» kRowledge prepared by the software “Cracle” of tha sys-
tem. snd down-loaded prigr to the start of the search.

- Hitach has been in preparaiion for nearly 3 years,
during which time graduate student Carl Ebeling designed
the hardware and MOSIS manufactured the special purpose
VSLI chips. Since the beginning ot 1685, s team headed
by Hans Berlingr has fleshed out the system to be » useful
chess playing entity. Involved in the systam building
ware: Carl Ebeling: Hardware design and construction,
Gordon Goetsch: systam software, Andy Palay: initial con-
cept and search strategies, Murray Campbeli. openings
and testing, Larry Stomer: hardware coastruction, and
Hans Berliner: chess knowledge.
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ABSTRACT

In this survey. we will provide a short survey and
classification on the current work In special purpose ar-
chitectures to support Al applications. In spite of the
growing Importance of Al applications, work in the area of
designing Al architectures are so diversifled that articles
wars published in other sreas -basides Al ranging from
paychoiogy, madicine, manufacturing, computer architec-
ture, software snginesring, and dstabase management to
industria) enginsering, operations research, and the list
grows. The literature search is also compilcated by the
fact that with the development of the Fitth-Generation
Computer Systems, some work in this area Js very recent
and was published in many forsign countries. During our
titerature search to compile this survey, we systematically
went through over sixty differant journais published in
various countries and proceedings from aover fifty con-
ferances in the last twenty years and over seventy books.

1. INTRODUCTION

Many of today's computers are single-processor von
Neumann machines designed for sequential and deter-
ministic numarical computations[1-4. and are not
squipped for Al applications that are mainly parailal non-
deterministic symbolic manipulations[5-8) Consequently,
sfficient computer architecturas for Al applications would
be sufficiently different from traditional computers{8-18].
These architectures have the following requiremants.

Symbolic Processing: In the microlevel, Al ap-
plications reguire symbolic processing operations such as
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comparison, salection, sarting, matching, logic s8t opera-
tions (union, intersection, and negation), coniexts and par-
tition, transitive closure, pattern retrigval, and recognition.
In a higher level, these applications may require the
processing of nonnumerical dats such as sentences,
speech, graphlcs, and imeges. Efficiant computers
designed for these applications should poss@ss hardware
for symbolic processing functions{19-21] The most im-
portant ones are .tagged mechanisms{20,22] and hardware
stacks[23). i

Parallel and Distributed Processing:
Most Al problems are complex{24.25] and must be
evaluated by high-performance computers, Due to tech~
noiagical limitations of physical devices, parsllglism is per-
haps the only promising mechanism to further improve the
performance of computers(8,10,26-28]. To prevent the
bottienack of a centralizad controllar, {ntelligence in such a
system should be decentralized. In applying muitiprocess-
ing and distributed processing to soiva problems with ax-
ponential complexity, which is typical for problems in Al,
one must realize that multiprocessing is useful in Improv-
ing the computational efficiency, and not in extend-
ing the sclvable problem sizel30] Yo extend
tha solvable problem space of such problems, the key is
to find better models and more efficlent heuristics.

Nondeterministic Processing: Most Al al-
gorithms are nondatarministic{31], that Is, it Is ‘impossible
to plan in advance the procedures to execute and to ter-
minste with the available information. Therefore, dynamic
atlocation and {oad balancing of computational resources
are ossentlai In Al architectures[10,32] Further, an ef-
ficlent interconnaction network is needed to disseminate
information for the schaeduler. The tradecff between the
overhead of distributing ths scheduling information and
the overhead for the extra work needed without the
scheduling Information must be made. Moreover, efficient
garbage collection is important for Al architectures owing
to the dypamically allocated storage[32~34]

Knowledge Base Management: Since a very
iarga amount of information have to. be stored and
ratrieved in Al applicstions, lerge knowledge bases are
inevitable{35-38]. An implementation using & common
memory s inappropriste due to saccess conflicts. A
decentralized memaory system with distributed intelligence
and capabilities for pattern matching and proximity search
Is required.

Software Orlented Computer
Architectures: The efficiency of a computer system
for an Al application depends strongly on its knowledge
represantstion and the language used. An efficient Al ar-
chitacture shouid be designed sround the knowledge
representations of the problems %o be solved and the
high-level Al languages to he supported. Further, the
dgesigned architectures should adapt to changes Iin
granularity end data formats of various applications. Ex-
amples of thase architectures are the datsflow
machines[39,40), objact-orisntad architectures{41,42] Lisp
machines{18.22], and Prolog-tike machines, such as the
Fifth Genaration Computer Systam{14],

Currantly, extensive research are carried out in
designing afficient Al architectures. Many existing con-
cepts in computer architecture, such as dataflow
processingl43,44], stack  machines{23L  tagging[20]
pipeitningl27], direct axscution of high-level
languagas(45-47), database machines{48]. multiprocaessing,
and distributad processing, can be incorporated into future
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Al architectures. New concepts in computer srchitectures
are al3o expectad.

