AN EFFICIENT PROTOCOL FOR
LOAD BALANCING ON CSMA/CD NETWORKS

Benjamin W, Wah and Jie-Yong Juang
School of Electrical Engineering
Purdue Uriversity
W. Lafayette, IN 47907

ABSTRACT

In this paper, we have studied the load balancing of
jobs on CSIVEA/CD networks. Due to the broadcast capa-
bilities of these networks, workload status can be distri-
buted easily to all the processors. Since only one job can
be sent over the network at any time, it is essential that
a job from the processor with maximum response time be
sent to the processor with minimum response time. To
support load balancing, we have proposed a unified win-
dow protocol for resolving contention and priorities on
the system, and finding the processors with the maximum
and minimum load. The scheme is reduced to the general
problem of finding the minimum from a set of random
numbers. Analytical and simulation resulis show that
the average number of contention slots is a constant and
approaches e. The scheme is also applicable to the gen-
eralkproblem of resolving contention on CSMA/CD net-
works,

KEYWORDS AND PHRASES: CSMA/CD network,
contention, load balancing, priority, response time, win-
dow protocol.

1L INTRODUCTION

The recent advances in large-scale integrated logic
and communication technology, coupled with the explo-
sion in size and complexity of new applications, have led
to the development of paralle! and distributed processing
systems. These systems may possess a large number of
general and special purpose processing units intercon-
nected by a network,

One of the functions of the network is to allow the
sharing of resources that include the access of programs
and databases, and the sharing of computational facili-
ties. Load balancing is a scheme which engages communi-
eation facilities in supporting remote job execution in a
user-transparent manner so that the utilization of
resources i3 improved through the enbancement of
resources sharing. Depending on the workload of proces-
sors on the network, the network operating system may
distribute newly arrived jobs to a remote processor, or
may schedule them for local execution. The concept of
load balancing has been implemented in the Engineerin
Computer Network at Purdue University [HWAS2].
Operational experiences with the system reveal that load

This research was pariially supported by National Science Founda-
tion Grant ECS80-18580 and by CIDMAC, a rezearch unit of Purdue
University, sponsored by Purdue, Cincinnati Milicron Corporation,
Control Data Corporation, Cummins Engine Company, Ransburg
Corporation, and TRW.

8th Conference on Local Computer Networks, Minnoeapolis, Minneso-
ta, October 17-19, 1983,

CH1931-5/83/0000/0055%01.00 © 1983 [EEE

55

balancing has contributed significantly to the improved
resource utilization and reduced response time.

Theoretical studies on load balancing have been done
with respect to centralized control iCHOTD, Nis1).
Newly arrived jobs are routed to different processors by a
scheduling policy. Two classes of scheduling strategies
bave been investigated, namely, probabilistic and deter-
ministic. In a probabilistic routing strategy, an arriving
job is dispatched to the processors according to a set of
branching probabilities. These probabilities are associ-
ated with the statistics gathered about the processing
speeds and job arrival history. On the other hand, a
deterministic strategy routes jobs to the processors
according to the current workload status. This is similar
to a probabilistic strategy except that the branching pro-
babilities are updated dynamiecally whenever the system
state changes.

Previous studies on both strategies have shown that
a multiprocessor system with load balancing performs
much better than one without it, and its performance js
nearly as good as that of a single fast processor. How-
ever, three problems occur when these strategies are
applied to a system connected by a relatively slow net-
work. First, the success of the above strategies lies in the
fact that the information on system load are readily
available without any delay. When the network is slow,
significant delays may be incurred in distributing the
status information. The routing of jobs based on inaccu-
rate information may have an adverse effect on perfor-
mance. Second, the distribution of status information
may have s large overhead on the network traffic.
Special considerations may have fo be made to reduce
this overhead based on the network characteristics.
Third, load balaneing tends to increase network load and
impede message traffie. Tradeoffs must be made to bal
ance the delay of jobs and messages.

