PROCEEDINGS 1981 NATIONAL CCOMPUTER CONFERENCE, AFIPS PRESS.

Engineering computer neiwork (ECN): A hardwired
network of UNIX* computer systems™** .

by KAl HWANG, BENJAMIN W. WAH, and FAYE A. BRIGGS

Purdue University
West Lafayette, Indiana

ABSTRACT

This paper reports the design and operational experiences of
a packet-switched local computer network developed at Pur-
due University. Hardwired communication links (1 mega-
baud) are used to interconnect seven UNIX computer systems
(two PD11/70, one VAX 11/780, and 4 PDP11/45). Over 20
microprocessors and 210 timesharing CRT terminals are con-
nected to the seven hosts. Instead of using the UUCP proto-
cols for dial-up UNIX networks, several protocol programs
are locally developed to make possible the hardwired UNIX
networking. The network provides the capabilities of virtual
terminal access, remaote process execution, file transfer, load
balancing, and user programmed network 1/O. Only at the
lowest protocol level is the DDCMP of DECNET used. The
network is expandable and provides appreciable bandwidth
with moderate cost and low system overhead. Described in
this paper are the network architecture, system components,
protocol hierarchy, local UNIX extension, load balancing
methods, and performance evaluation of the Purdue ECN

network.

INTRODUCTION

This paper presents the implementation experience, opera-
~ tional lessons, and performance assessments of a moderate-
cost local computer network developed at Purdue University.
The distributed computing system, named Engineering Com-
puter Network (ECN), is presently composed of seven Digital
Equipment computers of various models (VAX 11/78¢, PDP
11/70, and PDP 11/45). Alt the DEC computers in ECN run
with UNIX operating systems. Hardwired communication
links with one megabaud rate are used (o interconnect these
UNIX computer systems, which are located in three adjacent
buildings at the main campus of Purdue University. The ECN
UNIX network differs from the dial-up UNIX network devel-
oped by Beil Laboratories” in communication links and net-

work application protocols. The dial-up UNIX network is -

interconnected mainly by telephone lines with rate of 300

* *UNIX is a trademark of Beil Laboratories,

*=The reseasch reported herain was supported in part by Depaniment of Trans-
portanon Research Contract No. R92004 and in part by Mational Science Foun-
dation Research Gram No. MCS-75-18906.

191

baud or 1200 baud. The ECN has hardwired connections pro-
viding much faster communications between the network
hosts. Another hardwire-connected UNIX network has been
reported by Chesson.? In general, hardwired connections are
required to have up to 3 megabaud for local computer
networks.?

Instead of using the UUCP communication protocols be-
tween UNIX systems as described in Nowitz,' the ECN net-
work group at Purdue University developed several high-level
application programs, cailed con, csh, and rxe. These pro-
grams provide the following network functions:”'*

o Virtual terminal access. A user can connect the physical
terminal to a- pseudoterminal on any other host computer
in ECN. The con program provides the virtual terminal
protocol. :

& Remote execution environment. The csh and rxe pro-
grams provide the capability of executing a string of com-
mands on a remote host machine with apparent load
balancing and local /O standards.

® File transferiremote device access. The csh program, to-
gether with several specially developed network func-
tions, provides simple file and directory transfers
between hosts.

® User programmed network 1/O. By issuing set teletype
(stry) functions on an open file in a pool of special UNIX
files, any user-written program can directly connect to
any machine in ECN, disconnect, wait for connection,
send signals, ete,

The ECN network differs from the DECNET in the fact
that DECNET must run with DIGITAL operating systems
like the RSX-11 series, DEC-10/DAS 85, and lAS systems.
DECNET uses the digital network architecture {DNA) proto-
cols: DDCMP, NSP, and DAP, as descrihed in DECNET.?
ECN uses DDCMP protocol for node-ro-node communica-
tions only at the physical-link level. The NSP and DAP func-
tions of DECNET are not used in ECN, Special advantages of
ECN network are distinguished by the following features:

e Appreciablg network bandwidth with moderare sysiem
cost. Using the DMC-11 network links,” the ECN has
demonstrated the bandwidth of 400 Kbaud between pro-
cesses residing in the same host and 250 Kbaud between
processes at different hosts.

192 National Computer Conferénce, 1981

® Relatively low system overhead in mlessage routing. Inter-
nal buffering and copying are minimized. The network
buffer pool resides outside the kernel space.
.Packet of variable lengths up to 512 bytes of data can be
sent with a short header of at most 12 bytes.

® Reconfiguration flexibility for future expansion. The in-
terconnection structure is quite flexible to ailow up 10 256
DEC machines in the network. DMCI1 line driving
codes are shared over multiple units, and simple static
routing tables are used for packet routing.

This paper is divided into three parts. Architectural devel-
opment, system features, and communication links of ECN
are presented in the second and third sections. Hierarchical
ECN communications protocols and local UNIX software ex-
tension are described in the fourth and fifth sections. The sixth
section provides some analysis and measurements on network
performance. Lessons we have learned and continued R/D
efforts on ECN are given in the concluding section.

NETWORK TOPOLOGY AND SYSTEM COMPONENTS

The engineering computer network (ECN) at Purdue Univer-
sity is a packet-switched computer network of seven Digital
Equipment VAX and PDP11 minicomputers connected with
20 Intel, Southwest Technical, and Motorola microprocessors
and over 200 CRT terminais. The seven DEC computers in
ECN include one VAX-11/780, two PDP 11/70s, and four
PDP 11/45's. These computers are interconnected by 1-mega-
baud digital communication links. The network presently as-
sumes a star structure, as depicted in Figure 1. Each computer
runs a separate UNIX interactive timesharing operating sys-
tem (Version 7)."'* The networking of these UNIX-based
minicomputers is made possibie with the use of coaxial cables
and the Digital Equipment DMC-11 interface drivers.®
ECN is a packet-switching network with decentralized con-
trol. Instead of impiementing the switching and routing func-
tions in interface message processors (IMPs), as done in
ARPA net, the IMP functions are distributed directly inside
the host machines. The motivation for choosing this IMP-in-
host architecture it to reduce the total system cost and to
shorten the development period of a working subnet in a
university environment. Of course, this architecture presents
the shortcoming of an added switching burden for each host.
which would otherwise concentrate on computation duties.
“The star structure with the embedded IMP functions may also
pose the problem of reduced network reliability. However,
when cost effectiveness has been weighed against potential
disadvantages. the architecture has been sustained, in the
areas of both performance and availabiiity, since 1978,

