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ABSTRACT . .

Dynamic programmisg problems are classified into
monadic-serial, polyadic-serial, monadic-nonserial,  acd
Po[;,-adic-noﬂ!ffiai formulations. Problems in serial formula-
lions can be implemented easily in systolic arrays, while prob-
Jems in nooserial formulations may have to be transformed
into serial ones before eilicient implementations ¢an be found.
This paper presents parallel architeetures for problems formu-
lated in (monadic- or polyadic-) serial dynamic-programming
formulations. A monadic-serial dynamic programming prob-’
Jem can be solved as the search of an optimal path in a multis-
tage graph and can be computed as a string of matrix multi-
plications. Two efficicnt systolic-array desigus are presented.
A polyadic-serial dynamic-programming problem can be solved
by either a divide-and-conquer algorithm or the search of
optimal solutions in a serial ANDJOR graph. The optimal
granularity of parailel divide-and-bound algorithms is analyzed
apd simulated. Some transformational techniques to convert
ponserial problems into serial ones are briefly discussed,

INDEX TERMS: AND/OR graph, dynamic programming,
matrix multiplication, monadie, multistage graph, nonscrial,
paralle] processing, polyadic, serial, systolic arrays.

1. INTRODUCTION

Dynamic Programming (DP) is a powerful optimization
methodology that is widely applied to a large oumber of areas
including optimal control, industrial engineering, economics,
and artificial intelligence [3,5,8,21,28]. Many practical prob-
lems involving a sequence of interrelated decisions can be
solved by DP efficiestly. Bellman has characterized DP
through the Principle of Optimality, which states that an
optimal sequence of decisions has the property that whatever
the initial state and decision are, Lhe remaining decisions zaust
constitute an optimal decision sequence with regard to the
state resuiting from the first decision [3]. Subsequently,
pumerous eforts have heen devoted to the rigorous mathemat-
ical framework and eflective evaluation of DP problems
13,11,28).

In general, DP is an approach that yields a transforma-
tion of .be problem into a more suitable form for optimization,
bLut is Dot an algorithm for optimizing the objective fuoction.
Moreover, DP can be interpreted differently depending cn the
computational approach. Bellman, Dreyfus, White, and maay
others viewed DP as a multisiage optimization techaique, that
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is, reducing a single N-dimensional problem 10 a sequence of N
one-dimensiona! problema {3,28). The decisions that trassform
an initia} state into a Gnal state must be ordered in terms of
stages, and functional equations relate state values in succes-
sive stages. The use of monolone sequential processes has
been proved by Karp and Held to correspond naturally 1o DP
13| and has been further developed by Ibaraki [11] and Kumar
151, Op the other hand, Gensi and Montanari have shown
that formulating a DP problem in terms of polyadic functional
equations is equivalent Lo searching for 3 minimum-cast solu-
tion tree is an AND/OR graph with monotone cost function
[o. DP can also be formulated as a special case of the
branch-and-bound algorithm, which is a general top-down
OR-tree search procedure with dominance tests [20,12,18}.
Lastly, nouserial DP has beea shown to be optimal among all
nonoverlapping comparison algorithms {5,24].

Although DP has long been recognited as a powerful
approach to solvizg a wide spectrum of optimization problems,
its applicability bas been somewbat limited due to the large
computational requirements. Recent advances in Very-Large-
Scale Integration {VLSI) and multiprocessor technologies bave
provided frasible means of implementation. Casti, et al., bave
studicd parallclism is DP [7]. Guibas, Kuog asd Thompson
have proposed a VLS| algorithm for solving the optimal
parenthesization problem {10]. Livear pipelines for DP have
been described recently [26]. Clarke and Dyer have designed a
systolic array for curve and lioe detection in terms of pobserial
DP (8). Wah, et al, have proposed parallel processing for
branch-and-bound algorithms with dominance tests [27]. How-
ever, these studies were directed towards the implementation
of 3 few apecial cases of DP formulations.

In this paper, we classify DP problems into monadic-
serial, polyadic-serial, monadic-nonserial, and poly adic-
sonserial formulations. Potential parallelism and  the
corresponding parailel architectures for solving serial DP praob-
lems are investigated. Generally, a problem can be expressed
in both monadic and polyadic formulations, and the efliciency
and costs of implementations must be compared. It bas been
shown that unrestricted nogpserial optimitation problems are
NP-bard, but that problems with a favorable pattern of Lerm
interactions may be solved eficiently {5}. An approach to
solve a ponserial DP problem with some structural propertiea
is to first convert it into a serial DP problem, snd to map the
serial formulation into an sppropriate parallel architecture.
Some methods for the conversion are proposed in this paper.

2. CLASSIFICATION OF DYNAMIC
PROGRAMMING FORMULATIONS
A DP formulation is represented in o recursive functional
equation whose lefi-hand side identifies & function name and
whose right-hand side is an expression invelving the maximita-
tion {or minimization) of vaiues of some cost functions. Note
that the cost functions are neither restricted to be mopadic
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Figure 1. (a) A multistage graph with five stages and three
podes in each intermediate stage. (The cost on each
edge is constant.) (b) A multistage graph with four
stages (variables) and threc vertices (quantized
values) in each stage. (The cost on each edge is »
function of the nodes connected.}

por additive; however, they must be monotone in order for the
Principle of Optimality to hold. DP formulations are classificd
according to the form of the functional equations and the
nature of recursion,

DP problems can be solved as either the search of an
optimal path in 3 multistage graph or as the search {or an
optimal solution in an AND/OR graph. We will adopt the
graph search a3 a paradigm to illustrate the various
approaches of DP. For DP problems in serial formulatiouns,
ihe corresponding graph represestations bave serial siructures,
and hence can be implemented easily in systolic arrays. A
type of serial graphs of special interest is the multistage graph
in which podes are decompased into stages, and nodes in ooe
stage are connected Lo nodes in adjacenl atages only. Figure 1
depicts two examples of multistage grapha.

