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Summary. In this chapier, we present new results on the automated gemeral-
ization of performance-related heuristics learned for knowledge-lean applications.
By first applying genetics-based learning to learn new heuristics for some small
subsets of test cases in a problem space, we study methods to generalize these
heuristics to unlearned subdomains of test cases. Qur method uses a new statistical
metric called probability of win. By assessing the performance of heuristics in a
tange-independent and distribution-independent manner, we can compare heuris-
tics across problem subdomains in a consistent manner. To illusirate our approach,
we show experimental results on generalizing heuristics learned for sequential cir-
cuit testing, VLSI cell placement and routing, branch-and-bound search, and blind
equalization. We show that generalization can lead to new and robust heuristics
that perform better than the original heuristics across iest cases of different char-
acteristics.

1. Introduction

Heuristics or heuristic methods (HMs), in general terms, are “Strategies using
readily accessible though loosely applicable information to control problem-
solving processes in human being and machines” [12]. They exist as problem
solving procedures in problem solvers to find (usually) suboptimal solutions
for many engineering applications. Since their design depends on user expe-
rience and is rather ad hoc, it is desirable to acquire them automatically by
machine learning,.

We make the following assumptions in this chapter. First, we assume
that the applications are knowledge-lean, implying that domain knowledge for
credit assignment is missing. In this class of applications, we are interested
to learn and generalize performance-related HMs whose goal is to find solu-
tions with the best numerical performance. Examples of targeted HMs and
applications include symbolic formulae for decision making in a branch-and-
bound search and a set of numerical parameters used in a simulated annealing
package for placement and routing of VLSI circuits. (See Section 4.).

Second, we assume that performance of a HM is characterized by one
or more statistical metrics and is obtained by evaluating multiple test cases
{noisy evaluations). We further assume that a HM may have different per-
formance distributions across different subsets of test cases in the problem
space, thereby disallowing the use of performance metrics such as the average.
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For example, given two heuristic methods HM; and H M, and two sub-
sets of test cases TCy and T'Cy, assume that cost is the performance measure
of HMs. Suppose after testing H M; on the two subsets of test cases, we found
its average costs be 10 and 100 units, respectively. Similarly, we got 150 and
5 units for I M3 on the two subsets of test cases. It will be difficult to say
whether H M) is better than HM in terms of cost, and which HM should
be used as a general HM for all test cases in the problem domain.

Third, we assume that heuristics used in generalization are learned by a
genetics-based learning method [18, 8]. This is a form of learning by induction
that involves applying genetic algorithms [3] to machine learning problems.
There are two steps involved in this learning method:

- (feneration and selection of HMs that can better solve test cases used in
learning, as compared to the best existing (baseline) HMs;

— (Feneralization of the selected HMs to test cases not seen in learning with
the same high level of performance as compared to that of the baseline
HMs.

As illustrated in Figure 1.1, these two steps are generally separated in
genetics-based learning.

.,_u" Generalization:
Generation, HM
| Testing and Testing and e
. Evaleaton
Selection
HM
M ﬁ Perfommance Fecdback ﬁ
Knowledge-Lean Application Subdomain
Heuristi
Mcthod
Problem Solver

Fig. 1.1. Learning and generalization in knowledge-lean applications is based on
evaluating a heuristic method on a test case and on observing its performance
feedback :

In this chapter, we study statistieal generalization of HMs across test
cases of an application with different performance disiributions. The problem
is illustrated in Figure 1.2 in which we show three heuristic methods and
three subsets {or subdomains) of test cases in an application domain. Let p; ;
be the performance of HM; on Subdomain j, in which we assume that the
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APPLICATION DOMAIN

P
11 ‘ P)s
Heuristic Heuristic Heuristic
Method 1 Method 2 Method 3

Fig. 1.2. Performance of a heuristic method may vary significantly across different
subsets of test cases in an application domain, making it difficult to combine these
numbers into a single performance number

performance of an HM in a subdomain can be aggregated into = single value.
When an HM behaves differently across different subdomains of test cases, it
will not be possible to aggregate its performance values across subdomains
into a single number. Further, when one HM performs better than another
HM in one subdomain but worse in another, we need to develop a methed to
differentiate HMs with high performance from those with low performance
across all test cases in the application.

Generalization is important because learning time is often limited, and
only a small set of test cases can be evaluated during learning. Generalization
in many existing genetics-based learning systems (8, 3, 2] is a post-learning
verification phase that simply verifies the generalizability of the learned HMs
by evaluating them on a new set of test cases. This approach is suitable when
test cases used in learning are representatives of all the test cases targeted by
the HM. When test cases used in generalization have different characteristics,
the HMs learned cannot be generalized.

To compare HMs bearing different performance distributions across differ-
ent subsets of test cases in an application, we need to develop a performance
metric that is independent of the actual distributions. We propose in this
chapter a new metric called probability of win that measures the probability
that a particular HM is better than another randomly chosen HM from a
sel of learned HMs for a given subset of test cases. Since probabilities are
between 0 and 1, we eliminate the dependence of HMs on actual performance
distributions. Using this metric, we can verify whether a HM is generalizable
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across test cases of different performance distributions. Our approach can be
sumimarized as follows:

— Partition the domain of test cases into subdomains in such a way that per-
formance values in a subdomain are independent and identically distributed
(ia.d.).

