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ABSTRACT

In this paper, we propose and analyze the design of MANIP, a
parallel machine for processing nondeterministic polynomial
complete problems. The maost general technique that can be
used 1o solve a wide variety of NP-complete problems on a
uniprocessor system, optimally or suboptimally, is the branch
and bound algorithm. We have adapted and extended the
branch and bound algorithm for parallel processing. The
paraliel branch and bound algorithm requires a combination of
sorting and merging. A common memory to sort for a large
number of processors can bacome a bottleneck in tha system.
We have proposed a system with distributed intelligence so
that sorting can be carried out in a distributed fashion. A
unidirectional ring network is proved to be the optimal and
most cost-effective interprocessor communication network
when sorting is done by a hardware priority queue in each
processor. Lastly, the performance 'on the proposed system is
evaluated using the vertex covering problem,

INTRODUCTION

The branch and bound algorithm? is an efficient
algarithm to solve for problems that are known to be
nondeterministic polynomial {NP)-complete.? An
important characteristic of NP-complete problems is
that there is no known optimal algorithm to solve the
problem with a computation time that increases
polynomially with the size of the problem, The
computation time for all known optimal algorithms for
this class of problems increases exponentially with the
problem size {if n represents the size of the problem,
the computation time goaes up as k" in which k > 1).

To itlustrate the extent of this complexity, suppose a
given computer can sclve a problem of size 10 in
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0.001 sec. If the problem has a time complexity of 27,
then the same computer can solve the problem of size
60 in 357 centuries. Moreover, improved technologies
appear 1o have little effect on improving the problem
size that can be solved. For example, the computer just
described can solve a 2" problem with n = 31.8 in one
hour. With a computer 1,000 times faster, the problem
size that can be solved is 41.7. With a computer 10,000
times faster, the problem size that can be solved is
45.1.

It is obvious that improving the technology alone is not
enough to expand the solvable problem space of
NP-complete problems. The commaon approach is to
solve small problems optimally and to apply heuristics to
solve large problems suboptimally. Numerous algorithms
and heuristics have been designed to solve specific
NP-complete problems; however, the most general
technique that can be used to solve a wide variety of
NP-complete problems, optimally or suboptimally, is the
branch and bound algorithm.

In this paper, we present a study of a parallel version of
the branch and bound algorithm that can be executed
efficiently on a parallel computer system. !t has been
recognized that the speed of a single computer is limited
by technolegy. To increase the throughput further,
multiple computers have to ba connected together to
form a parallel processor system; previousty, computers

" and interconnection networks were designed using

discrete components or a large set of semiconductor
chips. The decreased system reliability as the system
complexity increased severely constrained the degree of
paralielism possible. Systems like C.mmp and ILLIAC |V
were limited to less than 100 processors. With the new




advances in very large scale integration (VL$1)? and
communication technologies, it is now possible to
design one or more computers on one semiconductor
chip.® The degree of paralielism, therefore, is potentially
unlimited.

A large number of parallel processor systems with
generai-purpose interconnection networks have been
proposed. Examples of these inciude C.mmp,5 Cm*.8
HLLIAC IV.? X-tree,® Data fiow processor,® and TRAC,S,
These systems however, are not designed for
processing NP-compiete problems, and therefore,
increasing the number of processors vields rapidly
diminishing returns,

Several architectures have been proposed to solve
NP-complete probiems. Harris and Smith*' propoesed a
tree architecture to solve the ''traveling salesman''
problem. Basically, the system dedicates one
subproblem to each processor, and this processor
reports to its parent processor when the evaluation is
completed. Because of the limited degree of
communications, some processors might be working on
tasks that could be eliminated if a better interconnection
network ware designed. Desai'2'3 also proposed a
staged MIMD system to solve 0-1 integer programs
using implficit enumeration. Nevertheless, implicit
enumeration is time-consuming and wasteful, and for
NP-complete problems, the critical issues of exponential
space or exponential time must be addressed in the
algorithm.

The only published work an applying branch and bound
algorithms to solve NP-complete problems in a network
of computers was done by EL-Dessouki and Huen,'
The algorithm is based on a generai-purpose network
architecture with limited memory space and slow
interprocessor communication. Depth-first search
criteria is used and is not effective in decreasing the
execution time. With VLSI technology, larger and
inexpensive memories, and faster communication
technology. reducing the execution time (at the expense
of larger memory space requirements and more
interprocessor communications) is a more critical
probiem. Using VLSI technoiogy, it would be feasible
and cost effective to design special-purpose computers
for such a task. Our design pertains to the fact that at
most, one processor is implemented in each chip, but
the design will still be applicabie in the future when
multiple processors can be designed into one chip.

In this paper, we propose the design of MANIP, an
architecture using VLS| technology to implement a
parallel branch and bound algorithm. We wanted to

design special-purpose processors for evaluating the
bounds and a simple interconnection network for
interconnecting the processors. The system was
designed according to the foliowing design objectives:

1. The system should be modularly expandable to
include a very large number of processors.

2, The design must have high performance, and the
cost should be kept low by replicating simple cells.

3.  The system shouid use distributed control so that
a controller could not become the bottleneck in
future system expansion.

4, Efficient ioad balancing strategies should be

implemented so that the processors can be kept
busy most of the time.

5, The system shouid be recoverable from hardware
failures.

in the following sections, the branch and bound
algorithm and the parallel version of the branch and
bound algorithm are presented. The architectural
alternatives in implementing the parallel branch and
bound algorithm are identified, and the network
architecture is described. The architectural features
necessary in the processor, as well as a performance
evaluation of the system, are given. The conclusion
includes an approach to the problem of impiementation.

