A multiaccess bus arbitration scheme for
VLSI-densed distributed systems

by JIE-YONG JUANG
and BENJAMIN W, WAH

Purdue University
West Lafayette, Indiana

" ABSTRACT

A VLSI-densed shared-bus distributed system is a computer system consisting of a
large number of VLSI processing units (VPUs) connected to one another by a
high-speed bus. Data traffic in such a system is characterized by three distinet
features: large population, bursty transmission, and task-dependent accesses with
priority. A bus arbitration scheme is required to resolve contentions when several
VPUs generate requests simultaneously. Conventional schemes such as daisy chain-
ing, polling, and independent requests are shown to be inadequate. In this paper,
a multiaccess code-deciphering (MACD) scheme is proposed. Two versions of the
scheme are studied. The first version is a load-dependent scheme that can resolve
contentions of N VPUs in an average time of O(log; N) steps where K is equal 1o
the bus width. The second version estimates the number of contending VPUs and
resolves contention in a constant average time independent of load. The proposed
schemes can support task-dependent accesses with priority.

13

A Multiaccess Bus Arbitration Scheme 15

INTRODUCTION

Recent advances in very large scale integrated logic (VLSI)
and communication technology, coupled with the explosion in
size and complexity of new applications, have led to the devel-
opment of distributed computing systems. These systems pos-
sess a large pumber of general- and special-purpose pro-
cessing units joined by an interconnection network. Notable
examples are the FUMPS architecture,’ the systolic-array ar-
chitecture,® the recently announced Cyberplus computer.:‘
and specialized systems, such as the processors at the joints of
robot arms. PUMPS is a pattern analysis and image database
machine that incorporates pools of special-purpose VLSI pro-
cessing units. In a systolic-array architecture, sets of VLSI
systolic processors, which perform functions such as matrix
inversion, fast Fourier trunsform, and sorting, are connected
to a host. The Cyberplus computer has a maximum config-
uration of 64 processors and a speed of 16 billion calculations
per second. We call this kind of system a VLSI-densed system,
and the processing unit, a VPU.

In a VLSi-densed system, one of the most important issues
is the connection of the VPUs. A shared bus is widely used
because of its simplicity in connection, flexibility in expan-
sion, and efficiency in communication. Figure 1 depicts a
typical configuration of such a system. Wah has shown that a
shared bus provides enough bandwidth for a large class of
VLSI-densed systems.* Large computer systems usually im-
plement a number of relatively independent shared buses.
The Cyberplus Computer has four independent “rings” that
can partition the processors for four different applications.

In this paper, we propose a bus arbitration scheme for
resolving contentions when several VPUs try to access the bus
simultaneously. Characteristics of data traffic in a VLSI-
densed system are discussed in the next section. Three con-
ventional bus arbitration schemes, namely daisy chaining, pol-
ling, and independent requests are compared.”” These

Data/Address/Countrol
/ N
L o —7
v SHARED BUS 7
Bus Interfaces
VPU-1 VPU-2 VPU-n

Figure 1—Configuration of a VLSI-densed system

schemes are found t0 be inadequate for VL.SI-densed systems.
A load-dependent Multiaccess Code-Deciphering (MACD)
bus arbitration scheme is proposed, and this scheme is ex-
tended so that an estimate of the number of contending VPUs
is taken into account. The enhanced scheme can resolve con-
tentions in a constant average time, independent of the num-
ber of contending stations.

CONVENTIONAL BUS ARBITRATION SCHEMES

The operations of a YPU alternate between computations and
data communications. We assume that when a VPU requests
bus access, it has a large volume of data to transmit and
requires a rapid response. That is, there is a large peak-to-
average ratio of bus use. This type of data traffic is called
bursty traffic. Another characteristic of data traffic is that
messages may have different priorities. Priority, in turn, de-
pends on the urgency with which the bus is needed by a certain
VPU for executing a task. The bus should be granted to the
message with the highest priority.

On the other hand, a bus shared by autonomous VPUs
slternates between bus contentions and data transmissions
(Figure 2). A VPU with data ready to transmit is allowed to
contend for the bus during a contention period. In order to
resolve the contentions in the minimum amount of time, a
good bus arbitration scheme should be used. Three bus arbi-
tration schemes have been proposed for conventional com-
puter systems. They were identified by Thurber as daisy
chaining, polling, and independent requests.”