2.1. Monadic versus Polyadic Formulatioas
A DP lormulation is called monpasdic if its cost [function
involves only one recursive term, otherwise it is called polyadic.
The distinction is illusirated by an example of fnding the
minimumecoat path in 3 multistage graph. For a muitistage
graph, let ¢ be the cost of an edge. The cost of a path from
sourcs, s, to sink, t, is the sum of costs on the edges of the
path. Define fy{i} as the minimum cost of » patk from itot.
Thus the cost of a path from i to t via a neighbor j is
¢i; Thii). To Bod (i), paths through sll possible neighbors
must be compared. Hence
F) = win e, + () (2.1)

This equation is termed a Jorward funciional equation. Simi-
larly, if £,{i) is defined as the minimum cost of a path from 1 to
i, then the functional equation becomes

I4i) = win [t:Ai) + €yl
This equation is termed a dackward funciionsl cquation. The

formulations in Eq's {2.1) and (2.2) are monadic since each coat
function involves one recursive term only.

(2.2)
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Eq's (2.1) snd (2.2) can be generalized to find the optimal
path from any vertex i to any other vertex j. The functional
equation is

1) = min (k) + kil 3)

where f(i,j) is the minimum cost of a path traversing from i to
j and passing through a node in Stage V. This cost function
is polyadic because it involves more than one recursive term,
Examples of this kind of problems include fnding the optimal
binary search tree and computing the minimum-cost order of
multiplying a striag of matrices. .

For palyadic DP formulations, Bellman's Principle of
Optimality must be generalized to include the statement that
“all subsequences of an optimal policy are also optimal.” For
instance, according to Eq. (2.3), if it is found that the
minimum-cost path from i to j passes through k, then the sub-
path from i to k of this optimal path must be optimal over all
subpaths from i to k; so is the subpath from kto}]

2.9, Serisl versus Nonserial Formulaticas

The distinction between serial and nonserial optimitation
problems is based ou both the form of their objective fuactions
and the nature of recursion. From the objective functicn, an
optimization problem is said to be serial if all terms of its
objective function share one variable with its predecessor term
{except for the first term) and another cne with its successor
term {except for the last term); otherwise, it is said to be non-
serial. The name “serial” refers to the interaction graph to
represent the problem, in which vertices atand for variables,
and an edge exist between two vertices if and culy if two vari-
ables belong ta a term of the objective fuaction [S]. It ia obvi-
ous that a serial optimization problem bas a corresponding
interaction grapk with a serial structure. ‘

An example of a serial optimization problem is depicted
jn Figure I{b). In ibis multistage graph, each stage, X
1<i<N=4, siands for a discrete variable, and Node x; ;, stands
for the j'th value taken by Variable X;. Bold characiers are
used to denote vectors and matrices, and variables here can be
considered as veciors of defined values. 1f the cost of edge
(Xijr ¥iv1y,,,) 18 g,(xui.x.ﬂ.im), then the minimum-cost path
from aoy pode in Stage | to,any node in Stage N is

' N-t
mja 100) = mjn T 6K Xis1)
il
where X is the set of discrete variables {X;,....Xx}. 1o Eq.
(2.4), every term of the objective {unction has two variables
that only interact with vaziables in the neighboring terms.
Therefore, Eq. (2.4} is a serial optimization problem.

Maay practical DF problems ¢an be represented in »
serial formulation. For a traffic-control problem, X can be the
possible times for the traffic light to be in State i, and the coet
on an edge of the graph representation is the difference in
timipg. For a circuit-design problem, X; can be the poasible
voltages at Point i, and the cost of an edge of the graph
teprescntation may be the corresponding power dissipation.
For a fluid-flow problem, X; can be the possible pressure
values in the i'th pump, aod Fusction { may be the flow rate
for & given pressure. For a scheduling problem, X; can be the
possible task service times for the i'th task, and the edge cost
reflects the delay. Note that the optimal-path problem iz muk
tistage graphs is a special case of serial optimization problems.

In contrast, the objective function of a general nonseriel
eptimization problem bas the following form.

N .
) = & &)

where X =(X,,...XN) is a set of discrete variables, XCX,
and & is a monotone function relating the gs togesber. For

(24)

{2.5)
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Figue 2. AD AND/OR graph representation of finding the
optimal order of multiplying a atring of four
matrices. (AND nodes are represented as circles and
indicate  multiplications; and OR nodes are
represented as squares and indicate compatisons.)
example, the following equation i3 a nouserial oplimization
prablem.

.m’éu {Sl(xaxz:xi)f BAXK X)) T (X0 X))} (2.8)

where X = {Xy, -u;xs}-_ .
From the viewpoint of recursion, a DP problem can be

represented as a folded AND/OR tree (or AND/OR graph} in
which the nodes are classified jnto levels or stages [18]. if this
AND/OR graph has a serial structure such that arca only exist
between adjacent levels, then the corresponding DP problem
bas a serial formulaticn. For gonserial DP problems, the
dependency between states is pot restricted o successive
stages, but may exist between states in arbitrary stages. In
the corresponding AND/OR graphs, the arcs are not restricted
to successive levels, but may run between any two arbitrary
levels.