PARALLEL BRANCH AND BOUND ALGORITHM

The type of problems that a branch and bound algorithm
can evaluate can be put into a constrained optimization:

Minimize Cyln)

subject to £ix) 2 0
g,ix} > 0
g.x) =0

and xeX

in which X represents the domain of optimization
defined by the m constraints, normally an euclidean
n-space, and x denotes a vector {x,, X, ... X}
(Problems that are NP-compiete can be put into this
form. There also exists problems that are not
NP-cornplete, but are put into this form.} A solution
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vector that lies in x is called a feasible solution, and a
feasible solution for which C,(x) is minimal is called an
optimal solution. In this section, we describe the branch
and bound algorithm and expand the algorithm into a
parallel version so that it can be implamented on a
parailel computer system.

Essantial Features of the Branch and Bound
Algorithm

The branch and bound algarithm''® is an organized and
intelligently structured search of the space of all feasible
solutions. Generally, the space of all feasible solutions is
repeatadly partitioned into smaller and smaller subsets,
and both the lower and upper bounds are calculated for
the cost of solutions within each subset. After each
partitioning, the subsets with a lower bound (in the case
of minimization} that exceeds either the cost of a known
feasible solution or the least uppar bound of all subsets
are excluded from a¥ further partitioning. The
_partitioning process continues until a feasible solution is
found such that the cost is no greater than the lower
bound for any subset.

The state of the partitioning process at any time can be
represented as a partial tree (Figure 1). Each node in the
tree represents a partition and is called a subproblem.
The partitioning process selects a partition and breaks
up this partition into smaller partitions. This extends the
node in the partiat tree representing this partition by one
level and uses the sons 1o denote the smaller partitions.
In Figure 1, node J is expanded in the partitioning
process into k other partitions, which are represented as
sons of node j in the partial tree.

There are two essential features of a branch and bound
algorithm: the branching rule and the bounding rule.
With respect to-the partial tree in Figure 1, each node in
the tree has two numbers associated with it—the upper
bound and the lower bound of the subproblem. The leaf
nodes in the partial tree are candidates for partitioning.
A leaf node of the partial tree whose lower bound is
lass than both the value of a known feasible solution
and the greatest upper bound of all teaf nodes is active;
otherwiss, it is terminated and need not be considered
in any further computation.

The branching algorithm examines the set of active leaf
nodes and, based on some predefined criterion, selects
one for expansion. If the set of active nodes is
maintained in a first-in, first-out (FIFO) list, the
algorithm is called a breadth-first search. If the set is
maintained in a last-in, first-out list, the algorithm is
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called a depth-first search. Lastly, if the node selected
for expansion is one with the minimum lower bound, the
search algorithm is called a best-first search.

In a breadth-first search, the nodes of the tree will
always be examined in levels; that is, a node at a fower
level will always be examined before a node at a higher
leval. This search will always find a.goal node nearest
to the root; however, the sequence of nodes examined
is always predetermined, so the search is "biind." The
depth-first search has a similar behavior except that a
subtree is generatad completely before the other
subtrees are examined. In both algorithms, the next
node to be examined is known, so the state of the
parent node leading to the next node does not have to
be kept, because the path 10 the next node from the
root node is easily found and is unique. These two
algorithms, therefore, are space saving.

In contrast, the best-first search is space consuming,
because ail active subproblems must be stored as
intermediate data in the computer. The total number of
nodes expanded, however, is decreased in the sense

" that any branching operation performed under this policy

must also be performed under other policies, provided
that all bounds are unique.! Because time is critical in
avaluating large NP-complete problems, the best-first
branching algorithm is implemented in MANIP. The
large intermediate storage problem can be soived by
moving subproblems with larger lower bounds to
secondary storage.

Once the subproblem has been selected for partitioning,
some undetermined parameters in the subproblem must
be selected so that alternatives for these parameters can
be defined and multiple subproblems created. For
example, in the traveting salesman problem, the
undetermined alternatives are the set of untraversed
adges. In expanding a subproblem, an untraversed edge
(i, j) is selected, and two alternatives can be created:
{1} the edge is traversed and the salesman goes directly
from city i to city j and (2) vice versa. The parameter
chosen to be expanded is usually done ad hoc.

After new subproblems are created, the bounding
algorithm is applied to evaluats the upper and lower
bounds of a subproblem. Generally, only the lower
pbound is evaluated, because the merits of using the
upper bound are small. The bounding algorithm that is
designed is highly dependent on the problem. For
example, in an integer programming problem, a linear
program with relaxed integer constraints can be used as
a lower bound'®; in the traveling salesman problem, an




assignment algorithm'” or a spanning tree algorithm can
be used as the bounding algorithm.

The vertex-covering problem'® used as the basis of
performance evaluation in our study is an example of an
NP-complete problem. In this problem, the minimum
number of vertices that are needed to "'cover' all edges
in an undirected graph are to be found. (Cover means
that all edges in the graph emanate from at least one of
the included vertices.} The branching rule uses the
best-first search and branches on an unselected vertex
with the largest out-degree, from which two
subproblems can be created: one including the vertex in
the set and one excluding it. The lower bound in the
bounding rule is chosen to be the minimum number of
unselected vertices such that the total out-degree is
greater than or equal to the number of uncovered edges.
Note that edges emanating from different vertices in the
iower bound calculation may overlap, and therefore, this
vertex does not necessarily cover all uncovered edges,
Further, if a vertex has been excluded in a previous
stage. and there are uncovered edges emanating from

- this excluded vertex in the current subprobiem, the
unselected vertex covering these edges must be
included in the minimal set first. As an example, the
branch and bound tree for the graph in Figure 2 is
shown in Figure 3.

