BUFFERING IN MACROPIPELINES
OF SYSTOLIC ARRAYS

Benjamin W. Wah, Weijia Shang, and Mokhtar Aboelaze

ABSTRACT

In & mecropipeline of systolic arrays. outputs of one sys-
tolic array in & given format have 10 be fed as inputs to another
symolic array in a possibly different format. A common
memory becomes a bottleneck and limits the number of systolic
atvays thst can be connecied together. In this paper. we study
designs of buffers 1o convert data from one format to another.
The minimum number of buffers is determined by 1 dynamic-
programming algorithm with computational complexity e(n®),
where o is the problem gize. A genersl-purpose converier 10 con-
vert data from any distribution 10 any other in a subset of the
possible data distributions is also proposed.

Index Terma: Buffer, conversion. data distribution. dynamic
programming. macropipelining, systolic array.

1. INTRODUCTION '

The evolution in Very-Large-Scale-Integration (VLSI) tech-
nology bas had a great iropact on computer architecture. Many
existing algorithms in pattern recognition and imege and signal
processing can be implemented in a VLSI chip using multiple.
regularly-connected processing elements (PEs) 10 exploit the
greal potential of pipelining and multiprocessing with applica~
tions in command. control. and communication systems. This
type of array processors have been referred to a5 systolic arrays
[10]. One of the many sdvantages of this approach is that each
input item can be used & number of times once it is sccessed, and
thus & high computstional throughput can be achieved wilh &
modest /O bandwidth. Other advantages include modular
expandabilily, estensive concurrency, simple and regular data
and control flows. and simplicity and uniformity of the process-
ing cells.

In & large system. & pool of systolic arrays of different
types can be configured into s macropipeline to solve a given
problem. A macropipeline is a pipeline of gystolic arrays with
the outputs of one array acting &8 inputs to another array in the
pipe. Fach stage of he pipeiss gystolic array that performs one
operation, such as matrix sddition oz multiplication. Such struc-
ture of macropipelines characterizes most image-processing algo-
rithms [1.2]. Ezamples include real-time vision sysiem 3).
analysis of motion l4i image reconstruction from projections {5].
radar signal processing [6]. and air trafic control 71

A data distrilugion for a systolic array is the format of
inputs fed into the systolic wrray or the format of oulpuls exit-
ing the systolic array. The input data distribution of one Fys-
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Figure 1. Concept of macropipelining of systolic arrays.

tolic array may be different from the output distribution of
another, hence when two systolic arrays are connected togeiber,
it may be necessary io convert the outpuls of the gysiolic array
that feeds data to the otber into its required input distribution.
A conventional approach is 1o use 8 common memory 10 buffer
the outputs of the systolic arrays. However, this becomes &
bottleneck when many systolic arrays are sharing the common
memory. Another approach is 1o design the systolic arrays such
that the output format of one array is the mme &5 the input for-
mat of the next array in the macropipeline. This may net be
always possible, especially when the macropipeline  in
reconfigurable. A third approack ks 1o design. between Lwo
stages of the macropipeline. s converter that consists of multiple
buffers and a contrel unit to select the appropriste buffess for
inputs and outputs [8]. The concept is exemplified In Figure 1a.
C, and C, sre converters 1o converi the outpul data into the
required input formats. Figure 1b llusirates this conversion.
To convert dats from distribution D, to D,. six buffers are
needed. The first column of D, cannot be output until the third
column of D, has arrived. Six buffers are needed 10 buffer the



data in the Ars column of D, before they can be output. five
buffers are neaded for the sescond column. and three buffers are
nesdad for the last.

In this paper. we will study the use of converiers 10 inu@™

face the symolic arrays in s macropipeline. The design of con-
verters depends of the type of macropipelines. A stacic macro-
pipaling consista of » fized pipeline of sysiolic arrays with a fixed
{unction in each srray, bence the conversion of data distributions
petween sdjucent stages is fixed as well. In this case. special-
purpose converters are nseded. In contrast. in s dynamic macro-
pipeline. & (wubdeet of systolic arrays are aclected from the pool
and configured into & pipeline depending on the spplication. As
the configuration of a dynamic macropipeline may not be fixed
and data of different formats may be fed inlo s given array.
geneTal-purpose CORVErters are needed.

