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ABSTRACT

In this paper, we present an efficient heuristic for the
placement of multiple copies of & file on a distributed
database. The single file placement problem is studied
because under most circumstances, the placement of
multiple files can be decomposed into the placement of
single file. The mlgorithm presented is a greedy algo-
rithm and different selection criteria are used at each
step to aid in the selection of the node to assign. It is
found that a combination of these criteria is very
promising and gives solutions very close to the optimal
allocation based vn sample probiems published in the
literatare.
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1. INTRODUCTION

The recent advances in large-scale integrated logic
and communication technology, coupled with the explo-
sion in size and complexity of the application areas, have
led to the design of distributed architectures. Basically,
a Distributed Computer Systerm (DCS) is considered as
an interconnection of digital systems called Processing
Elements (PE’s), each having certain processing capabil-
ities, communicating with each other through an inter-
connection network and working on a set of joby, which
mey be related or unrelated [RAM7Y8, ANDY5]. This
definition encompasses a wide range of configurations
from an uni-processor system with different functional
units to a multipiicity of general purpose computers
(e.g- ARPANET).

Data on a DCS are menaged through a Database
(DB) which is a collection of stored operational data used
by the application systems of some particular enterprise
[DAT?7]. A Distributed Database (DDB) can be regarded
as the data stored at different locations of a DCS. It can
be considered to exist only when data eiements at multi-
ple locations are interreiated and/or-there is a need to
access data stored at some locations from another loca-
tion.

In processing data on a DCS, there are several major
components of costs, namely, storage costs, processing

costs, and communication costs. The relative size of

esch cost governs the control and processing strategies
of a system. In general, communication is still relatively
expensive as compared with processing and storage. The
design of efficient control and coordination schemes that
would minimize the amount of tornmunication traffic is
therefore a very critical problem. The placement of files
on a PDB is a problem that involves the tradeofl between
storage and communication. If a user accesses a file
that is available locally, no communication costs will be
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incurred in the access. However, there are fixed over-
head costs in storing the file and the additional commun-
ications - due to updates from other users in the system.
On the other hand, if the file is not available locally, the
users have to pay & cost in terms of delay in accessing
the file and also additional traffic in the network before
he can make the access. The objective is therefore to
place the file optimally on the systern so that the toltal
cost is minimum. In this paper, an algorithm for the
placement of multiple copies of a single file on a DB
that minimizes communicaticon traffic is presented,

Most of the previous work on file allocation is based
on static distribution, that is, the allocation does not
change with time. Chu has studied the optimal static file
allocation problem which allocates files on a number of
computers so that the allocation yields minimum overall
operating costa [CHUBS]. This problem is directed
toward the optirmal placement of multiple files on the
DCS. Subsequently, a lot of work have been done to par-
tition the problem of allocating multiple files to multiple
sub-problems of allocating multiple copies of individual
files, e.g. [CAS72, LEV74, MOR77, RAM79a, WAH72]. This
partitioning is possible because some special cherac-
teristics and strategies of the systern is assumed, such
as the program-data file relationship, [LEV74, MOR?7]
and the query processing strategies [RAM79a, WAH7D).
This single file ailocation problern has been coined by
Eswaran as the File Allocation Problem (FAP) [ESW74).
The formulation of the FAP generally transforms all the
constraints on the system into a common unit of cost
which may include file access cosis, multiple update
costs, file storage costs and file migration costs. Like-
wise, other constraints such as response time, queueing
delays and storage capacity can be included in the for-
mulation.

