» kRowledge prepared by the software “Cracle” of tha sys-
tem. snd down-loaded prigr to the start of the search.

- Hitach has been in preparaiion for nearly 3 years,
during which time graduate student Carl Ebeling designed
the hardware and MOSIS manufactured the special purpose
VSLI chips. Since the beginning ot 1685, s team headed
by Hans Berlingr has fleshed out the system to be » useful
chess playing entity. Involved in the systam building
ware: Carl Ebeling: Hardware design and construction,
Gordon Goetsch: systam software, Andy Palay: initial con-
cept and search strategies, Murray Campbeli. openings
and testing, Larry Stomer: hardware coastruction, and
Hans Berliner: chess knowledge.

A SURVEY ON SPECIAL PURPOSE
COMPUTER ARCHITECTURES FOR Al

Benjamin W. Wah and Guo-Jis Li
Dapartment of Electrical and Computer Engineering
and the Coordinated Scisnce Lahoratory
Univershy of lllinois at Urbana-Champalgn
1101 W. Springfield Avenue
Urbana, IL 61801"

ABSTRACT

In this survey. we will provide a short survey and
classification on the current work In special purpose ar-
chitectures to support Al applications. In spite of the
growing Importance of Al applications, work in the area of
designing Al architectures are so diversifled that articles
wars published in other sreas -basides Al ranging from
paychoiogy, madicine, manufacturing, computer architec-
ture, software snginesring, and dstabase management to
industria) enginsering, operations research, and the list
grows. The literature search is also compilcated by the
fact that with the development of the Fitth-Generation
Computer Systems, some work in this area Js very recent
and was published in many forsign countries. During our
titerature search to compile this survey, we systematically
went through over sixty differant journais published in
various countries and proceedings from aover fifty con-
ferances in the last twenty years and over seventy books.

1. INTRODUCTION

Many of today's computers are single-processor von
Neumann machines designed for sequential and deter-
ministic numarical computations[1-4. and are not
squipped for Al applications that are mainly parailal non-
deterministic symbolic manipulations[5-8) Consequently,
sfficient computer architecturas for Al applications would
be sufficiently different from traditional computers{8-18].
These architectures have the following requiremants.

Symbolic Processing: In the microlevel, Al ap-
plications reguire symbolic processing operations such as

VRasanrch supported iy Navional Sciance Foundation grant OMC
25-196439,

RIGART Nawslattar Anrli 18 Numhar 96

comparison, salection, sarting, matching, logic s8t opera-
tions (union, intersection, and negation), coniexts and par-
tition, transitive closure, pattern retrigval, and recognition.
In a higher level, these applications may require the
processing of nonnumerical dats such as sentences,
speech, graphlcs, and imeges. Efficiant computers
designed for these applications should poss@ss hardware
for symbolic processing functions{19-21] The most im-
portant ones are .tagged mechanisms{20,22] and hardware
stacks[23). i

Parallel and Distributed Processing:
Most Al problems are complex{24.25] and must be
evaluated by high-performance computers, Due to tech~
noiagical limitations of physical devices, parsllglism is per-
haps the only promising mechanism to further improve the
performance of computers(8,10,26-28]. To prevent the
bottienack of a centralizad controllar, {ntelligence in such a
system should be decentralized. In applying muitiprocess-
ing and distributed processing to soiva problems with ax-
ponential complexity, which is typical for problems in Al,
one must realize that multiprocessing is useful in Improv-
ing the computational efficiency, and not in extend-
ing the sclvable problem sizel30] Yo extend
tha solvable problem space of such problems, the key is
to find better models and more efficlent heuristics.

Nondeterministic Processing: Most Al al-
gorithms are nondatarministic{31], that Is, it Is ‘impossible
to plan in advance the procedures to execute and to ter-
minste with the available information. Therefore, dynamic
atlocation and {oad balancing of computational resources
are ossentlai In Al architectures[10,32] Further, an ef-
ficlent interconnaction network is needed to disseminate
information for the schaeduler. The tradecff between the
overhead of distributing ths scheduling information and
the overhead for the extra work needed without the
scheduling Information must be made. Moreover, efficient
garbage collection is important for Al architectures owing
to the dypamically allocated storage[32~34]

Knowledge Base Management: Since a very
iarga amount of information have to. be stored and
ratrieved in Al applicstions, lerge knowledge bases are
inevitable{35-38]. An implementation using & common
memory s inappropriste due to saccess conflicts. A
decentralized memaory system with distributed intelligence
and capabilities for pattern matching and proximity search
Is required.

Software Orlented Computer
Architectures: The efficiency of a computer system
for an Al application depends strongly on its knowledge
represantstion and the language used. An efficient Al ar-
chitacture shouid be designed sround the knowledge
representations of the problems %o be solved and the
high-level Al languages to he supported. Further, the
dgesigned architectures should adapt to changes Iin
granularity end data formats of various applications. Ex-
amples of thase architectures are the datsflow
machines[39,40), objact-orisntad architectures{41,42] Lisp
machines{18.22], and Prolog-tike machines, such as the
Fifth Genaration Computer Systam{14],

Currantly, extensive research are carried out in
designing afficient Al architectures. Many existing con-
cepts in computer architecture, such as dataflow
processingl43,44], stack machines{23L tagging[20]
pipeitningl27], direct axscution of high-level
languagas(45-47), database machines{48]. multiprocaessing,
and distributad processing, can be incorporated into future

Pags 28

Al architectures. New concepts in computer srchitectures
are al3o expectad.

2. ARTIFICIAL INTELLIGENCE
LANGUAGES AND PROGRAMMING

One goai of computer scientists working in the fisld
of Al is to produce programs that imitate intelligent be-
havior of human baings[49-531 Von-Neumann-style pro-
gramming that usas impaerative languages, such as Fortran
and Pascal, is inadequate due to its inability to spacify
paraliat tasks and its unacceptable complaxity[54-56]. To
enhance programmers’ productivity, a type of probiem-

orientad languages callad declarative languages have been.

developed and widely applied in Al programming(57].
Functional programming(555858] and logic
programmingl60-64] ars the major programming
paradigms ot deciarative languages.

Functional programming does not contain any notion
of the present state. program counter, or storage. Rather,
the “program” is a function in the true mathematical
sanse: it is applied to the input of the program, and the
resulting wvelue is the program's output. The terms
functlonal language, applicative language,
dataflow language, and reductlon language
have been used somewhet interchengeably{65-68L Ex-
amples of functionai lenguages are puie Lispl69-73)
Backus’ FP{54], Hopel74]L Vall751 and 16f76). Interest in
tunctional programming is steadily growing because it is
ona of the few approaches that offer a real hope of reliav-
ing the twin crises of Al-oriented computing today: the
absolute nacessity to raduce the cost of programming, and
the nead to find computer dasigns that make much better
use of the power of VLS| and parallalism.

tn its modest form, a logic program refers to the
procedural interpratation of Horn clauses predicata
logicl63.64). The computer language Proiog[?7-82] is
based on logic programming. Generally speaking, logic
programming -is & reasoning-criented or deductive pro-
gramming. In fact, some ideas of logic programming, like
automatic backtracking., have been used in early Al lan-
guages QA3(49)1 PLAMNER, MICROPLANNER, and
CONNIVER[S1,83], Logic programming has recantly
received considerable attention becausa of its choice by
the Japanese as the core computer language for the Fifih
Generation Computer System Project(84]. Although it
seams on the surface that logic programming is an inde-
pendent and somewhat saparate notion from function pro-
gramming, an ideal Al-programming style shouid comhbina
the featuras of bhoth languages and may be cailag
“assartional programming”(61]

New languages and programming systems areé baing
developed to simpiify Al programming radically. it is ex-
pected that object-oriented programmingl8s] wili
be impartant in tha 1980's as structured programming was
in the 1870°s. The janguage Smalitatki86,87] is an example
of object~orientad programming. Some ideas of object-
oriented programming have been used in axisting lan-
guages and systoms, such as Simula, 85000, Lisp—-Al notion
of frame, ADA, and CLU. Other new object-oriented pro-
gramming systems have also baen deveioped{41,42,88~90].