2. ARTIFICIAL INTELLIGENCE
LANGUAGES AND PROGRAMMING

One goai of computer scientists working in the fisld
of Al is to produce programs that imitate intelligent be-
havior of human baings[49-531 Von-Neumann-style pro-
gramming that usas impaerative languages, such as Fortran
and Pascal, is inadequate due to its inability to spacify
paraliat tasks and its unacceptable complaxity[54-56]. To
enhance programmers’ productivity, a type of probiem-

orientad languages callad declarative languages have been.

developed and widely applied in Al programming(57].
Functional programming(555858] and logic
programmingl60-64] ars the major programming
paradigms ot deciarative languages.

Functional programming does not contain any notion
of the present state. program counter, or storage. Rather,
the “program” is a function in the true mathematical
sanse: it is applied to the input of the program, and the
resulting wvelue is the program's output. The terms
functlonal language, applicative language,
dataflow language, and reductlon language
have been used somewhet interchengeably{65-68L Ex-
amples of functionai lenguages are puie Lispl69-73)
Backus’ FP{54], Hopel74]L Vall751 and 16f76). Interest in
tunctional programming is steadily growing because it is
ona of the few approaches that offer a real hope of reliav-
ing the twin crises of Al-oriented computing today: the
absolute nacessity to raduce the cost of programming, and
the nead to find computer dasigns that make much better
use of the power of VLS| and parallalism.

tn its modest form, a logic program refers to the
procedural interpratation of Horn  clauses  predicata
logicl63.64). The computer language Proiog[?7-82] is
based on logic programming. Generally speaking, logic
programming -is & reasoning-criented or deductive pro-
gramming. In fact, some ideas of logic programming, like
automatic backtracking., have been used in early Al lan-
guages  QA3(49)1 PLAMNER, MICROPLANNER, and
CONNIVER[S1,83], Logic programming has recantly
received considerable attention becausa of its choice by
the Japanese as the core computer language for the Fifih
Generation Computer System Project(84].  Although it
seams on the surface that logic programming is an inde-
pendent and somewhat saparate notion from function pro-
gramming, an ideal Al-programming style shouid comhbina
the featuras of bhoth languages and may be cailag
“assartional programming”(61]

New languages and programming systems areé baing
developed to simpiify Al programming radically. it is ex-
pected that object-oriented programmingl8s] wili
be impartant in tha 1980's as structured programming was
in the 1870°s. The janguage Smalitatki86,87] is an example
of object~orientad programming. Some ideas of object-
oriented programming have been used in axisting lan-
guages and systoms, such as Simula, 85000, Lisp—-Al notion
of frame, ADA, and CLU. Other new object-oriented pro-
gramming systems have also baen deveioped{41,42,88~90].

Al programming languages have had a central role in
the history of Al research. Frequently, naw ideas in Al are
accompanied by a new language that is natural for the
idaas 10 be applied. Except for the widely used language
Prolog, Lisp and its dislects, Maclisp[91) Intarlisp(92,63)
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Qlispl94), Common Lispl95) Franz Lispl86) etc.. meny oihes
Al language have been designed and implementsd. Ex-
amples inciude IPLS7.98] PLANNER[98], CONNIVER{83L
KRLI100L NETL[101L SAIL{102) POP-2([103) FUZZY[104} and
first=order logic. In general. thraa capabilities, namely, sc-
tion, description, and reasoning, are needad for an Al lan-
guage. Historically, languages strong In one of these
capacities tended to be reiatively weak in others. Proiog
is s reasoning-oriented ianguage that is limited by its in-
efficiency of dascription and action. Lisp. the second
oldest programming language in present widespread use
ratains some features of von Nsumann programming.
Some new langueges, such as Loglisp{63] and QUTE[106]
which amalgamate Proiog and Lisp In natural weys, have
baen developed. On the other hand, 10 expiore paraliaiism,
the parallg! versions of Prolog and Lisp, such as
Parlog[106] Concurrent Proiag{107,1081 and Concurrem
Lispf109,1101 have been proposed. Raecent eftorts are
aimed 8t automatic programming that will allow the
program to be generated from a simple specification of
the problem[111~115}

Besides programming lsnguages, It hacams apparsnt
to tha Al community since the mid-1960s that inferaence-
alone, even those augmented with heuristics, ware often
inadequate to solve real-life probiems. To enhance the
performance of Al prdigrams, they must be augmaented
with knowladge of the problem domain rather than formal
reasoning methods. This reslization gave bith 10
knowledge englneering or knowledge-based
systemn, the field of applied Af{116,117)