The objective of this study is to provide s methodology to
design an efficient converier for given input and output distribu-
tions. It is assumed that both inputs and outpuls are two-
dimensional arrays in which the elements are equally-spaced
along the rows and columns in the data distributions. that there
are no duplicated data in the distribution, and that dats can be
described by 1wo vectors 10 be discussed in Section 2. The pipe-
line can be either synchronous in which the interarrival times of
inputs are equal, or asynchronous in which the interarrival times
may be different. In the remaining sections. we will study the
minimum number of buffers for a given conversion, propose
design procedures for general-purpose and special-purpose con-
verters, and investigate tradeoffs in designing macropipelines.

2. MINIMUM NUMBER OF BUFFERS

A converier is made up of buffers. the interconnections
among the buffers, and the necessary control hardware that
issues signals to buffers to accept or mend data at the proper
times. B, is defined as the minimum number of buffers in a
converier 1o buffer incoming data before they are sent out. In
this secticn, an slgorithm will be presented to find B, for given
input and gutpul distributions.

2.1. Data Distributions

To describe different data distributions. two vectors are
introduced here [9). Suppose that the row and column indices of
X are | and |. respectively. The row vector of X is defined as the
directional distance between "‘-lx“d %, and is denoted by |.
Similarly, the column vector of X, denoted by 7. is defined as the
directional distance between and . A dawa distribution
with vectors T and 7 i denor:l’ by Dxdhﬁ Two data distribu-
tions are illustrated in Figure 2.

The geometric layout of a distribution can be described in
the Cartesian plane. Without loss of generality, x,, for both the
input and output distributions is assumed 10 be placed at the ori-
gin. and data i& moving in the direction of the negative X-axis.
Vaciors T and T determine the locations of the elements uniquely.
C{i.$) and C,(i,j) denote the 3 and y coordinates of element X, ;.
1, and J, are the projections of vectors J and 7 on the x-axis.
Likewise. I, and J, are the projections on the y-axis. Then,

CUP=(i-1DL+(—-135, ¢y
CALP= G-+ (-1)), (2)

Note that M L. J,. 1., and J, are integers. then the coordinates
will be integers.

In the Cartesian-coordinate representation., the x—coordinate
indicates timing. that is, elements with the same x-coordinate
arrive st (or depart from) the converter at the same time. Data
with the smallest x-cocrdinate arrive at (or depart from) the
converter first. while data with the largest z~coordinate arrive
(or depart) Jast. The §'th (inps o7 ) step is defined aé the
pel of elements in the (input or output) distribution with the x-
coordinate squal to L

Figure 2. Two dawa distributions and their corresponding vec-
sors. (The first data distribution bas three streams of
dataflow. The second one has five streams.)

2.2. Finding the Minimum Number of Buffers

A dynunic-prognmming formulation is developed o ﬁnd
Bg,.. the minimum number of buffers to convert the data distri-
bution from D, to D, Let b, be the number of buffers neoded
before the i'th step of D, can be output, assuming thal the (i-
1)'th step has been utpul, snd B, be the maximum number of
buffers needed when the i'th sep of D, is cutput. For the exam-
ple in Figure 1. to output X,,. 3,5, and x; 5. b, = 6 buffers are
needed to buffer the first three columns of Dy Similerly. by = 5.
and by = 3. Hence,

B, =maz{b, b, byl =b, (3
B, = max {by, B} )]

To allow a more precise formulation, two partitions on the
data se1 X = [x,;: 1 € i.j € n} and a partial ordering of the parti-
tions are introduced.

An input partition partitions the input array X into N, dis-
joint subsets, I, 1€p&N,. where

L =5, G = -DL+ (DI = ) 0)

and N, is the number of input steps. T' ana Y are the row and
column vectors of the input distribution, with I, and J, as the
corresponding projections on the 3-axis. 1, represents the set of
input elements With the same X-coordinste a,. I, is the pet of
input data that arrive st the converier first. and I, is the p'th
arrival set. :

An augpd partition ‘parutions the output array X into N,
disjoint subsets 0,. 1€ X &N,. where

0, ={x,|CUP=G-D1 + (1)1 =a,) (6)

and N, is the number of output steps for the output distribution.