Al programming languages have had a central role in
the history of Al research. Frequently, naw ideas in Al are
accompanied by a new language that is natural for the
idaas 10 be applied. Except for the widely used language
Prolog, Lisp and its dislects, Maclisp[91) Intarlisp(92,63)

SIGART Newsisttar, Aprii 1988, Number 86

Qlispl94), Common Lispl95) Franz Lispl86) etc.. meny oihes
Al language have been designed and implementsd. Ex-
amples inciude IPLS7.98] PLANNER[98], CONNIVER{83L
KRLI100L NETL[101L SAIL{102) POP-2([103) FUZZY[104} and
first=order logic. In general. thraa capabilities, namely, sc-
tion, description, and reasoning, are needad for an Al lan-
guage. Historically, languages strong In one of these
capacities tended to be reiatively weak in others. Proiog
is s reasoning-oriented ianguage that is limited by its in-
efficiency of dascription and action. Lisp. the second
oldest programming language in present widespread use
ratains some features of von Nsumann programming.
Some new langueges, such as Loglisp{63] and QUTE[106]
which amalgamate Proiog and Lisp In natural weys, have
baen developed. On the other hand, 10 expiore paraliaiism,
the parallg! versions of Prolog and Lisp, such as
Parlog[106] Concurrent Proiag{107,1081 and Concurrem
Lispf109,1101 have been proposed. Raecent eftorts are
aimed 8t automatic programming that will allow the
program to be generated from a simple specification of
the problem[111~115}

Besides programming lsnguages, It hacams apparsnt
to tha Al community since the mid-1960s that inferaence-
alone, even those augmented with heuristics, ware often
inadequate to solve real-life probiems. To enhance the
performance of Al prdigrams, they must be augmaented
with knowladge of the problem domain rather than formal
reasoning methods. This reslization gave bith 10
knowledge englneering or knowledge-based
systemn, the field of applied Af{116,117)

A knowledge-based expert system or in
short. expert system, s a knowledge—-intensive program
that solves problems in a spscific domain normaliy requir-
ing human axpertisa{17,118-124]. An expart system con-
sists of two parts: knowiedge base and inference proce-~
dure. The knowledge base contains the facts and hauris-
tics, while the (inferance procedure consists of the
pracessas that search the knowledge base to infer solu-
tions to probiems, form hypotheses, and s0 on. What dis~
tinguishes an expert systam from an ordinary computer
application is that. in a conventional computer program,
pertinent knowledge and the mathods for wutilizing it are all
intermixed, while in an axpert systam, tha knowledge base
is separatsd from the inference procedure, and new
knowiedge can be added to the system without
reprogramming. :

Contemporary expert-system development techniques
are shifting towards the use of software development
tocis that resemble & programming language, but inciude
internat uler-accessible databases and other high-ievel
strategies for using knowledge t0 solve a class of
problems{119,122,125,1261 Each tool sugpgests soms ad~
ditional design properties, such as ruie-base and backward
reasaning, for the knowledge-system architecture. Three
of the mast popular families of axpert-systam toocls are:
(1) EMYCIN[127,128] KS300, and $.1; (2) HEARSAY-li[128]
and AGE[130] and {3) OPS that incorporates the MYCIN,
HEARSAY-ll, and R1 (XCON) expert-system families{131])
Other expert-system tooils inciude LOOPSI132} ROSIE[133],
RLL[134] MRS, and KMS. Soma of these tools mm io
provide s mixture of representations and inference tech-
niqueas. Knowladge—acquisition tools such a3
TEIRESIAS[138], EXPERT[138) KAS{137], and learming toois
such as META~DENDRAL(138] and EURISKO[138) havs sise
been developed.

Page 2%

~ 3. MICRO AND MACRO LEVEI Al ARCHITECTURES

" The VLSI ({Very-Large-Scale-Integration) technofogy
flourishad in the past ten years[140-144] and resuited in
the deveiopment of advanced microprocessors[145), semi-
conductor memories[146], and systolic arrays[(147-151],

The microleval architectures consist of architectural
designs that are fundamentai to applications in Al In the
design of massively paratial Ai machines{152], some of the
hasic computationsl problems racognized are set intersec—
tion, transitive closure, contexts and partitions, best-match
recognition, Gestsit recognition, and recognition under
transformation. These operations may not be unique in Al
and may exist in many other applications as wall. Due to
the simplicity of some of these operstions, they cen
usually be implementad directly in hardware, especially in
systolic arrays using the VLS! technology. Many other
basic operations can also be implemented in VLSl Ex~
amples inciude sorting(153-162] and selection[163,164].
computing transitive closure[147,165) string and pattern
matching[19,166-172], selection from secondary
memories[173,174], dynamic programming
evaluations[165,175,176], proximity searches[177] and
unification[178-182]1 :

Some Al languages such as Lisp differ from traditional
machine languages in that the program/data storage is
conceptually an unordered set of linked racord structures
of various sizes, rather than an ordersed, indexable vector
of numbars or bit tigids of a fixed size. The instruction
sot must be designad according to the storage
structure{183]. Additional concepts that ars wall suited for
list processing are the tagged-mamory[184,20] and stack
architectures[23)].

The macroievel is an intermediate lavel between the
microlevel and the systerm level. In contrast to the
microlevel architectures, the macrotevel architectures are
{possibiy} made up of 8 variety of microlevel architectures
and perform more complex opsrations. Howevar, they are
not considered as a complete system that can solve
problems in Al applications, but can be taken as more
compiex supporting mechanisms for the system level. The
architectures can be classified into dictionary machines,
database machines, architectures for searching, and ar-
chitectures for managing data structuras.

