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ABSTRACT :

In this paper, we study the virtual memory design
for branch-and-bound algorithms under best-first search.
The use of a conventional locality based virtual memory
system is inadequate because branch-and-bound algo-
rithms do not exhibit strong locality, It is not apparent
how the amount of locality exhibited may be enhanced.
The alternative is to adapt the virtual memory system to
the algorithm. Simulations indicate that for branch-and-
bound algorithms a well designed virtual memory system
may achieve a seven- to nine-fold improvement in paging
traffic over a general purpose virtual memory system with
the LRU replacement algorithm.
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1. INTRODUCTION

Many of the deterministic problems in eomputer sci-
ence, operations research, and other application areas are
NP-complete [GAR79). The computation time for all
known optimal algorithms for this class of problems
increases exponentially with the problem size. The most
general technigque for solving a wide variety of these prob-
lems is the branch-and-bound algorithm.

A branch-and-bound algorithm [LAWS66] is an
efficient algorithm for solving problems that can be put
into the form of a copstrained optimization.

inimize CO&)
subject to g,(x) > 0
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in which X represents the domain of optimization defined
by the m constraints, normally an euclidean n-space, and
x denotes a veclor (x5, ... ,x,}. {Problems that are
NP-complete can be put into this form. There exists
problems that are not NP-complete, but are put into this
form as well.) A solution vector that lies in x is called a
feasible solution, and a feasible solution for which Cy{x) is
minimal is called an optimal solution.
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The branch-and-bound algorithm is an organized
and intelligently structured search of the space of all
feasible solutions. It has been extensively studied in
areas such as artificial intellizence and operations
research [HOW?78, NIL80). Problems in scheduling
LLEN'Z’B], knapsack {ING77], traveling salesman [GART73],
acility  allocation |EFR66], integer programming
IGAR72], and many others can be solved optimally or
sub-optimally by branch-and-bound algorithms. Domi-
nance relations similar to those used in dynamic program-
ming have been used to prune search tree podes
[MOR76).

Besides requiring exponential time complexity,
branch-and-bound algorithms may require exponential
memory space for storing intermediate results. Conven-
tional virtual memory system has been found to be inade-
quate for supporting efficient execution of branch-and-
bound algorithms. In this paper, we have studied the vir-
tual memory design for these algorithms. The relation-
ship between branch-and-bound algorithms and virtunal
memory is discussed in Section 2. The features of a vir-
tual memoery that can be tailored to support these
algorithms include the data structure, replacement policy,
page size, and secondary storage data organization.
These are investigated in Sections 3 to 5. Simulation
results concerning the performance of branch-and-bound
algorithms for integer programming are shown in Section
6. Although it seems that this study is directed towards
application-dependent virtual memory systems, our
results help designers to discover the essential features of
a virtual memory for supporting specialized applications.
Our long term objective is to design a virtual memory
system with a set of alternative features that can be
selected dynamically to support a wvariety of different
applications.

2. BRANCH-AND-BOUND ALGORITHMS AND
VIRTUAL MEMORY

2.1 Branch-and-bound Algorithms
In branch-and-bound algorithms, the space of all
feasible sclutions is repeatedly partitioned into smaller

- and smaller subsets, and both the lower and upper

bounds are calculated for solutions within each subset.
After each partitioning, subsets with lower bounds (in the
case of minimization}) that exceed either the value of a
known feasible solution or the least upper bound of all
subsets are excluded from further consideration. The
partitioning process continues until a feasible solution is
found such that the value is no greater than the lower
bound of any subset. Each partition is also known as a
subproblem. ‘

There are two essential features of a branch-and-
bound algorithm: the branching and bounding rules. The



branching algorithm examines the set of active subprob-
lems and, based on some predefined criteria, selects one
for expansion. If the set of active subproblems is main-
tained in a first-in first-out (FIFO) list, the algorithm is
called a breadth-first search. If the set 1s maintained in a
last-in, first-out list, the algorithm is called a depth-first
search. Lastly, if the subproblem selected for expansion
is one with the minimum lower bound, the search algo-
rithm is called a best-first search. .