— Develop conditions under which a HM can be considered to perform well
across multiple subdomains. In contrast to studies in artificial intelli-
gence [6], we do not modify a HM in order to generalize it across sub-
domains. Rather, we test certain conditions to see if a HM is generalizable.

This chapter is divided into five sections. Section 2. defines problem space
and its partitioning into subdomains. We propose in Section 3. a new metric
called probability of win and a new generalization strategy. Section 4. re-
ports our experimental results on four real-world applications — circuit test-
ing, VLSI cell placement and routing, branch-and-bound search and blind
equalization. Conclusions are drawn in Section 5.

2. Problem Domains and Subdomains

Given an application problem consisting of a collection of test cases, the first
task in learning and generalization is to classify the test cases into demains
such that a unique HM can be designed for each [13]. This classification step
is domain specific and is generally carried out by experts in the area.

For instance, consider the problem of generating test patterns to test VLSI
circuits. Previous experience shows that sequential circuits require tests that
are different from those of combinatorial circuits. Consequently, we can con-
sider combinatorial circuits and sequential circuits as two different problem
domains.

In cornparing the performance of HMs in a preblem dornain, it is necessary
to aggregate their performance values into a small number of performance
metrics (such as average or maximum). Computing these aggregate metrics
is not meaningful when performance values are of different ranges and distri-
butions across different subsets of test cases in the domain. In this case, we
need to decompose the domain into smaller partitions so that quantitative
comparisen of performance of HMs in a partition is possible, We define a
problem subdomain as a partitioning of the domain of test cases such that
performance values of a HM in a subdomain are 1.i.d. Under this condifion,
it is meaningful to compute the average performance of test cases in a sub-
domain. It is important to point out that performance values may need to
be normalized with respect to those of the baseline HM before aggregated.

We need to know the attributes of an application in order to classify its
test cases, and a set of decision rules to identify the subdomain o which
a test case belongs. For example, in learning new decomposition HMs in
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a branch-and-bound search for solving a traveling-salesman problem (Sec-
tion 4.), we can treat graph connectivity as an attribute to classify graphs
into subdomains.

In some applications, it may be difficult to determine the subdomain
to which a test case belongs. This is true because the available attributes
may not be well defined or may be too large to be useful. For instance,
int test-pattern generation for sequential circuits, there are many attributes
that can be used to characterize circuits (such as length of the longest path
and maximum number of fan-in’s and fan-out’s). However, none of these
attributes is a clear winner,

When we do not know the attributes to classify test cases into subdo-
mains, we can treat each test case as a subdomain by itself. This works well
when the HM to be learned has a random component: by using different ran-
dom seeds in the HM, we can obtain statistically valid performance values
of the HM on a test case. We have used this approach in the two circuit-
related applications discussed in Section 4. and have chosen each circuit as
an independent subdomain for learning.

After applying learning to find good HMs for each subdomain, we need to
compare their performance across subdomains. This may be difficult because
test cases in different subdomains of a domain may have different performance
distributions, even though they can be evaluated by a common HM. As a
result, the performance of test cases cannot be compared statistically. For
instance, we cannot use the average metric when performance values are
dependent or have multiple distributions.

As an example, Table 2.1 shows the average and maximum fault coverages
of two HMs used in a test-pattern generator to test sequential circuits. The
data indicate that we cannot average their fault coverages across the Lwo
circuits as the performance distribution of H M oy across the two circuits is
not the same as that of H Msgas.

Table 2.1. Maximum and average fault coverages of two HMs used in a test-pattern
generator with different random seeds

[ Circuit [ HM [ Maximum FC | Average FC |

Sd44 101 60.3 28.5
535 86.3 84.8
51196 | 101 94.9 94.2
335 93.6 931

It should now be clear that there can be many subdomains in an ap-
plication, and learning can only be performed on a smali number of them.
Consequently, it is important to generalize HMs learned for a small number
of subdomains to unlearned subdomains. In some situations, multipie HMs
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may have to be identified and applied together at a higher cost to find a high
quality solution.

3. Generalization of Heuristic Methods Learned

Since learning can only cover a small subset of a problem space, it is nec-
essary to generalize HMs developed to test cases not studied in learning,.
When test cases used in learning have the same performance distribution
as those used in generalization, generalization simply involves verifying the
performance results. However, as illustrated in the last section, test cases
used in generalization may have different performance distribution for two
reasons: (a) A learned HM has different performance distributions across
subdomains. (b) The baseline HM used in normalization has different per-
formance distributions across subdomains, In either case, performance values
after normalization will have different distributions across subdomains. This
leads us to develop a generalization strategy that can compare HMs across
different subdomains with different performance distributions.

The goal of generalization is somewhat vague: we like to find one or more
HMs that perform well most of the time across multiple subdomains as com-
pared to the baseline HM (if it exists}. To achieve this goal, two issues are
apparent here,

How to compare the performance of HMs within a subdomain in a range-
independent and distribution-independent fashion? Here, we need to eval-
uate and generalize the performance of a HM in a single subdomain ina
range-independent and distributton-independent. way.