As an example, consider the problem of fnding the
optimal order of multiplying a string of matrices. For simpli-
city, consider the evaluation of the product of four matrices.

M = My xMyxMy«<M,

where M, 1<i<4, is a matrix with 1,y rowa and 7; columas.
Let m;; be the minimum cost of computing Mx..xM;
Clearly,

m;, = ‘mini[mi.t t Wy o) (2.7)

1<k<

The solution to be found is m,, This formulation is
polyadic-ponserial and can be represented as the search of an
AND/OR graph as shows in Figure 2, where the AND-nodes"
denote muitiplications snd the OR-nodes denote comparisons.
1n Figure 2, the topmost node represents the original problem
of multiplying four matrices. There can be achieved in three
ways: (1) {MyxM,xMg)=xMg (2} (M, xMy)x(Myx M) or (3)
M, x(MaxMyxM,). These three aitersatives are represented by
the three AND-nodes in the second level. Note that the first

* The definitions of AND and OR nodes used sre due to Martelli and
Montanari [19]. The roies of the AND sod OR zodes sre reversed in
Nilsson's defasion [22].
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AND-node in the second level is connected to the node
representing m, 4 in the bottommost level. Similarly, the third
node is conpected to the pode representing my 4 in the bottom-
most level. These ares do not connect nodes in adjacent levels,
heace the formulation in Eq. (2.7) is polyadic-nonserial, -

We have classified DP problems in terms of their recur-
sive functional equations and objective functions. Monadic
and polyadic DP formulations are distinct approaches to
representing varicus optimizaticn problems, while serial and
popserial optimization problems are problems solvable by the
corresponding DP formulations.

3. SYSTOLIC ARRAYS FOR MONADIC-
SERIAL FORMULATIONS

Monadic-serial DP problems can be conveniently solved
as the moultiplication of a string of matrices. Iu this section,
two eficient systolic designs are presented. The propased
designs do not exploit all potential parallelism of solving a
given problem, especially when the number of atages s large.
Other parallel designs using different formulations may allow a
higher degree of parallelism and will be discussed later.

3.1. Solving Monadic-Serial DP Problems

as Strings of Matrix Multiplications

Recall that the search for a solution of » monadic-serial
problem can be viewed as finding a path iz a multistage graph.
For the multistage graph in Figure 1(a} and from Eq. {2.2),
f{C,), the minimum cost from C, w0 4, is

fC,) = min (e, +dyy, €2t dy g Tdyy)

f(C,) and f{C;) are obtained similarly.

Eq. (3.1) is similar to an inner-product operation. If we
define matrix multiplication in terms of a closed semi-ring (R,
MIN, +, +co, 0) io which ‘MIN’ corzesponds to addition and
'+ corresponds to multiplication in conventional matrix mul
tiplications [1}, then Eq. (3.1) becomes

flC,) )1 €12 ©13 dy
AC) = C-D = UC] = leay 22 €53 [dua
(C;) dy,

{3.1)

(3.2)
€31 a2 €33

Likewise, we have

fiB) = B:(C-D)

flA) = A-(B+(C-D))

Thus solviog the muitistage-graph problem with a backward
monadic DP forruulation i3 equivalent to multiplying a string
of matrices. 'The order of multiplications is reversed in
forward monadic DP formulations,

For » mullistage graph with N stages and m vertices in
cach stage, the computational complexity is O(m3N). For
single-source and siogle-sink problems, the first and last
matrices degenerate into row and column vectors, respectively.

3.2. Systolic Array for String of Matrix

Multiplications with Brosdeasting

A linezr systolic array with parallel inputs and broadeast
ing for evaluating monadic-serial DP problems is deseribed in
this section. The following scheme is based on multiplyiog »
matrix with a vector. Figure 3(a) depicts a scheme for com-
puting (A-{B{C-D))) for the multistage graph in Figure 1(a),
An ilcration is defined as a time unit during which data are
shifted or broadcast into the processing eiements (PEs} and s
muitiply-accumulate operation is earried out in each. The
iteration numbers are indicated i Figure 3(a). All input
matrices are f=d into the systolic array in the same format. in
tbe first three i.crationa, C'D is evaluated. The contral signal
FIRST is one, D, the input vector, is broadcast to all PEs; and
the intermediate resulis of (C,),i=1,2,3, remain stalionary.
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Figure 3. (a) A systolic array with broadcasts for computing »
string of matrix multiplications. (b) Structure of PE

At the end of the third iteration, the result vector is gated into
registers S;, Sz Sy, by the control aignal MOVE (see Figure
b)), asd FIRST is set to rero. Since FIRST is zero, fic),
i=1,2,3, are fed back and broadcast as new inputs. In the fol-
lowing three iterations, B-fiC) = B{C'D) is computed. At the
end of the sixth iteration, the output vector {f{B)), i=1,2,3} is
formed. In the last three iterations, input veclors A and
{(B,), i=1,2,3} enter PE P, to form the final result.

