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Abstract: A general technique for solving a wide variely of
scarch problems is the branch-and-boun (B&B) algorithm,
We have adapted and extended BEB algorithms for parallel
processing. Anomalies owing to parallelism may occur. ln this
paper sufficient canditions to guarantee that parallelism witl
not degrade the performance are presented. Necessary condi-
tions for allowing parallelism to have a speedup greater than
the number of processors are also shown. Anomalies are found
Lo occur infrequently when optimal solutions are sought; how-
ever, they are frequent in approximate B&B algorithnis.
Theoretical apalysis and simulatiops show that a best-first
search is robust for parallel processing.

1. INTRODUCTION

The scarch for solutions in a combinatorially large prob-
lem space is very imporiant in artificial intelligence %AII; (8l
Combinatorial-search problems can be classilied into two
types. The first type is decision problems that decide whether
at Jeast one solution cxists and satisfies a given set of con-
straints. Theorem-proving, expert systems and some permuta-
tion problems belong to this class, The sccond type is optimi-
zation problems that are characterized by an objective func-
tior to be minimized or maximized and a sct of constraints to
be satisfied. Practical problems, such as traveling salesman,
job-shep scheduling, knapsack, vertex cover, and gume-tree
search belong to this class,

A general techinique for solving combinatorial searches is
the B&B algorithm [6]. This is a partitioning algerithm that
decomposes a problem into smaller subproblems and repeat-
edly decomposes unti] infeasibility is proved or a solution is
found [6]. It can be characterized by four constitucnts: a
branching rule, a sclection rule, an elimination rule and a ter-
mination condition. The first two rules are uvsed to decompose
the problem into simpler subproblems and appropriately order
the search. The last two rules are used to eliminate generated
subproblems that are infeasible or that cannot lead to a better
solution than an already-known [easible solution. Kumar et
al. have shown that the B&D approach provides a unified way
of formulating and analyzing AND/OR tree scarches such as
$SS* and Alpha-Beta search [1]. The technique of branching
and pruning in B&B algorithms to discover the optimal ele-
ment of a set is the essence of many heuristic procedures in Al

To enhanrce the efficicncy of implementing B&EB algo-
rithms, approximations and paralle! processing are two major
approaches. It is impractical to use parallel processing to solve
intractable problems with exponential complexity because an
exponential number of processors must be used to solve the
problems in polynomial time in the worse case. For these
problems, approximate solutions are acceptable alternatives.
Experimental results on vertex-cover, 0-1 knapsack and some
integer-programming problems reveal that a linear reduction in
accuracy may resull in an exponertial reduction in the average
computational time [10]. Oxn the other hand, parallel process-
ing 18 applicable when the problem is sclvable in polynomial
time (such as finding the shortest path in a graph), or when
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the problem is NP-hard but is sclvable in polynomial time on
the average [0], or when the problem is approximately solvable
in polynomial time (such as game-tree search).

Analytical properties of parallel approximate B&B
‘PABB) algorithms have been rarely studied. In general, a k-
old spcedup (ratie of the number of iterations in the serial
case Lo that of the parallel case) is sought when k processors
are used. However, simulations have shown that the speedup
for PABB algorithms using k processors can be (a) less than
one--“detrimental anomaly |3,5); (b) greater than k-
“acceleration anomaly” [3,5]; or (¢} between one and k--
“deceleration anomaly [3,5,10]. Similar anomalous behavior
have been reported by others. For instance, the achievable
speedup for AND/OR-tree searches is limited by a constant (5
to 6} independent of ‘t./hp pumber of processors used (parallel-
aspiration search) or vk with k processors (tree-aplitting slgo-
rithm) [1]. So far, all known resuits of parallel tree searches
showed that a near-linear speedup holds only for a small
number of processors. It is desirable to discover conditions that
preserve the acceleration anomalies, eliminate the detrimental”
anomalies and minimize the deceleration anomalies. The
objectives of this paper are to provide conditions for achievin
the maximum speedup and to find the appropriate paralle
search strategy under which 2 near-linear speedup will bold for
a considerable number of processors.