The seven host computers in the ECN system are coded A,

B.P., AARL, EEG, VE, and LISP machines in Figure 1. Basic
components and functionai features of these host compuiers
are specified in Table 1. The host machine A. being at the
center of the net, is directly connected to four other host
machines. All seven hosts are hardware/software inter-
connected at the highest level. A user at a terminai connected
to any of the hosts can access the remaining hosts as if nis’her
terminal were directly connected to those host machines. A

YE Machimg
VAX L1/THD
LISP Machine A Machine * Hachine 16 Machine
POF 11/4S — roF A8/ [~ O 11770 1 ror 11708
fiagw: A1) metwork links are
| Megaband Coaxisl
& Machira cablas, .
POP 174G
{a). €Englinearing Computer
Hetwork (ECM} at
Purdue University
AARL Machine
woP (1705

"Maft" p— —— T AR

(b}, Directed graph
representation of
message routing
paths Fn ECN,

Figure 1—Architectural interconnections of the Purdue engineering computer
network

user may have programs simultaneously running in several
host machines transmitting data from one to another.

Topologically, the.net can also be viewed as a three-level
“tree’ system, with Node A as the root, four hosts (B, P, VE,
and LISP) at the second level, and two hosts (AARL and
EEG machines) at the third level. The hosts B and P are
directly connected to the AARL and EEG machines, re-
spectively. These two “leaf” machines, at the third level, are
research laboratory computers and are network hosts; but
they do not serve as switching nodes. With the distributed
control among the hosts, the message routing in the network
is done on an interrupt basis. In other words, multiple traffic
paths may exist concurrently by timesharing use of some com-
mon intermediate nodes.

Being at the center of the network, Machines A (PDP
11/70) and B (PDP 11/45) support high-speed communication
links to five other PDP-11 machines and to the PUCC (Purdue
University Computing Center) CDC 6500/6600 computers.
The three hosts (VE, A, and B) support 136 serial data lines
sonnected to CRT terminals, 20 microcomputers, and various
data acquisition devices throughout the network, operating at
rates ranging from 1.2 Kbaud to 38 Kbaud. An automated
document preparation facility is also implemented in the
UNIX network for entering/editing text and equation materi-
al. Besides word processing. the ECN is also connected with

Engineering Computer Network 193

O__O BOETLIIM abek WY werylas T
$13 1110 wordy of main wesory

T bk EF-15 F lLomt imgednine Frocesisr
ot g
o/ 1600 BR1

Wl_m . Bay
— 1
e (] [] [) (=] ™ (=

nlarter nae
2 70 CAF LEAN Ao I TEMGAALS, § LIME FAUNTENS. 20 AICRCPAOCESS0S [lncl 80807 s & meB0O's)

Figure 2—System components of the A machine in ECN

a graphics laboratory. The detailed configuration of the cen-
tral host, Machine A, is shown in Figure 2. The DH-11s are
interfaces for connecting 70 terminals, three line printers, and
20 microprocessors to the UNIBUS of A machine. The VAX
11/780 hardware includes 2 megabytes of main memory and
two 267-megabyte disks. The PDP 11/45 (B machine) hard-
ware includes 128K words of main memory, two disk drives
totaling 272 megabytes of online storage, and a high-speed
floating-point array processor (AP-120B). The 210 time-
sharing terminals connected to seven hosts in ECN are pri-
marily Lear-Siegler ADM-3/3A and Hewlett-Packard 2640
CRT terminals, '

The UNIX (Version 7) operating system includes the high-
level language C, F77, DEC’s Fortran IV plus, BASIC,
Macro-11, APL, PASCAL, cross-assemblers for various
microcomputers, and many other software development
tools."'® To the PUCC computers, the ECN serves simply as
a remote job entry (RJE) station. The EE microprocessor
laboratory is supported by A machine (PDP 11/70). Currently
connected to the ECN are the following microcomputer sys-
tems: 8 Southwest Technical 8K systems based on Motorola
6800: one Inteilec 8 Model 80 8K system, one Inte! 800 MDS
with 32K RAM and 16K ROM with dual-drive floppy disc,
one Intel 848 MCS with 1K RAM, 10 Prompt 80/85 1K design
systems based on Intel 8080, an SKD 8086 system, and one F8
32K system based on Fairchild F-8 microprocessor. All the
microprocessor systems have RAM, monitors on ROM, and
connections for downloading from the PDP 11/70 A machine.
The A machine has cross-assemblers for both the 8080 and
6800 microprocessors.

In the near future the present star ECN will be recon-
figured, with the addition of another VAX 11/780 computer
(VM)}, into a double-loop computer network, as depicted in
Figure 3. The two VAX systems (VE and VM) and the two
PDP 11/70 (A and P machines) will form the main loop.
serving as the backbone of the system. The four PDP 11/45
laboratory machines will form the secondary loop. The VE
and the A machines will then serve as a gateway between the
two loops. A proposal is being considered that wouid even-
wally extend the current ECN to an even larger network of
minicomputers and mMiCroprocessors 1o serve nine engineering
schoois at Purdue University.