®and J° are the vectors of the output distribution. with 1 and
1 a5 the corresponding projections on the 3-axis. O, represents
output elements with the same z-coordinate a,. O, represents
the set of data that deparis from the converter first. and O, s
the k'th departure set.

Figures 3a and 3b illustrates D, and D, of & 3-by-3 array X.
Since X arrives in 3 steps, there are three inpul pariiticns
(N, = 3). Similarly, there are seven output partitions (N, = 7)
because the outputs depart in 7 sieps. The partitions are indi-
cated in Figure 3c. Let § and O be the seis of input and output
partitions end II be their union.

§ =1, | 1€pEN, »



{a) lnput distribution D, and output distribution D,.
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Figure 3. Partitions and partial ordering.

0= (0, | 1€x&N)
op=s5ljo

For w €11, k| represenis the number of elements in ¥,

The example in Figure 3 shows that there exists a relation-
sbip between the 0,8 and Ls. A partial ordering "—" can be
defined on 11 as follows. = L. then data in 1, will arrive
earlier than that of L. If O, = O,. then data in O will leave
esrlier than that of O,. Further, if O, — L. then data in I, must
arrive before data in O, depart. To output the elements in
©,. all the elemenis In such that O, []1,=@ must bave
arrived at the converer. In

(8)
(9

*

-~ Hx>p
20,~0, Uk>p
30, -1, if either O ()1, = @ or there exists an integer

qeuch that K () O, » @ and that I, < 1.
The above definitions imply that if O, —~ L. then
- - = -+ «+1,. The Integer q, such that O, —
and that O, #1 ,, &s as the key number for O, since al
the relationships among the Ly and O, will be known once q, is
found. The partial ordering of the partitions can be represented
in & lattice. Figure 3d shows the Isttice of the partial ordering
for the example in Figure 3a. For instance, g, ™ 2 is the key
number for O, since O, |1, = {x,,) and O, can depart once ele-
ments in I have arrived.

procedure compute_partial_ordering:

/* Inputs: T:l.nd 1‘.: vactors for input distribution;
1* and 3°*: vectors for output disribution;
N;: number of input seps:
N, number of output steps:

Outpute: Two arrays ®(2.N,), S(N,), where

o(1x) = o, )
®(2.k) = g,. the key number for O,;
) = fyy ¥/

(1) Initialize ® and § t zeroes.
(2) fori=1tondo|
for j=1 10 n do [

k:=CXi))+1;
p:-cf(;.;-n:
S(p)=Sip)+1;

1k) = @{1k)+1;
] {2k} ;= max {@(2.%). p)
]

Figure 4. Algorithm 10 compule the partial ordering of parti-
tions.

To use dynamic programming to find B, . 0,. 0,..... 0,
sre examined sequentially. I q, is the key number for O,, then
1. L. .. l“ must bave arrived at the converter before elements
in O, can depart. The reason is that either 1. 1 € p € g, con-
lains data that are in O,. or I, does not contain data in O, but
I, L Therefore. elements SUEIlUl,U rer Ul.. that
remain when lq- arrives and O, _, has left must be buffered. In
other words. by. the number of buffers needed for Oy, is

LY =1
w=L|4|-I o] - (10}
=1 -l

By the principle of optimality, which states that an optimal
sequence of decicions has the property that whatever the initial
state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard 1o the state resuiting from
the first decision, we can formulate the problem in dynamic pro~
gramming as follows.

By=0; (11a)

.
BemaxfB B~ 0+ L § (130)
Lo WAL

To establish the partial ordering of partitions. s counter is
used 10 count the number of elements jn each partition, and the
key number q, is kept for each 0,. C,(i.j} and CJ(1.J) are com-
puled for every element x,, in the input and output disiribu-
tions. If x,, is in O, and I, then O, L, and the counters of O,
and 1, arc incremented. q, is updated 1o p if p is larger the the
original value of g,. The algorithm to compute the partial order-
ing is shown in Figure 4. The computational complexity of the
slgorithm is O(n®). A better algorithm with s computational
complexity of O{max{N,. N,} x min{L}, }]]) can be devised, but
will not be presented bere.