To search a multistage grapk with (N+1) stages and m
sodes in each intermediate stage {the first and last stages have
_one node each), it takes N'm iterations with m PEs, There is

no delay between feeding successive input matrices iato the
ayatolic array, and the PEs are kept busy most of the time. In
contrast, it takes (N=2)m?+m iterations to solve the problem
with a single PE. Define PU, the processor utilization, as the
ratio of the number of serial iterations to the product of the
vumber of parallel iterations and the number of PEs. PU for
the above systolic array is

= ]N—21m2+m = N-2 + i
PU N'm'm N N-m . (3.3)

When N and m are large, PU is very close o 1. A nos.
broadeast version of the above design is shown elscwhere [18].

Although the proposed systolic array is designed for
matrices jo which sach element js a single constant, it can be
extended to mapy practical sequentially-controlled systems
such a3 Kalman filuering, ioventory systems, and multistage
production processes in which each matrix element is a vector
with manpy quantited values. In this case, the potential paral-
lelism ¢could be very large.

3.3. Systolic Arrays for String of Matrix

Multiplications with Serisl Inputs

The degree of parallelism of the proposed scheme in the
Jast section is restricted by the limited number of I/O ports in
a VLSI chip aud the fact that the ratio of the computational
overhead to the 1/O overhead is relatively low in matrix-vector
multiplications. The 1/O bottleneck is due to the large
number of edge costs that must be fed into the systolic array.
Far the serial problem formulated by Eq. {2.4) and illustrated
in Figure 1(b), the edge costs are expressed as functions of the
nodes connected, and bence only the values of the podes have
10 be input. This results in an order-of-maguitude reduction
in the input overbead. In this section, we develop an efficiens
and practical design for this type of problems.

The search for an opuimal assignment of X;s in Eq. (2.4}
corresponds to the search for the shortest path in a multistage
graph, where nodes in each stage represent values that can be
assigned to a variable. An example graph with four variables,

each of which can take on three quantized values, is shown jp
Figure 1b. There are multiple sources and sinks, and all possi.
ble paths from apy vertex in Stage 1 to any vertex in Stage N
must be compared. Systolic processing is suitable when the
Bumber of quantized values in each stage is constant,"and the
fs, the functions to compute edges costa, are independent of |,

To solve Eq. (2.4), the variables can be eliminated one by
one. First, X, is considered. Since only one term, f{X;, X},
is affected by X, it is sufficient to compute

b(X,) = min (X, X;) (3.4)

In other words,

x5 €%

h("-'.!,j,) = ‘:flg“r(!l.ig !z,j,]
The optimization problem then becomen

mia fX) = xl_nii,gl} h(X,) + ’Eﬂlﬁ-xm}] (3.5)

If h{X,) is defined as

h(X,) = ggi_ﬁ(h(xk-i} + f{(Xy-, X4 )} 2<kEN (3.9)
or
bixy ;) = . min_ {blxp-p ) T Mxe-pj.0 %))

(R THA2 ]
xh-.ex;, 2SkSN

then h(xy;) represents the shortest path from any vertex in
Stage 1 to xy ;. After eliminating k=1 variables, X, ..., Xy,
the remaining optimization problem becomes

h(X,) + gﬂxu,&+.)] (3.7)

Finally, we get h{(Xy), each element of which represeats the
shortest path from apy vertex in Stage 1 to s node of stage N,
The problem is solved by comparing the m elements of h(Xy).

Figure 4 shows a systalic array with three PEs that per
forms the search of the graph in Figure 1I{b). PE P; consista of
three registers, R;, K;, H;, and three operation components, F,,
A, C,. lnput data pass through R; in a pipelined fashion.
Feedback data are maintained in K; and H; until new data
replace them. The operation components, F; Ay, C;, are vaed
to compute function f, and perform additions and comparis-
ons, respectively. For simplicity, function f is assumed Lo be.
independent of }, and hence the subscripts in F;, A;, aed C; will
be dropped. The connections of the registers and operation
compopents are shown in Figure 4(b).

The systolic array is imitialized by zeroing all registers,
Hs and K, acd by sequentially loading input data iz X,
X mr s X1 g0 10 PES Pyyo P As the intermediate results are
shifted out from Py, the feedback controller feeds them back ia
a rousd-robin fashion. Referring to Figure 4(a), when x;,
enters Py, x,, aad b(x, ;) (equals 0) leave Py asnd are fed back
to P, tbrough the feedback cootroller. fx,,,xz;) and
b*{x5,) = min {0, b{x;,} ¥+ Mxy5,x2,)} are then computed in P,
In the oext iteration, X enters Py, Xz, and b'(x,,) are shifted
ta Py, and x,, and h(x,z) (equals 0} are fed back by she feed-
back cootroller to Py In Py Hxy ax2,) aed
b3(x;,) = min(b'(xs), B(x,2)+1f(x, 5%, }} are computed. In
Py, f(x1,.%55) and b'(xz2) =miv{0, hix,,)+0x, . xz2)) are
computed. When xa, and b(xy;) amive at Py,
b{xs,) = b(xz,) is evalusted, and x;, and hix,,) are fed back
ta P, at the end of this iteration. Ilnput data are continuously
ahifted into tbe pipeline, and the process is repeated. For the