NETWORK LINKS AND INTE.RFACE LOGIC

Local communications between two computers on the UNIX
network are controlled by a pair of DMC-11's,* one on each

YE Hachine VA Hachine
VAKX 11/780 ¥Ax 117780
Secondary Hain Loop
Loop
A Machine P Machine
PP TL/TO POP 1L/TR
LISP Machine
POP 11745
B Machine
POP 11745
AARL Machine EEG Hachine
POP 11745 PDP 11745

Figure 3~-Double-loop configuration being considered for the next phase of
ECN

computer, At present, with full-duplex and one-megabaud
operations, each DMC-11 consists of a DMC11-AL micro-
processor module and a DMC11-MA line unit module con-
nected by a one-foot cable. A pair of coaxial cables (Belden
8232 double-shielded coaxial cable) are used to connect two
DMC-11"s. The DMC11-AL microprocessor module is a hex-
sized single PC board that fits into a hex small peripheral
controlier (SPC) slot. It contains a 300-nsec bipolar micro-
processor, a read-only-memory implementing the DDCMP
protocol, local scratchpad memory, and UNIBUS interface.
The DMC11-MA line unit module is also a hex-sized PC

Table 1—Architectural features in each host computer of the en-
gineering computer ncrwork

Host Architectural Features

A PDP1Y/70--UNIX Version 7
| megabytes main memory, 355 megabytes disk memo-
ry tape drive, 70 terminals, 4 printers. printer/plotter
{Sec Figure 2) FP-11C floating peint processor, 20
MICIOProcessors
B PDP11/45—UNIX Version 7
" 256 kilobytes main memory, 292 megabytes disk memo-~
ry, AP-120B array processor, paper tape punch, 25
terminais
VE VAX 11/780—UNIX Version 7
2 megabytes main memory, 590 megabytes disk memo-
1y, 32 terminal lines
P PDP1I/70—UNIX Version 7
1 megabytes main memory, 443 megabytes disk memo-
ry, 3 printers, 65 terminals
AARL PDP11/45—UNIX Version 6
256 kilobytes main memory, 192 megabytes auxiliary
memory, 270 megabytes disk memory, image robotics
/O, 1 printer, 6 terminals
LISP PDP11M45-UNIX Version 7
256 kilobytes main memory, 316 megabytes disk memo-
ry, 2 image display systems, 10 terminals, 1 printer
EEG PDP11/45—UNIX Version 7
256 kilobytes main memory, 73 megabytes disk memo-
ry, video display, 9 terminals. analog o

194 National Computer Conference, 1981

board for use in SPC slots. It includes serial-to-parallel

conversion and a built-in modem for local operation at ane
megabaud over coaxial cable up to 6,000 feet long. The
DMC11-AL implements the DDCMP protocol in hardware;
this makes efficient data communications possible, The
DMC-11 is also responsible for character and message syn-
chronization and header and message formatting. These re-
lieve the programmer from many low-level details in data
communications.

Alil communications between the PDP-11 and the DMC-11
are through cight bytes of control and status registers (CSRs).
These registers are addressed as 76XXXY, where Y ranges
from 0 to 7, and are implemented with random access mem-
ory. Four bytes of these registers are mulitipurpose data port
registers. Their meaning is controlied by the other registers,
and their use is governed by the DMC-11 microprocessor. The
format and contents of the data port registers depend on the
transfer type (input or output). They are loaded by the PDP-
i1 on input transfers and are loaded by the microprocessor on
output transfers. The other four bytes of the CSRs contain
commands, status information, and definition for the type of
transfer. All commands, command completions, and status
information pass through these registers.

The PDP-11 program is completely insulated by the DMC-
11 from the communications link and the DDCMP protocol.
The program initializes the DMC-11 by supplying the base
address of a 64-word table in PDP-11 memory, which is called
the base table. Once the base table is specified, it belongs to
the DMC-11 and is readable only to PDP-11 programs. The
base table is used by the DMC-11 to keep a snapshot of
protoco! activity for power fail recovery and defining the char-
acteristics of the data link. Immediately after the base address
is defined, the PDP-11 program performs another input trans-
fer to define the characteristic of the link {full or half duplex).
The DMC-11's will then automatically start up the DDCMP
protocol and synchronize themselves in a few time intervals.

From this point on the PDP-11 program can request and use
the multipurpose CSRs to provide the bus address and byte
count of messages to be transmitted or buffers to be filled on
reception. Transmit commands will be reposted as completed
when successfully acknowledged. Receive commands will be
reported as completed when an entire message has been suc-
cessfully received in correct sequence. Successful command
completions will interrupt the PDP-11 processor, if enabled.
The PDP-11 program may queue up to seven buffers for trans-
mission and seven empty buffers for reception by supplying
buffers to the microprocessor faster than it returns them. This
allows the transmission and reception of messages to be pipe-
lined. Data integrity may be lost when more than seven buf-
fers are queued.

The DMC-11 is designed with a number of features for
reliable operation and ease of maintenance. During normal
operations. the DMC-11 keeps counts of communications and
transmissions. These counts are recorded in PDP-11 memory.
Occasional retransmissions are handled by the DMC-11. The
microprocessor informs the PDP-11 program of unusual or
error conditions involving the communications channel. re-
mote end of the link, DMC-11 hardware. or PDP-11 program.
For reliable data transmission at one megabaud. buffer size is
limited to 512 bytes.

Host & . Mose ¥E

Frocatses

Apolicetion
———— e] a
Protecals
{con,csh, vax
PorLLATD rxe} 117780
UH{X UNix

Host-to-Host
oL 11 it e e e et el
Frotocals
) {COM, DYS, oo
HEXT, ete.}

Communicatlonk
Subnet

Hode-To=Hode Frotocols
(opCHe

(a) ECH Cormmunicatlon Protocols

(b} Packet Format Used in ECH

& bytes —i

Node~Torkode SCH Sequence ERC~ 1A
Pratocat Hurdsar thecu tum (oacional)

Saurce Sgurce e inatfon Oestination
Header for wasr Sacket wovt Socket nvelooe
Hast- To-Hast
» t
rorace Most-tontrol | IMP-Control Byt Count

Cptade Oelodu lwp to 512)
tats
Flale 1
(up to 1 stage
$11 bytes)

Figure 4—Communication protocols and packet format used in ECN

Some codes were written at Purdue for sequence numbers
and general consistency checking and the issuance of idle
packets that are used to detect the activation of the line.
Although not serious, a number of minor bugs have been
found in our PDMC-11 hardware. On rare occasions, the
DMC-11 will loose a buffer with no error status. Strange traps
have occurred on one CPU when the CPU at the other end is
halted. Defective devices on the UNIBUS which keep the bus
too long cause problems. The sequence and timing of com-
mands to first-time initialize the DMC-11 were found to be
critical. Internal UNIX errors that lock out console error
messages cause the DMC-11 to malfunction. The DMC-11
also spuriously issues RDYO interrupts (with RDYO bit
clear) when under very heavy load. All these errors have been
corrected, and the DMC-11s are now operating satisfactorily.