Once the subproblem has been selected for partition-
ing, some undetermined parameters in the subproblem

must ‘be selected so that alternatives for these parameters °

can be defined and multiple subproblems created. For
example, in the traveling salesman problem, the undeter-
mined alternatives are the set of untraversed edges. In
expanding a subproblem, an untraversed edge (i) is
selected, and tworalternatives can be created: (1) the edge
is traversed and the salesman goes directly from city i to
city j, and (2) the edge is not traversed. The parameter
chosen to be expanded is usnally done in an ad hec
manner. '

After new subproblems are created, the bounding
algorithm is applied to evaluate the upper and lower
bounds of a subproblem. Generally, only the lower
bound is evaluated, and the upper bound is updated
when feasible solutions are found. The bounding algo-
rithm is highly dependent on the problem.

As an example to illustrate the use of branch-and-.
bound algorithms, the evaluation of an integer program-
ming problem [MIT70] is shown here. Integer program-
ming problems may be expressed as,

Minimize CX
subject to AX > B
XT = (x3,%p, . . . ,Xp)
x;: non-negative integer, i=1,2,..n.

These problems differ from ordinary linear programming
problems in that the variables are restricted to non-
negative integer values, :

One approach to the problem is the following.
Apply the dual simplex method te a subproblem and
solve it as a linear program. If the optimal solution is
integral, a feasible snful‘ion has been generated; otherwise,
vrente two new subprobloems as follows. Choose o vari-
able that has a nop-integer value (say x; = 4.4) and res-
trict that variable to the next lower integral value for one
problem (x; < 4) and to the next higher integral value
(x; = 5) for the other. The variable chosen is the one
with the greatest up or down penalty. The up penalty
for a variable x; having a value of a; is the estimate of the
amount by which the solution to the current subprgblem
would increase if the integral constraint x; > ELI was

1
introduced. The down penalty is similar, egcept that it is
associated with the constraint x; < ja;. The lower

bound of a new subproblem is the sum of the optimal.

simplex solution and the associated penalty. This process
is repeated on the new subproblems.

Figure 1(b) shows the branch-and-bound tree for the
problem in Figure 1(a). The dual simplex method gives
an optimal solution of 14.2 for the original problem.
Since the variables are not integral, a feasible solution
cannot been generated. Up and down penalties are calcu-
lated for the variables. x, has the greatest penalty (U =
1.8). Two new subproblems are then ereated, one with
X, =0, and the other with x, > 1. The lower bounds are
caleulated as in Figure 1(b). The dual simplex method is

min X = 7x; + 3xg + 4xy
x; + 2xp + 3x; 2 8
Iy +2xp x2S
Xy, Xz, X3 = 0, integer
(a}

Optimal dual simplex solution
Xg = 14.2

Variable Down Up
X = 0.4 FPenalty | Penalty
x; = 38 x 08 18
0.3 0.13
X3 =0 ¥2

g=lower
bound
x1-0 .
zm14,.240,8 zm14.2+1.8
=15,0 @ =16.0
Feasible Solution Terminated

Optimal dual simplex solution

Xp = 15.0
X =0
Xp =5
=0
. )
Figure 1 {2) An example of an integer programming .

problem and (b} the corresponding

branch-and-bound solution.

then applied to the subproblem with the smallest lower
bound again, and a feasible solution is generated with all
variables having integral values. This constitutes an
optimal solution since the lower bound of the remaining
subproblem is greater.

‘T'he total number of nodes expanded under best-first
search is minimum in the sense that any branching opera-
tion performed under this policy must also be performed
under other search criteria, provided that all the bounds
are unique [LAWS8]. The evaluation time will be minim-
ized using best-first search. However, best-first search is
space-copsuming because all active subproblems must be
stored as intermediate data in the computer. It has been
shown [YUS83] that the memory space required under
best-first search grows exponentially as the size of the
input. On the other hand, both depth-first and breadth-
first searches are space-saving because the memory space
for storing the state of the parent subproblem that lead
to the next subproblem is very small. Since time is a
more critical factor in evaluating large optimization prob-
lems, best-first search is a better policy to use if the
memory requirement can be satisfied. This implies the
need for an efficient virtual memory system to manage
the large addressing space.