e
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A systolic array with serial inputs and outputs to
solve a monadic-serial DP problem: (a) State of out-
puts at the end of the (3k)'th iteration, 2<k<N,
{outputs of the feedback controller are generated in
the (3k=1)'th, {3k-2)'th, and (3k-3)'th iterations);
{b) Registera acd operation units in the i'th PE.
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graph in Figure I{b), the process is completed in ffieen itera-
tiens. -
In general, to evaluate the optimal path for an N-stage
graph, cach with quantized values, a pipcline with m PEs is
peeded. Between the ((k-1 Jm+1)'st and (kem)'th iterations,
2LKEN, Xy goon Xpm EBLET the R-pipeline; x;-); and B{xy-1)0
1<i<m, are fed back to registers K; and H, in the
((k=1)m +i)th iteration; and h®(xy 1 ) 8™ (x2)s o D (Xi ) BFE
obtained at the end of the (kvm)'th iteration is Py, ... Py
After Noem iterations, B®{xy ). b'(Xne) are obtained iz
Py ... Py, a0d the final solution is obtained in Py by compar-
ing h(Xp 1) voes BOXN ) This is done by setting F=0 in the last
m iterations apd circulating the values of h{xy), 1<i<m,
through the pipeline. Therefore, the total computational time
is {N+1)m jerations, each of which includes the time for the
computaticn of function [, oae addition, and one comparison.
PU for this scheme is ((N-1)m? + m)/{(N+ Dm-m)al.

Although distinet feedback lines are shown iz Figure 4(a),
only one of the feedback lines is used in any iteration, Hence
a siogle broadcast bus suffices, and the station to pick up the
data from the bus is controfled by a circulating token.

If the optimal path in addition o the optimal cost value
is desired, N path registers, each of which can store m indices,

are secded in Py 1o the computation  of

BP(x, +1;} = min {blxy ) Hxyjxyer )}y 1SKSN-L, index J',

1</ <m, of the edge {xyj.Xg+3,) belongiog to the optimal
path from any vertex in Stage 1 to Vertex xj +;; must be pro-
pagated in the pipeline and is knows to Pa index }' is stored
in the i'th word of the k'th path register. The pointers stored
in the path registers are used Lo trace the optimal path au the
ead of the computation.

4. PARALLEL PROCESSING OF POLYADIC-
SERIAL DP PROBLEMS
We bave showan that a serial optimization problem can be
solved as the multiplieation of a string of matrices. However,
a problem expressed i 3 mopadic-serial Tormulation does not
exploit all the potential parallelism because the order of

4
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matrix multiplications is Bxed. On the othet hand, there is
more fexibility for parallelism when the problem is formulated
in a polyadic equation because the matrices can be muitiplied
recursively in a more Hexible order.

A polyadic-serial DP formulation c¢an be solved by a
divide-and-conquer algerithm, the multiplication of a string of
matrices, or the scarch of an AND/OR grapb. The last two
alterpatives are related since the evaluation of a set of AND-
nodes and their common parent is equivalent lo computing an
item in a matrix multiplication, that is, an ipter-product of a
row vector and a colump veetor. la geveral, if the number of
states in each stage is large and consiaat, tben the matrix-
multiplication wmeéthod is preferable to an AND/OR-graph
scarch, as more potential parallelism can be exploited. When
the ANDJOR graph is nonserial aod irregular, the graph-
search mcthod is more beacfcial.

4.1. Solving Polyadiz-Serial DP Problems

by Divide-and-Conquer Algarithme

Consider tke polyadic-serial DP formulation in Eq. (2.3)
for the multistage-path probiem in Figure 1{a).

fow) = _min _ {fsk) + k) ()

where fy{i,)) is the cost of the optimal path from ite j, and k
is & node in Stage 2 of the graph. In matrix notations, let
(V).V} be a cost matrix, each element of which deaotes the
cost of the optimal path from a vertex in Stage i Lo & vertex in
Stage j. It is easy Lo see, for an intermediate atage k between i
and j, that

V.V = f(Vi.V3)" (Vv 'V.i)

min
e e2,c

(4.2)

This formulation aliows a string of matrix muitiplications o
be reduced to two smaller strisgs of matrix multiplications.
The substring of matrices can partitioned further until each
substring contains only one matrix.

The fastest way to multiply N m-by-m matrices is to
locate lFe mTrices ig the leaves of a complete binary tree of

height {logaN]. The N-stage graph problem cab be solved in



O[m og;ND time units with [N/2] processors™ or matrix-

multiplication systelic arrays [17). PU™™ for this approach ia
relatively low due Lo the large number of idle processors.

One important issue jn parallel divide-and-conquer algo-
rithms is the granularity of poralleliom [27}], This is the
minimum size of a subproblem that is evaluated by a processor
in order to achieve the optimal performance, as measured by
the PU, the AT?, or the KT? criteria, where A, K, T is the
area of a VLS] implementation, the number of processors, and
ibe computational time, respectively.

Parallel divide-and-conquer algorithms is a parallel AND-
tree search that cau roughly be divided into three phases:
start-up, computation, and wind-down. ln the start-up phase,
the problem is split, and the tasks diffuse through the net
work. During the computalion phase, all processors are kepi
busy uati! the number of tasks in the system is less than the
number of processors. In the wind-down phase, the results are
combined together, and some processors may be idle. PU
depends on the ratio between the amount of time spent in the
computation phase and that of the other phases. The time
complexity of searching a binary AND-tree of N leaves can be
formul%!,ed in the following recursive equation:

S{N) + 2T

—’;‘-] + C(N) N>1

TN = o) Nep (49)
where S{N) aod C(N) are tbe time complexities of the start-up
and wind-down phases. The granularity that results in the
cptimal PU is related to the complexity of S(N) and C(N). In
- finding the sum or the maximum of N pumbers,
S(N)+C(N)=0{1), and using O{N/{log,N)} proceasors will
achieve the maximum PU [14,2,25} Ip sorting N pumbers,
S{N)-+C(MN} = O(N), and log;N processors shouid be used to
maximize the PU. We bave studied the asymptotic PU and
found that Nflog,N is a threshold when S(N}+C{N)=0(1)
|18]. For k (a Punction of N) processors, PU is one, between
tero and obe, or zero when the limiting ratio of k and N/flog,N
is rera, greater than zcro, or approaching infinity, respectively.