The static algorithms are usually very expensive to
run in real time. Grapa and Belford remarked that a
particular sclution to this problem solved a thirty node
problem in one hour on an IBM 380/81 computer
[GRAY?]. The difficulty in optimization is also
exemplified in [SIC77]. Moreover, the problem has been
shown to be NP-complete [ESW74], i.e., a class of prob-
iems for which there is no known optimal algorithm with
a cvomputation time which increases polynomially with
the size of the problem [KARY2]. The computation times
for all known optimal algorithms for this class of prob-
lem increases exponentially with Lthe problem size, i.e., if
n represent the size of the problem, then the computa-
tion time goes up as ™ where k>1. In order to achieve a
polynomiel execution time, heuristics are generally used
which saecrifice optimality for efficiency. Techniques
such as clustering [LOOY5, LO07?8] and add-drop [ MAH76]
have been applied to solve sorme general file aliocation
problem with complicated constraints and assumptions.



In this paper, a heuristic Lo solve the basic FAP of
Eswaran is presented. More complicated constraints are
not considered because these constraints are difficult to
justify in practice and under most of these cir-
cumstances, the minimization of communication costs
due to accesses and updates is the most important con-
sideration. The heuristic designed is based on a pro-
perty of the FAP. It is shown in [WAH?9, RAM79b] that
the FAP is isomorphic to the single comrmodity ware-
house location problem which has been studied exten-
sively in operations research. Based on this property, a
combined set of conditions to drive the heuristic is
developed from results in operations research and com-
puter science. Evaluations are carried out on sample
problemts in file placement and warehouse location.

2. FORMULATION OF THE FILE ALLOCATION PROBELEM

The formulation of this problem follows from Casey
[CAS72] and Levin end Morgan [LEV74, LEV75, MOR77].
The symbols used in this formulation are shown in Table
1. An optimal allocation for a given file is defined as an
index set I which minimizes the cost function.

b}
cify= L UM + @ min Sy ]+ T F
12:1 Zel $Tak 1 kel Jt] J§I *
By defining a conirol variable ¥; such that
o jer
?’Fl 1 jer

Y;=1 means that a copy of the file is assigned to node j.
The cost function can he written as:

n n
c{y) = 2 LE U,Mj# Y. + Qj min Sj.k
f=t k=t kef

The optimization problem for file placements is:
min

+ i F,,Yk
k=1

n n
C(I) = 2 Qj min SJ'.E + 2 Gk Yk (1)
j=1 ket k=l
subject to
Y, = 0or i (integer) k=1,..n

and
(2}

The gquantity €, has been introduced as Z, in [GRA77].
Optimization problem (1) can be solved by using integer
programming techniques [GEQ72]. Casey [CASY2] and
Levin and Morgan [LEV74, MOR77] have used the hyper-
cube technique to enumerate over a reduced set of pos-
sible soluticns in order to find the optimum. However,
the approach of using integer programming or exhaus-
tive enumeration is only suitable when the problern size
is small. Due to this difficulty, Grapa and Belford have
done some pioneering work in developing three simple
conditions to check whether a copy of a file should be
placed at a node [GRA77). These reduce the complexity
of the problem tremendously because many alternatives
can be eliminated. Based on the proof of isomorphism
[WAH79), some of Grapa and Belford's conditions are
shown to be weaker than the conditions developed by
Efroymson and Ray [EFRB6] for the single commodity
warehouse location problem. A refined set of conditions
are compiled from [GRA77] and [EFRB8] and used in the
heuristic. This is shown in Table 2. Due to the fact that

' n
G\k = Fk + j;l UJM’J:
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the nocdes may not be complstely assigned, these condi-
tions are defined with respect to the set of assigned and
unassigned nodes. Let

Ky = {j. Yy=0} set of nodes with a copy not assigned
Ky=1j. Y;=43
Ky = |j. Y;=unassigned]

The conditions in Table 2 show the situation under which
a node should be assigned or not assigned a copy of the
fite when there is a8 partial assignment on the system.
For example, condition {a) shows that a copy of the file
should be assigned to node 1 when the cost of accessing
it from another node is greater than the fixed cost of
keeping a copy at node i. The heuristic presented in the
next section uses these conditions to decide whether any
particular node in a partial assignment should be
assigned a copy of the file.

set of nodes with a copy assigned

set of unassigned nodes

3. A HEURISTIC FOR THE FAP

In this section, we propose a heuristic to solve the
FAP. The heuristic is a greedy algorithm which extends
the assignment in the best possible way without back-
tracking on the previous assignment. The solution
obtained using such an algorithm depends on the cri-
terion used in the extension. Because the previous
assignment is never backtracked, a wrong decision may
have been made earlier and the solution obtained may
not be optimal, Several alternative selection criteria are
therefore investigated.