In daisy chaining, all input—output devices are connected
serially along a common control line. During the bus-granting
process, a bus grant signal propagates sequentially, device by
device, until a requesting device is encountered. This device
blocks further propagation of the signal and gains control of
the bus by setting the bus busy line. This scheme involves the

— — Time ———

% 7.

[—

LBUS utilization period

.Bus contention period

Figurc 2—Operation mode of a shared bus

16 National Computer Conference, 1984

use of at least three control lines: bus grant, bus request, and
bus busy.

In a bus system with polling, a set of poll count lines is
connected directly to all the devices on the bus. In response to
bus requests, a sequence of numbers, each of which corre-
sponds to the address of a device, is generated on the poll
count lines. When a requesting device finds that its address
matches the number on the poll count lines, the bus is granted
to this device, and the bus busy line is set. This scheme re-
quires [log; M} poll count lines, where M is the number of
devices on the bus, and two additional control lines are for bus
request and bus busy.

In an independent-request scheme, each device has a sepa-
rate pair of bus request and bus grant control lines connected
to the arbitrator. When a device requests bus access, it sends
a request signal on its bus request line. Bus control will be
granted to one of the requesting devices based on prede-
termined priorities assigned to the devices. For M devices on
a system implementing this scheme, more than 2M control
lines are necessary, This scheme is the most costly as far as the
number of control lines is concerned.

As VLSI-densed systems bear distinctions in the operating
environment from that of conventional systems, the above bus
arbitration schemes are found to be inadequate. We examined
these schemes with respect to the control line complexity, the
time complexity and the capability of task-dependent priority
ACCESSES.

1. Control-line complexity. The polling scheme is imprac-
tical when the number of VPUs is large because the
number of poll count lines must be large enough so that
each VPU can be identified by a unique address. A pair
of control lines is needed for each VPU in the inde-
pendent-request scheme. This is impractical even when
the number of devices is moderately large.

2. Time complexity. Daisy chaining and polling are basic-
ally sequential schemes. They are inadequate for han-
dling bursty traffic, which is characterized by a high ratio
of peak-to-average data transmission rate and the fact
that only a few VPUs are requesting bus access at any
time. Suppose there are N out of M independent re-
questing devices, the average time to identify a re-
questing device is M/N. When N is small and the data
transmission time is short, the overhead for bus arbi-
tration is large.

3. Capability of task-dependent priority accesses, Priority
of a device connected in a daisy chain is determined by
its physical position in the chain. In a polling scheme, it
is determined by the device’s order in the sequence of
poliing counts. The priorities of the bus request lines in
an independent-request scheme are usually fixed at de-
sign time. Since the priority of devices cannot be
changed easily, the three existing schemes are incapable
of handling task-dependent priority accesses.

The above observations reveal that none of the three con-
ventional bus-arbitration schemes is sufficient for the needs of
VLSI-densed systems. They call for a new arbitration scheme
that can handle bursty traffic and that will access with priority,

LOAD-DEPENDENT MULTIACCESS ARBITRATION
SCHEME FOR VLSI-DENSED SYSTEMS

In this section, a deterministic MACD scheme is presented,
The scheme is discussed with respect to access without and
with priority.

MACD Bus Arbitration for Access without Priority

We have previously studied a window search scheme to
resolve contentions in a local multiaccess network.”® In that
scheme, a global window is maintained by all the stations, and
each contender generates a contending parameter. A con-
tender is eliminated from contention if its parameter is outside
the window. A distributed control rule is applied to expand or
to shrink the window in each contention step. As the con-
tending process proceeds, the window size becomes smaller
and smaller. Eventually, a unique contender is isolated in the
window.

We can adapt the above scheme for resolving bus con-
tentions. To support the scheme, two mechanisms are needed:
a collision detection mechanism and a window control mech-
anism. The collision detection mechanism can be imple-
mented by using the Wired-OR property of the bus. When
two or more VPUs write simultaneously on the bus, the result
is simply the bitwise logical OR of these numbers. By inter-
preting the result after a write, each VPU can determine
whether a collision has occurred. The window control scheme
described in References 9 and 10 is based on information of
previous contentions and an estimate of the channel load. It
is too complicated to be useful in the bus environment. The
MACD technique, however, is a fast and effective scheme
that combines window control and collision detection in a
simple manner.