In this paper, we concentrate on the design of a pro-
tacol for load balancing on CSMA/CD type networks
[TAN81, MET76]. An organization of the system is
shown in Figure 1. These networks are characterized by
a single shared bus with a distributed contention resolu-
tion protocol. The unit of message is a packet and can
be sent in a time slot. Whenever multiple processors try
to access the bus, they detect whether a carrier is present
{the network is being used). If the bus is husy, they wait
until it becomes free. If it is free, they start the
transmission after a random delay. When two processors
try to transmit simultaneocusly, a collision is said to
occur. The contending processors have to trensmit again
in the future. The special broadcast capability of these
networks facilitates the efficient distribution of status
information for load balancing. However, the major
drawback is the limited bandwidth. Only one job can be
distributed at any time over the network. Therefore, it is
important that jobs from the processor with the max-

CSMA/CD netwark

load from

other processory

external
arrivals

3

LI

™ Job

migration

processor

anization of system connected by a

Figure 1.
/CD network

Or
Cs
imum load migrate to the processor with the minimum

er is divided into five sections. A MAX-

load.
This Ea

MIN load balancing strategy is proposed in Section 2. An
efficient CSMA/CD protocol which can support load
balancing and message transfer is discussed in Section 3.
This protocol is an optimal collision detection scheme
with an average behavior of e contention slots regardless
of the number of contending stations provided that this
number can be assessed quite accurately. Although under
heavy load, the scheme does not switch to a time-division
multipiexed mode as what is done in the urn protocol of
Kleinrock and Yemini [KLE78], the urn protocol cannot
be adapted for load balancing and prioritized access.
Some performance resulis are shown in Section 4.

2. MAX-MIN LOAD BALANCING STRATEGY
Due to the limitation of CSMA/CD networks, only
one job can be sent over ihe network at any time. It is
essential that jobs from processor with the heaviest load
migrate to processor with the lightest load. In order to
support this MAX-MIN load balancing strategy, the fol-
lowing tasks are involved:
%a; to decide when load balancing is needed;
b} to identify the processors with the maximum and
minimum load;
{c) to send a job from the processor with maxiinum load
to the processor with minimum load;
(d) to eumt:lp the results of execution back to the originat-
ing site,
Migrating jobs and returning results can be handled
in the same way as regular message transfer. However,
the decision to perform load balancing or not depends on
the network traffic. If the total round trip delay of send-
ing jobs over the network and the execution time on the
remote processor is longer than the local execution time,
then load balancing is not beneficial. Monitors on net-
work traffic must be kept at each processor. When it is
decided that load balancing is necessary based on previ-
ous status information collected, the workload status of
all the processors must be determined in order to identify
the source and sink of the job to be balanced. A simple
way is to go through all the processors in a round-robin
fashion. This is time-consuming becsuse it depends on
the number of processors on the network. We propose in
the next section an efficient protocol to resolve this prob-
lem. As a byproduet, the protocol can also be used for
collision detection of messages.

56

3. A CSMA/CD PROTOCOL FOR SUPPORT-
ING MAX-MIN LOAD BALANCING STRA-
TEGY

There are four tyges of tasks to be serviced by the
protocol. These include regular message transfer,.result
return, job migration, and MAX-MIN identification.
They are listed here in descending order of priorities.
Since the network is originally designed for message
transfer, we assign the highest priority to messages.
Load balancing can be done by using the spare channel
capacity. The return of resuits from a remote processor
is important because the delay contributes to the
response time of jobs. It is also natural that previous
load balancing process should have higher priority than
that of a newly invoked one. Thus, m- N
jdentification is assigned the lowest priority.

The identification of the processor for using the
channel copsists of two phases. First, the group of pro-
cessors with the highest priority must be determined.
After these processors sre known, a contention phase fol-
lows which identify a unique processor to transmit.
These phases must be carried out for every packet sent in
the system except when messages are sent. In this case,
only the contention phase is necessary because the prior-
ity class remains at the highest level until all the mes-
gages are sent. A summary of the protocol is shown in
Figure 2.