Essentially, the heuristic starts with all the nodes
unassigned. It first applies the conditions of Table 2 to
see if any node can be assigned without any enumera-
tion., After all these nodes have been assigned, it comes
to a point at which it has to decide what node to extend
the assignment and whether or not to assign a copy of
the file there. It does this by extending the current
assignment by one node. For each of these extended
assignments, there are two possibilities, either to assign
or not to assign a copy of the file there. Therefore, there
are altogether 2%K;| possible assignments which results
in 2%& | candidate problems. (The state of a candidate
probiem is made up of the states of silocation of the n
different nodes on the DCS. In general, the n nodes of
the DCS can be partitioned into three sets,
Ko Ky and K;.) For each of the candidate problems, a
representative value is calculated. The function of the
representative value is to estimate the minimum of the
candidaie problem without actually enumerating over all
the allocations for the unassigned nodes. Based on these
2% K| representative wvalues, the selection criterion
selects the node and decide whether or not to assign a
copy of the file there. After this assignment has been
made, the algorithm is ready to check for the conditions
of Table 2 again and therefore it repeats the steps
described above until all the nodes have been assigned.
The general steps of the algorithm are shown in Figure 1.
We discuss each of these steps briefly here.

M-1  This is to initialize the candidate probltem - all
nodes are unassigned at this point. The candidate
list, which is a list of states made up of the sets
Ko Ky K3 and its corresponding representative
value, is assigned the empty set.

These four steps essentially achieve the following:

a node is selected from the un-assigned set, K,
and is assigned & copy or not assigned a copy of

M-2-6



the fle. A representative value is caiculated for
each of the candidate problems. The computed
representative value and the corresponding
assignments are attached to the candidate list.
These steps are then repeated for each node in Ap.

M-8 This step selects, from the candidate list, the can-
didate problem and the corresponding assignment
of nodes using the selection criterion, and usges it
for the next iteration. Steps M-2 to M-B6 therefore
have selected a node and have decided whether a
copy should be placed at that node. This node is
remeved from the A list.

M-7 The steps M-2 to M-6 are repeated until the X list
is emptly.
There are two basic parts of the algorithm, the
selection criterion and the computation of the represen-
tative value, and they are discussed here.

81 The selection criferion;

Sia Select from the candidate list, the candidate prob-
lern with the minimum representative value;

Sib Select from the candidate list, the two candidate
problems for which node i is extended. that have the
maximum difference between the representative
values of ¥;=0 and Y;=1, From these two candidate
problems, select the candidate problem with the
minimurn representative value.

R1 The computalion of the represeniative value:

Rla A lower bound is computed by solving the linear pro-
gram (Eq. 1) without the integrality constraints.
(This has been derived earlier by Efroymson and Ray
[EFR6B], see Appendix A);

R1b The expected value of a candidate problem is com-
puted by assuming that each of the remaining un-
assigned nodes has egual prebability of having or
not having a copy of the file (see Appendix B).

Using the two selection criteria and the two types of
representative values, there are four different versions
of the algorithm:

i. MINLB - minimum lower bound {S1a, Rla}):

2.  MINE - minimum expected value (Sla, Rib);

3. MAXDLB - minimum lower bound for a node i with
the maximum difference in lower bounds between
Y;=0and Y;=1 (i€k;) (Sib, Rla);

4. MAXDE - minimum expected value for a node i with
the maximum difference in expected values
between Yy =0 and ¥;=1 (i€K;) (S1b, R1b});

To further illustrate the steps of the algorithm, it is
applied on Casey's 5 node example [CAS72]. Suppose the
following matrix represents the query cost 5;y for a
five-node system.