How to define the notion that one HM performs well across multiple sub-
domains?

Our method to address these two issues involves a new metric called
probability of win. Informally, probabality of winis a range-independent metric
that evaluates the probability that the true mean performance of a HM in one
subdomain is better than the true mean performance of another randomly
selected HM in the same subdomain. It is important to point out that the
HMs used in computing the probability of win are found by learning; hence,
they already perform well within 2 subdomain. Further, probabilities of win
are in the range zero to one, independent of the number of HMs evaluated
and the distribution of performance values.

3.1 Performance evaluation within a subdomain

There are many ways to address the first issue raised above, and solutions
to the second issue depend on the solution to the fiest. For instance, scaling
and normalization of performance values is a possible way to compare per-
formance in a distribution-independent manner; however, this may lead to
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new inconsistencies [18]. Another way is to rank HMs by their performance
values and use the average ranks of HMs for comparison. This does not work
well because it does not account for actual differences in performance values,
and two HMs with very close or very different performance may differ only
by one in their ranks. Further, the maximum rank of HMs depends on the
number of HMs evaluated, thereby biasing the average ranks of individual
HMs. In this section, we propose a metric called probability of win to select
good HMs within a subdomain.

Puin(hi, dm), the probabality-of-win of HM h; in subdomain dy,, is defined
as the probability that the true mean of £; (on one performance measure’) is
better than the true mean of HM h; randomly selected from the pool. When
h; is applied on test cases in d,,, we have

Mu.ﬂﬂ_.m. T&: > tﬂ_bw,_ww..,zw_,bw—.wﬂ_:ﬂ_

Puin A?._A«:v = _.m_ 1 s Aw:

where |s{ is the number of HMs under consideration, and nf", &%, 4", and
u are, respectively, the number of tests, sample standard deviation, sample
mean, and true mean of h; in d,.

Since we are using the average performance metric, it is a good approxi-
mation to use the normal distribution as a distribution of the sample average.
The probability that h; is better than A; in d,, can now be computed as fol-
lows.

i = i
NG

where @(z) is the cumulative distribution function for the N (2, 1) distribu-
tion.

To Hlustrate the concept, we show in Table 3.1 the probabilities of win of
four HMs tested to various degrees. Note that P, is not only related te the
sample mean but also depends on the sample variance and number of tests
performed, Further, the probability that A; is better than h; and the proba-
bility that h; is better than h; are both counted in the evaluation. Hence, the
average of Pyin over all HMs in a subdomain (= 3, Pyin(hi,dn)/[s]) will be
0.5.

Puin defined in (3.1) is range-independent and distribution-independent
because all performance values are transformed into probabilities between 0
and 1 independent of the number of HMs evaluated and the distribution of
performance values. It assumes that all HMs are 1.1.d. and takes into account
uncertainty in their sample averages (by using their variances); hence, it 1s
better than simple scaling that only compresses performance averages into a

Plul > pl gl 67 nl il 67 a7 m &

! Due to space limitation, we do not consider issues dealing with multiple perfor-

mance measures in this chapter.
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Table 3.1, Probabilities of win of four HMs in d,»
(A [ & [ o0 [ n [ Pointhidm) |

1 [432 ] 1335710 0.4787
2 1462 ] 64 | 12 0.7976
3 1449 25 | 10 0.6006
4 1336|259 | 8 0.1231

range between 0 and 1. It is also important to point out that the HMs used
in computing Py, are found by learning; hence, they already perform well
within a subdomain.

3.2 Performance evaluation across subdomains

One of the major difficulties in handling multiple subdomains is that it may
be difficult to aggregate performance values statistically from different sub-
domains, and to define the notion that one HM performs better than another
across multiple subdomains. For instance, it is not meaningful to find an av-
erage of random numbers from two different distributions. We address this
problem using P, ;, defined in the last subsection,

First, we assume that when HM h is applied over multiple subdomains
in partition [T, of subdomains, all subdomain are egually likely. Here, we
compute Py, of A over subdomains in II; as the average Py, of h over all
subdomains in {7,.

M w@m.‘— T_f&v
Puin (b, ITp) = mmn:__ﬁ | '
P

(3.2)

where [T, is the p’th partition of subdomains in the problem domain. The
HM picked is the one that maximizes (3.2). When subdomains are not equally
likely but with known relative weights, we can compute Py;, as a weighted
average instead of (3.2}, HMs picked using 3.2 generally wins with a high
probability across most of the subdomains in 11, but occasionally may not
perform well in a few subdomains.

Second, we consider the problem of finding a good HM across multiple
subdomains in /T, as a multi-objective optimization problem. In this case,
evaluating HMs based on a combined objective function (such as the average
Pyin in (3.2) may lead to inconsistent conclusions. To alleviate such inconsis-
tencies, we should treat each subdomain independently and find a common
HM across all subdomains in [T, satisfying some common constraints, For ex-
ample, let 6 be the allowable deviation of P,;, of any chosen HM from ¢™,
the maximum Py, in subdomain m. Generalization, therefore, amounts to
finding h that satisfies the following constraints for every subdomain m € .