The Parallet Branch and Bound Algorithm

Three sources of parallelism are identified in the branch
and bound algorithm: paraliel evaluation of
subproblems, paraliel sorting of subproblems, and
parzllel execution of the bounding aigorithms.

Parallel Evaluation of Subproblems

Because multiple subproblems are availabie, they can be
evaluated simuitaneously. Owing to overheads in
interprocessor communication and sorting, and because
some subproblem evaluations are unnecessary,
improvernent in execution time is usually less than n
times (# is the number of processors). For example,
Figure 4 shows the parallel evaluation of the branch and
bound algorithm on the graph in Figure 2, using two
processors. The parallel evaluation of node 2 in Figure 4
is not useful, because the corresponding node 3 in
Figure 3 is not evaluated. When the problem size is
large, the parallelism will contribute to better
improvement in execution time.

Parallel Sorting of Subproblems

In the best-first search, the list of subproblems must be
maintained in a sorted order by the lower bounds. This
sorting can be done by parallel architécture such as
Batcher's sorting network.'® (Types of interconnection
network required for parailel sorting will be discussed
later.}

Parallel Execution of the Bounding Algorithm

Specially designed architecture can be used to
implement a bounding algorithm. For example, if the
simplex algorithm is used, matrix manipulation hardware
is helpful. The architecture, however, is designed for
solving general NP-complete problems; therefore, the
bounding algorithm has to be changed for different
problems. In this case, software implementation of the
algorithm is more cost effective,

Efficiency Considerations

Many resuits have been proved for the nonparallel
version of the branch and bound algorithm.2-22 |t has
been shown that the best-first search is the best
branching rule and minimizes the number of
subproblems expanded.! Furthermore, the branch and
bound algorithm can be used as a generai-purpose
heuristic to compute solutions that differ from the
optimum by no more than a prescribed amount.!
Suppose it was decided at the outset that a deviation of
10% from the optimum was tolerable. If a feasible
solution of 150 is obtained, all subproblems with lower
bounds of 136.4 {or 150/1.1) or more will be
terminated. This technique reduces significantly the
amount of intermediate storage and the time to arrive at
a suboptimal solution. Technigues are also available to
find the best solution in a given length of time.! All
these can be incorporated into the parallel branch and
bound algorithm.

Unfortunately, little can be said about the efficiency of
the parallel branch and bound algorithm. Lawler and
Wood' found that only those subproblems with lower
baunds smailer than the optimal solution will be
evaluated in a branch and bound algorithm. For a
parallel branch and bound aigorithm, the improvement in
the number of iterations will be n times {n is the number
of processors) if the number of subproblems in the
intermeadiate iist with iower bounds less than or equal to
the optimai solution is always greater than or equal to n.
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This number is highly dependent on the problem and the
partitioning carried out earlier. Simulation results in a
following section show that improvement for the
vertex-covering problem indeed approaches n.

In the next three sections, the architecture required to
support the parallel branch and bound algorithm is
presented. Two architectura! alternatives are compared,
and the unidirectional ring network is proved to be the
optimal intarconnection network.

ARCHITECTURAL ALTERNATIVES SUPPORTING
THE PARALLEL BRANCH AND BOUND
ALGORITHM

To implement the parallel branch and bound algorithm,
the parallel computers must be interconnected. The
functions of the interconnection network are:

1. To connect the multiple processors so that idle
processors can access subproblems in other
processors

2. in the case of best-first search, to allow the

subproblems to be sorted so that subproblems
with minimum lower bounds are evaluated first

Two types of networks can be identified: the
single-stage distribution network and the single-stage
or multistage sorting network. Figures 5 and 6 illustrate
some features of these two networks.

Single-Stage Distribution Network

The single-stage distribution network (Figure 5} is
designed to distribute the 7 subproblems with minimurn
lower bounds to each of the n processors. Subproblems
with minimum lower bounds in each processor can be
sent in parallel to neighboring processors. The
subproblems are then sorted in the local processors, and
the distribution process repeats until one of the n
subproblems with minimum lower bounds is distributed
10 & processor. The order in which these n subproblems
finally appear in the processors is not important. This
interconnection does not require that connections be
made to neighboring processors, but as long as each
processor is connected to and from k other processors,
the processors can be renumbered so that each
processor is connected to k neighboring processors.

Two possibilities exist in the process of distribution:
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1. The distribution time is smaller than or equal to
the fower bound evaluation time. Although the
distribution is completed, the distribution must be
carried out again when the lower bounds for the
currently expanded subproblems are available.

2. The distribution time is greater than the lower
bound evaluation time. The processors remain idle
until the distribution is complete.

In both cases, complets overlap is not attained because
of the different processing and distribution times. A
compromise could be made by overtapping the
subproblem expansion with the subproblem distribution.
If the distribution was completed first, a local sorting
could be performed when the subproblems were
evaluated, and the processors could expand the local
minima without waiting for a complete distribution. If
the subproblems evaluation was completed first, the
next subproblem in the local list could be evaluated
immediately without having to wait for the distribution to
complete.

Single-Stage or Multistage Sorting Network

A sorting network such as Batcher's network'® usually
achieves the same objective as the distribution network
and is usually faster. Referring to Figure 6, the number
of memory modules (m) may be different from the
number of processors. To distribute the n subproblems
with minimum !ower bounds into the n processors, n
subproblems with minimum lower bounds are taken
from each memory module and sorted through the
sorting network. The n subproblems with the smallest
lower bounds (out of m x n subproblems) are sent to
the processcors, This can be performed in a time

Ollog n}.?* Assuming that the number of iterations
improve by a factor of n, using n processors, the
maximum performance improvement is O{n/log n).
With this approach, each memory module must be able
to retrieve subproblems in order. The memory modules
can be implemented with associative memary?® or as
VLSI priority queues,?®

The disadvantages of using a sorting netwark are the
complex hardware complexity and a delay of O{log n)
bafore the sorted subproblems can be used.
Furthermore, the n subproblems selected from the

m x n subproblems are sorted by the lower bounds,
which is not required by the system. In a distribution
network, subproblem evaluation can start without
waiting for the distributions to complete, and the
resulting degradation in performance to the overall




parallel branch and bound algorithm is very small. This,
together with a few other properties (discussed later),
makes the single-stage distribution network the most
cost-effactive design, and consequently, it was selected
for our design.