The eflfect of our priority assignment favors the
transfer of messages. However, it would reduce the possi-
bility of load balancing in the system. Suppose the
maximum {resp. minimum} response time in the system is
fmax (FESP. Ty} and the transmission delay of sending a
job over the network is s;. Let the channel load for mes-
sages be c,. Since messages have higher priority, the
average total delay of sending the job is s;/(1-cp).
Assuming that the return of results takes the same time,
load balancing will be effective if,

+ 2 8

Finax - Tmin 1-¢
m

4
Global Priority
Resolution
/ \
free free free identify
contention contention contention maximum/
minimum
l l ‘ load
regular result job)
measage return migration
- i Y
load balancing
decision
packet
transmission
1
3

Figure 2. A CSMA/CD protocol supporting MAX-MIN
load balancing strategy

or
23
ey < - ——bee {n
rmu

That is, although the channel is idle, load balancing can-

not be carried out because the channel delay is too high.

A way to improve the channel delay for load balancing is

to reduce the priority of messages. This reduces the

ge:ay of job and result transfer at the expense of message
elay.

3.1. The Resolution of Priorities

Several prioritized CSMA protocols have been sug-
gested in recent years [TOB82, SHAS3). Tobagi proposed
that priorities be resolved linearly [TOB82]. Ia this case,
each processor is assigned the highest priority of the local
messages. During the resolution of priorities, a slot is
teserved for each priority class. A processor will transmit
during the slot reserved for the priority. The resolution
scheme will stog when the highest priority level is deter-
mined. This scheme is good when high priority messages
are predominantly sent.

A closer look at the prablem shows that the priority
resclution problem searches for the highest priorily class
of the processors. This is similar to finding the processor
with the maximum load in the MAX-MIN strategy except
that in this case, the priority levels are concerned. We
will show an efficient scheme for finding the maximum
(resp. minimum) in the next section.

™ Tmin

3.2. The Resolution of Contention
We present in this section a unified scheme for
finding the minimum of a set of numbers. (Finding the
maximum can be transformed to finding the minimum
using an inverse function.) This is the basic operation
erformed in the resolution of contention and priorities.
Fa) Contention resolution for packet transmission: When
multiple processors wish to transmit, each processor
generates a random number in the interval (O,IL.
The processor assigned the chapnel is the one wit
the minimum number.

Identification of processor with maximum {resp.
minimum) load: The load on a processor is charac-
terized by the response time of executing a job on
that processor. The response times of all the proces-
sors are distributed in the interval [0,00). To find
the processor with the maximum (resp. minimum)
load is equivalent to finding the maximum (resp.
minimum} of a set of random numbers in the inter-
val j0,00). _ .

Identification of processors with maximum priority:
The priority of a processor is an integer froth the set
{0, 1, ..., ppyax}- The identification problem searches
for the maximum priority value of all the processors
in this interval.

These problems can be generalized as follows. Given
a set of random numbers y;, i = 1, 2, ..., n, in the interval
{0,1] with distribution F{y} such that y, < y, < <
Y. the problem is to identify the processor(sf with value
y;. Transformation may have to be performed on the
original set of random numbers in order to result in the
required distribution. It should be noted that in many
cases, only an estimate on n can be obtained.

{b)

- v

3.3 Optimal Window Protocol

A general method to solve the search problem is to
use a window protocol that is outlined ia Figure 3.
Given that the minimum value is sought, a first estimate
on the window can be made. This value may be

57

procedure search (i, ¥y, ¥g, ..., ¥;, window);

/% & - number of elements,
Y1 -¥; - set of random numbers of distribution F(y),
window - function to calculate window size w,
Ib_window - lower bound of window to be searched,
ub_window - upper bound of window to be searched.