A knowledge-based expert system or in
short. expert system, s a knowledge—-intensive program
that solves problems in a spscific domain normaliy requir-
ing human axpertisa{17,118-124]. An expart system con-
sists of two parts: knowiedge base and inference proce-~
dure. The knowledge base contains the facts and hauris-
tics, while the (inferance procedure consists of the
pracessas that search the knowledge base to infer solu-
tions to probiems, form hypotheses, and s0 on. What dis~
tinguishes an expert systam from an ordinary computer
application is that. in a conventional computer program,
pertinent knowledge and the mathods for wutilizing it are all
intermixed, while in an axpert systam, tha knowledge base
is separatsd from the inference procedure, and new
knowiedge can be added to the system without
reprogramming. :

Contemporary expert-system development techniques
are shifting towards the use of software development
tocis that resemble & programming language, but inciude
internat uler-accessible databases and other high-ievel
strategies for using knowledge t0 solve a class of
problems{119,122,125,1261 Each tool sugpgests soms ad~
ditional design properties, such as ruie-base and backward
reasaning, for the knowledge-system architecture. Three
of the mast popular families of axpert-systam toocls are:
(1) EMYCIN[127,128] KS300, and $.1; (2) HEARSAY-li[128]
and AGE[130] and {3) OPS that incorporates the MYCIN,
HEARSAY-ll, and R1 (XCON) expert-system families{131])
Other expert-system tooils inciude LOOPSI132} ROSIE[133],
RLL[134] MRS, and KMS. Soma of these tools mm io
provide s mixture of representations and inference tech-
niqueas. Knowladge—acquisition tools such a3
TEIRESIAS[138], EXPERT[138) KAS{137], and learming toois
such as META~DENDRAL(138] and EURISKO[138) havs sise
been developed.
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~ 3. MICRO AND MACRO LEVEI Al ARCHITECTURES

" The VLSI ({Very-Large-Scale-Integration) technofogy
flourishad in the past ten years[140-144] and resuited in
the deveiopment of advanced microprocessors[145), semi-
conductor memories[146], and systolic arrays[(147-151],

The microleval architectures consist of architectural
designs that are fundamentai to applications in Al In the
design of massively paratial Ai machines{152], some of the
hasic computationsl problems racognized are set intersec—
tion, transitive closure, contexts and partitions, best-match
recognition, Gestsit recognition, and recognition under
transformation. These operations may not be unique in Al
and may exist in many other applications as wall. Due to
the simplicity of some of these operstions, they cen
usually be implementad directly in hardware, especially in
systolic arrays using the VLS! technology. Many other
basic operations can also be implemented in VLSl Ex~
amples inciude sorting(153-162] and selection[163,164].
computing transitive closure[147,165) string and pattern
matching[19,166-172], selection from secondary
memories[173,174], dynamic programming
evaluations[165,175,176], proximity searches[177] and
unification[178-182]1 :

Some Al languages such as Lisp differ from traditional
machine languages in that the program/data storage is
conceptually an unordered set of linked racord structures
of various sizes, rather than an ordersed, indexable vector
of numbars or bit tigids of a fixed size. The instruction
sot must be designad according to the storage
structure{183]. Additional concepts that ars wall suited for
list processing are the tagged-mamory[184,20] and stack
architectures[23)].

The macroievel is an intermediate lavel between the
microlevel and the systerm level. In contrast to the
microlevel architectures, the macrotevel architectures are
{possibiy} made up of 8 variety of microlevel architectures
and perform more complex opsrations. Howevar, they are
not considered as a complete system that can solve
problems in Al applications, but can be taken as more
compiex supporting mechanisms for the system level. The
architectures can be classified into dictionary machines,
database machines, architectures for searching, and ar-
chitectures for managing data structuras.

A dictionary machine is an architecture that supports
the insertion, deletion, and searching for membership, ex—
tromum, and proximity of keys in a detabasel185-192]
Most designs ars based on binary-tree architecturas;
however, design using radix trees and a small number of
processors have been found to be preferable when keys

are long and clustered]i87]

A database machine is an architectural spproach that
distributes the search inteiligence into the secondary and
mass storage, and relieves the workload of the central
procaessor. Extensive rasearch has bean carried out in the
past decade on optical and mass storage[193,194), backend
storage systems[195) and database machines{196-205]
Eariier database machines deveioped were mainly directed
towards genersl-purpose relational database managemant
systams. Exampies include the DBC, DIRECT. RAP, CASSM,
associative array pracessors. taxt retrievai
systams[196,197). and CAFS[202]) Nearly ai! current
research on datahase machines tc support knowledge
databases assume that the knowiledge databssze s rela-
tional, hence research is directed towards solving the disk
paradox(198) and snhancing previous relational database
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machines by extensive paralielism{206-208,38. Commer-
cially available database and backend machines have also
been applisd in knowledge management{209-211].