NETWORK ARCHITECTURE

The objective of the network is to have complete
distribution; that is, distribution of the subproblems-in
local memories of the processors so that the n global
minima can be distributad, one to sach of the n
processors. The locations of these n global minima are
not known beforehand, but otherwise, the problem is
simple, and the processor with more than one global
minimurn can send one of these subproblems to
processors that have none.

Because predetermined distribution operations are
unknownf, all processors can carry out the same
distribution operations (for exampie, distributing to the
nearest nfeighbor) or different distribution operations {for
example, one processor may be distributing to its
nearest neighbor while the others are not). The first
type of distribution operation has not only the property
that each processor is connected to and from the same
number of neighboring processors but also the stafe
preserw‘ng property; that is, if the global minima have
been distributed to the processors, continued
redistribution would not disturb the state, and the global
minima would remain distributed to the processors. In
the second type of distribution operation, each
processol may be connected to and from a different
number cjf neighboring processors, and it is difficuit to
preserve the state. (For this reason, we chose to
investigate only the first type.)

The interconnection network design ranges from a
simple unidirectional ring network in which each
processor can communicate with one of its neighbors to
a fully connected network in which communication can
be carried out simultaneously with ali processors. An
analysis in this section shows that a simple
unidirectional ring network is the optimal interconnection
network.: To do this, an urn model must first be
developed.

Urn Model
The s processors in the system are represented as n

urns that contain # white marbles, which stand for the
global minima, and § - n yellow marbles in which § is

the total number of active subproblems. The white
marbles are originally distributed randomly to the urns.
The distribution process moves the marbles around so
that one white marble is distributed to each urn. The
white marbles are always "lighter' than the yellow
marbles, so they always "'float” to the top of the urn.
During the distribution process, one or more marbles are
taken from each urn and distributed to one or more urns
in the system. If a white marble exists in the urn, it is
always distributed first.

The ordering of the yeilow and white marbles in the
urns models the ordering of the subproblems by lower
bounds in ascending order in the processor's. If one of
the n giobal minima (white marble) exists in a processor
{urn), it is always ordered before the other subproblems
{yeilow marbles} and is aiways distributed first. Note
that this model does not take into account the ordering
of the white marbles, which is important in a
conventional sorting and merging problem: it is sufficient
for exactly one white marble to be distributed to each
urn, (ln a sorting and merging problem, the white
marbles are ordered before they are distributed to the
urns.) It is hoped that the relaxation induced in this
problem can help to reduce the amount of marble
movements.

Distribution strategies correspond to different degrees of
interconnection. The first strategy shifts a white marble,
if there is one, to the urn on the right. This corresponds
to a unidirectional ring network, as in Figure 7{a). A
more general strategy distributes the jth marble (f < k)
in the ith urn to the [{i + /) mod n}]th urn in parallel.
This corresponds to a8 k-connected network as in Figure
8(a). When k = 1, this becomes the unidirectional ring
network. Figures 7{b}, 7(c}, 7({d), and 8(b) show the
states of the systems after a number of distributions.

Properties of the Distribution Netwaork

In evaluating the distribution network, all overheads
must be accounted for in the distribution process.
Overheads in a distribution include the time to shift and
the time to let the white marbles fioat to the top {(which
corresponds to merging the newly arrived subproblems
into the original list). The overhead for sorting in each
processor depends on the implementation. The
complexity is Qlm log m) for sorting m numbers by
software (for example, heap sort??), Olm) for sorting by
a hardware priority queue, and O[{log m)?] for sorting
by Batcher's odd~-even merging network.?’
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The performance of the distribution network is
summarized in the following two theorems. Thearem 1
obtains the lower bounds of the number of distributions,
and theorem 2 shows that the unidirectional ring
network achieves this lower bound efficiently.

THEOREM 1. Let X be the communication time to
transfer one or more subproblems in parallel to the
other processors, m be the maximum number of
subproblems that can be stored in a processor, and n
be the number of processors in the system. Depending
on the degree of connection, the lower bounds on the
number of operations for a complete distribution is
between O] (K + n) log m] and O[nK + n) log m]
for sorting by software, between O(K + n) and
O(Kn) for sorting by hardware priority queues, and
between O(K + log’m) and O(Kn + n) log’m] for
sorting by Batcher’s networks. '

Proof. Only a sketch of the proof will be given here.
Suppose each urn is connected to n* other urns
{0 < x < 1). The maximum delay to transfer a marble
from one um to another is n.** Assuming all n
marbles resida in -one single urn, and transfers can be
made in parallel to n* other urns, it would take n'*
- transfers to take alt marbles out from this urn.

Because all transfers are carried out simuitaneously,
each urn would receive n* marbles in a time interval
K. The lower bound for the number of iterations,
therefore, is O(n'*). By taking into account the
overheads for sorting and communication in each
jiteration, it is shown that for an n-connected
network, x equals 1, and the lower bounds are
O[K + n) log m), O{K + n), O(K + log®m) for
sorting by software, hardware priority queue, and
Batcher's network, respectivaely. For a unidirectional
ring network, x equals 0, and the corresponding
lower bounds are CHKn + n log m), O{Kn), and
Ol(Kn + n) log’m].