+/

Ib_window = 0;
ub_window = 1;
w = window(Ib_window, ub_window, 0);

while (TRUE) do |
if (y, > wand y; > w) then
Ib_window = w; /% update b %/
else
if{y; < wand y; < w) then
ub_window = w; s ypdate ub */
else |
transmit_packet;
return;

/# successful trans, ¢/

]w = window{ lb_window, ub_window, i};

Figure 3. Contention resolutior protocol for searching
i

estimated from prior value of y, found and the distribu-
tion F(y). Let this value be w. Assuming that the lower
bound of the interval to be searched is 0, and the upper
bound is 1 initially, only processors with values in the
range (0,w] are allowed to transmit in the first contention
slot. Il exactly one processor transmits, the minimum
value is found. If collision occurs, the minimum must lie
in the interval (0,w], and the upper bound is updated to
w. Otherwise, there is no transmission, and the minimum
must lie in the interval (w,1}. The lower bound is
updated to w accordingly. The last case is equivalent to
sayfing that collision would occur if the interval (w,l1] is
used.

Unless the transmission is successful, we can always
identify an interval (a,b] such that at least two of the y;'s
lie in {(a,b] and no y; is smaller than a. This condition is
designated as event A.

A = { at least two ¥,'s are in (a,b] given that all
yi's are in (a,1]}
In order to isolate the processor with the minimum y;, the
size of the window has to be shrinked. Let the reduced
window be {a,w] such that a < w < b, Transmission
will be successful if there is only one of the y,'s falling in
{a,w]. This event is denoted as B.
B = { exactly one of the y;'s is in (a,w], sli others
are in (w,1]} '
Thus the probability that exactly one station transmits in
the next contention slot is g{w{ = Pr{BA}. We derive
the optimal value of w so that g{w) is maximized. Since
Pr{B|A} = Pr{A,B}/P{A},

Pr{A} = [1-F(a)]* = [1-F{b)]"
= o[F(b)-F(a}{1-F(b)}*,

and
Pr{A,B} = o[F(wh-F(a){[1-F(w)"'-[1-F(b)}]"™"}.
Thus .
g(w) = Pr{A,B}/P{A}
= K[F(w)-F()l {{1-F (W)™ ~1-F(b)" "} (2)
where K = n/P{A}.
In order to find an optimal value of -w, we solve for
w in d—w-lg(w)] =0, and this leads to Eq. (3) below with

the assumption that f{w)=0.
B=F(w™ = [1-F ()"

= (n=1)[F(w)-F(a)][1I-F{w)]*? = 0 (3)
Let x = 1-F(w), Ec\. (3) beco:gzes L
xn*l — b‘-—l) l—F(a)]x - I’-'—F(b“ =0 (4)

n n

It can be shown that a real rool of Eq. (4) exists and
satisfles (1-F (b)) < x, < (1-F(a)). The optimal window
w, can be computed directly from x, as in Eq. (5).

w, = F }{1-x,) (5)
There is no close form solution to Eq. {4). A numerical
method can be applied to obtain x,. Nevertheless, it may
not be fast enough for practical application. An approxi-
mate solution is derived here. Rewriting Eq. (2) into the
form of Eq. (B), we have,

g(w) = K[F(w)-F (a)|[F(b)-F(w)]{t-F(w)]"? ':3:‘_.21" (6}
i=0

where z = [1-F{b}}/[1-F(w)]. An approxiTa_t"‘ioi function

Ezi by {n-})
since z is very close to 1. That is, =0
&(w) = K’ [F(w}-F(a)[{F(b)-F(w)]{1-F(w)]"
where K' = (n-1)K. §(w) can be maximized by solving
——[log g(w)] = 0. From this, we obtain Eq. (8),

g{w) is given by substituting the term

o w) ol _, 2w

F{w}-F(a) F(w)l-F(b) F(w)-1
or equivalently,

[F(w)* + C[F(w)] + D=0, (9)
where

C = {o—-1}F{a) +F(b})] +2

n
p = Fla}+F(b) +(n-2){F(a)][F(b}]

n
A solution of Eq. (9) falling in the interval (F(a),F(b)) is
given by

Flw,) = =S¥, (10)

The approximate optimal window, w,, can then caleu- .

lated [rom the inverse distribution function.