2.2 Virtual Memory Systems
An enormous amount of literature has been pub-
lished concerning virtual memory systems [DEN70,



DOR76]. The set of addresses that a task can reference
is called the {virtual) address space V. The set of physi-
cal locations in main memory allocated to the task is the
memory space M. The address and memory space are
usually ‘divided into contiguous blocks called pages. Dur-
" ing execution, reference to addresses in the object code
will be to virtual addresses. The virtual memory system
automatically maps the address space into memory space.

Central to the successful operation of paging systems
is the principle of locality. This principle states that,
during execution, a process will favor a subset of V, i.e,
only a subset of its pages have to be resident in main
memory to allow seldom interrupted execution intervals.
There are two components to this locality of reference:
temporal locality which is the tendency for a program to
reference in the near future those pages referenced in the
recent past; and spatial locality which is the tendency for
a program to reference neighboring pages. Loops, con-
stants, temporary yariables, and working stacks are con-
structs which lead to temporal locality. Sequentijal por-
tions of code and traversals of arrays give rise to spatial
locality.

These have led to investigations into the behavior of
programs in order to determine methods for enhancing
the locality of programs. Some rules to be followed have
been proposed |MORG6]. Studies have been performed
on automatic restructuring of programs in order to tailor
the programs to the locality-based virtual memor
environment [BAE76, HAT71, FER74, FERTS, FER‘TG{
However, few studies have been made on the effects of
data structures on virtual memory performance. Some
examples of studies on algorithms utilizing special data
structures include matrix manipulation [MCK69, FIS79],
sorting [BRO70], and database operations [SMI78].
Nearly all the virtual memory systems available today are
geared towards the locality. of programs. At this time, a
general methodology for designing virtual memory sys-
tems for data structure oriented algorithms is lacking.

3. VIRTUAL MEMORY DESIGN FOR
BRANCH-AND-BOUND ALGORITHMS UNDER
BEST-FIRST SEARCH
The general assumptions made under this study are:
{a) During partitioning, each subproblem generates a
fixed number (denoted by s) of new subproblems
(b} The difference between the lower bound of a sub-
roblem and the lower bound of its parent subprob-
em is exponentially distributed. Simulations have
verified this assumption for integer programming
problems [WAH82].

3.1 Data Structures :

The data structures selected for the implementation
of braneh-and-bound algorithms depend on the operations
performed on the subproblem list, which include,

(a) insert(x) insert a subproblem with

lower bound x into the
- subproblem list;

delete the subproblem

with the smallest lower

bound y from the sub-

problem list;

(¢) delete—not—less—than(z} delete all subproblems
with lower bounds not
less than z from the sub-

_ problem list.
Each iteration of the branch-und-bound algorithm com-
mences with a delete-smallest operation. Lel v be the

(b} delete—smalltest(y)

Table 1 Time complexities of key operations in branch-
and-bound algorithms for various data struc-
tures.

insert delete delete
synallest not less than
sequential list Of{m) O{m) Oflog m}
lisked list O(m) o(1) Of{m)
B-tree Oflog m) Oflog m) O{m log m)
heap O(log m) O{log m}) O(m log m)

lower bound of this subproblem. If a feasible solution w
is generated, then a delete-not-less-than{w) operation
must be carried out. Otherwise s new subproblems with
lower bounds x,, Xy, ..., X, aTe generated and inserted into
the subproblem list. Under best-first search, subproblems
are ordered by increasing lower bounds in an ordered list.
Since x;, i = 1, ..., s, are random variables, it is impossi-
ble to predict where the subproblems will be inserted.

The time complexities of the key operations for vari-
ous data structures are shown in Table 1. It can be seen
that no single data structure is optimal for all the three
operations. A suitable choice will depend upon the rela-
tive frequencies of the operations. Recalling our
assumption that each expansion produces s son subprob-
lems, insertions should be approximately s times as fre-
quent as deletions. Simulations show that the delete-
not-less-than operation is very infrequent. The B-tree!
[COM79] and the heap? are the best data structures for
implementing branch-and-bound algorithms.