Pyin (h,m) > (g0, — 6) vme ll, (3.3)
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Fig. 8.1. Puin of six HMs across five sebdomains in the test-pattern generation
problem

Here, § may need to refined if there are too many or too few HMs satisfying
the constraints.

To illustrate the generalization procedure, consider the test-pattern gen-
eration problem discussed in Section 2. Assume that learning had been per-
formed on five circuits (subdomains), and that the six best HMs from each
subdomain were reported. After full evaluation of the 30 HMs (initialized by
ten random seeds) across all five subdomains, we computed Pyin of each HM
in every subdormain. Figure 3.1 shows the probabilities of win of six of these
HMs. If we generalize HMs based on (3.2}, then H M5 will be picked since it
has the highest average P,;,,. Likewise, if we generalize using (3.3), we will
also select HM;5. Note that in this exampie, no one HM is the best across
all subdomains.

4. Experimental Results

To illustrate the generalization procedure described in Section 3., we present
in this section results on generalization for two applications in VI.S! design
and branch-and-bound search. These results were obtained using TEACHER
(18], a genetics-based learning system that implements our proposed general-
ization strategy. The parameters used during learning are shown in Table 4.1.
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Table 4.1. Genetic-algorithm parameters used in our learning system. (# HMs
Verified at Termination is the number of HMs selected for verification at the end
of the last generation)

[ Application I CRIS | Timber-Wolf | Branch-and-Bound |
Number of Generations 10 10 10
Duration of a Generation 100 100 160
# Active HMs in each Gen. 30 30 40
New IIMs Generated in each Gen. 20 20 30

Crossaver Rate 0.45 0.45 0.5
Mutation Rate 0.35 0.35 0.17

Random Generation Rate 0.20 0.20 0,33

# HMs Verified at Termination 20 20 20

4.1 HM for sequential circuit testing

The first application is based on CRIS [15], a genetic-algorithm software pack-
age for generating patterns to test sequential VLSI circuits. CRIS mutates
an input test sequence continuously and analyzes the mutated vectors in se-
lecting a test set. Since many copies of a circuit may be manufactured, it is
desirable to obtain as high a fault coverage as possible, and computational
cost is of secondary importance.

In our experiments, we used sequential circuits from the ISCAS89 bench-
marks {1] plus several other larger circuits. We treat each circuit as an indi-
vidual subdomain. Since we want one common HM for all circuits, we assume
that all circuits are from one domain.

CRIS in our experiments is treated as a black-box problem solver, as we
have minimal knowledge in its design. A HM targeted for improvernent is a
set of eight parameters used in CRIS (Table 4.2). Note that parameter Py is
a random seed, implying that CRIS can be run multiple times using different
random seeds in order to obtain better fault coverages. (In our experiments,
we used a fixed sequence of ten random seeds.) Our goal is to develop one
common HM that can be applied across all the benchmark circuits and that
has similar or better fault coverages as compared to those of the original
CRIS. Note that in the original CRIS, the HM used for each circuit is unique
and was tuned manually. The advantage of having one HM is that it can be
applied to new circuits without further manual tuning.

In our experiments on CRIS, we chose five circuits as our learning subdo-
mains. In each of these subdomains, we used TEACHER [18] to test CRIS
1000 times (divided into 1{ generations) with different HMs. A HM in learn-
ing is represented as a tuple of the first seven parameters in Table 4.2. The
majority of time was spent in testing the HMs generated, since the time to
generate a HM is very small (involving the crossover or mutation of sets of
seven parameters). At the end of learning, we picked the top twenty HMs
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Table 4.2. Parameters of CRIS treated as a HM in learning and in generalization.
{The iype, range, and step of each parameter were given to us by the designer of
CRIS, The default parameters were not given to us as they are circuit-dependent)

{ Parameter | Range | Step | Definition [ New Value |

2 1-10 1 related to the number of stages 1
in a flip flop

F 1-40 1 | sensitivity of state change of 12
a flip flop

P 1-40 1 survival rate of a test sequence 38
it next generation

P, 0.1-10.0 | 0.1 | number of test vec, concat. 7.06
to form a new vec.

B 50-800 10 | number of useless trials 623
before quitting

Py 1-20 1 | number of generations i

P, 0.1-1.0 0.1 | how genes are spliced in GA 0.1

Py Integer 1 seed for random number -
generator

in each subdomain and evaluated them fully by initializing CRIS using ten
different random seeds (Ps in Table 4.2). We then selected the top five HMs
from each subdomain, resulting in a total of 25 HMs supplied to the gener-
alization phase. We evaluated the 25 HMs fully (each with 10 random seeds)
on the five subdomains used in learning and five new subdomains, We then
selected one generalized HM to be used across all the ten circuits (based
on (3.2)). The HM found is shown in the last column in Table 4.2,

Table 4.3 shows the costs and qualities in applying our generalized HM
learned for CRIS (see Table4.2) and compares them to the results of CRIS {15]
and HITEC [10], the latter is a deterministic search algorithm that is often
used as a benchmark algorithm. We do not have the cost figures of CRIS
because they were not published. The designer of CRIS hand tuned the pa-
rameters for each circuit; hence, the time (or cost) for obtaining these pa-
rameters are very large. Note that the maximum fault coverages reported
were based on ten runs of the underlying problem solver, implying that the
computational cost is ten times of the average cost. Recall that we like to
obtain the maximum coverage of a circuit, and that computational cost is a
secondary issue in circuit testing. Table 4.4 summarizes the results shown in
Table 4.3.