A dictionary machine is an architecture that supports
the insertion, deletion, and searching for membership, ex—
tromum, and proximity of keys in a detabasel185-192]
Most designs ars based on binary-tree architecturas;
however, design using radix trees and a small number of
processors have been found to be preferable when keys

are long and clustered]i87]

A database machine is an architectural spproach that
distributes the search inteiligence into the secondary and
mass storage, and relieves the workload of the central
procaessor. Extensive rasearch has bean carried out in the
past decade on optical and mass storage[193,194), backend
storage systems[195) and database machines{196-205]
Eariier database machines deveioped were mainly directed
towards genersl-purpose relational database managemant
systams. Exampies include the DBC, DIRECT. RAP, CASSM,
associative array pracessors. taxt retrievai
systams[196,197). and CAFS[202]) Nearly ai! current
research on datahase machines tc support knowledge
databases assume that the knowiledge databssze s rela-
tional, hence research is directed towards solving the disk
paradox(198) and snhancing previous relational database

SIGART Newsletter, April 1986, Number 96

machines by extensive paralielism{206-208,38. Commer-
cially available database and backend machines have also
been applisd in knowledge management{209-211].

Searching is an essentisl to many applications, ai-
though unnecessary combinatorial searches shouid be
avoided. The suitability of parallal processing to searching
depands on the problem complexity, the problem
representation, and the corresponding search algorithms.
Problem compiexity should be low enocugh such that a
serial computer can solve the problem in a reasonable
amount of time. Problem representations are very impor~
tant because they are related to the search algorithms.
Parallel algorithms have been found to be able to dramati-
cally reduce the average~time hehavior of search
problems, the so-called combinatorially implosive
algorithms{212-214),

A search problem can be represaented as searching an
acyclic graph or a search tree. According to the functions

. of nodes in the graph, the problem is transformed into one

of the following paradigms: (a) AND-tree {or graph) search:
ali nonterminal nodes are AND nodes, (b) OR-tree {or
graph) search: all nonterminal nodas are OR nodes, and (c)
AND/OR-tree {Or graph} search: the nontermina! nodes are
aither AND or OR nodes. A divide-and-conquaer algorithm
is an example aigorithm to search AND trees; a branch-
and-bound algorithm is used to search OR trees; and an
slpha-beta algorithm is used to search (ANDZOR) game
trees. Parsilel algorithms for divide-and-conquer[215),
branch-and-bound{216~223] and AND/OR-graph
search[224-226] have been developed. Various parallel ar-
chitectures to support divide-and-conquer
algorithms[227,228) and branch-and-bound
algorithms{229-238,30] have heen proposed.

Extensive research has heen carried out In supporting
dynamic data structures in s computer with a limited
memory space. Garbage collection is an algorithm
that periodically reciasims memory space na longer nseded
by the users{32-34,239-251). This Is usuaily transparent to
the wusers and could be implemented In hardware,
software, or a combination of both. For efficiency reasons,
additional hardware such as stacks and reference counters
are usually provided.

4. FUNCTIONAL-PROGRAMMING-ORIENTED
"~ ARCHITECTURES

The origin of functional languages as a practical class
of computer languages can perhaps be traced to the
development of Lisp by McCarthy[70] in the easly 60°s, but
their ancestry went directly back to the lambda calculus
developed by Church in the 1830's. The objective of writ-
ing 8 functional program is to define a set of (possibly
recursive} equations for each function[252) Data struc-
tures are handled by introducing a special class of func-
tions called constructor functions, This view allows func-
tional lsnguagas to deal directly with structures that would
be termed “abstract” in more conventional languages.
Moreover, functions themselves can be passed around as
data objects. The design of the necessary computer ar-
chitectura to support functional languages thus centers
around the mechanisms of efficient manipulation of data
structures (list-oriented architectures) and the paralial
svaluation of functional programs (function-criented
architectures).

List-orlented architectures are architec-
tures designed to efficiently support the manipulation of

Page 30

data structures and objacts. Lisp, a mnamonic for list
processing language, is a well known language to support
symbalic processing. There are several reasons why Lisp
and list-oriented computers are really needed. First, to
relieve tha burden on the programmars, Lisp was dasigned
as an untyped language. The computer must be able to
identify the types of data, which involves an enormous
amount of data-type checking and the use of lang strings
of instructions at compile and run times. Conventional
computars cannot do these efficiently in software.
Secand, the system must periodicaily perform garbage
collection and reclaim unused memory at run time. This
amounts to around ten to thirty percents of the total
processing time in & conventional computer. Hardware
implementation of garbage collection is thus essantial.
Third, due the nature of recursion, a stack-oriented ar-
chitecture is more suitable for list processing. Lastiy, list
processing usually requires san enormous amount of space,
and the data structures are 30 dynamic that the campier
cannot predict how much space to allocate at compile
tima. Special hardware to manage the data structures and
tha large memory space would make the system more
rost affective and efficient[253~255,18]

The weasliest implementation of Lisp machines were
the PDP-8 computer and its succassors the PDP-10 and
PDP-20 made by the Digital Equipment Carporation{70].
The half-word instructions sné the stack instructions of
these machings were developed with Lisp's raquirements
in mind. Extensive work has been done for the DEC~
systém 10's and 20's on garbage collection to managa and
reclaim the memory space usad.

The design of Lisp machines was started at MiT's Al
Laboratory in 1874. CONS, designed in 1976[256-259] was
supersaded in 1978 by a second-generation Lisp maching,
the CADR. This machine was & model for the first com-
mercislly available Lisp machines(260~262] including the
Symbolics LM2, the Xerox 1100 Interlisp work station, and
the Lisp Machina Inc. Saries III'CADR. all of them daliverad
in 1881, The third-generation machines were basad on
additional hardwars to support data tagging and garbage
collaction. - They are characterized by the Lisp Machines
Inc. Lambda supporting Zetalisp and {MLisp[260.261,22].
the Symbolics 3600 supporting Zetalisp, Flavors, and
Fartran 77(20,263-2656] the Xerox 1108 and 1132 support-

ing Interlisp-D and Smalltelkl266-268l and the Fijitsu

FACOM Alpha Machine, s backend lLisp processor support~
ing Maclisp[269,270L Wost of the Lisp machines support
natworking using Ethernet. The LMI Lambda has & NuBus
deveioped at MIT 10 produce s madular, axpandabie Lisp
machine with muitiprocessor srchitecture.

A single-chip computer to support Lisp has been im-
plementad in the MIT SCHEME-79 chip{271,272,183L Other
exparimantal computers to support Lisp and list-orientad
processing have been reportad{273-282] These machines
usually have additional hardware tables, hashing hardwars,
tag mechanisms, and list processing hardware, or are
microprogrammed to provide macroinstructions for list
processing. Experimental muitiprocessoring systems have
bean proposed to axecute Lisp programs
concurrently{110,283-288). Dataflow processing i suitable
for Lisp as thess programs are genarally data
driven(289,260]. Other multiprocessing and dataflow ar-
chitectures to support list processing have been proposed
and developed{291-296]

Besides specialized hardwara implementations,

software implementations on general-purpose computers
are aisc popular. The aarliest Lisp compilers ware

SIGART Nawsiettar, April 1088, Number 98

developed on the IBM 704 and later extendad to the IBM
7080, 360, and 370. Various strategies for implementing
Lisp compiters have been proposed(71,21,297,93,72,2981
and conventional microcomputers have been usad to im-~
plemant Lisp compilersi288-302} Lisp Is aiso availabla on
various general~ and special~purpose work stations, typi-
cally based on multiple 68000 processors(299,302]. Lisp
has been develapad on Digital Equipment Corp. VAXstation
100. a MC68000-based personai graphics work station, and
clusters of 11/782s running several diasiacts of Lisp and
Common Lisp{303] One dialect of Lisp, Franz Lisp,
developed at the University of California. Berkelay, was
written in C and runs under Unix and is svailable on many
general-purpose work stations.