Searching is an essentisl to many applications, ai-
though unnecessary combinatorial searches shouid be
avoided. The suitability of parallal processing to searching
depands on the problem complexity, the problem
representation, and the corresponding search algorithms.
Problem compiexity should be low enocugh such that a
serial computer can solve the problem in a reasonable
amount of time. Problem representations are very impor~
tant because they are related to the search algorithms.
Parallel algorithms have been found to be able to dramati-
cally reduce the average~time hehavior of search
problems, the so-called combinatorially implosive
algorithms{212-214),

A search problem can be represaented as searching an
acyclic graph or a search tree. According to the functions

. of nodes in the graph, the problem is transformed into one

of the following paradigms: (a) AND-tree {or graph) search:
ali nonterminal nodes are AND nodes, (b) OR-tree {or
graph) search: all nonterminal nodas are OR nodes, and (c)
AND/OR-tree {Or graph} search: the nontermina! nodes are
aither AND or OR nodes. A divide-and-conquaer algorithm
is an example aigorithm to search AND trees; a branch-
and-bound algorithm is used to search OR trees; and an
slpha-beta algorithm is used to search (ANDZOR) game
trees.  Parsilel algorithms for divide-and-conquer[215),
branch-and-bound{216~223] and AND/OR-graph
search[224-226] have been developed. Various parallel ar-
chitectures to support divide-and-conquer
algorithms[227,228) and branch-and-bound
algorithms{229-238,30] have heen proposed.

Extensive research has heen carried out In supporting
dynamic data structures in s computer with a limited
memory space. Garbage collection is an algorithm
that periodically reciasims memory space na longer nseded
by the users{32-34,239-251). This Is usuaily transparent to
the wusers and could be implemented In hardware,
software, or a combination of both. For efficiency reasons,
additional hardware such as stacks and reference counters
are usually provided.

4. FUNCTIONAL-PROGRAMMING-ORIENTED
"~ ARCHITECTURES

The origin of functional languages as a practical class
of computer languages can perhaps be traced to the
development of Lisp by McCarthy[70] in the easly 60°s, but
their ancestry went directly back to the lambda calculus
developed by Church in the 1830's. The objective of writ-
ing 8 functional program is to define a set of (possibly
recursive} equations for each function[252) Data struc-
tures are handled by introducing a special class of func-
tions called constructor functions, This view allows func-
tional lsnguagas to deal directly with structures that would
be termed “abstract” in more conventional languages.
Moreover, functions themselves can be passed around as
data objects. The design of the necessary computer ar-
chitectura to support functional languages thus centers
around the mechanisms of efficient manipulation of data
structures (list-oriented architectures) and the paralial
svaluation of functional programs (function-criented
architectures).

List-orlented architectures are architec-
tures designed to efficiently support the manipulation of
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data structures and objacts. Lisp, a mnamonic for list
processing language, is a well known language to support
symbalic processing. There are several reasons why Lisp
and list-oriented computers are really needed. First, to
relieve tha burden on the programmars, Lisp was dasigned
as an untyped language. The computer must be able to
identify the types of data, which involves an enormous
amount of data-type checking and the use of lang strings
of instructions at compile and run times. Conventional
computars cannot do these efficiently in software.
Secand, the system must periodicaily perform garbage
collection and reclaim unused memory at run time. This
amounts to around ten to thirty percents of the total
processing time in & conventional computer. Hardware
implementation of garbage collection is thus essantial.
Third, due the nature of recursion, a stack-oriented ar-
chitecture is more suitable for list processing. Lastiy, list
processing usually requires san enormous amount of space,
and the data structures are 30 dynamic that the campier
cannot predict how much space to allocate at compile
tima. Special hardware to manage the data structures and
tha large memory space would make the system more
rost affective and efficient[253~255,18]

The weasliest implementation of Lisp machines were
the PDP-8 computer and its succassors the PDP-10 and
PDP-20 made by the Digital Equipment Carporation{70].
The half-word instructions sné the stack instructions of
these machings were developed with Lisp's raquirements
in mind. Extensive work has been done for the DEC~
systém 10's and 20's on garbage collection to managa and
reclaim the memory space usad.

The design of Lisp machines was started at MiT's Al
Laboratory in 1874. CONS, designed in 1976[256-259] was
supersaded in 1978 by a second-generation Lisp maching,
the CADR. This machine was & model for the first com-
mercislly available Lisp machines(260~262] including the
Symbolics LM2, the Xerox 1100 Interlisp work station, and
the Lisp Machina Inc. Saries III'CADR. all of them daliverad
in 1881, The third-generation machines were basad on
additional hardwars to support data tagging and garbage
collaction. - They are characterized by the Lisp Machines
Inc. Lambda supporting Zetalisp and {MLisp[260.261,22].
the Symbolics 3600 supporting Zetalisp, Flavors, and
Fartran 77(20,263-2656] the Xerox 1108 and 1132 support-

ing Interlisp-D and Smalltelkl266-268l and the Fijitsu

FACOM Alpha Machine, s backend lLisp processor support~
ing Maclisp[269,270L Wost of the Lisp machines support
natworking using Ethernet. The LMI Lambda has & NuBus
deveioped at MIT 10 produce s madular, axpandabie Lisp
machine with muitiprocessor srchitecture.