The amount of locality exhibited by each implemen-
tation is shown in Table 2. We see that the algorithm
exhibits locality for either insertion or deletion, but not
both. This implies that branch-and-bound algorithms
will be unable to run efficiently in a conventional locality
based virtual memory environment. Modification of the
algorithm to enhance the amount of locality exhibited
does not appear to be a feasible approach.

Table 2 Amount of locality exhibited by the key opera-

tions
insert delete delete
smalest not less than
B-tree wenk strong strong
heap strong weak weak

3.2 Organization of the Primary and Secondary
Memeory

We propose that the list of subproblems be split into
two disjoint sub-lists, 2 primary list which resides in the
main memory and a secondary list which resides in the
secondary storage. Newly generated subproblems are
inserted into the primary list. When the primary list
grows to its maximum size, subproblems are removed
from the primary list and inserted into the secondary list.
In the mean time, computation can still be carried out.
This use of a primary list in this manner is equivalent to
batching the insertions into the virtual space, which

1. A D-tree of order m s o search tree which is either empty of of
height greater than or equal to one and satisfles the following praper-
ities: :

{i) The root node has at least two children;

{ii) Each node containa at most 2 keys and 2m +1 pointers;

(iii} Each node contains at least m keys and m-+1 pointers.
2. A heap is a complute bianry tree with the property that the value
of each node is at least as small o the value of it children nodes.



reduces the cost of insertions.

The organization chosen for the primary list has to
allow efficient insertion and retrieval of the subproblem
with the smallest lower bound. A suitable choice is the
heap. The subproblem selected for partitioning is the
smaller of the smallest subproblems in the primary and

- secondary lists. Thus it is necessary to keep a number of
the smallest subproblems of the secondary list in a por-
tion of the main memory, called the p-buffer,

The secondary list is organized as a B7-tree
[COMT79). Each leaf of the Bt-tree corresponds to a page
of the virtual memory system where the subproblems are
stored. (lThe terms page and leal will be used inter-
changeably.) The upper levels are organized as a B-tree
and consists only of indexes to enable rapid location of
subproblems. Since the internal nodes of a B*-tree are
very much smaller in size than the leaf nodes, it is possi-
ble to keep the internal nodes in main memory. This
reduces the number of secondary. accesses required by
each page access to O{1)..

’Fo further reduce the cost of each page access, the
B*t-tree was modified by removing the restriction that
subproblems in a page have to be stored sequentially by
non-decreasing lower bounds. The block size is a parame-

ter that can be set by the operating system, subject to

" constraints like sector size and overall disk capacity. The
block size was chosen to be the smallest number of sec-
tors equal to or greater than the size of a subproblem and
a block was allowed to hold only one subproblem. Each
page consists of h, successive blocks. A subproblem is
allowed to reside in any block as long as it is in the
correct page.

Each page is assigned a unique number between 0
and ¢, — 1, where {, is the number of pages in the B*.
tree. A set of {§, status vectors are maintained in main
memory. Status vector w is assigned to page w. Each
status vector contains h, bits. Bit ¢ of status vector w
will be set whenever block ¢ of page w contains a sub-
problem, and cleared otherwise.

To insert } subproblems into page w, the operating
system uses status vector w to select the j empty blocks
into which the } subproblems are to be written. As soon
as the write head is positioned over each of the chosen
blocks, the corresponding subproblem is written onto the
disk, and the status vector is updated. Two approaches
to the selection of blocks have been considered:

(a) Sequential allocation: The j vacant blocks with the

smallest block numbers are selected. This scheme

ensures that the subproblems are kept in successive

blocks.

(b) First aveilable allocation: Assuming that the operat-
ing system knows the current position of the write
heads after they have been moved to the cylinder
containing the page, the status vector is scanned for
the first j vacant blocks that will come under the
write heads. Under this scheme, subproblems will
occupy clusters (due to the batching of insertions)
scattered throughout the page.