To describe the scheme formally, let us assume that there
are N requesting VPUs, and each VPU writes a binary num-
ber X, (i=1,2,...,N) to the bus. The X5 are chosen from a
structured code space § with the following properties:

X, X;€S8, i+#j, are related, i.e.,

X;>Xi or X;<Xi (1)
f(Xi@XD---DXn) =

max{xth,...,XN}XiES,N?—l (2)

where @ is the bitwise logical OR operator. By reading data
on the bus and applying the code-deciphering function, f, a
VPU knows the maximum number written on the bus. This
information provides a basis for the window search mech-
anism to set the window. If the initial window is set so that the
maximum value is included in the window, then an optimal
detection procedure can be designed so that exactly one VPU
will be isolated finally.

In order for the MACD technique to work properly, we
need to prove that a code space that satisfies Equations 1 and
2 does exist. The following theorem shows the existence of at
least one such code space.

A Multiaccess Bus Arbitration Scheme 17

Theorem: There exists a code space S of n-bit binary num- -
bers and a deciphering function { which satisfy the con-
straints in Equations 1 and 2.

Proof: Let§ = {0*10°{a+b=n~1, az=0, bz 0}where
0* represents a consecutive sequence of k zeroes. Then for
any two different clements u and v in 5, it is easy 10 verify
the refatedness property. For any n-bit binary number,
X = (%;%;- -+ x,}, we define a deciphering function fon X
such that:

OO =0P10" """, ifx,, =1, x;=0forali 1=j=p.

We claim that $ and { as defined above satisfy Equations 1
and 2. To verify this, we can define N codes such that:

=Wt j=1,...,N
By definition of S,

c €S,
and
max{c,, 1,en) = 0" 1 F
where m = minfu(i}ji=1,2,...,N}. An overlapped vari-

able Y = (y,v:: - v.) i5 defined to be the bitwise logical
QR of the ¢s; that is,

iy oyl =o@o@® Do

Y as defined retains the following propertics:
Yo =1,

and
v, =0 forall k=m.

By definition of the deciphering function [,
{Y)=0"100""

or

flc,@Pc; - Do) = max(c, ¢z, - . . ,Cn)-

Using code deciphering, a bus arbitration protocol can be
designed. The network supporting the protocol should have
the following components: a synchronous parallel bus for
transmitting data and codes, a bus status control line for indi-
cating the busy status of the bus, and an intelligent VPU-bus
interface for each VPU that is capable of {1) sensing the
bus-status control line, (2) reading data from the bus, (3)
writing data to the bus, (4) generating random codes, and (5)
deciphering codes read from the bus. The time interval for
generating a random number, writing the number to the bus,
and deciphering the code read from the bus is called a slot.

Whenever a VPU has data ready to transmit, it checks the
bus status first. If the bus is in use, it waits until the bus
becomes idle. To contend for the bus, a VPU chooses a code
randomly from the code space S and writes it to the bus. The
resulting code written on the bus is the bitwise logical OR of
all the codes written by the contending VPUs. Euch con-
tending VPU reads the resulting code written and computes
the deciphered code using the code-deciphering function. It
compares the deciphered code with the code generated lo-
cally. Three results are possible:

[y

. the locally generated code is equal to the code read

2. the locally generated code is not equal to the code read
but is equal to the deciphered code

3. the locally generated code is equal to neither the code

read nor the deciphered code.

The last outcome implies that this VPU has not generated
the maximum code and has to wait until the next contention
period. The first and second outcomes imply that this VPU
has generated the maximum code and should be aliowed to
transmit. However, there may be other VPUSs that have gener-
ated the same code. If there are more than one VPU in this
set (hidden collision}, the contention resolution process has to
be repeated. There are two ways to detect hidden collision.
First, each VPU in this set generates an s -bit random number
and writes it to the bus. To prevent the possibility of two VPUs
generating the same random number, each VPU can use a
distinct n-bit station identification code as the random num-
ber. If the number read from the bus matches the number
written, then hidden collision has been resolved. ! collision is
detected, the MACD scheme is repeated. Second, we can
assume that hidden collision is not resolved, and the collision-
detection process is repeated. The process has to be repeated
a number of times uniil there s high confidence that exactly
one VPU is isolated.