We will shew empirically that the approximate win-
dow control rule performs nearly as good as the optimal
one, while its computational efficiency makes it more
preferable to the optimal control rule.

Both the optimal and approximate control rules rely
on the knowledge of the distribution of random numbers,
F(y), and the number of contending processors on the
nelwork, n. The former can be obtained either analyti-
cally or empirically. A future paper shows an iterative
method for obtaining the distribution function. The
latter parameter has to be estimated dynamically. This

.

58

—g(wc)]/g(wo)
8
o

C m0.0 A

(w)

100%*[g

18.0 o

0.08 -
-~9=-F«85-2-31.1 3 .8 .7

An/n

.9 1.1

Figure 4. Sensitivity of success probability with respect
to load estimation error {window = (0.3, 0.4);
w, = optimal value of w; w', = optima! value

of w, with load estimation error).

can be estimated based on the previous value of y,.
Since the mean of y, is a function of n, a simple estimate
of n can be obtained by assuming that the number of
contending stations does not change, and the previous
value of y, exists at its mean. However, an accurate esti-
mation may be difficult in practice. Fortunately, the
scheme can tolerate a high degree of estimation error. In
Figure 4, the sensitivity of success probability is plotted
against the load estimation error. It shows that the
degradation can be as small as 2% if the accuracy of esti-
mation is within 20%.

When n=2, both Eq.'s (4) and (9) have the same
solution, i.e. F{w,} = [F{a)+F{b}])/2. If F(y) is uniformly
distributed over {0,1], ther w, = (a+b}/2. This binary
dividing control rule can be used as a heuristic for general
distribution functions. It can be interpreted as one which
always predicts that there are two contending processors.
As a result, it performs satisfiably when channel is lightly
Loaded but degrades drastically when the channel load is

eavy,

The dynamic expansion and shrinking of window
corresponds closely to the urn protocol of Kleinrock and
Yemini {I{LETS{,(and the time window protocol of Kurose
and Schwartz [KURZ3]. In the urn protocol, the set of
random numbers are the spatial identifiers of the proces.
sors. In the time window protocol, the arrival times of
messages at processors are used. Our proposed method
here represents a unified approach. e have used a
general distribution in developing the optimal rule.
Further, if the set of random numbers are regenerated
after each successful transmission, no distinction is made
between old and new contending stations. This preserves
the fairness to all the processors.

4. PERFORMANCE EVALUATION
The performance evaluation of the protocol consists
of two parts, the evaluation of the contention resclution
rotocol, and the evaluation of the MAX-MIN load
alancing strategy.

0.37

(0,0

Optimal success probability of contention
with respect to window (a,b] (number of con-
tending processors = 20).

Figure 5.

The throughput of a CSMA channel can be derived
from the average number of contending slots experienced
before a packet is transmitted. The probability of suc-
cess in the i-th contention slot is g(w) as given by Eq.
(4). The average nu{nlber of contention slots is,

€= igwIi-g, (W]
i=1 j=1 3
g(w)'s are funclions of the window size, pumber of con-
tending processors, and window control rule. We have
evaluated g(w) with respect to different window sizes and
number of contending processors under the assumptions
that the distribution is uniform in (0,1], and the number
of contending stations is assessed accurately. In Figure 5,
g(w) is plotted against various windows for the optimal
control strategy with 20 contending processors. It can be
seen that the values of g(w} are almost constant except
for those of small windows, that is, when a is close to b,
When the window size is small, it is more proebable that a
smaller number of y;'s lie in this interval, and the uncer-
tainity about the position of y, decreases. Therefore,
g£(w) increases as the window becomes smaller. In Figure
8, g{w) is plotted against the number of contending pro-
cessors for various window sizes under the ouptimal con-
trol rule. As the number of contending processors
increases, g(w) decreases and approaches 0.375, Replac-
ing the g(w)'s in Eq. 10 by this value, we obtain
T =267 =e
By using the approximate control rule, the degrada-
tion in g{w) is very small. This is depicted in Figure 7
for various window sizes. We observe that the error
increases as the window size is decreased. This is due to
the fact that a deviation in the value of w results in a
larger relative error when the window size is small. How-
ever, the error never exceed 2% of the optimal value. In
Figure 8, the relative error is plotted against different
number of contending processors. For a given window
size, we see that the relative error peaks at certain
number of contending processors. When the number of
stations-is large, the given window size is relatively large.
Therefore, the error is small. On the other hand, when
the number of stations is small, the error due to the
approximation in Eq. (68) is small. All these results
demonstrates that the approximate control rule performs
competitively,