Due to our relaxed conditions on the secondary
storage organization, subproblems are not stored in a
sorted order in 3 page. Since the loading of the p-buffer
requires the selection of the k subproblems with the smal-
lest lower bounds in a page, this may be done by building
a selection tree of lower bounds of size h, in main
moemory, An alternmtive is to niodify the best-first search
process of the branch-and-bound algorithm. The k sub-
problems residing in blocks with the smallest block
numbers are loaded. Now, instead of partitioning the
subproblem with the smallest lower bound, a subproblem

with a lower bound that is at least the g-th smallest is
partitioned, where q is the number of subproblems
remaining in the page. The effect of this, at worst, is to
increase the number of iterations by q.

When overflow occurs, before the overflowing page
can be split, the median lower bound has to be deter-
mined. All subproblems with lower bounds less than the
median lower bound remain in this page while those with
lower bounds greater than the median lower bound are
moved to a new page. Similarly, when underflow occurs,
before the actual redistribution of subproblems between
two pages can be carried out, it is necessary to find the
median lower bound which will divide the subproblems
evenly between the pages.

In the following sections, the design of the virtual
memory operating system will be considered by the
appropriate choice of the replacement algorithm and page
size. The expected number of page accesses is derived in
the next section. This is used to select an optimal
replacement algorithm.

4. THE EXPECTED NUMBER OF PAGE
ACCESSES

The two principal causes of page accesses are the
transfer of subproblems from the main memory to secon-
dary storage during replacement, and the transfer of sab-
problems from the secondary storage to p-buffer. In this
section, we derive an expression for a quantity # which is
the expected number of page accesses normalized by the
expected number of iterations. By minimizing this
exptression, a suilable replacement algorithm may be
determined.

4.1 The Expected Number of Page Accesses due to
Replacement

Let the maximum size of the primary list be n, sub-
problems; that is, the replacement algorithm is called
when the primary list grows to n, subproblems. Suppose
then ¢ subproblems are removed from the primary list
and inserted into the pages of the secondary list. Also,
let the number of subproblems in the secondary list just
before the invocation of the replacement algorithm be N,
subproblems.

Let Cp.i» i=1,...ng be the lower bounds of subprob-
lems in the primary list such that
Coy SCpz -+ 2 Cpy, Similarly, let C,; i=1,..,N; be
the lower bounds of subproblems in the secondary list
with C,; € G2 -+ £ C,n,. We can then define,

X; =Cpi—Cpa i=1,-"" 7 (1)
Yi = Cs,j - Cs,l j =1, 1N| (2)
It is assumed that,
() Cpp=6Csy {3)

(i) X; i=1,.,n, are independent, identically distri-
buted random variables having an: exponential den-
sity function,

fx(x) = hpe (4)

(iii) Y;, j=1,...,N, are independent, identically distributed
random varial)ges with exponential density function,

fy(y} = Ae ™ (5)

Assumptions (ii) and (iii) have been justified experimen-
tally for integer programming problems [YU83].

One way of reducing the cost of insertions during
replacement is to batch the insertions. The lower bound
of a subproblem determines the page into which the sub-
problem is to be inserted. The subproblems that are



most likely to be inserted into the same page as the sub-
problem with a lower bound of C,; are subproblems with
lower bounds of C,;, and C,;+,. This suggests that
these subproblems should be removed together. Suppose
the ¢ subproblems selected for removal are the subprob-
lems with lower bounds C_ o4 ,,Cpa42, ** * ,Cp g+ 4, Where
Xy +1 has the value v and X, 44 Ras the value w. Let M,
be the number of subproblems in the secondary list with
v < Y; € w. The probability of v < Y; € w for any sub-
problem in the secondary Iist' is given by,

Priv<Y,swh= [ Me ™ dx

X=Y

m constitutes a binomial dis~

Il

The probability that M,
tribution.