When the probability is high that a large number of stations
have penerated the maximum code, the second method of
resolving hidden collision is better because it is very likely that
the MACD process has to be repeated, and the time for
propagating the random number in the first method is lost. On
the other hand, if the probability is high that exactly one
station has generated the maximum code, the first method is
better because hidden collision can be detected efficiently. In
the second method, the code space S is much smaller (the size
is n for an n-bit number). As a result, a few additional steps
are necessary in order to achieve a high enough confidence
that there is no hidden collision. In this paper, we have used
the first method of resolving hidden collisions because the
number of contending VPUs is usually relatively small com-
pared to the bus width. Even when this is not true, we propose
in the next section a method of using a variable-sized code
space so that the number of VPUs contending in a slot is
small.

It is important to note that the code space discussed in
Theorem 1 (unary representation) is not unigue. If binary
codes are used, Equation 1 is still satisfied. A new code-
deciphering function has to be designed so that Equation 2 is
satisfied. By detecting the most significant bit that is mis-
matched among the codes generated by the contending VPUs,
half of the stations, on the average, can be eliminated in each
contention. This is not as efficient as unary-code representa-
tions because 1/W stations remain (W is the bus width) after
each contention, if unary codes are used.

MACD Bus Arbitration for Priority Access

In a system with priority accesses, a VPU is assigned a
priority level by the task that invokes its execution. The set of

18 National Computer Conference, 1984

VPUs with the same priority level constitutes a priority class.
The global priority class is the class of contending VPUs with
the highest priority level in the system. In a contention period,
bus control is granted to a VPU that belongs to the global
priority class.

“To support accesses with priority, the system should be able
to identify the globa) priority. One way to do so is to add a set
of control lines to the system, each of which corresponds to a
priority level. A requesting VPU is responsible for setting the
corresponding priority line. The global priority level can then
be identified by finding the control line with the highest prior-
ity level that is being set. This scheme works weli when there
are a limited number of priority levels.

On the other hand, the MACD scheme proposed earlier
can be adapted to priority accesses in two ways: First is
MACD by code space partitioning. The code space of the
original MACD scheme is partitioned into subspaces so that
each subspace corresponds to a priority level. The partition
should satisfy the following condition:

If XeS, YeS andi>j, then X>Y

where 5; and 5; are subspaces corresponding to priority levels
i and j respectively. Using this partitioning, priority levels are
encoded into the contending codes, and the deciphering func-
tion proposed in Theorem 1 can identify the global priority
level and the largest code in this level.

The other method of adaptation is MACD by two-phase
identification. The partitioning of code space is practical when
the number of priority levels is relatively small as compared to
the size of the code space. When the number of priority levels
is large, a contention period can be divided into two phases:
a priority resolution phase followed by an intraclass conten-
tion phase. Tn the priority resolution phase, a strictly in-
creasing function, which maps a set of priority levels onto a
code space, is defined in each contention slot. The mapping is
done so that the minimum number of priority levels is
assigned to the same code. In a contention slot, every con-
tending VPU writes its code to the bus and deciphers the
number read from the bus. A set of VPUs with the highest
priority levels (corresponding to the deciphered code) is iden-
tified. The process is repeated until the set of VPUs with the

highest priority level is identified. When the bus width is-

larger than or equal to the number of priority levels, this phase
can be completed in one contention slot.

Evaluation of Load-dependent MACD Bus Arbitration
Scheme

Bus arbitration schemes can be evaluated with respect to
the following attributes: complexity of implementation, com-
plexity of contention time, flexibility, reliability, and priority
access capability. The MACD scheme requires one control
line (bus busy). The control logic for the bus interface is
relatively simple. A VPU can be added to or removed from
the bus without disturbing other components of the system.
This system is, therefore, fiexible for expansion and con-
venient for the removal of faulty units. The MACD scheme

can support accesses with priority. Moreover, the scheme is
efficient as far as contention time is concerned. The analysis
and simulation results are shown in the remaining part of this
section. '