(11)

59

4 o {0.3,0.4]
glw)
N0
. (0,0.8]
lx L L) L) L]
0 10 0 » Yo - 50

number of contending stations

Figure 6. Optimal success probability of contention
with respect number of contending processors.

Degradation in success probability for the
approximate control rule with respect to win-
dow (a,b] (number of contending processors =
20; w, = oplimal value of w; w, = approxi-
mate value of w}.

Figure 7.

A simulator has been developed to evaluate the per-
formance of the window protocol. These results are plot-
ted in Figure 8. The average number of contention slots
is about 2.7 for both the optimal and approximate rules
as the number of stations increases. The binary divide
rule also performs well when the number of contending
processors is small. However, the average number of con-
tention slots is almost doubled wher n is large. This
phenomenon has been predicted in the last section. The
above results were based on the fact that the pumber of
contending stations was know., When there is error in

»
o

(0.3,0.4]

iy
-

{0.1,0.5] 3

100%'[&(‘1‘0)‘8(”!]]/s(wo)
-
[]

’ 10 20 20 o 0
number of contending stations

Figure 8. Degradation in success probability for the
approximate contro! rule with respect to
number of contending processors.

S.0

3 -

5.5

2 binary divide control rule

=

S 4.0

-~

=

[}

Ead

8 4

g s

“ .

L - ,approximate control rule

o 9.04

-3

g

&

£ E2.3-

u optimal control rule
g.‘ L] T L L] L ¥ L

0 10 20 2 % 3 & 70 W

number of contending stations

Figure . Performance of window protocol operating
under different window contro! rules.

estimating this number, the number of contentions slots

will increase,

A simulator has also been developed to evaluate the
performance of load balancing supporied by the window
protocol. The simulator was written in ASPOL and
assumed a fixed number of processors in the system. It
was assumed that job arrivals are Poisson at each proces-
sor and the service time is exponentially distributed. The
normalized mean job response time is plotted with
respect to different job traffic with no message traffic in
Figure 10. The results are compsred against the case
without load balancing, that is, the case of multiple
independent M/M/1 queues. We find that the response
time is always better when load balancing is applied.

2.0
10.0 | MMy
’]
0 :
]
]
]

%.00 4

time
average job respons®

8.00 r r v r T
9.0 B0 M W .M 10 1.2

Job traffic intensity

Figure 10. Reduction in response time under load balane-
ing with no message traffic (number of proces-
sors = 20, ratio of service to transmission

delays = 1.0).

5.0
b=
> fraction of
4 2 4.0 Jobs migrated
s E
Eﬂ.} + —._,-
— -
"E? g e
2B
i 1 9
S g
¢ — 2,04
]
o Qo
FLIN
5 O
§ g ," mean job
o o 1.04 ’ response time
o /

2
”
R
0.0 d-m=y T Y Y v
-£. ~-1. 9. 1, | N 3. %.
* logir)

Figure 11. Effect of ratio of service to transmission
delays, r, on load balancing,