Architectures have also been developed 10 support
object-criented programming languagas which have baen
extended from functional languages to additionally imple-
ment operations such as creating an object, sending and

" receiving messages, modifying an cbjects’ state, and form-

ing ciass-superclass hierarchies[304,305.411 Smailtaik,
first developed in 1972 by the Xerox Corp., is recognized
as a simple but powerful way of communicating with
computers. At MIT, the concept was extended to become
the Flavors systam. Special hardware and multiprocessors
have been proposad to directly support the processing of
object-oriented languages(306,42,89,60)

in function-oriented architecturas. the
design iszues center on the physical Interconnaction ot
processors, the method used to “drive” the computation,
the representation of programs and data. the method to
invoke and control paralielism, and the optimization
tachniquesi307]. Daesirshle features of such architectures
should inciude a multiprocessor system with a rich inter-
connaction structure, the representation of list structures
by balanced trees. and hardware supports for demand-
driven execution, low-overhead process crestion, and
storage managemaent.

Architectures to support functional-programming lan-
guages can be classified as uniprocessor architactures,
trego-structured machines, data-driven machines, and
demand-driven machines. In » uniprocessor architactura,
besides the machanisms to handle lists. additionai stacks
to handle function calls and optimizstion for redundant
calis and srray cperations may be
implemented(272,308-310,67). Tree—structured mazchines
usunlly empioy lazy evaiuations, but suffer from the bot-
tienack at the root of the tree{311-316] Dataflow
machinas ars aiso natural candidatas for executing func-
tional programs and have tremsndous potential for paral-
talism. However. the issus of controliing parallelism
remains unresolved. A lot of the recent work is con-
cantrated on demand-driven machines which are based on
reduction machines on & set of load-balanced (possibiy

virtual) processors(292,317-326}.

Owing to the different motivations and objectives of
various functionai=-programming-oriented architectures,
aeach machine has its own distinct features. For axampie,
the Symbolics 3600{265) was designed for an interactive
program developmant environment where compilation is
very fraquent and ought to appear instantaneous to the
user. This requiremant simplified the design of the com-
plier and results in only a single-address instruction for-
mai, no indexed and indirect addrassing maodes, and other
mechanisms to minimize the number of nontrivial choices
to be made. On the other hand, the aim in developing
SQAR[90} was to demonstrate that & Reduced Instruction
Set Computer couid provide high performance in an sx-

Page 31

ploratory programming environmant. Instaad of
micrccode, SOAR relied on software to provide compli-
cated operstions. As a result, more sophisticated software
techniquas were used.

5. LOGIC AND KNOWLEDGE ORIENTED ARCHITECTURES

In logic and knowledge orientad architectures, the
ideali goal is for the user to spacity the problem in terms
of the properties of the problem and the solution {logic or
knowledge), and the architecture exercises the control on
tow the problem is to be solved. This posl is not fuily
achieved yet, and users still need to provide smait but un-
due amounts of control information in logic programs,
partly by ordering the clauses and goals In a program, and
partly by the usa of extra-iogical "festures” In the lan-
guage.

Knowledge and logic oriented architectures can be
classifiad according to the knowladge representation
schemas. Besides incorporating knowledge into a program
written in 8 functional programming language, some of the
wall-known schemas are logic programs and sernantic
networks. According to tha search strategy, logic
programs can further be classified intce production systems
and logical inference systems{15-17,327,178,179].

Substantial research has bsen carrled out on parallel
computational models of utllizing AND parallalism, OR
parallelism, and stream paratlalism in logical infarence
systemns[39,328-342], production systemsi343-345], and
othersi346]. The basic problem on the exponential com-
piexity of logic programs remains apen at this time,

Sequential Prolog machines using software
interpretation[347,348l, emulation[349,350L and additional
hardware support such as hardware unification and
backtracking{351,352,180] have bean proposed. Single-
processor systems for production’systems using additional
data mamories[363) and a RISC architecture[178] have
been studied.

New logic programming languages suitable for parallet
processing have been investigated[354). In particular, the
use of predicate logici355), extensions of Proiog to be-
coma Concurrent Prologl356-362), Partog(383] and Deita-
Prologl364], and parallel production systems[365] have
baen deveioped. Concurrent Prolog has also been ex-
tended to include object-oriented programmingl[360] and
has been applied as a VLS| design language(361) One in-
teresting parallel language is that of systolic programming,
which Is usaful as an zlgorithm design and programming

mathodology for high-level-language parailel
computers(366).
Several prototyps multiprocessor systems for

processing inference programs and Proiog have been
proposed, somae of which are currently under construction.
These systems include multiprocesscrs with a sharad
memory{358l ZMOB, a muitiprocessor of Z80’s connected
by s ring network{367-371]), AQUARIUS, 8 heterogeneous
multiprocessor with a crossbar switch[372], and MAGO, a
cellular machine implementing a Proiog compilar that
transiates 8 Prolog program into a formal functlonal
program([373] Techniques for analyzing Prolog programs
such that they can be processed on 8 dataflow architec-
ture have been derlved(374-376,401 DADO is a8 mul-
tiprocessor system with & binary-tree intercannection net-
work that implemaents parallel production
systems(377-3801 An sssocistive processor has been

RICADT Rlansiattar Anril 108K Mumhar QR

proposed to cerry out propositional and first-order predi-
cate calculus[381].

It has been recognized that a combination of Lisp.
Prolog, and an object-oriented language such as Smalitalk
may be a better language for Al applications{382) Com-
puter of this type that implements a combination of the Al
langusges may use microprogramming to emulate the
various functions. Prolog is aiso available as a secondary
ianguage on soma Lisp machines. A varsion of Prolog in-
terpretor with a speed of 45 kiips has been developed for
Lisp Machina's Lambdal260) Some of the prototype mul-
tiprocessors, such as ZMOB[367-371] and MAGO{373]. were
developed with a flgxible architecture that can implement
object-oriented, functional, and logic languages. FAIM-1, a
multipracessor connected in the form of a twisted hex-
plana topology., implements the features of objact-
oriented, functional, and logic programming in the QL pro-
gramming language[383].

Basides representing knowledge in logic. it can aiso
be represented in terms of semantic nets. Proposed and
experimental architectures have been developed.
NETL[384,101,385], and it generalization to THISTLE{152]
consists of an array of simple cefls with marker-passing
capability to perform searches, set-intersections, in—
heritance of propertias and descriptions, and muitiple~
context operations on semantic nets, Thinking Machine's
Connection Machine is a cellular machine with 65,536
processing eiements. It implements marker passing and
virtually reconfigures the processing elements to match
the topoiogy of the application semantic nets[386,387]
Associative processors for processing semantic nets have

also been propossd[388,33§l.