From theorem 1, it is obvious that for a unidirectional
ring network, sorting by hardware priority queues is
better than sorting by software and Batcher's network.
Depending on the relative sizes of X, m, and n, sorting
by priority queues may also be better than sorting by
Batcher's network {vice versa in an n-connected
network). Generally, K is small because of the advances
in communications technologies. Because it governs the
degree of parallelism, n is usually large; m is also large,
and in an n-connected network, m > n. Taking these
valugs into account, the lower bounds for an
n-connected network are Oln log m), O{n) and
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Ollog?m) for sorting by software, hardware priority
queues, and Batcher's network, respectively. Batcher's
network has less overhead if m < Otcﬁi in which ¢ >1;
however, Batcher's network uses Olm logm)
hardwara?’ compared with O{m) for a hardware priority
queue. For the present time, we favor the use of a
hardware priority queue because of its reduced hardware
complexity.

THEOREM 2. The number of distributions for a
complete distribution in a k-connected network
(1] <k<n)isatmostn- 1.

Proof. The proof for the 1-connected network is
outlined here, and the proof for the k-connected
network is similar. The proof is by contradiction.
Suppose a ‘white marble cannot get to the top of urn
i in n - 1 distributions and remains in the second
position; that is, after n -~ 1 distributions, um i stil
contains at least two white marbles, and the
distribution is not complete. An urn that starts with
zero marbles or one marble can never get more than
one marble after n - 1 distributions. Hence, urn {
must have started with at least two marbles. Inn - 1
distributions, # - 1 distinct white marbles must have
passed over the top of urn /, because if not, the
second white marbie in urn [ would have a chance to
get to the top of urn i. This implies that altogether,
there are (n - 1} + 2 = n + 1 white marbles in the
system, which contradicts the original assumption
that there are n white marbles in the urns. Compiete
distribution can always be achieved in n - 1
distributions.

The overall amount of work, therefore, is

(n - 1) * (sorting overhead). Because the sorting
overhead is the smallest in a unidirectional ring network,
the overall complexity to achieve a complete distribution
is O(n). We proved in theorem 1 that the lower bound
of distributions using hardware priority queues is Oln).
Although the number of distributions to achieve a
complete distribution in a k-connected network (kK > 1}
may be smaller {as evidenced in the simulation results
shown later), the performance can only be improved by
a constant factor, because the lower bound is also O{n).
Furthermore, the number of network links in a
k-connected network {k > 1) is n* compared with # in a
unidirectional ring network. We conclude that the
unidirectional ring network is the best and most
cost-offective way of implementation.

In the remainder of this section, we present some
results on the average fraction of urns containing white
marbles using the k-connected network and try to




determina the degradation in performance if a complete
distribution is not attained before the processors pick up
subproblems for expansion. The evaluation results were
obtainad by generating all possible combinations of n
whita marbiss in the n urns as initial distributions.

Figure 9 shows that the increase in the average fraction
of urns containing white marbles because of increasing
k was rather small. {The sorting overhead was not
included in the evaluation.) The final performance for

k > 1 is expected to be less than the performance of
the unidirectionat ring network with sorting overhead
included.

Figure 10 shows the fraction of urns containing white
marbles for the different number of distributions in a
unidirectional ring network. These curves approach
different asymptotic values as the number of urns was
increased. The asymptotic average fraction of urns
containing white marbles as the number of ums is
increased for no distribution: (s = 0) has been found to
be G.5. The analyses for cases in which s is greater than
O are similar, but more difficult. Figure 10 also shows
that the improvement was significant for the first few
distributions, but that it diminishad as the number of
distributions increased. This implies that the fraction of
urns containing white marbles is significantly improved
by a small number of distributions. in generai, less than
half of the urns did not contain white marbles, for an
incomplete distribution.

Other Considerations

After examining the complexity measures of theorems 1
and 2, we discovered a serious problem. The overheads
for complete distribution is O(n). Suppose the number
of cycles in a parallel branch and bound algorithm
improves by a factor of n, and in each cycle, there is an
overhead for distribution of O{n): there appears to be
no overall improvement in performance as far as
complexity measure is concerned. These observations
imply that it is necessary to design additional hardware
or strategies to reduce the distribution overhead so that
distribution can be overlapped completely with
subproblem expansion. There are several alternatives.

‘The first alternative considers sending the tags (which
consist of the urn number and the lower bound) instead
of the white marble (the entire subproblem) in a
distribution. After O{n) distributions, complete
distribution is obtained. These tags are then gated to an
external controller, which counts the number of white
marbles in each urn and decides on the optimal transfer

sequence of white marbles from one urn to another. A
k-connected network may be used to allow k parallel
subproblem transfers to be made from each urn. Of
course, the value of k has to be determined so that the
response time requirement is satisfied. This solution is
not perfect when n is large. -

The second alternative aliows the system to operate
without any distributions. As seen in Figure 10, the
average number of urns containing white marbles
without any distribution is over 50%, and therefore, the
system can operate at 50% efficiency without any
distributions. This complexity, which is O(n/2), is still
better than O(n/log n) when an external sorting network
is used.®* Furthermore, we have assumed so far that the
subproblems are evaiuated while the distributions are
made, and the evaluation of the next set of problems
does not start until ali or part of the distributions are
done. In practice, the subprobiems have different sizes
and different processing times, and it would be
inefficient for the system to wait until all the processors
were finished. Each processor would behave
independently and execute the lower bound evaluation
function in its local memory. When this evaluation was
finished, it would pick up a subproblem with the
minimum lower bound from its local list of subproblems.
Because the time when one processor picked up a
subproblem to the time when another processor picked
up a new subproblem couid be relatively short, the
distribution process might not be completed, and the
system would be operating at less than optimal
performance.