0 6 12 9 6
6 0 B 12 B
S=1}112 6 0 6 12
2 12 8 0 B8
6 9 12 6 0

Let
§ =[] = [ 24 24 24 24 24)
U={t]=[23468]
F=[F]=[00000]

and
G =[C:]=[ 168180 174 128 123].

By enumerating the 25-1 possible allocations, it is found
that a copy of the file shouid be allocated to node 1, 4
and 5 giving & cost of 705. The steps for the four possible
versions of the algorithm are shown in Figures 2a, 2b, 2¢
and 2d respectively. It is seen that two of these versions
give the optimal solution.

4. EVALUATION OF THE HEURISTIC

The algorithm is evaluated by applying it on the
published examples in the FAP and the Single Commo-
dity Warehouse Location Problem'!. The optimal
solutions for these examples have been established in
the literature. The deviation of the heuristic solutions
from the optimal solutions can be used as an indication
of the '"goodness" of the heuristic. The heuristic is also
compared against the add-drop algorithm of Keuhn and
Hamburger [KEUS3]2. The evaluation results are shown
in Table 3. The four proposed variations of the heuristic
are all polynomial algorithms and each has a complexity
of 0{n*) (the same as the add-drop algorithm). The exe-
cution times on the CDC 6400 are shown in Table 4.

It is seen from Tables 3 and 4 that the algorithm
MINLB gives the best results and has an executicn time
very small as compared with other algorithms. In fact,
algorithmm MINLB obtains the optimal solutions more
often than the add-drop algorithm in general, bul the
worst case behavior seemns to be worse than the add-
drop algorithm and the execution times are longer
because the algorithm is. more complex. On the other
hand, algorithm MAXDLB produces more optirmnal soiu-
tions than algorithm MINLB, but its worst case behavior
seems to be worse, Algorithms MINE and MAXDE are
much worse than algorithms MINLE and MAXDLB.
Improvements can be obtained if we use the estimated
lower bound {by estimating the mean and the standard
deviation and making an assumption of normal distribu-
tion), but the complexity of the algorithm will become
0 (n°) and it takes too long to produce a solution for any
of these problems (> BOO seconds). However, we can stilt
improve the heuristic solution by combining the results
of the add-drop algorithm, the MINLB algorithm and the
MAXDLB algorithm. In this case, over BO% of the prob-
lemns have optimal assignments and the complexity of
the combined algorithm is still & (n*).

5. CONCLUSION

In this paper, we have presented a heuristic to solve
the file allocation problemn. A heuristic is necessary
because the file allocation problem is NP-complete and

T'The first six sets of problems are taken from [CAS7Z]. Problems 7 to
18 are taken from [KEUB3] and problems 19 to 22 are taken from prob-
iem 7 of [SA €8, p. 1033].

€in an add-drop algorithm, a feasible distribution of files in first found.
The total cost of the system can be improved by successive addition or
deletion of file copies. When a feastble molution with & lower cont iz
found, it is adopted as a new starting sclution and the process contin-
ues. Eventually, a local optimum is reached in which addition or dele-
tion does not reduce the cost. The whole procedure can be repeated
with a different starting feasible solution and several local optima can
be obtained. The final solution ia obtained by taking the minimum over
all the local optima. Instead of directly using Keuhn and Hamburger's
add-drop algorithm, which selects enly 5 warehouse sites to be evaluat-
ed in each cycle, the add-drop algorithm used here allows for all the
unassigned warehouse sites Lo be taken into censideration.



the search for optimal algorithms that run in exponen-
tial time is impractical. The heuristic is a greedy algo-
rithm and different criteria on selection are compared.
"It is found that a combination of these criteria is very
promising and gives solutions very close to the optimal
allocation based on sample problems published in both
the file allocation problem and the warehouse location
problem. The technique presented in this paper is
extendable to file placement problems with additional
constraints and other NP-complete problems.