Some Al architectures are based on frame represen-
tations and may be called object—oriented architectures.
For example, the Apiary deveioped at MIT is a mui-
tiprocessor actor system[2B6]. Actor is an object that
contains a smaifl amount of stste and can perform a few
primitive operations: sending & Mmessage, cresting anothar
actor, making a decision, and changing Its locat state. An
efficient Al architecture aiso depends on the problem-
solving strategy. The basic idea of the Boltzmann
machine devalopad at the Carnegie-Maellon University is
the application of statistical mechanics to constraint-
satisfaction searches in a paraliel network[390]. The most
intaresting aspect of this machine lies in its domain-
independent learning algorithm{391]

With the inciusion of control inta stored knowledge,
the resulting system becomes a distributed proklem solv~
ing system. These systams are characterized by the rala-
tive autonomy of the problem solving nodes, a direct con-
saquence of the imitad communication
capability[382-384). With the proposed formalism of the
Contract Net, contracts are used to expross the control of
problem solving in a distributed processor
architecture[395-397]. Related work in this area include
Petri-net - modeling{398], distributed vehicle-monitoring
testbed[399,400), distributed sir-traffic control system({401]
and modeling the brain as & distributed system[402.403]

6. FIFTH GENERATION COMPUTER SYSTEM

The Fifth-Generation-Computer~System, or FGCS,
project was a project started in Japan in 1982 to {further
the research and development of the next generation of
computars. It was conjectured that computers of the next
decade wiil be usad increasingly for nonnumeric data

Page 32

processing such as symbolic manipuilation and appliad Al
The gosals of the FGCS project are

1. to implemant basic mechanisms for inference, as-
sociation, and learning in hardware;

2. to prapare hasic Al software in order to utilize the
fuil power of the basic machanisms implemented;

J. t0 impiement the basic mechanisms for ratrisving
and managing a knowledge basé in hardware and
software;

4. t0 use pattern recognition and Al research achisve-
ments in developing user-oriented man-machina in-
tarfaces, and

5. to realize supporting envirocnmaents for resalving the
“sottware crisis” and enhancing softwere production.

The FGCS project is a marriage between the im-
plementation of 8 computer systam and the requirements
spacitied by applications in Al, such as naturai-language
undarstanding and speech recognition. Specific issues
studigd include tha choice of logic programming over
functional programming, the design of the basic software
systams to support knowiedge acquisition, management,
learning, and the inteiligent interface to users, the design
of highly parallel architectures to suppart infergncing
operations, and the design of distributed~function ar-
chitecturas that intagrates VLS| technolagy to support
knowledge databases[14,84,404-407]

A first affort in the FGCS project is to implement a
sequential inference machine, or SIM[408,409] Its first im-
plementation is a medium-performance machina known as
a parsonal sequentiai inference, or PS), machine{410,411],
Tha current implamaentation is on the parailgl inferance
machine, or PIM[207,412-416,40]. Another architecturai
devaiopment is on the knowisdge~-base machine,
Deita{412,207,208,417.38). Lastly, the development of the
basic software system acts as a bridge to fill the gap be~
tween & highly parallel computer architecture and
knowledge information processingl418-420]. Currantly, ali
the projects are progressing waell, however. tha struggle is
still far from overla21}

~ The Japanese FGCS project has stirred intensive
respansas from other countries[319,320,422-430} The
British project is a five-year $550 miilion cooperative
program between government and industry that con-
centrates on saftware engineering, intelligent knowlsdge-~
hased systems, VLS| circuitry, and man-machine interiaces.
Hardware developmant has focused on ALICE, & Parlog
maching using dataflow architectures and implementing
both Hope, Prolog, and Lisp[318,320,426-428] The
Eurcpean Commission has started the $1.5 billion five-year
European Strategic Program for Research in Information
Tachnologias (Esprit) in 1984[423] The program focuses
an microglectronics, software technoiogy, advanced infor-
mation processing, computer-integrated manufacturing,
and office automation. In the United States. the most
direct response to the Japanese FCGS project was the as-
tablishment of the Microelectronics and Computer Tech-
nology Corp. in 1983{43C] The project has an annual
budget of $50 million to $60 miilion par vear. it has a
more evolutionary approach than the raevolutionary ap-
proach of the Japanese and should yield technoiogy that
the corporate spansors can build into advanced progucts
in the next 10 to 12 years. Meanwhile, other rasearch or-
ganizations have formed to deveiop future computer tach-
noiogies of the Unitad States in a broader sense. These
include DARPA’s Strategic Computing and Survivability, the
semiconductor industry’s Semiconductor Research Cor-
poration, and the Microsiactronics Center of North
Carolinal430})

SiGART anulntt_tr, April 1988, Number 08

7. CONCLUSIONS

This survey briefly summarizes the state of the art in -
Al architectures. Conventional von Nsumann computers
are unsuitable for Al applications because they are
designed mainly for detarministic numerical processing.
To cope with the increasing inafficiency and difficulty in
coding algorithms in artificial intetligence, declarative
languages have been developed. Lambda-based and
logic-based languages are two popular classes of
declarative lahguages.

One of the architect’s starting point in supporting ap-
plications in artificial intelligence is the language. This
approach has been termed the Jlanguage~-first
approach. A possible disadvantage of this approach is
that each language may lead t0 & quite distinct architec-
ture which is unsuited to other languages, a dilemma in
high~iavel-language computer architectures. In artificial
intelligence applications. the lambda-based and logic-
based languages have been considered seriousiy by novel
architects. Recent research lies in integrating the logic
and lambda languagas, and the work on lambda and logic
oriented architactiures provides useful guidelines for paral-
lal architectures that support more sdvanced languages. .
On the othar hand, Al architectures are aiso related to
knowiedge representations. This approach has been caliad
the knowledge-first approach. Several architec~
turés have been designed 10 support multiple knowiedge
repressntations.)

An appropriate methodology to design an Al architec-
ture shouid combine the top-down and bottom-up design
approaches. That is, we need to deveiop functicnal re-
quirements based on the Al problem requirements and
map these requirements into architectures based on tech~-
noiogical requiraments. Parallel processing is a graat
hope to increase the power of Al machines. However,
paratlel processing is not & way to overcome the difficulty
of combinatorial explosion. It cannot significantly extend
the soivable probiem space on problems that we can soive
today. Hence tha problam complexity is sn important
considaration in designing Al machines. Problams of
lower complexity may be solved by sequentiai computa-
tion; problems of moderate complexity may be solved by
paraliel processing; whiie problems of high complexity
should be soived by heuristic and parallel processing.
Since the complexities of most Al problems are high, an
appropriate approach should start by first designing good
heuristics to reduce the serial-~computational time and
using parailiel processing t0 pursus a near-iinear speedup.

Although many Al architectures have bheen built or
proposed, the Lisp machines are the only architecture that
have had widespread use for solving real Al probiems.
Most undariying concepts in Al architactures are not new
and have been used in conventional computer systems.
For exampla, hardware stack and tagged memaory were
proposad before they were used in Lisp machines. On the
other hand, scme popular architectural concapts in cusrrent
supercomputers will have restricted use in some Al ap-~
plications. For example. the large amount of branch and
symbolic processing operations in Al programs reduce
stream parailelism in pipelining.