The time comptexity of contention resolution can be mea-
sured by the mean number of contention slofs in each con-
tention period. To analyze this complexity, let N be the num-
ber of contending VPUs at the beginning of a contention
period and K be the size of the code space equal to the bus
width W. Assuming that codes are chosen randomly, a VPU
generates a given code ¢ (i=1,2,...,N} with probability
1/W. Designate the maximum of N such cs as ¢, the m-th
code in the code space, i.e., ¢m =max{g|i=1,2,... , N} If
exactly one VPU generates code ¢, and other VPUs generate
codes less than c,,,, then the contention is resolved. The proba-
bility for this event to occur is:

m-— 1)”"

q(miN,K=W)=N(%)(—-—W~'— 3

Since m ranges from 1 to W and these W events are mutually
exclusive, the probability that contention is resolved in one
step is P w.n Where K=W is:

w
PK,W.N = E q(m|N, K= W)
m=i

- En(@e)

m=1

W1
= % % ut! 4)
In Figure 3, Pk w.w is plotted against N'W. It is observed that
the probability of success in one attempt is higher if the code
space (equal to bus width) is larger and the number of con-
tending VPUs is kept constant. It is observed that P, w,n is &
strictly decreasing function of N and decreases to zero when
N is large. This medins that the MACD technique is unable to
tesolve contention in one step when the load is extremely
heavy. However, most of the contending VPUs are eliminated
in one attempt. The number of survivors is reduced signifi-

“cantly as contention proceeds, and the probability of success

is increased consequently. The following analysis demon-
strates this phenomenon.

Giiven that the maximum of codes generated by the con-
tending VPUs is ¢n, the m-th code in the code space. Define
indicator variables X;,i=1,...,N,

X|= [(1]

Let
| N
Z= 20X

i=1

with probability 1/m
with probability 1 — 1/m

The random variable Z indicates the number of VPUs that
generate c., in the contention. These VPUs are allowed to
contend in the following steps. The expected value of Z given

A Multiaccess Bus Arbitration Scheme 19

m, N, and W, E(Z|m, N, W}, represents the average number
of surviving YPUs. It is easy to show that:

EZ|m N,W=K) =1)

Furthermore, the probability that the current maximum code
with N contending stations and a bus width of W is cn can be
expressed as:

The expected number of VPUs that would survive a con-
tention is:

E(ZlN,W=K)= iE(zim,N.w:K)

m~1

p(m[N,W=K)

N 1N-I 2N—l
""'W_N[7ty vt
(w_l)N—l +_N_
w w
- N W-D"' N
_WN{W- W +-w"
N [woi N
w w w
N
=W ™
E(Z!N,w;x)
The ratio-ya“—--——-N—————sWisamcasure of the aver-

age fraction of coatending VPUs that can survive a con-
tention. Let N(t=0,1,...) be the expected number of con-
tending VPUs in step t. By Equation 7, we have

N=(2VN =0
t W lo 1 .

Therefore,

load-independent MACD Scheme

f

=
3_

=

&

- 630 W=8 K=5N
a

o

g K=8

5

o300

e

G

z K =16

T

A

a Kz 32

£

[<]

£

o

29
load-dependent MACD scheme

.030

L 11 T Y v Y T ¥ \d \J T
9.00 E.O0b %00 400 &.00 100 D M.B 6.0 180 .8

iNo. of contending WPUa)/W
Figute 3—Probability of success in one contention using multiuccess
code-deciphering bus arbitration scheme (K is the size of code space; W is
the bus width, N is the number of contending VPLs)

r.a

.08 1
Load-dependent MACD scheme

.08

Average number of contention slots

.08 7
W= 32
___________ - :é::--..
--====-—--_"""-:'.--q=—=?".\,~4¢" ST
s.00 1
Load-independent MACD scheme (K= 5N)
.00 u v T ¥ T Y ¥
18 [“ 3 n = 108 n3 im

No. of conteading VPUs(N)

Figure 4—Average number of comention slots for resolving conflicts of bus
requests using muliiuccess code-deciphering schome (K is the size of code
space; W is the bus width, N is the number of contending VPUs)

N;—1 as t—rlogNp. (8)

As shown in Figure 3, we can see that Pcw,n—1as N< W,
and P w,n—0 as N » W. This fact reveals that the con-
tention process of MACD can approximately be divided into
two phases. The effect of the first phase, that is, when N, > W,
is in reducing the number of contending VPUs. When the
process enters the second phase, N, =W, contention can be
resolved in about one step. The overall contention process will
stop within an average of logw. No steps. Figure 4 shows the

20 Nationat Computer Conference, 1984

simulation resuits that confirm our analysis. The number of .

contentinn slots shown includes the additional slots required
for resolving hidden collisions. MACD performs better when
the bus width is large.