Our results show that our generalization procedure can discover new HMs
that are better than the original HMs in 16 out of 22 circuits in terms of the
maximum fault coverage, and in 11 out of 22 circuits in terms of the average
fault coverage. Our results are significant in the following aspects:

- new faults detected by our generalized HMs were not discovered by previcus
methods;
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Table 4.3, Performance of HMs in terms of computational cost and fault coverage
for CRIS. {Learned subdomains for CRIS are marked by “** and generalized sub-
domains by “+”). Performance of HITEC is {from the literature [16, 11]. Costs of
our experiments are runring simes in seconds on a Sun SparcStation 10/51; cosis
of HITEC are running times in seconds on a Sun SparcStation SLC [14] (around
4-6 {imes slower than a Sun SparcStation 10/51)

Circuii | Total [[Fauli Coverage]| Cost CRIS Generalized HM
ID |Faults [HITECTCRIS || HITEC |[Avg. FCTMax. FCJ Avg. Cost

*3298 308 86.0 82.1 [t 15984.0 84.7 86.4 10.9
5344 342 95.9 93.7 4758.0 96.1 96.2 21.8
5345 350 95.7 - 3132.0 95.6 95.7 21.9
+s382 | 399 90.9 68.6 [ 43200.0 72.4 87.0 7.2
5386 384 81.7 76.0 61.8 71.8 78.9 3.5
*s400 | 426 89.9 84.7 j| 43560.0 71.2 85.7 8.4
sd444 474 87.3 83.7 || 57960.0 79.8 85.4 9.3
¥s526 | 555 65.7 77,1 | 168480.0 70.0 7.1 10.0
5641 467 86.5 85.2 1080.0 85.0 86.1 19.5
+5713 | 581 81.9 81.7 91.2 81.3 81.9 23.0
5820 850 95.6 53.1 5796.0 44.7 46.7 51.3
*3832 870 93.9 42.5 6336.0 44.1 45.6 44.6
51196 | 1242 99.7 95.0 91.8 92.0 94.1 20.0
*31238 1 1355 94.6 90.7 132.0 88.2 89.2 23.0
51488 | 1486 97.0 91.2 3| 12960.0 94.1 95.2 85.6
+51494 | 1506 96.4 90.1 6876.0 93.2 94.1 85.5
$1423 | 1515 40.0 77.0 - 82.0 88.3 2104
+a5378 | 4603 70.3 65.8 - 65.3 69.9 501.8
535932 | 39094 {| 89.3 88.2 || 13680.0 77.9 78.4 4265.7
am?2510 | 2573 85.06 83.0 - 83.7 85.2 307.6
+div16 | 2147 2.0 75.0 - 79.1 81.0 148.9
tc100 | 1979 80.6 70.8 - 72.6 75.9 163.8

Table 4.4. szEwQ.Om wins and losses in applying our generalized HM for CRIS
on 22 circuits when compared to the performance of HITEC, CRIS, and the best
of CRIS and HITEC, (Not all circuits were tested by HITEC and CRIS)

Our HM wins/ties with CRIS Generalized HM
respect to the following Max Fault Coverage [| Avg. Fault Coverage
Wins | Ties | Losses || Wins | Ties [ Losses

HITEC 6 2 14 4 0 18
CRIS 16 1 5 11 0 10
Best of HITEC and CRIS 5 3 14 3 0 9

—~ only one HM (rather than many circuit-dependent HMs in the original
CRIS) was found for all circuits.

Table 4.4 also indicates that HITEC is still better than our new gener-
alized HM for CRIS in most of the circuits (in 14 out of 22 in term of the
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maximal fault coverage, and in I8 out of 22 in term of the average fault
coverage). This happens because our generalized HM is bourded by the lim-
itations in CRIS and our HM generator for CRIS. Such limitations cannot
be overcome without generating more powerful HMs in our IM generator

or using better test-pattern generators like HITEC as our baseline problem
solver.

4,2 HM for VLSI placement and routing

In our second application, we use TimberWolf[17] as our problem solver. This
is a software package based on simulated annealing (SA) (7] to place and route
various circuit components on a piece of silicon. Its goal is to minimize the
chip area needed while satisfying constraints such as the number of layers of
poly-silicon for routing and the maximum signal delay through any path. Its
operations can be divided into three steps: placement, global routing, and
detailed routing.

The placement and routing problem is NP-hard; hence, heuristics are
generally used. SA used in TimberWolf is an efficient method to randomly
search the space of possible placements.