A single-chip computer to support Lisp has been im-
plementad in the MIT SCHEME-79 chip{271,272,183L Other
exparimantal computers to support Lisp and list-orientad
processing have been reportad{273-282] These machines
usually have additional hardware tables, hashing hardwars,
tag mechanisms, and list processing hardware, or are
microprogrammed to provide macroinstructions for list
processing. Experimental muitiprocessoring systems have
bean proposed to axecute Lisp programs
concurrently{110,283-288). Dataflow processing i suitable
for Lisp as thess programs are genarally data
driven(289,260]. Other multiprocessing and dataflow ar-
chitectures to support list processing have been proposed
and developed{291-296]

Besides  specialized  hardwara implementations,

software implementations on general-purpose computers
are aisc popular. The aarliest Lisp compilers ware
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developed on the IBM 704 and later extendad to the IBM
7080, 360, and 370. Various strategies for implementing
Lisp compiters have been proposed(71,21,297,93,72,2981
and conventional microcomputers have been usad to im-~
plemant Lisp compilersi288-302} Lisp Is aiso availabla on
various general~ and special~purpose work stations, typi-
cally based on multiple 68000 processors(299,302]. Lisp
has been develapad on Digital Equipment Corp. VAXstation
100. a MC68000-based personai graphics work station, and
clusters of 11/782s running several diasiacts of Lisp and
Common Lisp{303] One dialect of Lisp, Franz Lisp,
developed at the University of California. Berkelay, was
written in C and runs under Unix and is svailable on many
general-purpose work stations.

Architectures have also been developed 10 support
object-criented programming languagas which have baen
extended from functional languages to additionally imple-
ment operations such as creating an object, sending and

" receiving messages, modifying an cbjects’ state, and form-

ing ciass-superclass hierarchies[304,305.411  Smailtaik,
first developed in 1972 by the Xerox Corp., is recognized
as a simple but powerful way of communicating with
computers. At MIT, the concept was extended to become
the Flavors systam. Special hardware and multiprocessors
have been proposad to directly support the processing of
object-oriented languages(306,42,89,60)

in function-oriented architecturas. the
design iszues center on the physical Interconnaction ot
processors, the method used to “drive” the computation,
the representation of programs and data. the method to
invoke and control paralielism, and the optimization
tachniquesi307]. Daesirshle features of such architectures
should inciude a multiprocessor system with a rich inter-
connaction structure, the representation of list structures
by balanced trees. and hardware supports for demand-
driven execution, low-overhead process crestion, and
storage managemaent.

Architectures to support functional-programming lan-
guages can be classified as uniprocessor architactures,
trego-structured machines, data-driven machines, and
demand-driven machines. In » uniprocessor architactura,
besides the machanisms to handle lists. additionai stacks
to handle function calls and optimizstion for redundant
calis and srray cperations may be
implemented(272,308-310,67). Tree—structured mazchines
usunlly empioy lazy evaiuations, but suffer from the bot-
tienack at the root of the tree{311-316]  Dataflow
machinas ars aiso natural candidatas for executing func-
tional programs and have tremsndous potential for paral-
talism. However. the issus of controliing parallelism
remains unresolved. A lot of the recent work is con-
cantrated on demand-driven machines which are based on
reduction machines on & set of load-balanced (possibiy

virtual) processors(292,317-326}.

Owing to the different motivations and objectives of
various functionai=-programming-oriented architectures,
aeach machine has its own distinct features. For axampie,
the Symbolics 3600{265) was designed for an interactive
program developmant environment where compilation is
very fraquent and ought to appear instantaneous to the
user. This requiremant simplified the design of the com-
plier and results in only a single-address instruction for-
mai, no indexed and indirect addrassing maodes, and other
mechanisms to minimize the number of nontrivial choices
to be made. On the other hand, the aim in developing
SQAR[90} was to demonstrate that & Reduced Instruction
Set Computer couid provide high performance in an sx-
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ploratory  programming  environmant. Instaad of
micrccode, SOAR relied on software to provide compli-
cated operstions. As a result, more sophisticated software
techniquas were used.