2. PARALLEL APPROXIMATE BRANCH-AND-
BOUND ALGORITHMS
Many theoretical properties of serial BZB algorithms
have been developed [2], and a briel discussion is given here.
In this paper minimization problems are considered. Let P; be
a subproblem, i.e., a node in the state-space tree, and f{P;) be
the value of the best solution obtained by evaluating all the
subproblems decomposable from P;. A lower bound, g(P;}, is
calculated for P; when it is created. If a subproblem is a feasi-
ble solution with the best objective-function value so far, the
solution value becomes the incumbent 3. The imcumbent
represents the best solution obtained so far in the process.
During the computation, P; is terminated if:
gP) 22 (1)

The approximate B&B algorithm is identical to the optimal
algorithm except that the lower-bound test is modified to:
z
Py 2 —E- 20,20 @)
where ¢ is an allowance parametfer. The final incumbent value
1p obtained by the modified lower-bound test deviates from
tge optimal solution value, 25, by:

g

T+e S ST (3)
Let L denotes the lower-bound cutofl test, that is, P;LP;
means that P; is a feasible solution |, and

f(P;)/(1 +¢) < g(P)),'e20. For example, in Figure 1, P{LP,,
since 91/1.1<85, and simifarly P,LP,. However, P,LP, is
false because 100/1.1>85.

lbaraki mapped breadth-ficst, depth-first and best-first
searches into a gemeral form called hcuristic searches L2] A
keuristic function is used to define the order in which subprob-
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Figure 1. Example of a detrimental anomaly under a parallel -

depth-first search (¢=0.1).

lems are selected and decomposed. The algorithm always
decomposes the subproblem with the minimum heuristic value.
In a best-first search, the lower-bound values define the order
of expansion, hence the lower-bound function can be taken as
the heuristic function. In a breadth-first search, subproblems
with the minimum level numbera are expanded first. The level
pumber can, thus, be taken as the heuristic function. Lastly,
in a depth-first search, subproblems with the maximum level
numbers are expanded first. The negation of the level number
can be taken as the heuristic function.

Branch-and-bound algorithms have inherent parallelism:

a) Parallel aclection of subproblems: A set of subproblems
less than or equal to in size to the number of processors have
to be sclected for decomposition in each iteration. A sclection
function returns k subproblems with the minimmum heuristic
values from U, where % is number of processors and U is the
active list of subproblems. The selection problem is especially
critical under a best-first search because a set of subproblems
with the minimum lower bounds must be selected.

(b) Parallel branching. The subproblems assigned Lo the
processors can be decomposed in paraflel. In order for the pro-
cessors Lo be well utilized, the number of active subproblems
should be greater than or equal to k.

¢} Parallel termination test: Multiple infeasible nodes can
be eliminated in each iteration. Further, multiple feasible
solutions may he generated, and the incumbent may have to
be updated in parallel,

(dz1 Parallel elimination test: 1f the incumbent is accessible
to all the processors, the lower-bound test (Eq's 1 or 2} can be
carried out in parallel.

The above sources of parallelism has been studied in
MANIP, a multiprocessor implementing PABB algorithms with
a hest-first search and lower-bound tests [10}.

3. ANOMALIES ON PARALLELISM

In this section anomalies are studied under fower-bound
elimination and termination rules, The resulis on anomalies
with dominance tests are shown elsewhere [7]. For simplicity,
only the search for a single optimal solution is considered here.

A synchronous model of PABR algorithm is used. The
incumhbent is stored in a global register that can be updated
concurrently. Active subproblems can be stored in a central-
ized list or multiple lista. The distinction lies in the memory
configuration. When all the processors are connecled to a cen-
tralized memory, the subproblem list is global to the proces-
sors, When each processor has a private memeory, only the

local subproblem list can be accessed, The sequence of
operations performed in an iteration are selection, branching,
feasibility and elimination tests, and inserting newly generated
subproblems into the list(s). Let T9k,) and T4(k,e} dencte
the number of iterations required for expanding a BERB tree
using centralized and k subproblem lists respectively, where k
is the number of processors used, and ¢ is the allowance
parameter.