Although in theory SA converges asymptotically to the global optimum
with probability one, the resuits generated in finite time are usually sub-
optimal. Consequently, there is a trade-off between the quality of a result
and the cost (or computational time) of obtaining it. In TimberWolf version
6.0, the version we have studied, there are two parameters to control the
running time (which indirectly control the quality of the result): fast-n and
slow-n. The larger the fast-n is, the shorter time SA will run. In contrast, the
larger the slow-n is, the longer time SA will run. Of course, only one of these
parameters can be used at any time,

TimberWolf has six major components: cost function, generate function,
initial temperature, temperature decrement, equilibrium condition, and stop-
ping criferion. Many parameters in these components have been tuned man-
ually. However, their settings are generally heuristic because we lack domain
knowledge to set them optimally. In Table 4.5, we list the parameters we have
focused in this study. Our goal is to illustrate the power of our learning and
generalization procedures and to show improved quality and reduced cost for
the placement and routing of large circuits, despite the fact that only small
circuits were used in learning.

In our experiments, we used seven benchmark circuits [9] (s£96, 5420,
fract, primaryl, struct, primary?, mdustriail) that were mostly from
ftp.menc.org in /pub/benchmark. We studied only the standard-cell place-
ment problem, noting that other kinds of placement can be studied in a
similar fashion. We used fast-n values of 1, 5, and 10, respectively.

We first applied TEACHER. to learn good HMs for circuits s298 with
fast-n of 1, 5420 with fast-n of 5, and primaryl with fast-n of 10, each of
which was taken as a learning subdomain. We used a fixed sequence of ten
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Table 4.5. Parameters of TimberWolf (Version 6) used in the original HM and
after learning and generalization

Para- Range Step | Meaning On- New
meter ginal

vertical path weight
P; 6.1-2.5 0.1 j for estimating the 1.0 0.958
cost function .
vertical wire weight

Py 0.1-25 0.1 | for estimating the 1.0 0.232
cost fanction

Py 3-10 1 orientation ratio 6 10

P, 0.33 - 2.0 0.1 | range limiter window 1.0 1.30
change ratio

Py 10.0 - 35.0 1.0 | high temperature 23.0 | 10.04
finishing point

Pe 50.0 - 99.0 1.0 | intermediate temperature 81.0 63.70

Py 100.0 - 150.0 | 1.0 } low temperature 125.0 | 125.55

finishing point
I 130.0 - 180.8 [ 1.0 [ final iteration temperature [} 155.0 | 147.99
critical ratio that

Py 0.29 - 0.59 0.01 | determines acceptance 0.44 0.333
probability

Pig 0.01 - 0.12 0.61 | temperature for 0.6 G.112
controtler turn off

Py infeger i seed for the random - -
number generator

random seeds (Pi; in Table 4.5} in each subdomain to find the statistical
performance of a HM. Each learning experiment involved 1000 applications
of TimberWolf divided into ten generations. Based on the best 30 HMs {10
from each subdomain), we applied our generalization procedure to obtain one
generalized HM. This generalized HM as well as the default HM are shown
in Table 4.5.

Figure 4.1 plots the quality (higher quality in the y-axis means reduced
chip area averaged over 10 runs using the defined random seeds) and cost
(average execution time of TimberWolf} between the generalized HM and
the default HM on all seven circuits with fast-n of 1, 5, and 10, respectively.
Note that all performance values in Figure 4.1 are normalized with respect to
those of fast-n of 10, and that the positive (resp., negative) portion of the -
axes shows the fractional improvement (resp., degradation) in computational
cost with respect to the baseline HM using fast-n of 10 for the same circuit.
Each arrow in this figure points from the average performance of the default
HM to the average performance of the generalized HM.

The equation for computing the normalized symmetric cost is as follows.
Let Chew, Crase and Cfn"™ be, respectively, the costs of the new HM, the
cost of the baseline HM, and the normalized symmetric cost.

Statistical Generalization of Performance-Related Heuristics 307

T T T T T T T
i eneralized

o

[+
T
]

default

(=]
o

0.4

Normalized Symmetric Quality

1 1 1 1 1 1

~-0.5 0 0.5 1 1.5 2 2.5 3 3.5
Normalized Symmetric Cost

Fig. 4.1. Comparison of normalized average performance between the defauit and
the generalized HMs. The plots are normalized with respect to the performance of
applying the baseline HM on each circult using fast-n = 10. (See (4.1))

Snee 1 if Chow 2> Chase

Q:S..:.— - Q@a-nﬁ
sy 1- Lb.-hﬁ. ;. Q:mz\. < Qaa..m

new

(4.1)

The reason for using the above equation is to avoid uneven compression of
the ratio Cpew/Chase- This ratio is between 0 and 1 when ., < Cyase, but
is between 1 and oo when Cp,y > Chgge. (4.1) allows increases in cost to be
normalized in the range between 0 and oo, and decreases to be normalized
in the range between {# and —oco. The normalized symrmnetric quality in the
y-axis is computed in a similar way.

Among the 22 test cases, the generalized HM has worse quality than that
of the default in only two instances, and has worse cost in 4 out of 22 cases.
We see in Figure 4.1 that most of the arrows point in a left-upward direction,
implying improved quality and reduced cost. Note that these experiments are
meant to lllustrate the power of our generalization procedure. We expect to
see more improvement as we learn other functions and parameters in Tim-
berWolf. Further, improvements in TimberWolf are important as the system
is actually used in industry.
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4.3 Branch-and-bound search

A branch-and-bound search algorithm is a systematic method for traversing a
search tree or search graph in order to find a solution that optimizes a given
objective while satisfying the given constraints. It decomposes a problem
into smaller subproblems and repeatediy decomposes them until a solution
1s found or infeasibility is proved. Each subproblem is represented by a node
in the search tree/graph.