Since PU increases monotonically with decreasing number
of processors, it is ot adequate to measure the efects of paral-
le} processing. Another appropriate measure is the KT? cri-
terion, which considers both PU sod computational time, The
following theorem proves the lower-tound KT? complexity of
divide-and-conquer algorithma for aslviog polyadic-serial DP
problems. This lower bound is attaioed when k(N) is
6(N/{log;N)).

Theorem 1: Suppose that a string of N m-by-m matrices are
multiplied by K(N) processors in time T{N) using a paralle}
divide-and-conquer slgorithm, and that each processor per-
forms a multiplication of s pair of m-by-m matrices in T, time
upita. Then K(N)T¥N) 2 O(N-log;N)T}, and equality bolds
when K(N)=€{N/log;N). (© indicates the set of functions of
the same order.)

Proof The multiplication of a string of N matrices by a
divide-and-conquer algorithm car. be represented in a compicte
binary tree with N terminals., The number of matrix-
multiplications, or the number of nontermiaals, is N~1. The
operations are roughly divided into two pbases: computation
and wind-down (Do start-up phase in this case). During the
computation phase, all processars are kept busy until half of
th: number of intermediate matrices 10 be multiplied is less

** Processors aad systolic arrays are svnopymous here,

*** PU refers to the utilization of the all the processors or matrix-
multiplication systolic arrays and does not refer to the ytilization of
the PEs within a systolic array as in Section 3.
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than the number of processors. There are
(N-1)<{K{N)-1} = N-K[(N) matrix multiplicationa to be
evaluated, and at least (N/K{N)~1)T, time units are needed,

da the wind-down phase, the resufts are combined. together,

and some processors would be idle. According to the datqy
dependence, at least log,K(N)'T, time units are required iy
this phase. Therefore, the following lower bound of time com.
plexity holds.
N
——] .

T(N) > [K‘N) -1 ongK[N)] T, {44)
where | S K(N} < N. For simplicity, the constant term in Eq,
(4.4) can be ignored without aflecting the validity of the fol
lowing proof, The KT? lower bound is derived as
N%‘

K(N)T¥{N} 2 G + 2N-log,K(N} (4.5)

+ K(N)-loggx(m]-r,’

To find the order-of-maguitude minimum of Eq. (4.5), it is
necessary to compare the following three ecases. When
K(N) = 8(N/log;N), K(N)T!(N) = 6((N-log;N)T?). In con-
trast, when K(N) < 6(N/log,N), the first term on the right.
hand side of Eq. (4.5) is

N 6(N-log;N

K(N) > 8(N-log;N)

Whea K(N) > 6{N/log,N), the third term on the right-band
side of Eq. (4.5} is

K(N)logZK(N) > ©(N-log;N) (4.7)

since log{K(N} 2 6(logN). The above analysis shows that the
KT? complexity is {((N-log;N)T?), and that ©(N/log;N) is the
optimal granularity to achieve this Jower bound. D3

To investigate the relationship between K and KT?, the
exact time required 1o multiply N m-by-m matrices using K
processors ia derived. The total time required is

N-1

T=T+T, '
N-1 N-1 ]l
: 3

where T, and T, represent the times in the computation and
wind-down phases, respectively. The numerical evaluations of
Eq. {4.8) for N=4096 is shown in Figure 5, in which KT? is
minimum when 431 or 465 processors are used. Notice that
the curve j» not smooth because the time needed in the wind-
down phase is decrcased by 1 whenever N is divisible by K,
and this affects KT? signiBeantly, especially when K is large.
The simulation results for different valyes of N verily that the
optimal granularity is close to N/flog,N.

When N is large and RN-I}/K]&: approximately equal to
{N=-1)/K, T. «(N/K)~1, and T, = log K.

N
T = T{--l + log,K.

(49)

{43)

-
-

‘T, +

Iogle +K=-1-Kk-

{4.9)

KT? will achieve the minimum value whea T, = '!',i This can
be shown by differentiating KT?(K} with respect to K and
relaxing the copstraint that K is an integer.

OKTHK) - 2 3T
= T 4 KT

I
From Eq's (4.9) and (4.10), we get gbg‘:klbl =0 it
(N/K—1) = log:K, ie,, T, = T,. This means KT? for solving

(4.10)
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Figure 5. Simulatich’ results of finding the optimal granularity

.of parallel divide-and-conquer algorithms (N =
4098).

polyadic: serial DP problems by paraliel divide-and-conquer
algorithms approaches minimum if N is large and the times
peeded in the computation and wind-down phases are approxi-
mately equal. . L

So far, the matrices are assumed to have identical dimen-
sions. When this is not true, the order in which the matrices
are multiplied together has a significant effect on the total
pumber of operations, Finding the optima} order of multiply-
ing a string of matrices with different dimensions is itsell a
polyadic-nonserial DP problem, the so-called sccondary optimi-
ration problem [8,4]. Guibas, Kung, and Thompson have
propesed a syatolic array to solve the optimal parenthesization
problem, which can be used to compute the minimum-cost
order of multiplyiog a string of matrices {10} Once the
optimal order is found, the processors can be assigned to
evaluate the matrix mullipiications io the defined order and in
an asyochranous fashice. lo this sense, the tree of matrix
multiplications can be treated as a dataflow graph.