Since almost no queue is developed at each processor
when the job traffic is low, load balancing is less effective.
In Figure 11, we show the job response time with respect
to the ratio of job service time and transmission dela
The percentage of jobs being migrated is also shown.
we can interpret from this figure, fast processors coupled
with a slow communication channel (r is small) will not
be benefited from load balancing. As the speed of com-
munication channel increases, more jobs are migrated and
the response time is improved. However, when the chan-
nel speed exceeds certain threshold, load balancing can
provide no further improvement. In Figure 12, the effects
on load balancing due to message traffic is shown. As the

e.u

£.B1
Y
&
i
-
@
[0}
o]
Q
a,
W
@
1
£
]
i
=
a
D
(=
1.2
‘.‘ L) L] ¥ L]
.10 .20 0 9 .90 1.1

message traffic intensity

Figure 12, Effects on load balanecing due to message
traffic (job traffic intensity at each processor
= 0.5; number of processors = 20).

message traffic becomes higher, the effective channel
capacity is less and load balancing is not carried out as
often.

5. CONCLUSION

In this paper, we have proposed a load balancing
strategy on CSMA/CD networks. Due to the broadcast
capabilities of these networks, system status can be dis-
tributed easily to all the processors. However, only one
job can be sent at any time over the network. We study
the MAX-MIN strategy which sends a job from the pro-
cessor with the maximum response time to the processor
with the minimum response time. To support the scheme
on CSMA/CD networks, three different {asks are
identified, ramely, resolving contention, resolving priori-
ties, and finding the maximum snd minimum response

times. We proposed a unified model that reduces these -

problems to finding the minimum of a set of random
numbers. A window protocol is proposed to idenlily the
minimum. Optimal and approximate control rules for
the window are evaluated. It is found that under uni-
form distribution, the average number of contention slots
is approximately e regardless of the number of contend-
ing processors provided that this number can be,assessed
ﬂuu.e accurately. One important application of the win-
ow protocol is in the resolution of contention of message
transtnission.

6l

REFERENCES

[CHOT9| Chow, Y.C., and W. Kohler, “Models for
Dynamic Load Balancing in a Heterogeneous
ultiple Processor System,” IEEE Tranaaclions
gg C:'sas:;tpu_fcn, Vol C-28, No. 5, May 1876, pp.
4-361. :

[FRASB0] Franta, W. R. and M. B. Bilodeau, "Analysis of
a Priontized CSMA Protocol Based on Stag-
gered Delays," Aecla Informalica, 13, 1880, pp.
200-324.

[HWAR1|Hwang, K. et al., “A Unix-Based Local Com-
puter Network With Load Balsncing,” IEEE
Computer, April 1982, Vol. 15, No. 4, pp. 55-66.

[KLE78) Kleinrock, L., and Y. Yemini, “An_Optimal
Adaptive Scheme for Multiple Access Broadeast
Communication,® Prec. ICC, pp. 7.2.1-7.2.5,
1678,

[KUR&3] Kurose, J. F., snd M. Schwartz, “A Family of
Window Protocols for Time Constrained Appli-
eations in CSMA Networks,” Proe. IEEE
IN;‘OCOM 88, San Diego, CA, 1683, pp. 405
413, . .

[MET76] Metcalfe, R.M., and Boggs, D.R., “Ethernet :
Distributed Packet Switching for Local Com- -
puter Networks,” CACM, Vol19, July 1078,
pp.395-404. . :

Ni, LM. and Hwang, K. “Optimal Load
Balancing Strategies for a Multiple Processor
System,” Proe. of 10th Int'l Conf. on Farallel
Processing, Aug. 1981, pp. 352-357.

[SHAS3} Shacham, N., “A Protocol for Preferred Access
in Packet-Switching Radio Networks,” IEEE
Trans. on Comm., Vol. COM-31, No. 2, Feb,
1983, pp. 253-264.

[TANS1] Tanenbaum, A. S., Computer Networks, Prentice
Hall, Inc., Now Jersey, 1981,

[TOB82] Tobagi, F. A., “Carrier Sense Multiple Access
with %lessage—Based Priority Fuunctions,” JEEE
Transactions on Comm., Vol. COM-30, No. 1,
January 1982.

[Nis1]