Pr{M,=m} = N [Pr{v<Y;5w}]m[l-Pr{v <YiSW}]N'_’“
m

The expected value of M, given that X,4; =v,
X‘...‘ =w, and N. =n iS,

EM,| X,=v,X, 4+ ,=w,N,=p] =nPr{v<Y;<w} (6)
Since N, and P{v < Y; < w} are independent, Eq. (8}
* may be evaluaggd as,

EM,] =EIN] [ [ Pr{v<Y;<w) f{v) fy{w) dvdw

v=0w=0
=E[N] ! M{n,~8+1+¢)
, (np—0) TI(n, +1+g)
_ n,! F(n,~0-¢+1+g) )
{n,=0—¢) T(n,+1+g)
where
— x'
SN | ,
Let the M, subproblems reside in R pages, and let
Q,, Qs * + - Qg be the number of subproblems in these R

pages. Assume that they are independent and identically
distributed with uniform distribution between tf2h, + 1
and h,, where h, is the size of each page in subproblems.
Let Q be a random variable representing the number of
subproblems in a page. Since R is a stopping time,
renews! theory and Wald's equation [ROST0) gives,

EM,) = E[R] E[Q}
and
n I'(n,—8+14
4 E[N,) p (llp ¢}
3h,+2 (np=8)!  T{n,+1+¢)
_ n,! I(n,—6-¢+1+¢
(ng-0-¢)t  [(n,+1+g)
The derivation of the distribution function of R is
extremely difficult. For mathematical tractability, the
expected value of R will be used instead. Of the E|R]
pages, let subproblems be actually inserted into G pages.
Assuming that the ¢ insertions are uniformly distributed

among the E[R] pages, the number of subproblems
inserted into any page, K, satisfies the binomial distribu-

tion, 4 ) -i
=i} = 1 -1
prife=i ['j ”EIRJI [‘ E[R]]

The expected number of pages into which subproblems

ER]=

(8)

are inserted is,
E[G] = E[R] Pr{K > 1}

= E[R] 1—[1—]—3—!1?1—’]‘

Qut of the G pages, H pages have to be split due to
overflow. Suppose a page has q subproblems in it. Then
the page has to be split only if more than { h,~q ) sub-
problems are inserted into the page. Thus,

Pr{ split page] Q=q } = Pr{ K > h,—q+1}

The probability that a page has to be split, f,, is given
by,

(8)

hl
f, = 3;Pr{Q = q} Pr{split page| Q =q} (10)
=5
‘lb. 0
= gﬁh— (1-Pr{K <h,—q}}

q

H

2 g Wt .
ot - 25 [[h,+l—6—-,|]

Newlb-ea] ]
x [j ER]) |'” ER] ()

6 = max(}y2h, + 1,bh,—¢ +1)
Since any of the G pages is either split or not split, this is
a binomial experiment with f, as the probability of sue-
cess and 1 — f. the probability of failure. The expected
number of pages split is

E[H] = {, E[G]
Splitting of a page requires two page accesses. Thus the
expected number of page accesses incurred during a
replacement, E{T,], is given by,

EIT] = ( E[G] + E[H] ) + 2E[H]
=(2 + 1,)E[G]

where

6 g hf
={ 143 (b +1-8) = 2 30 (b, +16-3)
(]

] j:o

<l bl |

x E[R]{1- (12)

1..-...—......

E[R]

4.2 Expected Number of Iterations between Con-
secutive Replacements

The main memory contains the primary list and the
p-buffer which holds part of the page of the B*-tree con-
taining subproblems with the minimum lower bounds. At
present, the space set aside for the primary list and p-
buffer are fixed. The case .where the space allocated is
variable dynamically will be considered in the future.

When a subproblem is chosen for partitioning, let f,
be the probability that the subproblem is selected from



the p-buffer. Also, let the number of subproblems parti-
tioned between two comsecutive replacements be D. Of
these D subproblems, let D, subproblems be from the p-
buffer and D, subproblems be from the heap (primary
list). Thus,

. D=D,+ D,

and _ D
Pr{D,=k|D} = [k ]{1'.)k (1- )"k

The expected number of subproblems from the p-buffer
partitioned between two consecutive replacements is,

EID,) = E[E[D,| D] .
=fED - (13)

Similarly, the expected number of subproblems from the
heap partitioned between two consecutive replacements

*  ED,) = (1-LED] (14)