4.2. Solving Polyadic-Secial DP Problems

by AND/OR Graph Searches

in this section, we discuss the evaluation of polyadic-
serial DP problems as AND/OR graph searches. AND/OR
graphs are paturally obtaived by using a problem-reduction
method to represent the DP problem. The mapping of a regu-
lar snd serial AND/OR zraph ta a systolic array is straightfor-
ward and will not be illustrated here [18].

Polyadic-serial problems are discussed with respect 1o the
search of a multistage graph as formulated by Eq. (2.4). Sup-
pose ap (N-+1}pstage graph, with stages from 0 to N and m
nodes in each stage, is divided into p subgraphs, each of which
contains {N/p)+} comsecutive stages. For simplity, assume
that N=p’, where § is a non-negative integer. The minimum:
cost path bas to pass (hrough one and osly one vertex in
Stages 0, N/p, 2N/p, ..., N in the segmented graph. The cost
of a path is equal to the sum of costa of the peeubpaths.
There are m?”" possible combinations of subpaths from Stage
" 0 to Stage N that must be considered for the optimal path. If
all the m® subpaths from the m vertices in Stage i N/p to 1he
m vertices in Stage (i+1)N/p, 0<i<p—1, bave becn optim-
ized, then the (N +1}stage graph s reduced to a (p+1)stage
graph. By using a divide-and-conquer algorithm, each sub-

-
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Figure 8. An AND/OR graph representation of the reduction
in Bndiog »n optimal path in a 3-stage graph to a
I-stage graph. {m=2; p=2; AND podes are
represented as circles and indicate summations; aad
OR nodes sre represented as aquares and indicate
comparisons. The values in the terminal nodes sre
edge costs: costs between Stages 1 and 2 are 3y,
i,j€{1,2}; costs betweea Stages 2 and 3 are b;;)

graph with (N/p)+1 stages is further divided into p smaller
subgraphs, This partitioning process continues until each sub-
graph has only Lwo consecutive stages,

The partitioning process can be conveniently represented
in an AND/OR graph, in which an AND-node correaponds to
a summation, snd an OR-node corresponds to alternative
selections or comparisons. la this case, we have a regular and
serial AND/OR graph of height 2-log,N, whose AND-nodes
bave p branches {p-arc nodes) and whose OR-nodes bave m?” !
branches (mP !-arc nodes). Figure 8 shows an AND/OR graph
that represcnts the reduction of the multistage-graph problem
with m=2 and p:=2 from three stages to one stage. The four
nodes at the top of the ANDJOR graph represent the four
possible alteruate paths in the reduced two-stage graph. The
shortcst path is obiained by comparing the rosts of these
paths. ! .
The relationship between DP and graph search was inves-
tigated by Martelli and Montanari [19] who showed that, in
the case of polvadic cost functions, the solution of a DP prab-
lem can be obtained by Bading a minimal-cost sclution tree in
an AND/OR graph. This equivalence allows various graph
searching techniques to be trapsiated into techniques for sofv-
ing DP problems [23}. For those acyclic AND/OR graphs with
positive arc costs, Martelli and Montapari bave named them 28
additive [18] and have proposed top-down and bottom-up
search algorithms. A similar algorithm, called AQ", for search-
ing bypergraphs was discussed by Nilsson [22].

The above AND/OR graph representation of a polyadic
DP problem can be considered as a folded AND/OR tree. It is
easy to sce that the efficiency of solving » DP probl:m by
searching an AND/OR graphb depends on the graph structure
{parameter p). The following theorem analyses the optimal
struclure.

Theorem 3: If a seris] DP problem i» salved by searching a
serial apd regular AND/OR graph, then binary partitioning,
pamely, using 2-are AND nodes, is optimal in the scase of
minimizing the tolal umber of nodes in the AND/OR graph.

The proof is omitted here and can be found elsewbere
(18]. The reasonableess of this theorem can be interpreted
intuitively. For an AND/OR graph, the larger the value of p
is, the less the Principle of Optimality is applied. In the
extreme case, p=N, the corresponding AND/OR-graph search



becomes a brute-foree search, and the Principle of Optimality
is never used. ln contrasi, in the case of binary partitioning,
unnecessary computations are pruned by comparisons in the
AND/OR graph.

For wultistage-graph problems represented in an irregu-
lar but serial AND/OR graph, the number of nodes in the
graph depends on the ordering of stage reduction. However, it
is not difficult vo demonstrate that binary partitioning is also
optimal in this case. Assume that Stages i;,..i, with
m;, ....1n, nodes are to be reduced to two stages i; and iy. I 3-
are AND-nodes are used, then m;'m;'m, m, comparizons are
peeded to eliminate Stages 2 and 3. However, when 2-arc
AND-nodes are used, m,'my{m,+m,} comparisons are needed
if Stage 2 is climinated Brst, and my'm {m,+m,} comparisons
are needed if Stage 3 is eliminated first. It is easy to see that
using 3-arc AND-podes requires more comparisons as long as
m; 22, 1<i<4. Furthermore, binary partitioniag requires Jess
additions since only one additioa is needed for each AND-
node.