COMMUNICATIONS HIERARCHY AND SYSTEM
PROTOCOLS

A hierarchy of communication protocois has been developed
at Purdue University to allow resource sharing between host
PEC computers and terminals in ECN and to perform various
network functions as listed in the introduction. Processes
within host DEC computers communicate with processes ei-
ther in other host computers or in terminal handlers by means

Engineering Computer Network 195

TABLE 2—Augmented function library for the protocol programs used in ECN

Mnemonics resulting system call

Functions Perforrned Error Control

fd = mxfile()

mxwail (fd.soc;ker) sty (fd, {3.socket O

mxcon (fd, host,socket) suy (fd {1,host, socket}))

mxscon (fd, host,socket)

mxdis (fd) sy {fd, {2,0.01)

read (fd, buffer, count)
write {fd, buffer,counz)

mxsig(fd, signal) sy (fd,{6.signal ,0))
magrp (fd} sty (fd {5,0.0})
mxeof (fd) sty (fd.{7.0.0)

nxserve (socket)

Finds, opens and returns a free network file

fd from the poot “/dev/mn/n"

Waits for connection to local socket number

socket from any host in the network; reruns

when connection arrives. R

Connects local network file fd to foreign path does not
host, foreign socket; returns if a process at the exist, time
foreign host has issued mawaitl) and out.
connection is complete.

host does not

Similar to mxcon except host is a string of
exist in table

characters.

Disconnects file fd; occurs automatically
on a close (fd).

Reads and writes buffers; reads a minimum
of whatever is written in the buifers or 512
bytes and does not wait for the buffer to fill,
Sends the process or process group (see
mxpgrp) at the other end of connection, a
UNIX signal number sighal see (11)

Places the current process and al! its
children by forks in the same unique
Process group.

Write an end of file (EGF) onto the
connected file fd; all reads at the other end
receives a zero byte count (EQF); all writes
at this end are ignored.

Answers requests for service on socker by
the con and csh servers (described in the
fifth section).

of several specially developed programs. In this section we
present a functional characterization of the ECN protocol
hierarchy. Detailed software constructs of network applica-
tion programs will be described in the next section.

Each host in ECN is identified by a one-byte host number.
Processes residing in each host are uniquely identified by a
socket number. A connection between a process in the local
host and a process in a foreign host is specified by four one-
byte numbers: source host, source socket, destination host,
and destination socket. This naming convention will allow
multiple connections to the same local host/socket pair, anal-
ogous to the telephone PBX service where multiple calls.can
be directed to the same unique phone number. A subset of the
socket numbers at each host is reserved for connection ser-
vices by system processes. Variable-length packets are used in
ECN to allow hosts to communicate with each other. The
packet format used in ECN is illustrated in Fig. 4b. The first
four bytes in the host-to-host header form the connection
number. The next two bytes are integer opcodes used for
host-host and IMP-host controls, to be described below. The
byte-count indicates the number of bytes being transferred in
the data field, which may contain a maximum number of 512

bytes. The choice of this maximum size of 512 bytes matches
the capacity of a typical disk block.

ECN uses a multilevel protocol similar to that implemented
inthe ARPA net, The major difference lies in the way packet-
switching functions are being implemented. ARPA net uses a
separate IMP as a switching processor, whereas in ECN the
IMP functions are implemented by the hosts with the aid of
the interface microprocessor DMC-11. The ECN communi-
cation protocols consist of three layers, as illustrated in Figure
4a. These protocols are implemented in C programming lan-
guage, augmented with a user-callable function library for
performing various network functions. Most of these func-
rions reformat the arguments into the appropriate sity call on
the open network file descriptor, supplied as the first argu-
ment. A brief listing of these functions and the resulting sys-
temn calls are given in Table 2.

in the kernel space the network software in each machine
is split into two-parts, The mx device driver/deve/mx/x ap-
pears as special files to UNIX. Open, close, read, write, and
stty calls on mx files pass control to the mx driver, which
generates packets containing host-to-host protocol and passes
them to the IMP process for delivery. The IMP process re-

196 National Computer Conference, 1981

ceives buffers (packets) from the local and naighboring hosts.
The IMP examines the destination address on each arriving
packet and looks up the host number in its routing table,
which maps host numbers to external link numbers. The pack-
et is then enqueued for output via the appropriate line driver.

Node-To-Node Protocol

In the lowest level of line controi, the interface micropro-
cessor DMC11 implements the same DDCMP (digital data
communication message protocol) protocol used in DEC-
NET.® A common type of IMP-to-IMP envelope is prefixed to
the host-to-host packet header, as described in Figure 4b. This
envelope contains an SOH (start of header), a sequence num-
ber, and an optional check-sum. The DDCMP protocol de-
tects channel errors using CRC-16 {16-bit cyclic redundancy
check). Errors are corrected by automatic retransmissions.
Sequence numbers in the envelope insure that messages are
delivered in proper order without omissions or duplications.

Host-To-Host Protocols

In the middie level is the protocol for packet exchanges
between the hosts. The packet header contains two function
control opcode fields. Described below are opcode mne-
monics used in these fields and the corresponding packet con-
trol functions to be performed.’ The host-to-host operations
performed include the CON (connect), DIS (discount},
NEXT (ready for next packet), SIG (signal interrupt), and
RST (broadcast reset). The IMP-control field when nonzero
indicates an IMP-to-host or host-to-IMP control opcode. A
dead code indicates a dead host. All packets sent to a dead
host should be bounced back to its source host or destroyed
when both source and destination hosts are temporarily dis-
connected.