5. LOGIC AND KNOWLEDGE ORIENTED ARCHITECTURES

In logic and knowledge orientad architectures, the
ideali goal is for the user to spacity the problem in terms
of the properties of the problem and the solution {logic or
knowledge), and the architecture exercises the control on
tow the problem is to be solved. This posl is not fuily
achieved yet, and users still need to provide smait but un-
due amounts of control information in logic programs,
partly by ordering the clauses and goals In a program, and
partly by the usa of extra-iogical "festures” In the lan-
guage.

Knowledge and logic oriented architectures can be
classifiad according to the knowladge representation
schemas. Besides incorporating knowledge into a program
written in 8 functional programming language, some of the
wall-known schemas are logic programs and sernantic
networks. According to tha search strategy, logic
programs can further be classified intce production systems
and logical inference systems{15-17,327,178,179].

Substantial research has bsen carrled out on parallel
computational models of utllizing AND parallalism, OR
parallelism, and stream paratlalism in logical infarence
systemns[39,328-342], production systemsi343-345], and
othersi346]. The basic problem on the exponential com-
piexity of logic programs remains apen at this time,

Sequential  Prolog  machines using  software
interpretation[347,348l, emulation[349,350L and additional
hardware support such as hardware unification and
backtracking{351,352,180] have bean proposed. Single-
processor systems for production’systems using additional
data mamories[363) and a RISC architecture[178] have
been studied.

New logic programming languages suitable for parallet
processing have been investigated[354). In particular, the
use of predicate logici355), extensions of Proiog to be-
coma Concurrent Prologl356-362), Partog(383] and Deita-
Prologl364], and parallel production systems[365] have
baen deveioped. Concurrent Prolog has also been ex-
tended to include object-oriented programmingl[360] and
has been applied as a VLS| design language(361) One in-
teresting parallel language is that of systolic programming,
which Is usaful as an zlgorithm design and programming

mathodology for high-level-language parailel
computers(366).
Several prototyps multiprocessor systems for

processing inference programs and Proiog have been
proposed, somae of which are currently under construction.
These systems include multiprocesscrs with a sharad
memory{358l ZMOB, a muitiprocessor of Z80’s connected
by s ring network{367-371]), AQUARIUS, 8 heterogeneous
multiprocessor with a crossbar switch[372], and MAGO, a
cellular machine implementing a Proiog compilar that
transiates 8 Prolog program into a formal functlonal
program([373] Techniques for analyzing Prolog programs
such that they can be processed on 8 dataflow architec-
ture have been derlved(374-376,401 DADO is a8 mul-
tiprocessor system with & binary-tree intercannection net-
work that implemaents parallel production
systems(377-3801 An sssocistive processor has been
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proposed to cerry out propositional and first-order predi-
cate calculus[381].

It has been recognized that a combination of Lisp.
Prolog, and an object-oriented language such as Smalitalk
may be a better language for Al applications{382) Com-
puter of this type that implements a combination of the Al
langusges may use microprogramming to emulate the
various functions. Prolog is aiso available as a secondary
ianguage on soma Lisp machines. A varsion of Prolog in-
terpretor with a speed of 45 kiips has been developed for
Lisp Machina's Lambdal260) Some of the prototype mul-
tiprocessors, such as ZMOB[367-371] and MAGO{373]. were
developed with a flgxible architecture that can implement
object-oriented, functional, and logic languages. FAIM-1, a
multipracessor connected in the form of a twisted hex-
plana topology., implements the features of objact-
oriented, functional, and logic programming in the QL pro-
gramming language[383].

Basides representing knowledge in logic. it can aiso
be represented in terms of semantic nets. Proposed and
experimental  architectures  have been  developed.
NETL[384,101,385], and it generalization to THISTLE{152]
consists of an array of simple cefls with marker-passing
capability to perform searches, set-intersections, in—
heritance of propertias and descriptions, and muitiple~
context operations on semantic nets, Thinking Machine's
Connection Machine is a cellular machine with 65,536
processing eiements. It implements marker passing and
virtually reconfigures the processing elements to match
the topoiogy of the application semantic nets[386,387]
Associative processors for processing semantic nets have

also been propossd[388,33§l.

Some Al architectures are based on frame represen-
tations and may be called object—oriented architectures.
For example, the Apiary deveioped at MIT is a mui-
tiprocessor actor system[2B6]. Actor is an object that
contains a smaifl amount of stste and can perform a few
primitive operations: sending & Mmessage, cresting anothar
actor, making a decision, and changing Its locat state. An
efficient Al architecture aiso depends on the problem-
solving strategy. The basic idea of the Boltzmann
machine devalopad at the Carnegie-Maellon University is
the application of statistical mechanics to constraint-
satisfaction searches in a paraliel network[390]. The most
intaresting aspect of this machine lies in its domain-
independent learning algorithm{391]