5. SOLVING NONSERIAL DP PROBLEMS

The key of DP is to break a complex cptimization prob-
lem into a sequence of easier aubproblems. In zerial optimiza-
tion problems, variables are shared by successive terms in the
objective function and hence can be dealt with one by one.
This serial structure aliows eficient parallel processing, espe-
cially systolic processing. On tbe other hand, to implement
nonserial DP problems by systolic processing, they may have
to be transformed into the corresposding serial formuiations
before they are implemented, This transformation is possible
if the nonserial problems have some special structures.

Ope way to convert a ponserial formulation into a serial
one is to combive several primary variables into a new
variable. The method is illustrated by the following example
on monadic-nonserial  problems. For instance, et
V =(Vy,...Vn} be a set of discrete variables and the objec-
tive function be

V) = 5V, Vo V) + 5V, V3, Vy)

+ . + g VN-2VN-1,VN)
Ta transform this into » serial formulation, the variables are
eliminated one by one as follows. Let hyV,V,} =
min §(V1,V3,Vy). Then
3

(5.1)

min
Y-V

M by (V4 Vi+q) is defined as
bu(Vi+nVied) = n\:(i.n{h.-,[\’.,\'; +1}

N~
mis V)= {hxwmvs) + ?1 sV, +hvl+2}] (8.2)

(5:3)

+ gV, Vi +1, Vi3l

then it represcuts the minimum of the summation of the first
k terms of f{V). After eliminating k variables, V,, ..., Vy, the
remsining optimization problem becomes

min V) = V-(\L‘.;.i:.\'.l {hk(v k+1:Vi+2) (5.4}
N-2
+ ) 2 &{ViVi ‘Hlvl'fzj]
[R5}

The variables are, therefore, climinated in the order
Vi, v V. Here, variables V, and V., are treated as » single
variable in a combined stage V|. If m;, 1<k<n, quantized
values are allowed for Vy, then there would be m;'m;,, quaa-
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tized values in the combined stage V;' ; 80d M. mim; . ste
are required to eliminate Vi, in which » step consists of
computation of function f, au addition, and a comparisey
operation. The process of eliminating the remaining variable
is repeated until Viy-; and Vyy remain. The optimal solutiog
is-obtained by comparing all values of. by o{VN-{,VN). The
total number of steps required to compute Eq. (5.1) is

(53)

ln short, the monadic-nonserial problem in Eq. (5.1) iy
solved from the following serial probiem.

m‘i'n fiv) = m‘ira £(V},V2) + £:(Va, V)

N-2
tz(mt'mk'ﬂ'ml +2) t oy my
=1

(5.0)

+ .+ l;d-z(v;i-zivl"l-l.)} )

where the new variable V; is combined from Vi and Vi,
From this example, it is observed that more aperations are
peeded for evaluating mesadic-nonserisl DP problems than
that of monadic-serial DP problems. However, the potentia)
parallelism is higher, and there is no increase in delay in pro-
cessing the transformed problem,

Anotber way to solve nonserial problems is to convert the
nonserial AND/OR grapb into a serial graph by addiag
dummy nodes such that all arcs connect nodes in adjacent
stages. Ip this case, the nonserial DP problems are character
ized by high-order recursive functions. The method of adding
dummy nodes essentially adds new functions to the problem,
which converts the high-order recursion to s linear recursive
function. For instance, in Figure 2, the bottommost OR-nodes
can be connected to their parenta via other intermediste
AND-nodes in adjacent levels. This transformed AND/OR
graph is suitable for VLSI implementation since the iatercon.
pections can be mapped into » planar structure. However, the
transformation may introduce additional delay and redundant
hardware. A systolic array for fiuding the optimal order of
multiplying a string of matrices is designed by the systematic
metbod meotioned abave [18].

8. CONCLUSIONS -

Dynaniic programming formulations have been ciassified
according to the structure of the functional equations, A given
problem can usualiy be formulated in multiple ways, beace it
is important to compare the aliernative implementations. The
applicability of systolic processing is most suitable when the
formulation is serial.

Many sequential decision problems bave serial formula.
tions that can be considered as searching multistage graphs. I
there are s large number of states and/or quantized values in
cach stage, then 3 monadic formulation is more appropriate,
and the problem is efficiently solved as a serial striag of mairix
multiplications. Two eficient and practical systolic arrap
bave been developed. On the other hand, if the aumber of
stages is large, then the problem should be put into & polyadie
formulation. The matrices are grouped into a bioary tree and
multiplied by a divide-and-conquer algorithm. We have found
the KT? lower bound for multiplying a string of N m-by-m
matrices, where K is the sumber of processors. i is showa
thas dividing the siring into O(N/loggN} groupm bs optimal in
the sense’of achieving this lower bound.

When the lormulation is nonserial, it might have to be
transformed into » serial one before o efficient design can be
found. A mobnadic-nenserial formulstion cas be transformed
lnto 3 mouoadic-serial oge by grouping state variables, A
polyadic-nonacrial problem can be represented as the scarch of
an optimal solution in ana AND/OR graph, which can be



sformed into an AND/OR graph for a serial problem by
g dummy nodes, The transformed AND/OR graph can
ped direcily into » planar systolic array by using
ate conirol signals. The additional bardware and
educed is problem dependent,

rap:
addin
be 3P|
sppropr!
delay intr
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