APPENDIX A THE LINEAR PROGRAMMING LOWER BOUND
OF A CANDIDATE PROBLEM [EFRE6]

Bfroymson and Ray's formulation of the linear pro-
gramming lower bound is based on the optimization
n

problem of Eq. 1, with an exception that 2 X568 is not
k=1

evaluated to be mel? Sy where X, is the fraction of &y

that is directed towards node k.

By defining the following notations,

N; = set of indexes of those nodes that can be
accessed by user j;
P, = set of indexes of those users that can access

node k;
n; = number of elements in P,
The optimization problem of Efroymson and Ray is:
min

o) = f\:; QS ueXse + ES G Ye (A-1)
such that
1= 3 X (j=1....mn)
kN,
0os 24\’”, §71ng (’C=1 .Tf.)
JeF,
Yk = 0. 1

The linear programming solution to the abave optimiza-
tion problem, neglecting the integrality constraint of Y,
is,

3 k -
lfS,‘_t‘f"“'g"" =  rmin J"]"“:'g"—
leX,uk, n

T
Kju = 0  otherwise (A-R)
Yy = L Xk {A-3)
R |1eP,
where
Gy keK;
9 = l 0 kej(]

The proof of this can be found in [EFRE6].
APPENDIX B THE EXPECTED VALUE OF A CANDIDATE
PROBLEM

The objective function (Eq. 1) can be rewritten on
tion on Ky and K.

condi-

C(]) = 2 G‘
icky
+ * min &,
“Zl,‘{uQn min Sy
+ ZQ{- mil’lSi_J'+ ECiYi
iek, 1<l 1€k,
Clfy= ¥ 6+ 3 g* min Sy + 2 0¥ (B-1)
ik, ieKguK, yed i€k,
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where (; is defined in Eq. 2.

Let
P02 e i S -2)
Zg= 3 GiYy {B-3)
ek,
So
CU)= S G+ 2+ 2, (B-4)

1Ky

Assuming that each of the combinations of Y; for jeK,
can be assigned uniformly, we would like to find the
expected value of C(I). We first define some notations:

For each row i of matrix 8, we define a mapping u; such

that

M J = ki f.k €1, ..., n]such that Si..ui"'(l:) 58 ey

The mapping g maps the original set of nodes
onto a new set such that the costs of access from
node i in the mapped matrix are in increasing
order.

Sip = min Sy

teK; is the node which has the minimum cost of
access from node i.

|Kg] = |Kqu K, {cardinaltiy of Kg)

K = KqguK UK,

S L B
Keig = {2 2€Kq and ()2 (g )}
Now
E(z)= ‘-§,'C‘ + E(Z\)+ E(Z3)
E( 3 &*

(EXguK,

Y ogeE(

ek yuky

E(Zy)= ";1:1}1 Seg)

min Sig)

2, Sig ey L
e

geiy
ERCIIITHEY]

E(r}'né!n Sig) =
E(Zg) = E( 2 Gij)
Jeky

= ¥ CE(Yy)
JeKy

2(’!"”5?—1)
E(x;) = e

CX)

{B-5)

5_}.{ 82 !Fa™Y | g pl¥e!
ge
-(1)0:(1)

2(ﬂ—f!f_g|—l)

+(Y ci)—T(j_(’S“’“

1eky
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R Y W e R T
Notations Casey's Bxplanation
defined in notations
this thesis
Lfor file &
I I = index set of nodes with a copy of the file;
n n = number of nodes in the DCS;
Uy ¥ = update load originating at node j per unit time;
Q; Ay = guery load originating at node j per unit time;
Sy d; & = cost of communication of one gquery unit from j to k;
"‘/.t d; i = cost of communication of one update unit from j to ki
F’.. 208 = storage cost of file at k per unit time.