With the inciusion of control inta stored knowledge,
the resulting system becomes a distributed proklem solv~
ing system. These systams are characterized by the rala-
tive autonomy of the problem solving nodes, a direct con-
saquence of the imitad communication
capability[382-384). With the proposed formalism of the
Contract Net, contracts are used to expross the control of
problem solving in a distributed processor
architecture[395-397]. Related work in this area include
Petri-net - modeling{398], distributed vehicle-monitoring
testbed[399,400), distributed sir-traffic control system({401]
and modeling the brain as & distributed system[402.403]

6. FIFTH GENERATION COMPUTER SYSTEM

The Fifth-Generation-Computer~System, or FGCS,
project was a project started in Japan in 1982 to {further
the research and development of the next generation of
computars. It was conjectured that computers of the next
decade wiil be usad increasingly for nonnumeric data
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processing such as symbolic manipuilation and appliad Al
The gosals of the FGCS project are

1. to implemant basic mechanisms for inference, as-
sociation, and learning in hardware;

2. to prapare hasic Al software in order to utilize the
fuil power of the basic machanisms implemented;

J. t0 impiement the basic mechanisms for ratrisving
and managing a knowledge basé in hardware and
software;

4. t0 use pattern recognition and Al research achisve-
ments in developing user-oriented man-machina in-
tarfaces, and

5. to realize supporting envirocnmaents for resalving the
“sottware crisis” and enhancing softwere production.

The FGCS project is a marriage between the im-
plementation of 8 computer systam and the requirements
spacitied by applications in Al, such as naturai-language
undarstanding and speech recognition. Specific issues
studigd include tha choice of logic programming over
functional programming, the design of the basic software
systams to support knowiedge acquisition, management,
learning, and the inteiligent interface to users, the design
of highly parallel architectures to suppart infergncing
operations, and the design of distributed~function ar-
chitecturas that intagrates VLS| technolagy to support
knowledge databases[14,84,404-407]

A first affort in the FGCS project is to implement a
sequential inference machine, or SIM[408,409] Its first im-
plementation is a medium-performance machina known as
a parsonal sequentiai inference, or PS), machine{410,411],
Tha current implamaentation is on the parailgl inferance
machine, or PIM[207,412-416,40]. Another architecturai
devaiopment is on the knowisdge~-base machine,
Deita{412,207,208,417.38). Lastly, the development of the
basic software system acts as a bridge to fill the gap be~
tween & highly parallel computer architecture and
knowledge information processingl418-420]. Currantly, ali
the projects are progressing waell, however. tha struggle is
still far from overla21}

~ The Japanese FGCS project has stirred intensive
respansas from other countries[319,320,422-430} The
British project is a five-year $550 miilion cooperative
program between government and industry that con-
centrates on saftware engineering, intelligent knowlsdge-~
hased systems, VLS| circuitry, and man-machine interiaces.
Hardware developmant has focused on ALICE, & Parlog
maching using dataflow architectures and implementing
both Hope, Prolog, and Lisp[318,320,426-428] The
Eurcpean Commission has started the $1.5 billion five-year
European Strategic Program for Research in Information
Tachnologias (Esprit) in 1984[423] The program focuses
an microglectronics, software technoiogy, advanced infor-
mation processing, computer-integrated manufacturing,
and office automation. In the United States. the most
direct response to the Japanese FCGS project was the as-
tablishment of the Microelectronics and Computer Tech-
nology Corp. in 1983{43C] The project has an annual
budget of $50 million to $60 miilion par vear. it has a
more evolutionary approach than the raevolutionary ap-
proach of the Japanese and should yield technoiogy that
the corporate spansors can build into advanced progucts
in the next 10 to 12 years. Meanwhile, other rasearch or-
ganizations have formed to deveiop future computer tach-
noiogies of the Unitad States in a broader sense. These
include DARPA’s Strategic Computing and Survivability, the
semiconductor industry’s Semiconductor Research Cor-
poration, and the Microsiactronics Center of North
Carolinal430})
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7. CONCLUSIONS

This survey briefly summarizes the state of the art in -
Al architectures. Conventional von Nsumann computers
are unsuitable for Al applications because they are
designed mainly for detarministic numerical processing.
To cope with the increasing inafficiency and difficulty in
coding algorithms in artificial intetligence, declarative
languages have been developed. Lambda-based and
logic-based languages are two popular classes of
declarative lahguages.