The example in Figure 3 is used to illustrate the algorithm,
Initially, sil the key numbers are initialived to zeroes, N, = 3,
and N,=7. Since CJ(1.1)=0, C(1,1)=0, hence 3,,€0,,



PALLIT q,mamwmmmo,ml,mupama to ones.
Similarly, it i found that 3,, € O, and 3, € I,. The counters
for O, and 1, are incrementad. and q, is st 10 one. Forx,,.itis
found thal X, €], and that x,,€0,. The counwers for O, end I,
are incremented. snd q, Is et to maxiqy. 2} = 2. Likewise. the
Mh:-lammutnlunbenwmd.

3. COMBINATIONS OF DATA DISTRIBUTIONS
In this section, we witl discuss some properties of data dis-
tributions that are useful for designing the control circuits of the
converiers. As mentioned before, a data distribution is charac-
;gqnd by twe npon- le! vectors. Two data distributions
(1. 3% and DT, T%) are mid to be equivalens (or belong 10 the
ssme squdvalans partition) if
L=liandl, =3 (120)
LM > Oand 3,0 » 0 (12v)

where 1! (resp. 1) is the projection of T' (resp. 7") of D, on the
-8Xis.
¥ The first condition (Eq. (12a)) ensures that the data distri-
butions bave the same projections on the x-sxis. Consequently.
the orders in which data arrive &t the systolic array for the two
dasta distributions are identical. The mecond condition (Eq.
{120)) ensures that the dats arriving at the systolic array a1 the
same time have the same permutations. However. the number of
streams of dataflow into the systolic array for the two data dis-
tributions may not be equal and cen range from n 10 2n—1. As
an example, the two data distributions in Figure 2 are
equivalent, but have different number of sireams of dataflow.
The following theorem shows the number of possible
equivalent partitions of data disiributions.

Theorem: There are ({2") squivalent partitions of data distri-
butions for an n-by~n array of data.
Proof: In proving the number of equivalent partitions. only the
projections of the vectors on the x-axis have to be considered.
Without loss of generality. assume that J is not orthogonal to the
x-axis. Consider the x-projections of the firm row of data,
C,(1,1). C,(1.2), ... C,(1.n). The problem bere is o determine
the number of possible x-prejections for the remaining rows.
Consider the x-projection of x;,. Assuming that
C,(2.1) » C,(1.1), there are 2n possible positions for C,(2.1).
pamely. C2.1) = C(14). i=l,..n. C(1D) < G21) <
C,(1341), i=1. ... n—1, and C(2.1} > C,(1.n). Suppose that
C,(1.1) < C,(2.1) < C(1,2). then there are three ibilities
for C,(3.1}. namely, C,(3.1) = C,(12), C,{1.1) <« C(3.1) <
C,(1.2). snd C,(1.2) < C,(3,1) < C,(1.3) (see Figure 3). When
C,(3.1) = C{1.2), the positions of the remaining elements are
delermined. However. when eitber C,(1.1) < C,(3.1) < C,{12)
or C,(1.2) < C(3.1) < C, (1.3}, then C,(4.1) can fall in three
possible ranges. a5 shown on the second level of the tree in Fig-
ure 5. The ssme argument can be spplied to the remaining levels
of the tree for xg,. ... %, ;. Inlevel?, 1 < < n~3, there are ¢
terminals. while in level n—2. there are 3x2° terminals.
Therefore, the total number of terminals is.

)

Tx+3x2" = 00" 0

im]

A similar argument can be made when C,(1,1) > C,(2.1) or
C.((li;) > C,(1.2). Hence the number of possible distributions is
a@’). o

It is practically impossible to design a general-purpose con-
verter W perform all the possible transformations. Some restric-
tions are necessary Lo reduce the space of data distributions.

If vectors T and T are restricted to bave only unitary or zero
projections on the 31~ and y-axis, then there will be eight possible
directions for 7 pointing st O, 45°, 90°, 135", 180°, 225°, 270",
and 315°. For each direction of 1, there are six possible directions

Levei O £,0.1) < l:.(?.l? < C.(l.?)