An example of a detrimental apomaly is illustrated in
Figure 1. In a serial depth-first search, subtree T, is ter-
minated owing to the lower-bound test of P;:
f(P,}/(1 +¢} < g(P;) where ¢=0.t. In a parallel depth-first
search with two processors, a feasible solution, Py, that ter-
minates P; and P; is found in the second iteration. As men-
tioned before, P, is not eliminated by P;. Consequently, sub-
tree T, has to be expanded that will eventually terminate sub-
tree Ty, If the size of T, is much larger than the size of Ty,
the time it takes to expand T, using two processors will be
longer than the time it takes to expand T using one proces-

_sor. Note that the above anomaly does not happen in a best-

first search because subtree T, is not expanded in both the
serial and the parallel cases, .

An example of an acceleratior anomaly is shown in Fig-
ure 2. When a single processor with a depth-first search is
used, subtree T will be expanded since f{P,}/(1+¢) > g(P,)
where ¢ =0.1. When two processors are used, P, and hence T
will be terminated by lower-bound tests with Py
P}/ (1+e) < gfP,). IT T is very large, an acceleration ano-
maly will oceur.

4. GENERALIZED HEURISTIC SEARCHES

Recall that the selection function uses the heuristic values
to define the order of node expansions. In this section we
show that detrimental anomalies are caused by the ambiguity
in the seleclion rule. A generalized heuristic search is proposed
to eliminate detrimental anomalies in a single subproblem list.

Consider the serial depth-first search. The subproblems
are maintained in a last-in-first-out list, and the subproblem
with the maximum level number is expanded first. When mul-
tiple subproblems have identical level numbers (heuristic
values), the subproblem chosen by the selection function
depends on the order of insertion into the stack. Suppose the
rightmost son is always expanded and inserted first. Then the
leftinost son will be the subproblem inserted last and
expanded first in the next iteration,

In a paralle! depth-first search with a single subproblem
list, the mere extension of the serial algorithm may cause an
anomalous hehavior. For example, the order of expausion in a
serial depth-first search for the tree in Figure3is A, B, D, I, J,
B, etc, When two processors are used, nodes B and C are
expanded in the second iteration that result in nodes D, E, F,

g=[=00

Figure 2. Example of an acceleration anomaly under a paral-
lel depth-first search (¢=0.1).
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Figure 3. The path numbers of a tree.

G and H. Since these nodes bave identical level numbers, any
two of these nodes can be chosen for expansion in the next
iteration by the conventional heuristic function discnssed in
Section 2. Suppose the nodes are inserted in the order E, D,
H, G and F. Then wnodes F and G will be selected and

expanded in the third iteration. This may cause a detrimental-

anomaly if subtree T is large. In fact, this is exactly the rea-
son for the anomalies reported by Lai and Sahni {5].

To solve this problem, we must define distinct heuristic
values for the nodes so that there is no ambiguity on the nodes
to be chosen by the selection funciion. In this paper a path
num ber is used to uniquely identify a node in a tree. The path
number of a node is a sequence of d+1 integers that represent
the path from the root to this pode where d is the maximum
number of levels of the tree. The path number E = egeqes.. 24
is defined recursively as follows. The root Py exists at level 0
and has a path number of 000...0. A node P; on level { which

is the j-th son (counting from the left} of P; with path number
EP| = euel,,_e,_lODO,.. has p:\l.ll numher Ep = e0e|_,,e,_,j00,__.

As an example, the path numbers for the nodes in the tree of
Figure 3 are shown.

To compare path numbers, the relations *'>" and “="
must be defined. A path number B, =eled - -+ is less than
another path pumber E, =efel - -+ (B, < E;) il there exists
0<;j<d such that ¢! =e?, 0<i<j, and e,-‘<ef. The path
numbers are equal if ¢! =e? Tor 0<i<d. "For example, the
path number 01000 is less than 01010, Note that nodes can
have equal path numbers if they have the ancestor-descendant
relationship. Since these nodes never coexist simultaneously in
the list of active subproblems, the subproblems in the active
list always have distinct path numbers,

The pathk number is now included in the heuristic Tunc-
tion. The primary key is still the lower-bound value or the
level number. The secondary or ternary key is the path
number and is used Lo break ties in the primary key.