The CON operation requests that the connected name in
the first four bytes be established. Connection is established
when a pair of these is exchanged, one in each direction, If
receiving host has a process with matching mxwait (fd, socket)
pending, the matching CON is sent. If not, the CON is queued
and picked up later by a mxwait. After connection, a CON
with the same connection name results in timeout. The DIS
function breaks the connection named in the first four bytes.
Disconnection is complete when a pair of DIS is exchanged.
The NEXT is sent by the consumer of the data packet and
indicates that the data has been transferred from kemnet into
user space and is ready for the next data packet. The SIG
sends an interrupt signal number in the first data byte to the
receiving process at the other end of the connection. The RST
causes the source host to inform the destination host to reset
all known connections between the two.

Applicarion-Level Protocols
In the highest level are the interprocess cominunication

protocols. Sc far, three application programs have been writ-
ten at Purdue University to facilitate the UNIX networking.

The con program allows a user to connect his physical termi-
nal to a pseudoterminal on any other host machine. This
virtual terminal protocol provides local/remote echoing by the
use of sity/grry functions to be described in the next section.
The esh program (for connected shell} is used to control re-
mote process execution. It takes the host name and a se-
quence of commands as its arguments. The commands are
executed on the specific host computer with standard /O
redirected to the local host. The con and csh are also used
under programmed network 1/0, and file transfer/remote de-
vice accesses. The rxe program performs a load-balancing
algorithm and sends jobs to the network machine with the

least load average.

APPLICATION PROTOCOLS AND UNIX EXTENSION

In this section we describe the three application protocols
developed at Purdue: con {connect virtual terminal), csh
(connected shell), and rre (remote execution environment).

Virtual terminal program (con)

Con is an extended shell command that takes a terminal
connected to the local host to act like a terminal connected
directly to a remote host. The synopsis of the commmand is con
hostname. When this command is entered into the shell with
a valid host name, login messages such as password prompt
are communicated from the remote host to the local host.
From this time on, the local terminal acts like a terminal
connected directly to the remote host. The base level shell
exits when a final control-D is typed and the connection is
broken. Con is also designed so that the actions of escape
(hold terminal output) and the rubour {interrupt) key are
immediate and not “squishy™ because of network buffering.

The sequence of actions performed on the local host when
a valid con command is entered from the terminal is as fol-
lows: A free network file is obtained by using the function
mxfile {) (see Table 2) at the local host. The function mxscon
() (see Table 2) is called to connect this local network file to
the remote host on Socket 1. When the connection is estab-
lished, the con at the local host is split into two parts: One
reads from the terminal (fdQ) and writes to the network file;
the other reads from the network file and writes to the screen
{(fd1). As described in the read/write commands in Table 2,
reading can be done without waiting for the entire buffer to be
written. At the remote host, the con server S-con is respon-
sible for establishing the connection when a connect arrives on
Socket 1. S-con forks once to generate a child process. The
child S-con then finds a free pseudoterminal and forks into
two parts. One part is reading from the net and writing to a
pseudoterminal while the other part is reading from the same
pseudoterminail and writing to the net. A pseudoterminal at
the remote host consists of two sides that are named /dev/ttyx
and /dev/ptyx. Anything written on /dew/ptyx iocoks as if it has -
been typed in at /dev/ttyx, while everything printed out at
‘devsrtyx can ve read at /dev/ptyx.

Certain escape and command character sequences, such as
an sty command, when issued on /dev/ttyx, are first trans-

Engineering Computer Network 197

lated into a command sequence before it is read by /dev/ptyx.
“T'his command sequence is then sent or other operations are
performed. The format of such a command consists of an
escape byte called IAC (interpret as command), followed by
a command code byte, possibly followed by data for that
command. The commands currently implemented include ST
(set teletype), GT (get teletype), IN {interrupt signal), QU
{quit signat), EF {end of file), and DM (data mark). The
S-con is only responsible for data transfers and never inter-
prets the commands.

" Remote process protacol (csh)

Csh is an extended shell that runs a shell on a remote host,
with its standard /O the same as csh’s standard VO. The
synopsis of the command is.
csh hostname [— ! user password) “commands”
The quotes are not needed if special characters for the shell
(such as |, /\, etc.) do not exist in the commands. If the —/
option is omitted, the commands are run under userid = user,
dir = /usrfuser on the remote machine. Interrupt, quit, or
hangup signals on the local host will send a hangup to the
remote process.

The use of the csh command can be iltustrated by the fol-
lowing examples. Suppose the local host is the A machine,

nroff filename | csh p opr
processes the file on the A machine and prints it on the
P machine.
csh p — 1 username password *‘cat > file < file 1
transfers file 1 on the local machine to file 2 on the
remote machine.

Other capabilities of csh include transferring a directory of
files.

The sequence of actions perfcrmed on the local host when
a valid csh command is entered is as follows: The local csh
connects to Socket 2 on the remote host by using the functions
mxfile () and mxscon {) (see Table 2) and writes three lines
containing name, password, and command, each terminated
by *\n,” in a single write. When the connection is estab-
lished, the csh at the local host is split into two parts: one
reads from standard input and writes to the net while the other
reads from the net and writes on standard output. When the
half that is reading from standard input gets an EOQF, it writes
an EOF 1o the net and exits. The other half that is reading
from the net will exit when the command exits at the remote
host and sends an EOF to the local host. At this time the local
esh exits. At the remote host the csh server (S-csh) listens for
a connection on Socket 2. When one arrives, the connection
is established and a child is forked to handle it. The child S-csh
opens file descriptors 0, 1 and 2 (standard VO and 2rror) as
net files and reads three items: name, password, and com-
mand line. If the name is non-null, “/etc//-csh {-csh name" is
invoked and does the lengthy job of looking up and verifying
the password (still in the kernel net buffer) and executing a
shell with the command line. The command performs its VO

from the net. If the name is null, the command is run under
user name user. All the children of this process are placed and
executed in a separate process group. To speed things up, the
shell is not called if no special characters exist in the command
line. When the command eventually exits at the remote host,
an EOF is sent to the local host to terminate the csh.