Mapping between the Defined Notations In
this paper and Casey's Notations [CAS72]

( Start )

Initialize Candidate Praoblem
KO=¢’ Klzﬂ' K2={1,2,....ﬂ}

K2+K2. Candidate List + ¢ p If_ ‘
min (Sjx—S5:)<0 jeil..ni,

Table 1

Rule
T
Yi=1if 3};1 thg?:gxzfsj.k =8k > Gy
L%

L.Condition
a

ki)
Y;=0if 3

fal

s min (S-S, < Gy
QJ keA’l( 3k J.!)+ 1

Y

s T T ) th i d
[ Select i€K,, K, +K,-{i} M-2 3 EHTLL is re uce:l by 1
Yis0if Gi—Ge > 3, Qy{Sre—Sy4)e
i1=1
|
Form Candidate Problem Ci where Table 2 Summary of Conditlons for Placement and
K KO3, I K1) Non-placement of a file at node | € K
J(0.1 o Jﬂln 1t ; Jcén 2 M-3 (The first three conditlons are from [EFR66]; the
Compute Representative Vaule of C, last condition Is from [GRAT7])
| Attach to Candidate List
L
Form Candidate Problem Ei where
J‘b,i*K[}U{i}' -!Cl.i-o-Kl. J‘%"A-KZ-{'li M-d . (0,0,0,0,U)
Compute Representative Value of Ty sondition
Attach to Candidate List condition a* w'u'""'w_
o,
HINLE e S -
o,0,77) (1,01 e T
> s Oy CRREY Gl e Ta
. NO 5 Kz M-5 hiNLE - __‘_4:/—*__4:_;-”—”;‘?,/’ \
gnpty? B A
candition b f b
ES ©,1,0,1,1}
- - - - 717.0 sub-aptinum
Use Selection Criterion to Select j " see Table 2
From Candidate List; }
A Set koI 52 Ky, 50 Kot For M-6
The Selected Candidate Problem; Figure 2a Evaluation of Casey's 5 node Example
Ry+Kas using MINLB (U indicates that the node is un-
Candidate List + & assigned)

Figure 1 File Assignment Algorithm



{u,u,u,u,u}
condition a"

{u,u,v,1,u}
econdition a*

(U, U5, 8,1}

MINE %7”‘4“‘\‘}_\\\?\_
m.u.um.n W,0,6,1,1) (,1,0,1,0)

(U,0,0,1,1) {U,8,%,1,1)
732.0 738.0 120.0 Fuk.0 729.0 741.0
HIRE T —
(0,0,U,1,1) (1,0,0,1,1)  1U,0,0,1,8) (1,0,1,1,1)
732, 1.0 729.0 .
condition b°
1,0,0,1,1)
705.0 optimum

*
tee Table 2

Figure 2b Evaluation of Casey's 5 node Example
using MINE (U indicates that the node is un-
assigned)

(0,00,

Ll
cordition a
fu,u,u,1,0)

-
corndition &

v,u,u,1,11 .
HAXDLE %R_—\‘—ﬁ
[o,u,u’,'lm,l} 0.0,0 1,10 (0, 50,1,10 (0,0,0,0,1) (1,8,8,1,)
ud).§ 187.5 520.5 437,14 480.0 2.6

gondition h'
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Figure 2c Evaluation of Casey's 5 node Example
using MAXDLB (U indicates that the node is un-
assigned)
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.u- Table 2
Figure 2d Evaluation of Casey's 5 node Example

using MAXDE (U indicates that the node Is un-
assgned)