(level numher, path number) breadth-first search

{path number) depth—first search
h(P;)= {lower bound, leve] number, path number)

or {lower bound, path number)  best—first search

For a best-firsi search, two alternatives are defined that search
in a breadth-first or depth-first fashion for nodes with identical
lower bounds. The heuristic functions defined above belong to
a general class of heuristic functions that satisfy the following
propertics:
{a) WP)#WP) i P#P;, P, PLEU

all heuristic values m the active list are distinct) (5}
(b) h(P;)<h(P;) if P, is a descendant of P;

(heuristic values do not decrease) (6}
In general, any heuristic function with a tie«_breaking rule that
satisfy Eq's 5 and 6 will not lead to detrimental anomalies.

Due to space limitation, the results are stated without proof in
the following theorems. The proofs can be found in [7].

Theorem 1: Let ¢=0, i.e., an exact optimal solution is sought.
T9k,0)<T(1,0) holds for parallel heuristic searches of a single
optimal solution in a centralized list using any heuristic fume-
tion that satisfies Eq's 5 and 6.

When approximations are allowed, detrimental anomalies
cannot always be avoided for depth-first searches even though
path numbers or other tie-breaking rules are used (see Figure
1). The reason for the anomaly is that lower-bound tests
under approximation, L, are not transitive, That is, P;L P;
and P;L P, do not imply P;L P}, since I‘;P;)/(l+¢) <gP) and
I}Pj}/ 1+t§sng) implies f(P;}/(1+¢)* <g(Py) rather than
f(P;)/(1+¢) < g(Py}. In this case detrimental anomalies can be
avoided lor best-first or breadth-first searches only.

Theorem 2: Tk,¢) < T%1,¢), ¢>0, holds for parallel best-
first or breadth-first searches for a single optimal solution
when a heuristic function satisfying Eq's 5 and 8 is used.

Since the lower-bound function is used as the heuristic
function in best-first searches, Eq's 5 and 6 are automatically
satisfied if ali the lower-bound values are distinct. Otherwise,
path numbers must be used to break ties in the Jower bounds,
In Section 7 a more generzal condition will be given for best-
first searches. For depth-first searches, the conditions of
Theorem 2 are not sufficient, and the following condition is
peeded, For any feasible solution P;, all'nodes whose heuristic
values are less than h{P;) cannot be eliminated by the lower-
bound test due to P;, that is, f{P;)/(1 +¢) < g(P;} implies that
WP} < h(P;} for any P;. Generally, this condition is too
strong and canoot be satisfied in practice.

5. NECESSARY CONDITIONS TO ENSURE
ACCELERATION ANOMALIES IN A SINGLE sSUB-
PROBLEM LIST

When ap exact optimal sclution is sought, acceleration
anomalies may occur if a depth-first search is used or some
nodes have identical heuristic values. This is characterized by
the incomplete consistency between the heuristic and the
lower-bound functions. A heuristic funciion, h, is said to be
not completely consiatent with g il there exist iwo nodes P; and
P, such that h(P;) > h(P;) and g(P;) < &(P;)-

Theorem 3: Let ¢ =0. Assume that a single optimal solution
is sought. The necessary condition for T*(k,0) < T%(1,0)/k is
that the beuristic function is not completely consistent with g.

Far a breadih-first search, no acceleration anomaly will
occur if the heuristic function defined in Eq. 4 is used. For a
best-first scarch, acceleration anomalies may exist il the level
number is not used in the heuristic function. It is important
to note that the condition in Theorem 3 is ot necessary when
approximate solutions are sought. An example showing the
existence of an acceleration anomaly when h is completely con-
sistent with g is shown in Figure 2. A looser necessary condi-
tion is that b is pot completely consistent with the lower-
bound test with approximation, that is, there exist P; and P;
such that b(P;) > b(P;} and P;L P,

8. MULTIPLE SUBPROBLEM LISTS

When there are multiple subproblem lists, one for each
processor, a node with the minimum heuristic value is selected
for decomposition from each local list. This pode may not
belong to the giobal set of active nodes with the minimum
heuristic values; however, the node with the minimum heuris-
tic value will always be expanded by a processor as long as the
nodes are selected in a consistent order when there are ties.
Since it is easy to maintain the incumbent in a globai data
register, the hehavior of multiple lists is analogous to that of a
centralized list. However, ‘the performance of using multiple
lists is usually worse than that of a single subproblem list [10].