Remote Execution Environment {rxe)

Ruxe is a scheduling routine developed to run a selected set
of commands on the most idle machine available in an (al-
most) transparent manner. These commands are generally
CPU-bound programs that require a relatively small amount
of file transfers. Therefore it would be cost-effective to exe-
cute the job in a remote host. The commands currently imple-
mented include the compilers for c(cc.) and FORTRAN
{f4p., fortran..f77.), microprocessor cross assemblers
(mas80.,moi68.) and word-processing programs {nroff.,
troff.). The period at the end of the command is used to
distinguish jobs to be run in rxe against jobs to be run on the
local host. The synopsis of rxe is .

[-V]

{ - H include-file} arguments. . .

command
When one of the above commands is executed, rxe first pre-
processes the command line arguments. The . is stripped off
from the command, Any argument that does not start with a
— is assumed to be a file that will be transferred with the
command to a remote host if the command is executed there.
The — V flag causes a verbase listing of rxe’s operations to be
printed (the machine used and the files transferred). The — H
include-file causes include file to be copied to the remote host
with the command, The — H include-file can be repeated if
several files are to be included. The — H option forces
include-files to be transferred together with the command,
Since the command may be executed on 2 remote machine,
files included but not transferred would not be found at the
remote host. Some examples of the use of this command are
as follows:

cc. fl.c f2.c €3.0 f4.0 -H vars.h
executes the C compilation command cc fl.c 2.c 3.0
f4.0 with an include file vars.h on a remote machine
nroff. paper|opr '
runs the word processing program “nroff paper” on the
most idle machine and prints it at the local host.

To effectively select a machine that is “the most idle,” the
machines must be characterized to indicate the degree of idle-
ness. This is represented by a single number, called a load
average, that is maintained in each network machine’s kernel.
The load average is a number that can characterize the load at
a computer. Therefore, computers with higher load averages
are more heavily loaded. Load average of the current machine
is defined as the approximate factor of increase for the phys-
ical time it would take a given process 10 run on the current
machine over the physical time needed for the same process
to run on a completely idle PDP-11/70. It is calculated from
several factors, including number of running processes, num-

198 National Computer Conference, 1981

ber of background processes, number of disk transfers,
amount of swapping, amount of interrupts, aid a site-depen-
dent constant. The sité factor is used to characterize machines
with different architectures and speeds. It was developed ex-
perimentally by running compilers on all the network ma-
chines and takes into account disks, the network, memory
speed, and other system dependencies as they apply to run-
ning compilers. Currently, the PDP 11/70's have a site factor
of 1. The B machine, which is a PDP 11/45 with a cache, has
a site factor of 1.5; and the AARL machine, which is a PDF
11/45 without a cache, has a site factor of 2.5.

The computation of the load average takes into account
only a finite number of characterizing parameters and makes
assumptions about things like the average mixes of CPU/TO-
bound jobs, the number of child processes a process forks, the
amount of memory used, etc. It is only an approximate char-
acterization of the machines. Very few resuits can be reported
now regarding improvement in response time; but in general,
it is much faster to run the command on a less idle machine
than on the local host. Experimentation is still needed in the
future to further improve the performance.

The sequence of actions performed in the local and remote
hosts are described here. First, rxe preprocesses the command
by stripping off the . Next, rxe connects successfully to each
network machine on Network Socket 3. In each network ma-
chine, the rxe server (S-rxe} is waiting (mxwait () for a
network connect to Socket 3. When S-rxe receives this con-
nect, it sends a two-byte load average (from /dev/kt) to the
originating host. The host rxe picks the computer with the
minimum load average and sends a 40-byte “idline’” with host-
name, uid, command, and mxscon () to this machine’s Socket
4, If the host does not want the command to be processed at
this machine, a disconnect is sent to disconnect Socket 3, and
S-rxe goes back to wait for another connect on Socket 3. Two
network channels are used here to avoid a race condition.

For the machine that receives the 40-byte “idline,” a muxewait
{ } is executed to wait for a connect to Socket 4 (mxscon (})
from the originating host. This wait is timed out in case a
connect is not received in 15 seconds, When the line is con-
nected. S-rxe forks a child S-rre to become the new S-rxe
server, which goes back to wait for a new connect on Socket
3. The parent S-rxe sets up a scratch disk directory, waits and
receives the source files from the host on Socket 3, and copies
them to the scratch directory. The argument files follows in a
similar manner. On receiving all the files, the parent forks
again, with the child processes executing the command and
argument files received with file descriptors fd 0,1, 2 con-
nected to the net (like esh). When the command terminates,
S-rxe closes Socket 3, and any resulting files created are sent
to the originating host over Socket 4. Finally the parent re-
moves the scrawch directory and exits. The above descriptions
have only touched the basics of the design. Interested readers
should refer to the program listings of con, csh, ' and rxe for
details.

PERFORMANCE ANALYSIS AND MEASUREMENTS

In evaluating rhe performance of the ECN, we focus our
attention on estimating the mean response time of a job issued

from a node of the network. It is assumed that each job can
be processed on any node of the network. The objective of the
maodel is to compare the performance of two scheduling stra-
tegies for dispatching jobs to nodes of the network. Currently,
only a few commands, such as cc (compilation) and nroff (text
formatting) are implemented on the system for load-balancing
purposes. Since the ECN performs load balancing for a.smail
class of jobs, the results obtained below would be optimistic
on the whole, since some nodes would still-have high work-
loads and hence encounter high response times.

Figure 1b shows a directed graph representation of the
ECN. For communication between any two adjacent nodes {1
hop), the maximum throughput experienced by a single user
is about 250 Kbaud. Although a three-hop communication
requires an intermediate node, it was aiso found from mea-
surements on the system that the processing performed by the
intermediate node is negligible and does not contribute sig-
nificantly to the workload at that node. This is expected, since
the only processing required by the intermediate machine s to
transmit the packet from the input DMA to the output DMA
device. These measurements permit us to assume that the
intermediate processors cause negligible delays in forwarding
the bypassing packets. Several snapshot throughput measures
on the current ECN were obtained, as shown below:

Path Hops Throughput in Kbaud
P-P 0 384
A-B 1 273
P-B 2 180
P-AARL 3 136

With time sharing use of the communication links by multiple
users, the above throughput per single user can be increased
to approach the maximum rate of 1 megabaud.