The algorithm has four sets of HMs: {(a) Selection HM for selecting a
search node for expansion based on a sequence of selection keys for ordering
search nodes; (b) Decomposition HM (or branching mechanism) for expand-
ing a search node into descendants using operators to expand (or transform)
a search node into child nodes; (¢) Pruning HM for pruning inferior nodes
in order to trim potentially poor subtrees; and (d) Termination HM for de-
termining when to stop. In this subsection, we apply learning to find new
decomposiiton HMs for expanding a search node into descendants.

We illustrate our method on three applications: traveling salesman-prob-
lem (TSP) on incompletely connected graphs mapped on a two-dimensional
plane, vertex-cover problem (VC), and knapsack problem (KS). The second
problem can be solved by a polynomial-time approximation algorithm with
guaranteed performance deviations from optimal solutions, and the last can
be solved by a pseudo polynomial-time approximation algerithm. Hence, we
expect that improvements due to learning are likely for the first two problems
and not likely for the last. Table 4.6 shows the parameters used in generating
a test case in each application. We assume that each problem constitutes one
domain.

The problem solver here is a branch-and-bound algorithm, and a test
case is considered solved when its optimal solution is found. Note that the

Table 4.6. Generation of test cases for learning and generalization of decomposition
HMs in a branch-and-bound search {each has 12 subdomains)

[ Application || Subdomain Atiributes _

VO » Connectivity of vertices is (0.05 = (,6) with siep size 0.05

¢ Number of vertices is between 16 and 435

o Distributions of 8-18 cities (U{0, 100) on both X and Y axes,

TSP N(50,12.5) on both axes, or {(0,100) and N(50,12.5) on
different axes)

» Graph connectivity of cities is (0.1, 0.2, 0.3, or 1.0)

s Range of both profits and weights is
{(100-1000), (106-200), {100-105)}

KS » o° of profit/weight ratio is (1.05, 1.5, 10, 100)

¢ 13-60 objects in the knapsack
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Table 4.7. Original and generalized decomposition HMs used in a branch-and-
bound search {I: number of uncovered edges or live degree of a vertex; n: average
live degree of all neighbors; Al: difference between I of parent node aed ! of current
node; ¢: length of current partial tour; m: minimum length to complete current
tour; p: profit of abject; w: weight of object)

[ Application ]| Origiral HM | Generalized HM |

VC i 10001+ n — Al
TSP ¢ mc
K5 plw pfw

decomposition HM studied is only a component of the branch-and-bound
algorithm.

We have used well-known decomposition HMs developed for these applica-
tions as our baseline BMs (see Table 4.7). The normalized cost cf a candidate
decomposition HM is defined in terms of its everage symmetric speedup (sec
Eq. (4.1) in Section 4.2), which is related to the number of nodes expanded
by a branch-and-bound search using the baseline HM and that using the new
HM. Note that we do not need to measure quality as both the new and ex-
isting HMs when applied in a branch-and-bound search look for the optimal
solutiou,

In our experiments, we selected six subdomains in each application for
learning. We performed learning in each subdomain using 1,500 tests. selected

Table 4.8. Results of generalization for VC, TSP, and KS. (In the results on
generalization, numbers with “*” are the ones learned; only onc common HM is
generalized to all 12 subdomains)

Subdomain Performance {Sym-5U}
Subdomain Learning Generalization
VC T TSP 1 5 VO [ TSP T K5
i 0.218 0.072* | 0.000% 0.070 [ 0.417 ] 0.000
2 0.283% 0.004 0,000% 0.638 .036 | 0.000
3 0.031 n.082% 0.000 0.241 0,144 | n.000
4 6.068% 0.225 0.000 6.078 0.155 | 0.0C0
5 0.054 0.005% 0.000 0.073 0.131 | 0.000
6 0.060% 0.961% | c.000% G.020 0364 | 0.000
7 0.017 0.139 0.000% --0,013 7 1161 | 0.000
8 0.049% 0.155 0.000 —0.004 | 0.101 | 0.000
9 0.016 —0.010 | 0.GODF —0.018 { 0.108 | 0.000
10 —0.000* 0.054 0.000 —0.000¢ | 0.008 [ 0.000
11 -3.011 0.090% 0.000 —=0.01% | 0.022 | 0.000
12 0.028* 0.083% 1 0.000% ~0.019 | 0,131 | 0.000

[Average || 0.068 [ 0.080 | 0.000 ][] 0.088 {0.231 ] 0.00 |
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the top five HMs in each subdomain, fully verified them on all the learned
subdomains, and selected one final HM to be used across all the subdomains.
(See (3.2).) Table 4.8 summarizes the generalization and validation results.