Optimurn Aad-[ ! |
Prab.. Sol. Drgp | MINLE  MINE | MAXDLE-MAXDE et
1 117596 |0 [ o o B8.43 D- x=0.1 Casey's [9 |
2 1BB738 | 0.03 L 0,31 {0631 0.31 0.31 le=0.2 node flle
3 242581 | D | a 0.66 D 0.668 |a=0.0 allacation
4 281780 |D 1.3% | D 1.39 D a=0.4 problem
5 431720 (O l Q 0 ¢} 1] a=1.0 fcasvz]
8 705 1083 | 1.0 ;0 1.70 0 Casey's 5 no- de ex. [CAS72]
7 76648 |0.11 | O .78 o 0.78 (Factory keuhn and
:] 854704 | D.15 | 0.08 | 0.89 0 0.88 [at Ind- Hamburger's
g 893762 | 0.514 , 0 071 D 0.71 lianapolis 24 ware-
10 928942 1 0 1 081 1094 1.48 0.99 houses, 50
1% 1062815 |D.0B | O 0.13 0.1c 0.13 iFactory customers
12 1145923 |0.13 1 0 0.22 [+] D.22 |at lack- warehouse
13 1188241 {0.13 ¢ 0 1.37 0 1.37 |sonville incation
14 1244991 [0.22 | 0.28 |2.49 ] 1.87 problem
15 614548 [0.14 | O 0.0 | © 0.90 |Factory [KEUB3)
18 8599583 [0 0.12 | D.BO ] 0.80 [al Balt-
17 880746 |0O.03 | O 0.74 Q 0.74 |imore and
1B 724886 i 0 9 0.42 1] 0.49 |Ind'polia
i BOG145 [0 Q .83 0 0.38 |Factory at Problem 7
20 B70?e2 (0.25 1 0 D0.67 [} 0.87 |Ind’polis, of Sa
2t 219994 |0.11 § O 146 | © 0.44 {but not [SA 89)
22 970446 [D {042 1173 | 1368 | 0.67 jwarehouse
mean 0,10 | 0.22 |0.73 0.67 D.58
std.dev. [0.1B ; 0.46 | 0.62 1.83 D.44

Table 3 % Deviations of File Allocation Heuristic
from Optimal Solutions

Addw T 1

Prob, | Drep \n.\'l.ﬁ’Mwﬂl.\mxn:ﬁwmxnal Comments |
t 057 L1.45 (2279 11.42 103.71ju=0.1 Casey's i9 |
2 ¢.43) 11.50 |23.57! 11.86 10557 |a=0.2 node file
] 0.43| 11,77 |23.8¢| 1178 [105.50 [a=0.3 altocation
4 0.43{ 11.B0 |23.48| 11.79 |105.26|c=0.4 problem
5 0,20/ 1£.80 '23.80! 11.84 1105.10/a=1.0 [casyzl
[ 0.04] 0.08 | 0021 005 | 0.24/Casev's 5no- de ex. [CAS?2]
7 11,46} 8.09 |11.85 5.29 26.41 Factory ¥xeuhn and f
8 9.36! i3.56 {13.52| 1:.23 | 35.73|at Ind- Hamburger's
=] 534 20.89 113,91, 20.99 37.61 |ianapolis 24 ware-
10 3.61! 8481 829] B50 | 21.42 houses, 50

: 11 12.08! 6§40 | 2.13 6.39 §7.74 |Factory customers
12 8.62! i2.66 [12.84) 127t 30.62 at Jack- warehouse
13 7,821 22.16 |21.26' 22,83 | B2.03|sonville tacation
14 | 702 40,18 13547] 40,23 111203 problem
15 9.75] 5.48 |[12.44, 5.50 | 25.45|Factory {KEUB3]
18 7.33) 5.49 | 4.37) 41.64 7.80 |at Balt-
1 5.58, 6.82 | 7.01 B.B4 17.25 limore and
18 579l 286 | 375! 2.68 7.28 i [nd'polis
19 |12.24| 4.94 | 9.18] 4.95 16.04 |Factory at  Problem 7
20 9.0zl 12.62 1381} 11.29 | 14.39ind polis, of Sa
21 B.78| 23.27 122.05] 20.97 ! 67,74 ‘but not [SA 69]
22 594|22.79 :28.61: 2202 73.40 lwarehouse

mean | 5.8l 12.54 ;15581 12.21 | 50.87]
std.dev.| 411! 8oz | B.B3! BB | 39.27]

Table & Execution Time of Heuristic in seconds on
the CDLALOO -