2.1
L:nl ] C_l.l.H L4 c.u.n C_(!,l) C.(I.?) < r._u.n
3. CCILDY . (1,2 <L, 01,3
tevel 2 C0L0) £t €,0,0 LLYD a0l L)
S0 € a) o L) < (s, 1) 08,00 T 11,3) <C (a,2)
<« {1,2) <€, (1,3} «, ,» <€ {1,8)

Figure 5. Possible positions for x; ;. X310« ¥y

for 1. excluding the capes in which T and T are pointing in the
same or opposite directions. Thus there are 3X6=43 possible
combinations of data distributions {Figure 6a). Qut of these 43
cases. there are only sixtoen equivalent classes (distributions in
the same column of Figure 6a belong 1o the same equivalent
class). The set of equivalent partitions of dats distributions can
be further reduced if a reversal circuit is available to reverse the
order of data arriving simultaneously st the converter. In this
case. distribution (1), 1€i€8, can be mapped into distribution
(i) (Figure 6b).

For & given output distribution, there can be eight possible
input data distributions. This number tan be further reduced by
renaming the data. Referring to Figure 6b. suppose that input
distribution (8) has 10 be converted to output distribution (E).
By renaming data along J such that inpul distribution (A) is
used. then data of cutput distribution (6') (Figure 6a) would be
identical to that of output distribution {E). The number of
input distributions can thus be reduced to two (Figure 6c).

4. GENERAL-PURPOSE CONVERTERS

In this section, we propose the design of a general-purpose
converter that can convert data from amy distribution to any
other distribution provided that the vectors representing the dats
distributions bave zero or unitary prejections on the x- and y-
axis. It is assumed that data always enter the converter in b
sireams, that is, the disiributions in the kst row of Figure 6a
are used. If the output data from the previous stage of the
macropipeline require more than » <ireams. then tbey are firsl
multiplexed into n streams in the previous stage before they are
outpul. The muitiplexing converts dats from the dats distribu-
tions in the second and third rows of Figure 6a into that in the
first row. I also minimizes the number of connections betwseen
the systolic array and the converter.

The n-by-n array of data are routed into an n-by-n mesb
of buffers with four-neighbor connections uniil ibey are fillad
{Figure 7a). The interconnections in the buffers allow dats to be
shifted in one of the four directions. Further, the shifts can be
controlled by different clocks 1o allow saggering of dats from
different rows or columns, Data are input in one direction snd
may come out from any one of the four directions. One of the
eight output distributions in Figure 6b can be obtained by select-
ing data coming out from one of these four directions using mul-
tiplexors and proper timing. The staggering of data maps the
data from one of ihe four output distributions in Fi 6b ((A)
thru (D)} w one of the other four ((E) thru (H)). For the
buffers in Figure 7a. the irst and third elements msy come from
celis {1.1), (1.3). (3.1), or (3.3). while the second slement may
come from cells (12). (2.1). (2.3), or (3.2). Duta may then be
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Figure 6. Possible data distributions when T and T have either
zero or unitary projections on the x- and Yuis. (The
arrow with a bar across it i T: the otber is J.)

routed through a reversal network 10 oblain the proper permuta-
tion (Fi 7b). The reverssl network essenthally mape data
with cutput distribution {i) into that of (i'} in Figure fa.

The above design requires the entire matriz to be stored in
the buffers before they are output. This simplifies the control
but increases the delay. An alternative design uses multiplexors
1 input dats into the buffers rather than from the perimeter. n
demultiplexers, d,, d,, ... d,. sre added to the n rows of buffers
in Figure 7a (Figure 7c). d, snd d, sre two-way demultiplezers.
while the rest are four-way demultiplexers. For buffers in row
i. the four output lines of &, are connected to cells 1, i, n—i+1,
and n. These connections are used to adjust the datafiow by out-
putling data as soon as possible and to oblain output distribu-
tions (E) thru (H) in Figure 6b. For example, 1o convert from
input distribution (A) to output distribution (E), demultiplexor
d, Is connected 1o cell n—i+1, 1€i€n. Elements in the firet row
will stay in the buffers for one time unit. while elements in the
i'th row will go through i buffers and bence will stay in the
buffers for | time units. Data will be output in the eastern direc-
tion.