The quastion of how Al programs can be exscutad
directly in_hardware efficieantly is still largely unanswered.
The foliowing are some key issuas in designing Al ar-
chitectures:

1. identification of parallelism in Al programs;
2. tradeoff between the benefit and the cverhaad on

Page 31

the use of heuristic information;

. efficient interconnection structure to distribute
heuristic-guiding and pruning information;

. granularity of parallelism,

. dynamic scheduling and load balancing;

. architecture to support to the acquisition and l[earn—
ing of heuristic information;

, predication of performance and linear scaling; and

. management of the large memory space.

Due to the space limitation, special architectures for com-

puter vision, speech processing, and natural language un-

derstanding are not included in this survey.

(e 3 BN w

™~

[1] J.-L. Baer, Computer Systems Architecture, Computer
Science Press, 1980.

[2) J. L. Baer, “Computer Architecture,” Computer, val, 17,
no. 10, pp. 77-87, IEEE, Oct. 1984.

[3] H. §. Stone, introduction tc Computer Architecture, 2nd
Edition, Science Research Associates, 1980.

[4] G. Myer, Advances in Computer Architecture, Wilay,
1978.

[5] H. Boley, "A Preliminary Survey of Al Machines,” SIGART
Newslatter, no. 72, pp. 21~28, ACM, July 1980.

[6] 5. Fehliman, “Computing Facilities for AlL A Survey of
Present and Near-Future Options,” Al Magazine, pp.
16-23, AAAI, Winter 1980-81.

[7]1 Arvind and R. A. lannucci, “A Critigue of Multiprocessing
von Neumann Style,” Proc. 10th Apnnual int't Symp. on
Computer Architecture, pp. 426-436, IEEE/ACM, June
1983.

[8] P. C. Treleaven, “The New QGeneration of Computer
Architecture,” Proc. 10th Annual Int'l Symp. on Com-
puter Architecture, pp. 402-408, IEEE/ACM, June 1983.

[9] M. F. Deering, "Hardware and Software Architectures for
Efficient AL” Proc. Nat'l Conf. on Al, pp. 73-78, AAA|,
Aug. 1984.

[10] C. Hewitt and H. Lieberman, "Design Issues in Paraliei
Architectures for AL" Proc. COMPCON Spring, pp.
418-423, IEEE, Feb, 1984,

[11] E. A. Feigenbaum, F. Hayes~Roth, D. Waitz, R. Reddy,
and V. Zye, "The Building Blocks,” Spectrum, pp. 77-87,
{EEE, Nov. 1983.

[12]1 D.). Moldovan, Survey of Computer Architectures for
Al, Technical Report PPP-84-6, Univ. of Southern Cali-
fornia, Los Angeles, CA, July 1984.

[13] T. Moto-oka, at al, “Challenge for Knowledge Infor-
mation Processing Systams,” Proc. Intl Conf. on 5t
Genaration Systems, pp. 3-89, ICOT, Tokyo, Japan, and
North-Holland, 1981.

[14] K. Fuchi, “The Direction the FGCS Project Will Take,”
New Generation Computing, vol. 1, no. 1, pp. 3-9,
OHMSHA Ltd. and Springer-Verlag, 1983.

[156] H. Boley, *Al Languages and Al Machines: An
Overview,” Proc. German Workshop on Al, Springer-
Fachherichta, 1981,

[161 D. Schaefer and J. Fischer, “Beyond the

Supercomputer,” Spectrum, vol. 19, no. 3, pp. 32-37,
IEEE, March 1982,

SIGART Newsletter. April 1986, Number 86

[17] D. A. Waterman and F. Hayes-Roth, Pattern-Directs
Inference Systems, Academic Press, 1978.

[18] M. F. Deering, "Architectures for Ai,” Byte, pp. 1893-208.
McGraw-Hill, April 1985,

[19]1 A. Mukhopadhyay, "Hardware Algorithms for Non-
numeric Computation,” Trans. on Computers, vol. C-28,
no. 6, pp. 384-394, |EEE, June 1979,

[20] A. Hirsch, "Tagged Architecture Supports Symbolic
Processing,” Computer Design, PennWell, June 1984,

[21] J. Campbel and J. Fitch, "Symbolic Computing With
and Without Lisp,” Conf. Record of Lisp Conf., Stanford
Univ., Menlo Park, CA, 1980.

{22] M. Creeger, "Lisp Machines Come Out of the lLab.”
Computer Design, pp. 132-137, PennWell, Nov. 1983.

[231 R. Doran, "Architecture of Stack Machine,” in High-
Level Language Computer Architecture, ed. Y. Chu,
Academic Press, 1975,

{241 S. A. Cook, *“An Overview of Computational
Complexity,” Comm. of the ACM, vol. 26, no. 6, pp.
401-408, ACM, June 1983,

[25] J. Pearl, Heuristics: Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley, 1984.

[26] L. S. Haynes, R L Lau, D. P. Siewiorek, and
D. W. Mizell, "A Survey of Highly Parallel Computing,”
Computaer, vol. 15, no. 1, pp. 8-24, IEEE, Jan. 1982,

[27] K. Hwang and F. A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill, 1984.

[28] N. R. Lincoln, “Technology and Design Tradeoffs in the
Creation of &8 Modern Supercomputer,” Trans. on Com-
puters, vol. C-31, no. 5, pp. 349-362, {EEE, May 1982.

[29] J. P. Riganati and P. B. Schneck, "Supercomputing,”
Computer, vol. 17, no. 10, pp. 97-113, IEEE, Oct. 1984,

[30] B. wW. Wah, G.-J. Li, and C. F. Yu, “Muitiprocessing of
Combinatorial Search Problems,” Computer, vol. 18, no.

6, pp. 93-108, IEEE, June 1985.

[31] J. Cohen, “Non-Daterministic Algorithms,” Computing
Surveys, vol. 11, no. 2, pp. 79-94, ACM, June 1979,

{32] H. G. Baker Jr, “Optimizing Allocation and Garbage
Collection of Spaces,” In Al: An MIT Parspective, ed.
P. H. Winston and R. H. Brown, vol. 71, pp. 391-396, MIT
Prass, 1979.

{33] J. Cohen, 'Gafbage Collection of Linked Data
Structures,” Computing Surveys, vol. 13, no. 3, pp.
341-367, ACM, Sept. 1981.

{34] H. Lieberman and C. Hewitt. "A Real-Time Garbage
Collactor Based on the Lifetimes of Objects,” Comm. of
the ACM, vol. 26, no. 6, pp. 419-429, ACM, June 1983,

[35] E. Babb, “Functional Reguirements for Very Lerge
Knowledge Bases,” Proc. ACM'84, pp. 55-56, ACM, Oct.
1984.

[36] M. Bartschi, “An Overview of Information Retrieval
Subjects,” Computer, voi. 18, no. 5, pp. 67-84, IEEE, May
1985,

[37] G. Wiederhold, “"Knowledge and Database
Management,” Software, vol. 1, no. 1, pp. 63-73, IEEE,
Jan. 1984,

[38] H. Sakai, K Iwata, S. Kamiya, M. Abe, A, Tanaka,
S. Shibayama, and K. Murakami, "Design and Implemen~
tation of Relational Database Engine,” Proc. s'h Genera-
tion Computer Systems, pp. 419-426, ICOT and North-
Holland, 1984,

{39] L Bic, "A Data-Oriven Model for Parallel Interpretation
of Lagic Programs,” Proc, Int} Cont. on 5™ Generation
Computaer Systems, pp. 517-523, ICOT and North-
Holiand, 1984.