The third alternative considers that if an urn does not
contain a white marble (one of the first n global
minima), it may contain a marble of different color
{which may correspond to one of the {jn + 1)st to

[( + 1)n]th global minima, j > O, and this is distributed
accordingly. Although a processor may not be working
on one of the nth global minima, the expansion of a
subproblem with the minimum lower bound may still
contribute to the speedup.

It is interesting that when a small number of
distributions are made, the distribution of the first global
minima improves; that is, the number of urns containing
white marbles increases. Howaever, the distribution of
the {n + 1)st to 2nth global minima, which are
represented as biack marbles, may be worse. This
distribution is important, because it governs the
distribution of the white marbles in the next iteration
{when the black marbles in this iteration bacome the
white marbles in the next iteration). The average
number of urns containing black marbles after a
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complete distribution is actually smaller than the average
number of urns if the marbles were distributed randomily
(Figure 11). Fortunately, the differance hetween these
two average numbers for large A is insignificant. The
simulation results are not included here. In a subsequent
section, the performance of the paraltet branch and
bound algorithm under incomplete distribution is shown.
The performance under a very small number of
distributions is as good as the performance under a
complete distribution.

PROCESSOR ARCHITECTURE

The processors are designed to avaluate the lower
bounds of subproblems, to manage the local lists of
subproblems, and to communicate with other processors
by a unidirectional ring network. They possess the
following four architectural components (Figure 12}

CPU: The central processing unit is a general-purpose
computar that can be used to evaluate different types of
bounding functions. It has such features as an
arithmetic and logic unit (ALU), register files, a control
unit, and local memory. The functions of CPU are to
evaluate the bounding function for the selected
subproblem, to manage the set of subproblems in its
local space, and to coordinate with the communication
processor to transfer subproblems to and from other
processors and secondary storage.

Communication Processors: The communication
processors are responsible for transmitting and receiving
subproblems to and from other processors. These
transfers are carried out in parallel. The communication
processor receives a subproblem and writes it to local
memory; & tag, consisting of the lower bound and the
subpreblem address in local memory, is written to the
VLSI priority queue. The tags are sorted according to
lower bounds in the priority queue. The communication
processor picks up a subproblem with the greatest or
smaliest lower bounds and sends it to secondary
storage or other processors. The communication
processors operate independently of CPU.

VLS! Priority Queue: A VLSI priority queue is &
distributed logic device that maintains the subproblems
in a sorted order. The logical structure is a two-input,
two-output device {deque), so tags can be input or
output from the top or the bottom. The deque is
ordered such that the top of the deque contains the tag
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with minimum lower bound. Each tag in the deque also
contains an address that points to the location of the
subproblem in the local memory. The hardware
implementation?6.28.2 inserts comparators between
consecutiva elements in the queue. For any two
consecutive elements, if the top element is greater than
the bottom element, these two elements are exchanged.
in this way, larger elements are "dropped'' to the
bottom of the queue, and smaller elements float to the
tap of the queue. Further, elements can be inserted into
the queue continuously without waiting for the previous
alemeant to be sorted in the queue.

in the previous discussion of the interconnection
network, the distribution process was applied to
subproblems with the minimum lower bound in the local
list. As the list grows and exceeds the size of local
memory, however, the excess must be moved to other
processors whare local memory is available or to
secondary memory. In the latter case, it is better to
move the set of subproblems that are the n global
maxima. A similar interconnection network can be
designed to distribute the set of subproblems so that
the set of n global maxima is obtained before being
written into secondary memory.

Giobal Data Register Containing Minimum Feasibie
Solution: The last architectura! feature in the system is a
common data register for all processors that contains
the valua of the minimum feasible solution. As a
processor generates a feasible solution, its value is
compared with the global feasible solution and replaces
the global value if it is smaller. Contention may occur at
this register if multiple processors try to update this
register. :

A good way to resolve the contention is to use a
sequential associative memory.Z® The vaiues of the
feasible solutions are shifted out bit-serially and
synchronously from all processors into a sequential
associative memory that finds the minimum faasible
solution. Because the associative memory is sequential,
only n associative memory cells have 1o be used. An
associative memory cell capable of minimum searches
can be implemented with two flip-flops and four NAND
gates. The processors and secondary storage are also
constantly examining the updated valuas in the global
data register and removing subproblems that have lower
bounds greater than the minimum feasible solution.

We have presented in this section the functional design
of the processor architecture. 11 is intended that this



design be implemented as a special-purpose singie-chip_
or multichip computer,

PERFORMANCE EVALUATION OF THE PARALLEL
BRANCH AND BOUND ALGORITHM

Following are some results on the performance of the
parallel branch and bound algorithm using the
vertex-covering problem. It is assumed in the simulation
mode! that all processors operate synchronously. Each
processor picks up a subproblem for expansion from its
local list. Newly created subproblems are inserted back,
and a complate distribution is attained before the next
cycle starts. The two sequential steps just described
above are an iteration. (Because it was more important
to study the feasibility of the branch and bound
algorithm at this time rather than to simulate the details
of an implementation, only the number of iterations
required to solve a problem were computed.)

The simulation model is written in C Language and
implemented on a DEC VAX 11/780 computer with
virtual memory. The simulation program is complex
because complicated data structures and heap sort are
used to achieve a fast insertion and retrieval time. The
simulation program uses the following parameters: p,
number of nodes in the graph; PROZB, probability that
an edge exists between two vertices in the graph; and
n, number of processors.

Ten cases were simulated for each combination of p,
PROB, and n. The number of nodes in the graph varied
between 10 and 90. Parameters PROR and n were
chosen from the sets {0.1, 0.25, 0.5} and

{1, 2, 4, 8, 16, 32, 64}, respectively. Simulation took
about 50 hours of computer time on the VAX computer.