S, SPECIAL-PURPOSE CONVERTERS

In this section, we will discuss the beuristic design of
special-purpose converters. An optimal design of these convert-
er% is difficult because they are problem dependent.

The conversion between any pair of Lbe eight standard dis-
tributions in Figure 6b is straightforward and is Mustrated in
the following ezamples. To copvert from distribution (A} 10
distributions (B). (C), or (D). n° buffers are needed. The input
dats are propagated from left w right and are output in the
western, pouthern, or northern directions after the buffers are
Slled. To convert from distribution (A) to {E), n(n—1)/2 buflers

ﬂm

ell cell cell
i e
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(¢) Organization of the buffers for the modified general-purpose
converter.
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Figure 7. Architecture of the general-purpose converter (n=3).
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Figure 8. Special-purpose converters.

are arranged sz shown in Fi 8s. The conversion from distri-
bution (A) to (F) will need n° buffers. Data are output from the
north afier the bulfers are Slled. Data in column i are output
one step abead of that of column i+1. The conversion from (A)
10 (Q) is similar that from (A) to (E), and that from (A) to (H)
is similer that from (A) to (F). The conversion from distribu-
tion (E) to (A) requires n(n—1)/2 buffers (Figure 8b). For the
conversions from distribution (E) to {B) or (C). n* buffers are
needed. The conversion from (E) te (D) is similar i that in Fig-
wre 1b. The conversion from (E) to (F) requires n* buffers, and
data in column i are output one step shead of data in column
i+1. The conversions from (E) 10 {G) or (H) are similar 1o that
from (E) to {F).

The design of & special-purpose converier between dats dis-

tributions not defined in Figure & msy be complicated. and &

beuristic procedure is proposed bhere. First, the minimum
number of buffers. B, is found by the algorithm discussed in
Section 2. A feasible control circuit with By, buffers is then
searched. The control cireuit contains multiplexors and demulti-
plexors that can be individually controlled by stored micropro-
grams. U » feamible sclution cannot be found easily or if the
eontrel circuit is 1o complex. more buffers are added. and the

procedure is repeated.

6. DESIGN OF AN OPTIMAL MACROPIPELINE

In designing & mwacropipeline of systolic arrays, the
independent optimization of individual systolic arrays [9] and
the intermediste converters may not result in an optimal macro-
pipeline. In this section, we will formulste the design of an
optimal macropipeline as an optimization problem.

The objective function for the design will be the AT meas-
ure, where A is the total area of the chips and T is the total time
taken 10 polve the problem. The area of & systolic array is pro-
portional to the number of processing clements in the array [9].
and the area of the converter is proportional to the number of
buffers. The conpanis of proportionality depend on the technol-
ogy used. and the relative complezity between the processing
slements of the systolic array and the buffers. The design of a
¢ -stage macropipeline with § systolic arrays and ¢ —1 intermedi-
ate converters is :

-—.——-—D—._ ‘2'| .2.3 l?.,
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Seatalic Arryy

33 "1 M1 30 Py Ty

o "1 M2 i Tia i

a0t M LI PUREE 7 7% B S Y

Watzin-multiplicetion
Systolic Areny

Figure 9. A macropipeline to multiply matrices A and B and 1o
decompose the product matriz into submatrices L and
U. (o=3, no intermediate converter is ussd)

minimize AT . where ae)
=3 :
A=FrA+T kA

=] ot |
[} 1=t

T ZT+IT,
=

where A, (resp. A} is the ares of the i'th sysiolic array (resp.
converter), k; (resp. k') is the associsted constanis of propor-
tionality, and T, (resp. T)) is the associated computation time.
The complezity of the above optimization problem is O{¢"),
Wwhere p is the number of ways 1o design a single systolic arny.
We bave found before that the worgt-case complexity of design-
ing an optimal systolic arruy is 0(:‘; [9]. hence the optimization
of & macropipeline is extremely difficult even for small pipelines.
In this case. beuristic and suboptlimal designs may have to be
used.
. In the remaining part of this section, an example is used to
illusirate the design of s macropipeline. Suppose that two
matrices X snd Y are to be multiplied and that the product
mstria is decomposed into submatrices L and U, where L s a
lower trisngular matriz and U is an upper triangular matrix.
Figure 9 shows a possible solution without using s converter.
Since the owlput of the multiplication array must be compatible
with the input of the L-U decomposition array. the multiplica-
tion array is by no mean optimal with respect to the AT meas-
ure. In this design,