{40] N. Ito, H. Shimizu. M. Kishi, E. Kuno, and K. Rokusawa,
*Data-Flow DBased Execution Mechanisms of Paraliel
ang Concurrent Prolog,” Nsw Ganaration Computing.
vol. 3, pp. 15-4%, OHMSHA Ltd. and Springer-Verlag,
1985.

[41] M. Tokoro and Y. Ishikawa. "An Ohject-Oriented Ap-
proach to Knowiedge Systems,” Proc. Int't Conf. on 5™
Genaration Computer Systems, pp. 623-632, ICOT and
North-Holland, 1984, .

[42] Y. ishikawa and M. Tokoro, “The Design of an Object-
Oriented Architecture,” Proc 1ith Int') Symp. on Com-
putar Architecture, pp. 178-187, |IEEE/ACM, 1884.

{43) J. B. Dennis. "Data Flow Supercomputers,” Computer,
vol. 13, no. 11, pp. 48-56, IEEE, Nov. 1980.

[44] P. C. Treleaven and | G. Lima, “Future Computers:
Logic. Data Flow, ... Controi Flow?" Computer, vol. 17,
na. 3, pp. 47-55, IEEE, March 1984,

[45] Y. Chu, "Direct~Execution Computer Aschitecture,” in
Information Processing 77, ed. B. Gilchrist, pp. 18-23,
North~Holland, 1877.

(48] M. Yamamato, “A Survey of High+~lLevel Language
Machines ia Japan,” Computer, voi. 14, no. 7, pp. 68-78.
{EEE, July 1981.

[47} M. J. Flynn, “Directions and !ssues in Architecture and
Language,” Computer, vol. 13, no. 10, pp. 5-22. IEEE
Qct. ¥980.

[48] G. G. Langdon Jr., “Database Machinas: An
Introduction,” Trans. on Computers, vol. C-28, no. 6, pp.
381-384, {EEE, June 1879,

[49] A. Barr and E. A. Feigenbaum, The Handbook on Al 2,
William Xaufmann, Los Altos, CA, 1982.

(50} E. Charnisk, C. Riesbeck, and 0. McDermott,
AlProgramming, Lawrence Erlbaum Press, 1980.

[51] D. Bobrow and B. Paphael, “New Programming Lan-
guages for Al research.,” Computing Surveys, vol. 6, no.
3, pp. 153-174, ACM, 1974,

{521 E. Rich, "The Gradual Expansion of A" Computsr, vol.
17. no. 5, pp. 4-12, |EEE, May 1584,

[53] P. H. Winston and B. Horn, Lisp, Second Edition. Ad-
disan Wesley, 1984,

(54] J. Backus, "Can Programming be Liberated from the
von Neumann Styla? A Functional Style and Algebra of
Programs,” Camm. of the ACM, vol. 2%, no. 8 pp.
613~-641, ACM, 1978.

{§6] T. Winograd, “Beyond Programming Languages.”
Comm. of tha ACM, voi. 22, no. 7, pp. 381-401, ACM,
July 1979,

SiGART Newaslstter, April 1888, Number 06

[56] B. D. Kornman, "Pattern Matching and Pattecn-Directad
Invocation in Systems Programming Languages,” J. of
Systemns and Software, vol. 3, pp. 95-102, Hayden
Pubiishing, 1983.

{571 S. Eisenbach and C. Sadler, “Deciarative Lﬁngua'gas: an
Overviaw,” Byte, pp. 181-187, McGraw=Hill, Aug. .1985.

[58] J. Backus, “Function-Level Computing,” Spectrum, vol.
19, no. 8, pp. 22-27, IEEE, Aug. 1982

{59] P. Henderson, Function Progremming, Application and
implemantation, Prentice-Hali, 1980.

[60] ® Kowalski, “Logic Programming,” in IFIP Information
Processing, ed. R. E. A. Mason, pp. 133-145, Elsevier,
1983.

[61] J. A. Robinson, "Logic Programming--Past, Present
and Future,” New Generation Computing, vol. 1, na. 2,
© pp. 107-124, OHMSHA Ltd. and Springar-Verlag, 1983.

[62] K L. Clark and S—A. Tarniund, ed., Logic Programming,
Academic Press, 1982.

(63] R. Kowalski, “Predicate Logic as a Programming
Language,” IFIP Information Processing, pp. 569-574,
North-Hollang, 1974,

{64] R. Kowalski, Logic for Problem Solving, North-Holland,
1979. .

(651 R. Burstali, “Programming with Modules as Typed
Functional Programming,” Proc. Intl Conf. on gt
Generation Computers System, pp. 103~112, ICOT and
North-Hoiland, 1984,

[(66] T. Ida and J. Tanaka, "Functionai Programming with
Streams~-Part I, New Ganeration Computing, vol. 2,
no. 3, pp. 261-275, OHMSHA Ltd. and Springer-Verlag,
1884.

[67] D. A. Turner. A New implamentation Technique for
Applicative Languages,” Softwara—-Practica and Ex-
perience, vol. 9, no. 1, pp. 31-49, John Wiley & Son,
18979.)

[68] A. L Davis and R. M. Keiier, “Date Flow Program
Graphs.” Computer, vol. 15, no. 2, pp. 26-41, IEEE, 1982.

(68] J. McCarthy, P. Abrahems, D. Edwards, T. Hart, and
M. Levin, Lisp 1.5 Programmer's Manual, MIT Press,
1962. '

[70] 4. McCarthy, “History of Lisp,” SIGPLAN Notices, vol.
13, no. 8, pp. 217~223, ACM, 1978.

[71] E. Sandewall, “Programming in an Interactive Environ-
mant: the Lisp Experience,” Computing Surveys, vol.
10, no. 1, pp. 35-7%, ACM, March 1978.

[72] M. L. Griss and E. Benson, "Current Status of a Port~
able Lisp Compiier,” Proc. SIGPLAN Symp. on Compiler
Construction, pp. 276-283, ACM, June 1982

(73] H. G. Baker, Jr. “Shallow Binding in Lisp 1.5,” Comm.
of the ACM, vol. 21, no. 7, pp. 566-569, ACM, July 1978.

[74] R. M. Burstall, D. B. MacQueen, and D. T. Sanneila,
“HOPE: An Experimental Applicative Language,” Conf.
Racord of Lisp Conf., pp. 136-143, Stanford Univ.,
Manio Park, CA, 1380.

[75] 4. R. McGraw, ‘Data Flow Computing: Software
Devalopment,* Trans. on Computers, vol. C-29, no. 12,
pp. 1095-1103, IEEE, 1980.

[76) Arvind, K. Gostelow, and W. Plouffe, An Asynchronous
Programming Language and Computing Machine, Tech.
Rep. 114a, Univ. of California, Irvine, CA, Dec. 1978

[77] A. Cotmerauer, “Prolog in 10 Figures,” Proc. 8th LICAI
pp. 488-499, William Kaufman, Los Altos, CA, 1983.