Each partitioning of a subproblem generates s new
subproblems. These newly generated subproblems are
inserted into the heap. The size of the heap will increase
by s whenever a subproblem from the p-buffer is parti-
tioned. When a subproblem from the heap is partitioned,
the increase in the size of the heap is only s ~ 1 since the
subproblem being partitioned has been deleted from the
heap. Equating the increase in the size of the primary
list between two replacements to the fixed number of
subproblems removed during a replacement, we have,

¢ =s E[D] + (s-1)E[D]

=s 1, E[D] + (s-1)(1-1,) E[D]
= (s-1+[)ED]

E[D] = ;:‘12;;" (15)

and

4.3 The Expected Number of Page Accesses Due to

Loading of the p-buffer

Let the D, subproblems reside in F pages of the
secondary ' memory, and Ql, Qz,. . Qp subproblems be
the number of subproblems in each of these F pages.
These Q; s have the same distribution as Q. Let F be a
stopping time. The use of renewal theory and Wald's
equation gives,

E[D,] = E[F|E[Q]
and,

E[F] E[D,]

3h, + 2
- 4 i, ¢

3h, +2 s-1+f,
Let the expected number of page accesses due to the

loading of p-buffer between two successive replacements
be E[T,]. Then,
E[T} = E[F]
f
= 4 . P (16)
3h, +2 s-1+{,
4.4 An Expression for .

From its definition, # may be written as,

_ E[T] + E[Ty)
~ ED]
Substituting Eq.'s (12}, (15) and (16) into Eq. (17) yields,

(17)

_ s—1+f1, 4 faé i)_ _
T {3h3+2 el LA URS
(W
-2 53,641~ j—_
I, E,[ ’] ER] r E[R]| rl

x E[R] [l-' ll—-ﬁﬁ'ﬁ'r]l (18)

4.6 Comparison of 5 with Simulation Results

To verify Eq. (18), simulations were performed using
integer programming problems For these problems, each
pariitioning generates two new subproblems (s = 2).
Using the values of {,, M, and X\, obtained from simula-
tions, the corresponding Yalues of n were computed and
compared against %, (Table 3). The results show that
Eq. (18) is a reasonably good measure of the number of
page accesses for integer programming problems.

Comparison of n with 1. for two 20 vari-
ables, 20 constraints integer programming
problems (n, = 100, h, = 50).

Table 3

Problem 1 Problem 2
9 ¢ :
n Tactual L) Nactuat
1] 50 0.80 0.80 0.47 0.46
10 50 0.65 0.73 0.37 0.41

20 50 | 0.56 0.68 0.31 0.39
30 50 [ 0.51 0.64 0.29 0.36
40 50 | 0.50 0.61 .28 0.33
50 50 | 0.54 0.59 0.28 0.31

80 20 | 0.65 0.73 0.34 0.41
70 30 | 0.60 0.68 0.30 0.36
60 40 | 0.56 0.63 0.20 0.35
50 50 | 0.54 0.60 0.28 0.31

40 60 | 0.53 0.57 0.28 0,31
30 70 | 0.53 0.54 0.29 0.30
20 80 | 0.54 0.54 0.30 031
10 80 | 0.55 0.56 0.31 0.31

5. REPLACEMENT RULE AND PAGE SIZE

As discussed in the last section, the proposed
replacement. rule S(8,0} selects subproblems with lower
bounds Cgy4q, Cpyaa - +¢ for removal. Two
special cases of ans rule may be identified: ${0,4) or
Fronl Replecement where the ¢ subproblems with the
smallest lower bounds are replaced; and S(n,—¢,4) or
Back Replacement where the ¢ subproblems with the larg-
est lower bounds are replaced.

Thus the problem of selecting the proper replace-
ment rule reduces to the selection of the proper values of:
(i) @ which is the index of the first subproblem
to be removed from main memory;
{iil) ¢ which is the' number of subproblems to be
removed from main memory during a
replacement.