Most performance evaluation of computer networks con-
siders only the behavior of the communication channels and
not the behavior of the model processors.” Delay at the chan-
nels contributes most to the total delay. Others have devel-
oped analytical models based on the destination probability of
a job from a source node.' The model developed here evalu-
ates scheduling strategies for jobs based on the workload
characterization of both the channels and the node pro-
cessors. ’

It is assumed that a job is formatted as a message that
consists of a command identifier and a list of arguments. The
command message is dispatched to the communication inter-
face {CI), where it is queued to await transmission over a
physical link to the CI of another node. The message delays
encountered vary in going from a source to a destination as
the workioad on the intermediate links changes. The desti-
nation processor executes the process specified by the com-
mand identifier using the list of arguments. A resuit message

generated at this node is routed back to the initiating node

processor. it is assumed that the command and result message
tengths are independent and exponentially distributed ran-
dom variables. The averall response time of the job wouid
depend on the channel delays and the workload at the desti-
nation processor.

Let N represent the set of nodes in the graphical repre-

Engineering Computer Network 199

Machine {node &)

Tarminela Communlzarlon
incarfagas

LALH

To mode 3
{A maching)

Communlpagion
Ingerfaca

from node § From nade 3
(EEE maching) (A Machine)

Figure 5—Qucueing network model of Node 4 (P machine)

sentation of the ECN shown in Figure 1b. Hence
N ={1.2,...,7}. The communication device, c.(i), routes a
message from a node / to its immediate neighbor node f; if
i{#3, m=1,if node j is the “right” or “down" neighbor of
node i; and m =2, if node j is the “left” or “up” neighbor of
node /, as labeled on Figure 1b. Figure 5 shows a queuing
network of Node 4 (P machine) and its associated commu-
nication devices.

The intermediate nodes of a message path can be found by
using an n X n routing table, R (n =7, for the ECN), The
routing model creates a static nonadoptive logical path from
source { to destination j. Specifically, R{i,j) contains the in-
dex (k =1, 2, ..., 7) of the next node (or “hop™) on the
logical path from / to j. Hence, given the source and desti-
nation nodes as / and / respectively, the sequence of inter-
mediate nodes visited by a command message describes the
forward paih (i—j) iteratively as

I(f'j) = {iO ik*lv iki-:.'-l . -cj}

where fovi = R(if), ka2 =R i+, j) ..., and so on until
R(ip;) = for iy e I(i,j). Similarly, the return path (j—i) can
be obtained as /(j.i). In order to evaluate the performance
network, the effects of two scheduling strategies were studied
for the ECN. The first strategy S, sends a job from a node i
to node j for processing, if node j has the minimum estimated
response time at time ¢ ({rr) of a job processed at Node ;,
using a processor sharing model. Hence,

It (1) = ——

re; (1) = ~———

s l—p.(2)

where x, is the mean service time of the processor at node §
and p; {1} is the measured processor utilization at time ¢ and is
defined as the {raction of time the processor was busy during
the interval {0. ¢]. Hence the first strategy can be specified as

follows: dispatch job that arrives at time ¢ from node i to a
node j, where § is the processor node with a r:nbrln {Irt(1)}. The

system provides a status report of the network in which the
load average and utilization of each processor are updated
periodically. This information can be used for scheduling pur-
poses.

The first scheduling strategy does not consider the overhead
of message transmission from a source node to a destination
and the return path. In the second strategy, S;, we define an
estimated response time of a job at time ¢ dispatched from
node / and to be processed at node j. The estimated response
time at time ¢ is given by

Wi@)= 2 Temun(®) + 1) + 2

Tenr(t)
kelli ked{i.i)

fori #j. When i = j, Wy(t) = 1r1;(t) W,(¢) consists of three
components, namely, the estimated delay time of the com-
mand message in the forward path, the estimated response
time of the job processed remotely at Node J» and the esti-
mated delay time of the result message in the return path, all
at time ¢. The delay of a message in each communication
channel can be modeied as an M/M/1 queuing system, as
shown in Figure 5. Hence, the estimated delay time in channel
Cm(k) at time ¢ is

e

Pemtir(£)

where m, is the mean message length of jobs departing from
node X and (p., «(¢)) is the measured utilization of channel
cm{k) at time ¢ and is defined as the fraction of time channel
¢m(k) was busy in the interval [0,2].

Temus(t) = 1=

Figure 6~—Response time disbribution for scheduling strategies $1 and §2

The second strategy can then be summarized as follows:
dispatch job that arrives at time ¢ from node i to a node j,
where j is the processor node with r::ni:':{W.*}. Figure 6

illustrates the response time distribution of the two scheduling

52

V. 05100 =
319625 -
g 788250
; 1
=
]
2
S 56875 4
&
3
E]
s
x .525500 =
b
x
3
g
334125
@
pod
=
3 .262750
E]
]
-131375
.
.
0.08000 3 T - T T T T -
5.00 &.28 1.4 3.8 25.0 33 37.5 «1.8 589

RESPCHSE TImE {SEC)
Figure 6—Response time distribution for scheduling strategies $1 and S2

200 Mational Computer Conference, 1981

strategies discussed above for a given system load. It can be
seen from the distributions that the schedulin} strategy taking
into consideration the channel delays in dispatching the jobs
has a smaller mean and standard deviation of the response
time.

Two measurements were performed on the ECN to evalu-
ate the effect of job classes on the response time under varying
workload. The first job class consists of a channel-bound job
in which a large file is transferred from the VE (Node 1)
petiodically to a “nuli” device at the node with the smallest
load average. The second job type consists of a processor-
bound job (an executable tight-loop program) that is dis-
patched periodically for execution to a node with the least
load average. These transactions are performed under a wide
variety of workloads, and a record is kept on the effect of the
destination processor utilization on the response time. The
measurements showed that the response time of the channel-
bound job was virtually independent of the utilization of the
destination processing mode. This is expected, since the chan-
nel loads were generally light, although the node utilizations
varied considerably,

CONCLUSIONS

The experiences accumulated from developing the UNIX net-
work of DEC computers at Purdue University are sum-
marized below:

1. Hardware components and communications links of the
networks are readily available from standard DEC prod-
uct lines. No special hardware designs are needed to
construct such a modest but effective local computer
network. This off-the-shelf approach saves significant
development overhead with a controlled budget.