One of the architect’s starting point in supporting ap-
plications in artificial intelligence is the language. This
approach has been termed the Jlanguage~-first
approach. A possible disadvantage of this approach is
that each language may lead t0 & quite distinct architec-
ture which is unsuited to other languages, a dilemma in
high~iavel-language computer architectures. In artificial
intelligence applications. the lambda-based and logic-
based languages have been considered seriousiy by novel
architects. Recent research lies in integrating the logic
and lambda languagas, and the work on lambda and logic
oriented architactiures provides useful guidelines for paral-
lal architectures that support more sdvanced languages. .
On the othar hand, Al architectures are aiso related to
knowiedge representations. This approach has been caliad
the knowledge-first approach. Several architec~
turés have been designed 10 support multiple knowiedge
repressntations. )

An appropriate methodology to design an Al architec-
ture shouid combine the top-down and bottom-up design
approaches. That is, we need to deveiop functicnal re-
quirements based on the Al problem requirements and
map these requirements into architectures based on tech~-
noiogical requiraments. Parallel processing is a graat
hope to increase the power of Al machines. However,
paratlel processing is not & way to overcome the difficulty
of combinatorial explosion. It cannot significantly extend
the soivable probiem space on problems that we can soive
today. Hence tha problam complexity is sn important
considaration in designing Al machines. Problams of
lower complexity may be solved by sequentiai computa-
tion; problems of moderate complexity may be solved by
paraliel processing; whiie problems of high complexity
should be soived by heuristic and parallel processing.
Since the complexities of most Al problems are high, an
appropriate approach should start by first designing good
heuristics to reduce the serial-~computational time and
using parailiel processing t0 pursus a near-iinear speedup.

Although many Al architectures have bheen built or
proposed, the Lisp machines are the only architecture that
have had widespread use for solving real Al probiems.
Most undariying concepts in Al architactures are not new
and have been used in conventional computer systems.
For exampla, hardware stack and tagged memaory were
proposad before they were used in Lisp machines. On the
other hand, scme popular architectural concapts in cusrrent
supercomputers will have restricted use in some Al ap-~
plications. For example. the large amount of branch and
symbolic processing operations in Al programs reduce
stream parailelism in pipelining.

The quastion of how Al programs can be exscutad
directly in_hardware efficieantly is still largely unanswered.
The foliowing are some key issuas in designing Al ar-
chitectures:

1. identification of parallelism in Al programs;
2. tradeoff between the benefit and the cverhaad on
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the use of heuristic information;

. efficient interconnection structure to distribute
heuristic-guiding and pruning information;

. granularity of parallelism,

. dynamic scheduling and load balancing;

. architecture to support to the acquisition and l[earn—
ing of heuristic information;

, predication of performance and linear scaling; and

. management of the large memory space.

Due to the space limitation, special architectures for com-

puter vision, speech processing, and natural language un-

derstanding are not included in this survey.
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Syntax, Preference and Right Attachment
Yorick willks, Xiuming Huang and Dan Fass
MCCS-85-5 .

The paper claims that the right attachment rules for
phrases originally suggested by Frazier and Fodor are
wrong, and that ngne of the subsequent patchings of the
rulés by syntactic methods have improved the situation.
For each rule there are perfectly straightforward and in-
definitely large classes of simple counter-exampies. We
then examine suggestions by Ford et al, Schubert and
Hirst which are quasi-semantic in nature and which we
considar ingenious but unsatisfactory. We offer a
straightforward  solution within  the framework of
preferance semantics, and argue that the principal issue is
not the type and nature of information required to get ap-
propriate phrase attachments, hut the issue of where to
store the information and with what process to apply it.
We present a prolog implementation of a best first algo-
rithm covering the data and contrast it with closely related
ones, all of which are based on the preferences of nouns
and prepositions, as well as verbs.

Machine Translation in the Semantic
Definite Clause Grammars Formalism
Xiuming Huang

MCCS-85-7

The paper describes the SDCG (Semantic Definite
Clause Grammars), a formalism for Natural Language
Processing (NLP), and the XTRA (English Chinese Sentence
TRAnstator) machine transtation {MT) system based on it.
The system translates general domain English sentences
into grammatical Chinese sentences fn a fully automatic
manner. It is written in Prolog and impiemented on the
DEC-10, the GEC; and the SUN workstation, respectively.

SDCG is an augmentation of (Pereira at al 80)'s DCG
{Definite Clause Grammars) which in turn is based on CFG
(Contaxt Free Grammars). Implemanted in Prolog, the
SDCG is highly suitable for NLP in general, and MT in par-
ticular.

A wide range of linguistic phenomena is covered by
the' XTRA systern, including muitiple word senses, coor-
dinate canstryctions, and prepositional phrase attathment,
among others.

Bad Metaphars: Chomsky and Al
Yorick Wilks
MCCS-85-8

The paper argues that the historical divisions batween, on
the one hand, cluster of approaches to language under-
standing by computer known as Al and, on the other, the
Transformational Grammar system of Chomsky were
caused not so much by matters of principie {as between a
scientific linguistics and computational applications) or by
methodology, as by Chomsky's attachment over the years
to a succession of unfortunate metaphors is explain his
position. As recent developments in finguistics have
shown, once these are removed there are no issues of
principle (though there may continue to be differences of