The VAX 11/780 computer was chosen for the
simulations because of the availability of virtual memory.
Large data structures have to be used when n and p are
large. For example, for n = 64, p = 90, and a processor
capacity of 110 subprobltems, the total memory required
for each processor is about 30K bytes, resulting in a
total of 2M bytes for 684 processors. Furthermore, we
assume that all computations are performed in CPU, and
no secondary storage space is available during execution
time. For this reason, best-first search cannot be
applied when the memory space in a processor is
exhausted, so the evaluation is allowed to switch to
depth-first search within a processor when the amount
of free space is less than the stack size of depth-first
search. For comparison, assume that each processor
has a storage capacity of 17 subproblems for baest-first

search, and additional memory is included to implement
a stack for depth-first search (the space to store p + 1
subproblems). The results obtained are worse than if
best-first search is used alone; however, this
degradation is not because of the inherent property of
the parallel branch and bound algorithm, but because of
the unavailability of secondary storage space during
computation.

We have performed a large number of simulations, a
selected set of which is shown in Figures 13 through
15. In these graphs, the total number of iterations are
broken down into the iterations for depth~first search
and the iterations for best-first search. Sorting
overhead is not included in the results. Figure 13 shows
the average number of iterations required by a
64-processor system to solve a vertex-covering problem
of different sizes. Insufficient memory space in the VAX
computer caused a switch to depth-first search when p
was greater than 50, and the effects of depth~first
search became predominant when p was greater than
80. Figure 14 shows the performance of using different
processors to solve a vertex covering problem of 80
nodes. The effects of depth-first search were still
predominant; however, the decrease in the average
number of iterations as the number of processors
increased was linear. The usual diminishing return
effects of parallel processors did not occur here. Figure
15 shows performance in terms of the average number
of iterations to solve vertex-covering problems when
PROB equaled 0.25 and different numbers of
processors were used. The slope of tha curves were
parallel when p was greater than 60, and this is also an
indication that the effects of diminishing return is small.

When no distribution is usad, the performance of the
gystern is bad, because a large number of processors
are idie. For example, when tests were done with
random graphs of 60 to 90 nodes and 12 processors,
the number of iterations with no distribution was as high
as 10 times the iterations with complete distribution.
Twelve processors were used so that the results could
be compared with the results of Figure 9 (k = 1),
Suprisingly, when ons or more distributions were applied
in each iteration, the total number of iterations was the
same as if a complete distribution was used (with very
small variations). The growth of the curve is therefore
much fester than the curve in Figure 8. These results
indicate that the performance degradation under
incomplete distribution is extremely small.

The total simulation results indicate that the algorithm

performs well when memory is sufficient to perform
best-first search. Once it i5 switched to depth-first
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search, the performance of the system drops, and the
averaga number of iterations increases rapidly
{exponential with the problem size). Furthermore, these
results indicate that the improvement in using n
pracessors is very near to n, and the effects of
diminishing return is very small for the graphs tested.
The simulators are currently being changed so that
subproblems can be moved to secondary storage when
there is insufficiant space in main memory. It is
expected that the performance will improve significantly.
This will ba reported in .a future paper.

CONCLUSIONS

In this paper, we have proposed and studied the design
of MANIP, a parallel computer system for processing
NP-complete problems. Nondeterministic
polynomial-complete problems have the unique property
that the computation time for all known optimal
algorithms increases exponentially with the problem size.
Thus, a smalt increase in the problem size may cause a
very large increase in the problem space needed for the
optimal algorithm to complete the examination. Owing
to the inherent difficulty in solving NP-complete
problems, parallelism in processing is proposed to
expand the size of sclvable problems. The most general
technique that can be used to solve a wide variety of
NP-complete problems on a uniprocessor system,
optimally or suboptimally, is the branch and bound
algorithm. A parallel version of the branch and bound
algorithm that can be executed efficiently on a parallel
computer system was described.

The parallel branch and bound atgorithm requires a
combination of sorting and merging. The subproblems
are evaluated to produce new subproblems, which are
inserted into a list of subproblems created previously.
This fist is maintained in a sorted order by the lower
bounds of the subproblems so that the minima can be
picked up for expansion in the next cycle. The process
is terminated when a feasible solution is found with a
value smater than the lower bounds of all subproblems
in the Jist. Because it is important to maintain a global
sorted list of subproblems, a common memaory shared
by all processors can be used; however, this can
become a bottleneck when the number of processors is
large. We have proposed an alternative design such that
sach processor has a local memory, and the processors
communicate with each other through an interprocessor
communication network. When the processors have
created new subproblems, thay are first inserted into the
local list, and then subproblems with minimum fower
bounds from each processor are distributed until a set
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of n global minima are obtained. These n global minima
are distributed to the n processors in the system for
processing {(complete distribution).

We have proved that the lower bound for the amount of
work to achieve a complete distribution is Oin) whan
sorting is done by a hardware priority queue within each
processor. We have aiso shown that the unidirectional
ring network is the optimal and most cost-effective way
of implementing the interprocessor communication
network. Sorting by other sorting methods gives
different performance. Sorting by software, such as
heap sort, has a worse performance, while sorting by
Batcher's odd-even merging network has a better
performance at an expense of increased hardwara
complexity. The proposed interconnection network is
reliable because it is simple and it can be reconfigured.
Faulty processors can be switched off the network
without affecting the performance of other processors.
Redundant rings can also be used to increase the
reliability of the network.