LOAD-INDEPENDENT MACD BUS ARBITRATION
SCHEME

As shown in Equation 8 and Figure 4, the scheme proposed in
the last section is load-dependent and performs well when the
bus width is large and the number of contending VPUs js
small. Since the number of contention slots grows logarith-
mically with the number of contending VPUs, the scheme is
inetficient when the number of contending VPUs is large or
the bus width is small.

The cause for the load dependency is the fixed code space.
In order to reduce the number of VPUs contending in a slot,
th code space can be designed so that it is a function of the
number of contending VPUs and the bus width. By choosing
the size of the code space so that the number of VPUs con-
tending in a slot is a relatively small constant as compared to
the bus width, contention can be resolved in a time that is
lead-independent. We have studied a similar scheme for con-
tention resolution on carrier-sense-multiple-access bus net-
works.™ "

The solution depends on choosing the size of the code space
and estimating the number of contending VPUs. Suppose N
_ can be estimated accurately, and a code is chosen so that
K/N = r. The probability that contention is resolved in one
step (refer 1o Equation 4) is:

K
Ponws= 2 q(m‘N= K/r, K. W)

meK-w+}

() S e)

umk W

where g{m l N = K/r, K, W) is defined in Equation 3, The val-

ue of Fe n w is plotted in Figure 3. It is seen that the success
probability is higher and load independent as a result of the
increase in the code space size.

The expected number of VPUs that would survive a con-
tention can also be derived similarly. In this case, the number
of surviving VPUs is N if no station contends in the slot. That
is, Equation 5 is changed to:

N
E(Z m'N’_'K/I’.W)={E Ke=m=K-W+1
N I=m=K-W 10)
The definition of p(m ! N, W) in Equation 6 remains true. The

expected number of surviving VPUs in one contention is:

it

iE(Zlm.N

m=|

Kir, Wip{m , N = KJr,_W)

E(Z!N = K/r, W)

number of contsntion slots

Average

known 1aad

1.0

1.5 T T T Y v T T
1 3 L} . 4 4 i1 12 13
r o= {codr-space sizel/lnumber of contending VPUa)

Figure 5—The optimal choice of the code-space size (W = 16, N = 60)

s N,

m=K—W+1 m

p(;nlN

K-W
=K W)+ 2 N-p(m}N

Mo |

= K/r. W)
-
(E—Z—%—TJ)NJ(K —~W)N

(11)

Since K/N =r is a constant, E(Z l N =K/r, W) is a constant

independent of load (= N) if K is large as compared to W,

The correct choice of r is shown in Figure 5. There is an
optimal choice of 7 so that the number of contention slots is
minimum. The optimal value depends on the value of W and
is load independent (assuming that N is known). The value is
approximately {ive for the combinations of W and N tested.
Using the optimal value of r, the performance of the load-
independent MACD scheme is plotted in Figure 4. In gener-
ating these results, the size of the code space, K, is chosen to
be Wil r X N is smaller than W; that is, the scheme proposed
earlier is used when the load is light. It is observed that the
proposed scheme requires a small constant number of slots
when the load is heavy.

The proposed scheme requires N to be known. In general,
this is not possibic due to the distributed control. Qne way is
to estimate N based on information collected during the con-
tentions, However, this information can indicate that one or
more contending VPUs have generated the same code, but
cannot reveal the exact number of contending VPUs. If the
number of VPUs contending in a contention slot is small, a
reasonable estimate of N can be obtained by using the number

A Multiaccess Bus Arbitration Scheme 21

Table I—Comparison of MJI‘\CD with conventional bus arbitration schemes. (M = number of VPUs connected 1o the bus)

Comparison of MACD with Conventions! Bus-Arbitration Schemes
Attributes | Hardware Complexity Contention Time Reliability | Flexibility Priority
Control Control light Heavy | . Failure Easy Task
Schemes Logic Line Load Load Tolerance Reconfig. | Dependence
MACD O(M) 1 wi ~1 Yes Yes Yes
Daisy- .
O(M) 3 O(M) ~l No No No
Chaining
Polling O(M) 2-+log,M O(M) ~i Yes No No
lndepend'ent
O(M) M Oflog;M) | OflogsM) Yes Ne No
Requests

of bits that are ones in a contention slot, B, as the number of
VPUs contending in this slot. That is,

BxK

N= (12)

This will systematically underestimate the actual value of N,
and some correction to the value of r used should be intro-
duced. In Figure 5, the optimal value of r that should be used
is slightly different when the estimate in Equation 12 is used.
The number of contention slots required is slightly increased
when N is estimated.

