for
Parallel Distributed Processing,” Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, eds. D. E. Rumelhant, J. L McClelland, and the PDP
Research Group, MIT Press, Cambridge, MA, 1986,

D. E. Rumelhart, G, E. Hinton, and R. J. Williams, Learning Internal Represemations
by Error Propagation, Institute for Cognitive Science Report 8506, UCSD, September
1985.

D, E. Rumelhart, P. Smolensky, 1, L. McClelland, and G. Hinten, “Schemua and
Sequential Thought in PDP Models,” Parallel Distributed Processing: Psychological
and Biological Models, MIT Press, 1986,

J. E. Russo and B. A. Dosher, “Strategies for Multiattribute Binary Choice,” Journal

of Experimental Psychology: Learning, Memory, and Cognition, vol, 9, pp. 676-696,
1983.

E. D. Sacerdoti, A Stritcture for Plans and Behavior. Elsevier, New York. 1977,

E. D. Sacerdoti, “Problem Solving Tactics,” Proc. HCAL-79, pp. H77-1085, 1979,
A. L. Samuel, “Some Studies in Machine Learning Using the Gume of Checkers,”
IBM J. Research and Development , vol. 3, pp. 210-229, 1959,

A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers [[—
Recent Progress,” J. of Rescarch and Development, vol. 11, pp. 601-6i7, 1967.

466 ARCHITECTURES FOR STRATEGY LEARNING

204. R. C. Schank, G. C. Collins, and L. Hunter, “Transcending Inductive Category
Formation in Learning,” Behavioral and Brain Sciences, vol. 9, pp. 639-686, 1986,

205. M. J. Schoppers, “Representation and Automatic Synthesis of Reaction Plans,” forth-
coming Ph.D. thesis, Department of Computer Science, University of lllinois, Urbana,
1988.

206. B. Silver, Meta-Level Inference: Representing and Learning Control Information in
Artificial Intelligence, Studies in CS and Al, New York: North-Holland, 1986.

207. H. A. Simon, “The Architecture of Complexity,” The Sciences of the Artificial, pp.
193-230, MIT Press, Cambridge, MA, 1969.

208. H. A. Simon, “Economic Rationality: Adaptive Artifice,” The Sciences of the Artifi-
cial, p. 46, MIT Press, Cambridge, MA, 1969,

209, H. A. Simon, “Artificial Intelligence Systems that Understand,” Prac, Sth Int'l Joint
Conf. on Artificial Intelligence, voi. 2, pp. 1039-1073, Cambridge, MA, 1977,

210. H. A. Simon, “Information-Processing Theory of Human Problem Solving,” Handbeok
of Learning and Cognitive Processes, Erlbaum, 1978.

2t1. H. A. Simon, “What the Knower Knows: Alternative Strategies for Problem Solving
Tasks,” Human and Artificial Intelligence, ed. F. Klix, North-Hollznd, 1979,

212, H. A. Simon, The Science of the Artificial, 2nd edition, MIT Press, Cambridge, MA,
1981,

213. H. A. Simen, “Why Shouid Machines Learn? Machine Learning: An Artificial
Intelligence Approach, eds. R. S. Michalski, J. G. Carbonell, and 1_, Z Mitchell,
pp. 25-37, Morgan Kaufmann, Los Altos, CA, 1983.

214. 1. R. Slagle, “A Heuristic Program that Solves Symbolic Integration _#cc_m:z in Fresh-
man Calculus,” Computers and Thought, eds., E. A. Feigenbaum and J. Feldman,
McGraw-Hill, New York, 1963,

215, D. Sleeman, P. Langley, and T. M. Mitchell, “Learning from Solution Paths: An
Approach to the Credit Assignment Problem,” Al Magazine, vol. 3, pp. 48-52, 1982,

216, R. G. Smith, T. M. Mitchell, R. A. Chestck, and B. G. Buchanan, “A Model for
Leaming Systems,” Proc. 5th Int’l Joint Conf. on Artificial Intelligence, pp. 338-343,
Los Alios, CA, August 1977.