Because only limited memory can be implemented in
each processor, we have proposed a system in which
subproblems with maximum lower bounds are "paged’
out onto secondary storage. Wa have not implemanted
this in the simulation model and have allowed the
processing to switch from best-first search to
depth-first search when there is insufficient memory in
the simulation. We observed that the effects of
depth-first search becomes predominant when the
problem size is large. The effects of paging out
subproblems with large lower bounds will be reported in
a future paper.




REFERENCES

1E. L. Lawler and D. W. Wood. Branch and bound methods: A
survey, Operations Research, 14 (1966}, 699-719,

2R M. Karp. Reducibility among combinational problems,
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, eds. {New York: Plenum Press, 1972}, 85-104,

3¢. Mead and L. Conway. Intraduction to VLS! Systems.
{Reading, Mass: Addison-Wesley, 1980).

4C. H. Sequin. Single chip computers, the new VLS| building
blocks, Proceedings of the Caltech Conference on Very Large
Scale Integration {1979), 435-445,

5w. A. Wulf and C. G. Bell. C.mmp-A multi-mini processor,
Proceedings of the AFIPS 1972 Fall Joint Computer
Conference, 41 (1972), 765-777.

SR. J. Swan. S. H. Fuller, and D. P. Siewiorek. The structure
and architecture of Cm*: A modular, multi-microprocessor,
Proceedings of the AFIPS 1977 National Computer
Conference, 46 (1977), 637-644.

D, J. Kuck. ILLIAC IV software and application programming,
IEEE Transactions on Computers, C-17 (Aug. 1968),
746-757.

8A. M. Despain and D. A. Patterson. X-tree: A tree structured
multiprocessor computer architecture, Proceedings of the 5th
Symposium on Computer Architecturs {1978}, 144-151,

9J. B. Dennis and D. P. Misunas. A preliminary architecture for
a basic data-flow processor, Proceedings of the Second
Annual Symposium on Computer Architecture {1975),
126-132.

oM, C. Sejnowski et al. An overview of the Texas
reconfigurable array computer, Proceedings of NCC {1980},
631-641.

4. A. Harris and D. R. Smith. Hierarchical multiprocessor
organizations, Proceedings of the 4th Annual Symposium on
Computer Architecture (1977), 41-48.

'28. C. Desai. The BPU, a staged parallel processing system to
s0lva the zero-one problem, Proceedings of fCS'78 (Dec.
1978). 802, a17.

138, C. Dessi. A parallel microprocessing system, Proceedings
of the 1979 Internstional Conference on Parallel Processing
(1979), 136.

189, I, E1-Dessouki and W. H. Huen. Distributed enumeration
on network computers, /EEE Transactions on Computers,
C-29 (Sept. 1980}, 818-825.

151, Mitten. Branch and bound methods: General formulation
and properties, Operations Resesrch, 18 {1970}, 24-34.

18A. H. Land and A. Doig. An automatic method for solving
discrete programming problems, Econometrica, 28 (1960),
497-520.

T"W._ L. Eastman. A solution to the traveling salesman problem,
{Presented at the American Summer Meeting of the
Econometric Society), Cambridge, Mass., 1958.

18\, R. Garey and D. S. Johnson. Computers and
Intractability, A Guide to the Theory of NP-completeness
{San Francisco: W. H. Freeman and Co, 1979).

9. E. Batcher. Sorting networks and their applications,
Proceedings of AFIPS SJCC, 32 (April 1968), 307-314.

2wy, Kohler and K. Steiglitz. Characterization and theoratical
comparison of branch and bound algorithms for permutation
problems, JACM, 21 {1974), 140-156.

237 |baraki. Computational efficiency of approximate branch
and bound algorithms, Mathematics of Operations Research
(1976), 287-298.

22 . On the computational efficiency of branch
and bound algorithms, Journal of Operational Research
Society of Japan, 20 {1977}, 16-35. -

»n . The power of dominance relations in
branch and bound algorithms, JACM, 24 (1977), 264-279.

24¢. P. Preparate. Parallelism in sorting, Proceedings of the
1977 International Conference on Parallel Processing (Aug.
1977), 202-2086.

25C. V. Ramamoorthy, J. L. Tutner, and B. W. Wah. A design
of a fast celiular associative memory for erdered retrieval,
IEEE Transactions on Computers, C~27 {Sept. 1978),
800-814.

264, T. Kung. The structure of parallel algorithms {Research
report}, Carnegie~Mellon University, 1978.

27p. E. Knuth. The Art of Computer Programming, Sorting,
and Searching, vol. 3 (Reading, Mass: Addison-Weslay,
1973).

8T, C. Chen and C. Tung. Storage management operations in
linked shift register loops, /BM Journal of Research
Development, 20 (March 1976), 123-131. :

2. E. Kluge. Data file management in shift register

memories, Proceedings of the 3rd International Conference
on Very Large Data Bases Part If (Oct. 1977), 1-13.

250



Figure 1. A Branch and Bound Tree

Figure 2. Example Graph
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Figure 3. Branch and Bound Tree for Figura 2
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eNumber putside node = lower bound
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Figure 4. Paratlel Branch and Bound Tree for Figure 2. with Two Processors
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Figure 5. K-Connected Single-Stage Distribution Network
eNumber of Memories = Number of Processors.
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Figure 8. Single-Stage or Multistage Sorting Network
sNumber of memories may not equa! number of processors.
o711 minima are taken from each memory to be sorted.
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(a) Uni-directional ring network connecting four urns with
initial state (0,3,0,1)

(b) State after 1 left shift

IR TSRS b

(¢) State after 2 left shifts

(d) State after 3 left shifts

- distribution of marbles

Figure 7. Unidirectional Ring Network Connecting Four Urns
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Figure 8. 2-Connected Network Connecting Four Urns
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Figure 11. Decrease in Urns Containing Black Marbles when Distribution Is Compilete
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