The page access measure, 5, allows the value of @
and ¢ to be selected. These values have to be chosen so
that they will minimize n as given by Eq. (18) for a given
n,, b, and E[N,]. However, this is difficult as f,, X, and
X, are complex functions of both ¢ and ¢. We will optim-
ize # and ¢ iteratively here. Let #° be the value of @
which minimizes Eq. (18) for 2 given n, h,, E[N} and ¢.
Simulations based on integer programming problems
show that the parameters f,, A, and X\, vary as # varies
[YUB3]. Quadratic approximation of these variations was
used, whereby,

f,=a,, ta,0+a,;8#

’\p = 02.1 + O‘az e+ 02’3 02 (19)

N Sagy Fagaftoazy
The optimization of # was then performed using non-
linear programming. The results are consistent and show
that Back Replacement should be used. The details of
this are not shown here [YUR3]. The use of Back
Replacement s also suggested by statistics on the
number of page accesses collected during the simulations
for integer programming problems {Figure 2).
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Assuming that Back Replacement is used, ¢ may be
chosen. Let ¢* be the value of ¢ which minimizes Eq.
(18). Once again, complications arise from the variations
of f,, A\p and A, with 4. Quadratic approximation was

" Figure 2

again used. ,
L=B, t B0+ B¢
Mo = Pyt Poad + By bF (20)

M = B3yt Bag b+ Bys bt
In the actual simulation results, some problems exhibited
spikes in the values of parameters f,, A,, and X, [YU83].
Quadratic approximation was unable to describe these

sharp variations. .
Non-linear programming was again used to solve for

¢*. It is observed that the values of ¢* should be
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between 0.7 n, and 0.9 n, [YUS3]. Statistics on page
accesses collected by simulations on integer programming
problems also suggest such a result {Figure 3}. It is
noticed that the number of page accesses is minimum at
a ¢ which is problem-dependent. This value is difficult to
predict. A conservative approach is to select ¢ in the
range of 0.7n, to 0.9n,. Here the number of page
accesses is consistently close to the minimum and differs
from it by at most 10%.

Given the replacement algorithm, the optimal page
size can be determined. The cost of accessing a page on a
moving head disk is given by the seek, rotational, and
transfer time. By simulations on integer programming
problems, it is found that a page size, h,, in the range of
0.65n;, and 0.85n, should be used (Figures 4-5).

6. PERFORMANCE EVALUATION

Figures 6 and 7 compare the paging costs incurred in
the modified virtual memory system against those
incurred in a general purpose virtual memory system with
LRU replacement algorithm for two 20 variables, 20 con-
straints integer programming problems. Qther simulation
results are reported elsewhere [YUS3]. It can be seen that
the modified virtual memory system has a better perfor-
mance than the conventional virtual memory system and
that it shows a greater improvement with increasing disk
density.

For an integer programming problem, let P, be the
paging cost on the modified virtual memory system, and
P, the paging on a LRU virtual memory system. The
improvement factor R, is defined as,

For a head per track device, R, increases from between
1.3 to 1.4 at 18 kbytes/track to between 3.7 and 4.0 at 64
kbytes/track. For a moving head disk, the increase in R,
js from between 3.2 and 3.9 at 16 kbytes/track to
between 7.7 and 9.1 at 64 kbytes/track.
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7. CONCLUSION

In this paper, we have proposed a virtual memory
operating system that is based upon the access charac-
teristics of branch-and-bound algorithms. Conventional
virtual memory systems are founded on the locality of
accesses of programs; and is unsuitable for applications
that require large specialized data structures. Although
the users may reconfigure the data structures to the
requirements of the operating system, this is not always
possible as we have discovered in the evaluation of
branch and bound algorithms. Other parameters that
include the replacement algorithm, page size, and letch
policy may have to be modified. From our analysis and
simulations, they indicate that a nine-fold reduction in
paging traffic can be achieved in the modified system.
The amount of improvement observed increases as disk
density increases.

The trend is true in the future design of virtual
memory operating systems. When it is impossible to
tailor the applications to the characteristics of the virtual
memory, it may be necessary to do the reverse. Future
virtual memory systems should provide a set of alterna-
tives that can be dypamically switched based on the
characteristics of the applications.
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