217. §. F. Smith, “Flexible Learning of Problem Solving Heuristics through Adaptive
Search,” Proc. Int'{ Joint Conf. on Artificial Intelligence, pp. 422425, 1983.

218. P. Smolensky, “Information Processing in Dynamical Systems: Foundations of Har-
mony Theory,” Parallel Distributed Processing: Foundations, pp, 194-281, MIT
Press, 1986,

219, N. S. Sridharan and J. L. Bresina, “Exploration of Problem Reformulation and Stral-
egy Acquisition—A Proposal,” Laboratery for Computer Science Rescarch, Rutgers
University, March 1984,

220. S. Star, “Theory-Based Inductive Learning: Ar Integration of Symbolic and Quantita-
tive Methods,” Uncertainty in Artificial Intelligence Workshop, pp. 237-248, Sealtle,
WA, 1987.

. M. Stefik, "Plarning and Ems.v_un:_:m {MOLGEN: Part 2)," Readings in Artificial
Intelligence, pp. 272-286, eds. B. L. Webber and N, Nisson, Morgan Kaufmann,
1981.

222, D. Steier, “CYPRESS-Soar: A Case Study in Search and Learning in Algorithm
Design,” Proc. 10th Int’l Joint Conf. on Artificial Intelligence 1JCAI-87, pp. 317-
330, Milan, Italy, 1987.

REFERENCES 467

223, D. Subramanian and M. R. Genesereth, “Reformulation,” Prac. Workshop on Knowi-
edge Compilation, ed., T. G. Dietterich, 1986,

224, G, J. Sussman, “A Computational Model of Skill Acquisition,” Ph.D. thesis, Artificial
Intelligence Lab., MIT, 1973,

225. R. 3. Sutton, “Temporal Credit Assignment in Reinforcement Learning,” Ph.D. thesis,
University of Massachusetts, Amherst, February 1984,
226. R. S. Sutton and A. G. Barto, “Toward a Modem Theory of Adaptive Netwarks:
Expectation and Prediction,” Psychological Review, vol, 88, pp. 135-170, 1984.
227. R. 8. Sutton, “Learning to Predict by the ?_E:Q% of q.mavo_.m_ Differences,” Machine
Learning, vol. 3, pp. 944, 1988,

228. C. Swart and D, Richards, “On the Inference of Strategies,” TR 86-20-3, Oregon Stale
University Computer Science Department, 1986.

229. D. 5. Touretzky and G. E. Hinton, “A Distributed Connectionist Production Sys-
tem,” CMU-CS-86-172, Depariment of Computer Science, Camegie-Mellon Univer-
sity, 1986.

230, D. S. ,—.oznmn.m.ww, “Beyond Associative Memory: Connectionists Must Seurch for
Other Cognitive Primitives,” Proc. AAAT Spring Symp. Series: Parallel Models of
Intetligence: How Can Slow Components Think So Fast?, Stanford, CA, 1988,

231, A. Tversky and D, Kahneman, “Judgment under Uncertainty: Heuristics and Biases,”
Science, vol, 185, pp. 1124-£131, 1974,

. 232. P, E. Utgoff and T. M. Mitchell, *Acquisition of Appropriate Bins for Inductive

Concept Learning,” Proc. Nait'l Conf. on Artificial Ielligence, pp. 414-417, 1982,

233. P. E. Utgoff, “Adjusting Bias in Concept Leaming,” Proc. Inrl Joint Conf. on
Arvificial Intelligence, pp. 447-449, Los Altos, CA, 1983,

234, P.E. Utgoff and S. Saxena, “Learning a Preference Predicate,” Proc. Int'f Machine
Learning Workshap, pp. 115-121, Irvine, CA, June 1987,

233, B. W. Wah and P. Mchra, “Learning Puralicl Sesrch in Load Balancing,” Worksiop en

Farallel Algorithms for Machine Inteiligence and Pattern Recognition, Minneapolis,

MN, Aungust 21, 1988.