So far, we have shown conditions to avoid detrimental
anomalies and to preserve acceleration anomalies under lower-
bound tests omly, The results are summarized in Table 1.
The corresponding results when dominance tests are used will
not be shown here due to space limitation 7).



“Table 1. Summary of results for the elimination of detrimental

anomalies

and the

preservation

of acceleration

anomalies in parallel B&B algorithms with lower-

bound tests,

Sub- Suff. cond. | Necessary
Allowance [ problem Search  [ito eliminate| cond. for
parameter| lists strategies |[Detrimental | Acceleration
¥
single ]
=0 all I
multiple 2o anomal
breadt h-first
¢>0  {single or| or best-first exists
multiple
depth-first [| anomaly

Conditions: I:
1.

heuristic function satisfies Eq's 5 and 6.
h is not completely consistent with g.

anomaly: the sufficient conditions are impractical.

exists:

the necessary conditions are too loose.

7. ROBUSTNESS OF PARALLEL BEST-FIRST
SEARCHES .

The preceding sections have shown that best-first
searches are more robust for parallel processing in the sense of
avoiding detrimental anomalies and preserving aceeleration
anomalies. In this section we shown that best-first searches
are more robust as far as deceleration anomalies are concerned.

Figure 4 shows the computational efliciency of a parallel
optimal B&LB algorithm using a best-first or a depth-frst
search for solving knapsack problems in which the weights,
w(i), are chosen randomly between 0 and 100 and the profits
are set to be pfi)= wﬁi)-l' 10. The assignment used is intended
to increase the complexity of the problem. In the simulations
each processor has a local memory. Load balancing is incar-

orated so that an idle processor with an empty subproblem

Est. can get a subproblem from its neighbor. [t is ohserved
that the speedup is sensitive to T(1,0}, and the speedup is
better for best-first searches. For instance, when 64 processers
are used, the average speednp is 48.8 for best-first searches and
27.9 for depth-first scarches, Moreover, it should be noted
that the generalized heuristic search presented in Section 4
cannot guarantee T(k,,0) < T(ky,0), ky > ko > 1, for depth-first
and breadih-first searches. Similar resulis were observed for
vertex-cover problems.

The following theorem gives the performance bound of
parallel best-first searches. The maximum number of proces-
sors within which a near-lincar speedup is guaranteed can be
predicted.
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lel optimal B&B algorithms for 10 knapsack prob-
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depth-first searches).
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Theorem 4: For a paralle! best-first search with k processors,
€=0, and g(P;)#{* if P; is not an optimal-solution node (I* is
the optimal-solution value),

T < (ko) < TLA 4 Ko M

where { is the maximum number of levels of the B&B tree to
be searched. Since the performance is not affected by using
single or multiple subproblem lists, the superseript in T is .
dropped.

Since § is a polynomial furnction of {usually equal to) the
problem size while T(1,0) is an exponential function of the
problem size for NP-hard problems, the first term on the
R.H.S. of Eq. 7 is much greater than the second term as long
as the problem size is large enough. Eq. 7 jmplies that the
near-linear speedup can be maintained within a considerable
range of the number of processors for best-first searches. As
an example, if §=50, T(1,0)=10% (for a typical traveling-
salesman problem), and k=1000, then T(1000,0)<1049, This
means that almost linear speedup can be attained with 1000
processors. Furthermore, it can be shown that there is always
a  monotonic increase in _ performance for all
1<k, <k; < VT(1,0)/§. For this example, there will not be
any detrimental anomaly for any combinations of
1<k, <k, <141 if the assumptions of Theorem 4 are satisfied.

Before ending this paper, it is worth saying a few words
about the space requiredp by paralle! B&B algorithms. In the
serial case, the space required by a best-first search is usually
more than that required by a depth-first mearch. Somewhat
surprisingly, the simulation results on 0-1 knapsack problems
show that the space required by parallel best-first searches is
not increased significantly (may also be decreased) until the
number of processors is so large that a near-linear speedup is
not possible. In contrast, the space required by parallel
depth-first searches is almost proportional to the number of
processors (Figure 4). Note that the space efficiency is
problem-dependent, For vertex-cover problems, the space
required by parallel best-first searches is not increased
significantly regardless of the number of processors used.
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