A maximum-likelihood estimate of N also can be derived.
However, the complexity of such a scheme is high and cannot
be used in real-time applications.

CONCLUSION

In this paper, we have studied the problem of bus contentions

in VLSI-densed shared-bus systems. Data traffic generated by.

VPUs in such systems are characterized by three distinct

features: large population, bursty transmissions, and task-
dependent priority accesses. A bus arbitration protocol is nec-
essary to resolve access conflicts when several VPUs are trying
to access the bus simultaneously. Conventional schemes such
as daisy chaining, polling, and independent requests are
shown to be inadequate because of the large overhead or the
high complexity of implementation.

The load-dependent MACD scheme presented in this paper
can resolve contention of N VPUs in an average time of
O(logws N) steps where W is the width of the bus. For bursty
traffic in a system with a parallel bus, N is usually relatively
small as compared to W. Nearly pertect bus scheduling 18
achievable. An extended scheme is proposed that estimates
the value of N and uses a code space of variable size de-
pending on N. It is found that contentions can be resolved in
a time that is load-independent. _

The proposed MACD scheme can support rask-dependent
priority accesses that cannot be supported by conventional -
bus arbitration schemes. Comparisons between the MACD
and the conventional bus arbitration schemes are summarized
in Table 1. These comparisons clearly indicate that the MACD
scheme is superior in almost every respect.

22

National Computer Conference, 1984

ACKNOWLEDGMENT

This research was partially supported by National Science
Foundation Grant ECS80-16580 and by CIDMAC, a research
unit of Purdue University, sponsored by Purdue, Cincinnati
Milicron Corporation, Control Data Corporation, Cummins
Eagine Company, Ransburg Corporation, and TRW.

REFERENCES

Briggs. F. A,, K. §. Fu, K. Hwang. and B. W. Wah. “PUMPS Architecture
for Patiern Analysis and Image Dalabase Management.” [EEE Trans-
octions on Computers, C-31 (1982), pp. 969-983.

- Kung, H.T. et al. VLSI Systems and Computations. Rockville, Md.: Com-

puter Science Press, 1988,

- Control Data Corporation. “Technical Information: Control Data Cyber-

plus.” News Release and Fact Sheet, Oct. 1983,

- Wah, B. W., “A Comparative Study of Distributed Resource Sharing on

10.

11,

Multiprocessors.” Proceedings of 10th Arinual International Symposium on
Compuier Architecture, Stockholm, Sweden: ACM, 1983, pp. 300-308c.

. Baer, J. Computer Systems Architecrure, Rockville, Md.: Computer Sci-

ence Press, 1980.

. Hayes, J. P. Computer Architecture and Organization. New York: McGraw-

Hill, 1978.

. Thurber, K. 1. et al. “A Systematic Approach to the Design of Digital

Bussing Structures.” AFIPS, Proceedings of the National Computer Confer-
ence (Vol. 41}, 1972, pp. 719-740.

- Tobagi, F. A. ““Multiaceess Protocols in Packet Communication Systems.™

{EEE Transactions on Communications, COM-28 (1980}, pp. 468-488.

. Wah, B. W. and Y. Y. Juang, “Load Balancing on Locai Multiaccess Net-

works."” Praceedings of 8th Conference on Local Computer Networks, Min-
neapolis, Mina.: IEEE, 1983, pp. 55-61.

Juang, 1. Y., and B. W, Wah, *‘Unificd Window Protocol for Local Multi-
access Networks.” Proceedings of Third Annual Joint Conference of the
TEEE Computer and Communications Societies. San Francisco, California:
IEEE, 1984, pp. 97-104.

Metcalf, R. M., and D. R. Boggs. “Ethernet: Distributed Packet Switching
for Local Computer Networks.™ Communicetions of the ACM, 19 (1976),
pPp. 395-404.