B. Eﬁrm? G. Popek, R. English, C. Kline, and G. Thiel, “The LOCUS Distributed

Operating System,” Proc, 9th Symp. on Operating System Princivles, pp. 49-70,

1983,

237. Y. T. Wang and J. T. Morris, “Load Sharing in Distributed Systems,” Trans. on
Computers, vol. C-34, pp. 204-217, March 983,

238. 8. Watanabe, Pattern Recognition: Humant and Mechanical, Wiley laterscience, 19383,

239. 5. Watanabe, “Inductive Ambiguity und the Limits of Artificial Intelligence.” Com-
putational Intelligence, vol. 3, pp. 304-309, 1987.

240. D. A. Waterman, “Generalization Learning Techniques for Automating the Learning
of Heuristics,” Arrificial Intelligence, vol. 1, pp. 121-170, 1970.

241, _U J. Werbos, “Learning How the World Works: Specifications for Predictive Networks
in Robois and Brains,” Proc. IEEE Int'l Conf. on Systems, Man, and Cybernetics.
vol. 1, pp. 302-310, October 1987.

242. P. J. Werbos, “Backpropagation; Past and Future,” Proc. Inr’l Conf. on Netiral
Networks ICNN-88, San Diego, CA, July 1988,

B. L. Whitehall, “Incremental Learning with INDUCE/NE,” Working Paper 84, Al
Group, Coordinated Science Lab, University of Hlinois, 1986,

236

243

468

244,

245.

246.

247,

2438.

249,
250.

251,

253,
254,

253,

ARCHITECTURES FOR STRATEGY LEARNING

B. L. Whitehall, “Substructure Discovery in Executed Action Sequences,” Technical
Report UILU-ENG-87-2256, University of [llinois, Coilege of Engineering, September
1987.

C. C. White Ill and . Dozono, “A Generalized Model of Sequential Decision-Making
under Risk,” European Journal of Operational Research, vol. 18, pp. 19-26, 1984,
D. C. Wilkins, “Knowledge Base Refinement by Monitoring Abstruct Control Knowl-
edge,” Knowledge Acquisition for Knowledge Based Systems, ed. Boose et al., Aca-
demic Press, New York, 1987,

D. C. Wilkins, “Knowledge Base Refinement Using Apprenticeship Learning Tech-
niques,” Proc. Nat’l Conf. on Aniificial Intelligence AAAI-88, 1988.

R. J. Williams, “On the Use of Backpropagation in Associative Reinforcement Learn-
ing,” Proc. 2nd Int’t Conf. on Neural Networks ICNN-88, vol. [, pp. 263-270, San
Diego, CA, July 1988. \

S. W. Wilson, “Hierarchical Credit Allocation in Classifier Systems,” Genetic Algo-
rithms and Simulated Annealing, ed. L. Davis, Pitman, London, 1987.

P. H. Winston, “Learning Structural Descriptions from Examples,” The Psychology
of Computer Vision, ed. P. H. Winston, McGraw-Hill, New York, 1975.

P. H. Winston. T. O. Binford, B, Katz, and M. R. Lowry, “Leaming Physical
Descriptions from Functional Definitions, Examples, and Precedents,” Proc. AAAI-
83, pp. 433439, 1983.

P. H. Winston, Artificial Intelligence, Addison-Wesley, Reading, MA, 1984.

C. F. Yu, Efficient Combinatorial Search Algorithims, Ph.D. thesis, School of Elec-
trical Engineering, Purdue University, West Lafayette, IN, December 1986.

C. F. Yu and B. W. Wah, “Leamning Dominance Relations in Combinatorial Search
Problems,” Trans. on Software Engineering, vol. SE-14, no. 8, August 1988,

B. Zhang and L. Zhang, “The Statistical Inference Method in Heuristic Search Tech-
niques,” Proc. Int’l Joint Conf. on Artificial Imelligence, pp. 757-759, 1983,