We show in our results the average symmetric speedup of the top HM
learned in each subdomain and the normalized cost of learning, where the
latter was computed as the ratio of the total CPU time for learning and
the harmonic mean of the CPU times required by the baseline HM on test
cases used in learning. The results show that a new HM learned specifically
for a sybdomain has around 1-35% improvement in its average symmetric
speedups and 3,000-16,000 times in learning costs.

Tabie 4.8 also shows the average symmetric speedups of the generalized
HMs, We picked six subdomains randomly for learning. After learning and
fully verifying the five top HMs in each subdomain, we applied (3.2) to iden-
tify one top HM to be used across all the twelve subdomains. Qur results show
that we have between 0-8% improvement in average symmetric speedups us-
ing the generalized HMs. Note that these results are worse than those ob-
tained by learning, Moreover, the baseline HM is the best HM for solving the
knapsack problem.

The second part of Table 4.8 shows the average symmetric speedups when
we validate the generalized HMs on larger test cases. These test cases gener-
ally require 10-50 times more nodes expanded than those used earlier. Sur-
prisingly, our results show better improvement (9-23%}). It is interesting to
point out that six of the twelve subdomains with high degree of connectiv-
ity in the vertex-cover problem have slowdowns. This is a clear indication
that these subdomains should be grouped in a different domain and learned
separately,

Table 4.7 shows the new decomposition HMs learned for the three appli-
cations that lists the variables used in the HMs. Note that we have included
constants in our HMs in learning; an example of which is shown in the HM
learned for the vertex-cover problem. This formula can be interpreted as us-
ing ! as the primary key for deciding which node to include in the covered
set. }f the I’s of two alternatives are different, then the remaining terms in
the formula (n — Al) are insignificant. On the other hand, when the I’s are
the same, then we use (n — Al) as a tie breaker.

In short, our results show that reasonable improvements can be obtained
by generalization of learned HMs. We anticipate further improvements by

— learning and generalizing new pruning HMs in a depth-first search,

— partitioning the problem space into a number of domains and learning a
new HM for each, and

~ identifying attributes that help explain why one HM performs well in one
subdomain but not in others.
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Fig. 4.2. Blind equalization process for recovering input data stream for n-th order
channel and m-th order filter

Table 4.9, Summary of average symmetric improvements in terms of aumber of
accumulated errors for the learned cost function over ten subdomains. (b in Fig-
ure 4.2 is the instantaneous value of b)

Average Symmetric improvement Original New HM
Average | 5td.Dev. | Maximum | Minimum HM
[ 0353 T 0395 | 0694 | ~0465 1 B ~b [ 40 -2 Sign(b) - b ]

4.4 Blind equalization

Qur last application is on applying genetic algorithms to learn a cost function
in blind equalization. Qur goal is to minimize the number of accumulated
errors for a sequence of input data corrupted in transmission (Figure 4.2).
The process is equivalent to adjusting the weights of an FIR filter using
gradient descent in order to minimize the value of a cost function, which is
defined in term of the weights of the filter and its current output.

In this application, we define a test case as multiple random sequences of
data of fixed length passing through a fixed channel and a blind equalizer with
given random initial weights. We further define a subdomain to be all test
cages with the same channel specification. In our experiments, we attempt
to cover all possible third-order channels: from relatively easy ones (|o;| >
2.ixi |a;] where a; is the i-th weight of the channel) to the hardest one (a;
= a; for all 7 and j).

Table 4,9 shows the average symmetric improvements in terms of number
of accumulated errors for H Mpase (CMA 2-2) [4] and the new HM found
after learning and generalization.
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5. Conclusions

In this chapter, we have presented a method for generalizing performance-
related heuristics learned by genetics-based learning for knowledge-lean appli-
cations. We have focused on a class of heuristic methods (HMs) whose perfor-
mance is evaluated statistically by applying them on multiple test cases, Due
to a lack of domain-knowledge for improving such heuristics, we have used a
genetics-based learning paradigm (a generate-and-test method) to learn new
HMs.

One of the major problems in performance evatuation of heuristics is that
a HM may have different performance distributions across different sets of test
cases in an application. This renders it impossible to use statistical metries,
such as average, to compare their performance.

We have proposed 1n this chapter a new metric called probability of win to
characterize the performance of heuristics. This metric evaluates the probabil-
1ty that the mean performance of a HM is better than the mean performance
of another randomly chosen HM in a set of learned HMs on a common set
of test cases. The only requirement on the choice of test cases in evaluating
probabilities of win is that each HM, when evaluated on the test cases, pro-
duces a set of independent and identically distributed performance results.
We define such a set of test cases as a subdomain. Since probabilities of win
are between 0 and 1, we can compare them across subdomains in generalizing
HMs.

We have developed TEACHER [5], an integrated system that incorporates
the learning and generalization method presented in this chapter. The system
1s refatively easy to use: the design of an interface between an application
program and TEACHER usually takes less than two weeks to complete.

We have applied TEACHER [18], a genetics-based learning system that
incorporates our generalization method, cn four engineering applications and
found very good improvements aver existing HMs. These applications are
hard to improve because they have been studied and tuned extensively by
many others before. In each case, we have found very good improvements over
existing HMs for these applications. These demonstrate that learning and
generalization is important in refining heuristics used in many application
problem solvers,
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