2. No major changes of the UNIX operating system were
made to establish the network functions. A small num-
ber of changes, however, required an in-depth under-
standing of the operation of UNIX. Only a handful of
specially written system programs (con .csh xre) at the
highest protocol level. together with a library of host-to-
host network functions (see the fourth and fifth sections)
are needed to establish the virtual terminal. remote pro-
cess execution, file migration, and user-programmed /O
capabilities.

3. The ECN is being reconfigured to a double-loop com-
puter network (Figure 3). Over 210 CRT terminals and
20 microprocessors are currently connected to the seven
minicomputers in ECN. The two PDP 11/70 computers
(A and P machines) are aiso connected via 0.2 mega-
band lines to the Purdue Computing Center, which itself
has over 250 connected terminals. Users at terminais
connected to ECN can use the computing center facili-
ties {CDC 6500/6600} in batch mode. The CDC com-
puter users cannot use the ECN facilities from their
terminals. This restriction is enforced {0 wsure the net-
WOk S2TVICeS 10 engineenng users.

4. The ECN performs satisfactorily for research and teach-
ing usage by engineenng schools at Purdue. The per-

formance analysis given in the sixth section shows that

the communication line utilization per user is only at
. 15% to 40% of its maximum baud rate. This means the
" performance of the network can be further upgraded by
‘timesharing use of the communication links. This is defi-
nitely an area worthy of further R&D efforts.

5. The reliability of each host in the ECN net is rather high.
However, whenever a host fails, all the terminals con-
nected to it are disabled and all the data flow paths
containing this failing node are broken. In this sense, the
availability of the star network (Figure 1) is expected to
be much lower than that of the loop network (Figure 3).
Fault tolerance capabilities built into the Ohio State
double-loop network™ are being considered to enhance
the availability of ECN.

ACKNOWLEDGMENTS

The engineering computer network project was initiated and
supervised by Professor Clarence L. Coates of the School of
Electrical Engineering at Purdue University. Staff members
directly invelved in the network installation, development,
and maintenance include William R. Simmons, Bill Croft,
George H. Goble, Craig Strickland, Michael Marsh, Joe
Royeis, Curt Freeland, and Peter Miller, all of whom are with
the EE Digital Service group at Purdue. The local extensions
of UNIX software for network operations are also attributed
to the digital service group. In particular, Mr. Croft devei-
oped the library of network functions and the con and csh
programs. Mr. Goble wrote the rxe program and made some
modifications to the UNIX kernel. The authors wish to ex-
press their gratitude to Professor Coates, Mr. Simmons, Mr.
Goble, and other staff members for sharing their firsthand
experiences, on which this paper is based. Assistance from P.
Loomis, V. Hill, and V. Johnson in preparing the manuscript
is also appreciated. '

REFERENCES

I. Bell Lab. Technical Stalf, UNIX Time-Sharing System: UNIX Pro.
grammer's Manual Seventh Edition, Vol. 1. Vol. 2A. 28; January 1979.

2. Chesson, G. L. “The Network UN{X System,” Operaring Systems Review.
Vol. 9, No. 5. 1975, pp. 6()-66.

3. Croft, B. “UNIX Networking at Purdue,” Technical Report {unpublished)
School of Electrical Engineering, Purdue University, Lafayette. {ndiana
979,

4. Davics. D. W. et al. Computer Networks and Their Profocols, Joha Wiley
& Sons. lnc., New York. 1979,

5. Digital Equipment Co.. The DECNET, Chaps 1-3, Maynard, Mass. 1976.

6. Digital Equipment Co., Terminal and Communications Hardbook. 1978,
pp. 2-78 to 2-97.

7. Gobie. George H.. “RXE Program and Load Balancing in ECN," Private
Communications, 1980,

8. Hwang. K.. Distributed Processing and Computer Nerworks, EEG60 Class
Notes School of Electrical Enginecring, Purdue University, Lafavette. Ind.
{980,

9. Kleinrack. L. Queuing Syveme. Vol 1. Computer Applicatinas. Wiley
Interwcihence . New Yrrg 97

0 lau. ™M T . Detrihuted 1w Crmpurter Meotwrmrks,” Advoaces in £ am
puters. Voi. |7 . Acaderm Prew. fnc | 1974 pp. 143221

11. McOuillan. J. M and Cert. V. G.. A Pracucal View of Computer { gmmu.
nications Protocols, 1EEE Computer Society, Catalog No. EHO-1374

1978.

Engineering Computer Network 201

. Newkirk, J. and Mathews, R. A Guide to Array Processing Under UNIX,

Peninsula Research, Palo Alto, Calif.. 1978.

. Nowiiz. D. A. and Lesk, M.E., “A Dial-Up Network of UNEX Systems.”

Bell Laboratories, Murray Hill, N.J. August 1978

. Nowitz. D. A.. “Uucp implementation.” Belt Labs., Murray Hill. N. .,

Qct. 1978,

. Ritchie. D. M. and Thompson, K., "The UNIX Time-Sharing System.”

The Bell System Tech. Journal, Vol. 57, No. 6. August 1978, pp. 1915- 1930,

. Samari. N. K. and Schneider. G. M., “The Analysis of Distributed Com-

puter Networks Using M/DVY and M/M/ Queues.” Proc. of The First Int'l,
Conf. Dist. Compi. Systems, Oct. 1979, pp. 143155,

0.

. Schwartz, M, Camputer Communication Networks Design and Analysis,

Prentice Hall, Englewood Cliffs, N, J. 1977,

. Staffs of Digitai Service Geoup, “Introduction to EE UNIX.™ School of

Electricat Engineering. Purdue University, September 1980.

. Strickland, C. “EED ({editor),” Supplement o UNIX Programmers

Manuai, School of Electrical Engincering. Purdue University, Lafayette,
Indiana, 1979,

Thurber, X. 1. and Freceman, H.A., = Architecture Considerations for
Local Computer Networks.” Proc. of The First inr'l Conf. on Distributed
Computing Systems, October 1979, pp. 131-142.