A =Xkn(in-1) Ty=2n-1 (matriz mult.)
A=Xn’ Ty=4n (L-U decomp.)
M, = (A, +A,) (T, +T,) « (30~n) (6n-1)
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Figure 10. A macropipeline 10 multiply matrices A and B and to
decompose Lthe product matriz into submatrices L and
U. (ne3. sn intermediate converter is used)

Figure 10 ghows the macropipeline in which the multiplice-
tion and L-U decomposition systolic arrays are optimal [9.11].
A converter is used to transform the output distribution of the
multiplication array into ibe required input distribution of the
L-U decomposition array. In this design.

Ay=k;n’ T,=2n+1 (matrix mult.)

Agmin’ Ty~ dn (L-U decomp.)
n(n+1)

Al. - kl’ Tl' L l (huﬁem)

1 n(n-l-l)

Ma = (A‘+A‘+A") (T,“’T""T‘.): & PD + (6!\"’2)’

Figure 11 shows & plot of the M,/M, for different values of
nand k,'/k, sssuming that k; = k;. For those paris of the curves
such that M,/M, > 1. the use of intermediate converters is
beneficial.

$. CONCLUSIONS
Macropipelines of systolic arrays have found a wide range
of spplications. To synchronize the dats flow In the pipe, a con-

2.0 q
1o | = 0.25
k)
)
M2 1.0 - ;
0.5
L}
0.0
0 4 8 12 16 2t
n (problem size)

JOJISAUDD PSN
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Figure 11. A plot showing the relationship betwoen M,/M, for
different values of n. (It is assumed that k, = k,).

verter u; necessary. In this paper. sn slgorithm with a complex-
ity O(n") is presented to #ind the B, needed for any conver-
sions. The data distributions are classified into 2x8 basic
conversions. A structure for the general purpose converter has
been presented.

Future work includes decomposition of systolic arrays to
make the delay time for each stage of the pipe aqual.

REFERENCES

(1) G. R. Nudd, “Image Understanding Architectures.” Proc.
N;::}md Computer Conference, AFIPS Press, pp. 377-390,
1930.

[2]) G. R. Nudd. 1. G. Nesh. S.S, Narayan, and A. K. Jain, “"An
Efficient VLSI Structure for Two-Dimensiona! Data Proces-
ing." Proc. JEEE Int'l Conference On Computer Design, pp.
553-356, 1981, :

(3] G. Nicolac and K.H. Hohne. “Multiprocessor System For the
Real-Time Digital of Video-lmage Series.” Elek-
tronische Rechenanhagan, No. 21. 1979,

[4) D. P. Agrawal and R. Jain. “Computer Analysis of Motion
Using & Network of Processors.” Proc. 5tk Int'l Conf. Partern
Recognition. Dec. 1980.

[5] E. 1. Farrel. “Processing Limitations of Ultrasonic Image
Reconstruction,” Proc. Conf. on Partern Recognition and
Image Processing, June 1978. .

[6] C. V. Armstrong. et al.. "An Adaptive Multimicroprocessor
Array Computing Structure for Radar Signa) Processing
Applications." Proc. 6th Annual Symposium on Computer
Architecturs, 1979. :

[7) W. Hendler. “The concept of Macropipelining with High
Availability,” Elektronische Rechenanhagan. No. 15, pp.
259-274, 1973.

[8] F.A. Briggs. et al. "PUMPS Architecture for Pattern
Analysis and Image Database Management,” JEEE Trans. on
Computers, Vol. C-31. No. 10, pp. 969-983, Oct. 1932.

8} G J. Li and B. W. Wah, “The Design of Optimal Sysolic
Arr;yt. JEEE Trans. on Computers, Vol. C-34, No. 1. Jan.
1985, :

{10) H. T. Xung, “Why Systolic Architectures.” JEEE Computer.
PP 31-4‘:81111. 1982,

{11] C. Mead and L. Conway, Introduction to VLSI Systems.
Addison-Wesley, 1930.