[78} W. F. Clocksin and C. S. Mellish, Programming in
Prolog, Springer-Verlag, 1881.

[79] K. L. Clark and . G. McCabe, "Prolog: A Language for
Implementing Expert Systems,” in Machine Intalligence
10, ed. J. Hayes, D. Michie, and Y. H. Pao, pp. 455-471,
Elis Horwood Ltd., Chichester, England, 1982,

{80] A. Colmerauer, H. Kanoui, and M. van Caneghem, “Last
Steps Towards an Ultimate Prolog,” Proc. 7th 1JCAI pp.
947-948, William Kaufman, Los Altos, CA, Aug. 1981,

[81] B. Domolki and P. Szeredi, "Prolog in Practice,” in IFIP
Information Processing, ed. R. E. A. Mason, pp. 627-636,
Elsovier, 1983.

[82]) D. H. Warren, L. M. Poreira, and F. Pereira, "Prolog—-
The Language and its Implementation Compared with
Lisp,” Proc. Symp. on Aiand Programming Languages,
also SIGART Newsletter, vol. 64, pp. 109-115, ACM,
Aug. 1977,

[83] G. J. Sussman and D. V. McDermott, "From PLANNER
to CONNIVER--A Genetic Approach,” FJCC, vol. 41, pp.
129-137, AFIPS Press, 1972

[84] T. Moto-oka and M. S. Stons, "5!"-Generation Com-
puter Systems: A Japanese Project” Computer, vol. 17,
no. 3, pp. 6-13, IEEE, March 1984,

[85] T. Rentsch, "Object Oriented Programming,” SIGPLAN
Notices, vol. 17, no. 9, pp. 51-57, ACM, Sept. 1982,

{86] A. J. Goldberg and D. Robson, Smalltalk-80: The Lan-
guage and Its Implemeantation, Addison-Wesley, 1983,

{871 "Special Issue on Smalitalk,” Byte, McGraw-Hill. Aug.
19381,

[88] F. Mizoguchi, H. Ohwada, and Y. Katayamsa, "LOOKS:
Knowledge Representation System for Designing Expert
Systems in a Logic Prograrmmming Framework,” Proc. Int’l
Canf. on 5% Generation Computer - Systems, pp.
606~612, ICOT and North-Holland, 1982,

[89) N. Suzuki, K. Kubota, and T. Aoki, “SWORD32: A
Bytecode Emulating Microprocessor for Object-
Oriented Languages,” Proc. Int'l1 Conf. on 5™ Generation
Computer Systems, pp. 383-397, ICOT and North-
Hotland, 1984. .

[90] D. Ungar, R Blau, P. Foley, D. Samples, and
D. Patterson, "Architecture of SOAR: Smalltalk on RISC,”
Proc. 11th Annual Int'l Symp. on Computer Architecture,
pp. 188-197, IEEE/ACM, 1984,

[91] D. Moon, Maclisp Reference Manual, MIT Press, 1974,

[92] B. Sheil, "Power Tools for Programmers,” Datamation,
pp. 131-144, Technical Publishing, Feb. 1983.

{931 W. Teitelman and L. Masinter, “The Interlisp Program-
ming Environment,” Computer, vol. 14, no. 4, pp. 25-33,
IEEE,-April 1981,

[94) E. D. Sacerdoti, R. E. Fikes, R. Reboh, D. Sagalowicz,
R. J. Waldinger, and B. M. Wilber, "Qlisp--A Language
for the Interactive Development of Complex Systems,”

SIGART Newsletter, Aprit 1986, Number 96

Proc. NCC, pp. 139-146, AFIPS Press, 1976,

[95] G. L. Steels, Jr, "An Overview of Common Lisp,” Cont
Record of the 1982 Symp. on Lisp and Function Pro-
gramming, pp. 98-107, ACM, 1982.

[96] R. wilensky, Lispcraft, W. W. Norton and Co.. New
York, N.Y., 1984,

[37] A. Newell, J. C. Shaw, and H. A. Simon, “Programming
the Logic Theary Machine,” Prof. 1857 WJCC, pp.
230-240, IRE, 1957,

[98] A. Newell, J. C. Shaw, and H. A. Simon, “Empirical Ex-
plorations with the the Logic Theory Machine,” in Com-
puters and Thought, ed. E. A. Feigenbaum and
J. Feldman, pp. 109-133, 1963.

[99] C. Hewitt., Description and Theoretical Analysis {(Using
Schemas) of PLANNER: A Language for Proving
Theorems and Manipulating Models in Robots, Doctora!
Dissertation, Al Lab., MIT, 1971,

[t00] D. G. Bobrow and T. Winograd, "An Overviaw of
KRL--A Knowledge Representation Language,” Cog-
nitive Science, vol. 1, no. 1, pp. 3-46, Ablex Publishing,
1976.

{101} S. Fahlman, NETL: A System for Representing and
Using Real-World Knowledge, Series on Al, MIT Press,
1979.

{102} J. F. Reiser, ed., SAIL, Technical Report STAN-
C5-76-574, Computer Science Dept. Stanford Univ,
Menlo Park, CA, 1376,

[103] D. Davies, et al., POPLER 15 Refarence Manual, Univ.
of Edingburgh, Edinburgh, England, 1973.

[104] R. A. Le Faivre, FUZZY Reference Manual, Computer
Science Dept., Rutgers Univ., New Brunswick, NJ, 1977.

[105] M. Sato and T. Sakurai, “QUTE: A Prolog/Lisp Type
Language for Logic Programming,” Proc. 8th IJCAL pp.
507513, William Kaufman, Los Altos, CA, Aug. 1983.

{1061 K. Clark and 5. Gregory, "Note on System Program-
ming in PARLOG” Proc. Int'l Conf. 5*" Ganeration Com-
puter System, pp. 299-306, ICOT and North—-HoMand,
1984,

[107] E. ¥. Shapiro, A Subset of Concurrent Prolog and its
Interpretar, Technical Report TR-003, ICOT, Tokyo,
Japan, 1984,

[108] E. v. Shapiro, “Object Oriented Programming in Con-
current Prolog,” New Generation Computing, vol. 1, no.
1. pp. 25-48, OHMSHA Ltd. and Springer-Verlag, 1983.

[109] K. Tabata, 5. Sugimoto, and Y. Ohno, “Concurrent Lisp
and its interpreter,” J. of Information Processing, vol. 4,
no. 4, Information Processing Society of Japan, Feb.
1982.

[110] §. Sugimoto, K Tabata, K. Agusa, and Y. Ohno,
"Concurrent Lisp on a Multi-Micro-Processor System,”
Proc. 7th 1JCAI, pp. 949-954, william Kaufman, Los Al-
tos, CA, Aug. 1981.

[111] D. Barstow, "A Paerspective on Automatic
Programming,” Proc. 8th IJCAI pp. 1170-1179, William
Kaufman, Los Ajtos, CA, Aug. 1983,

[112] E. J. Lerner, “Automating Programming,” Spectrum,
vol. 19, no. 8, pp. 28-33, IEEE, Aug. 1982

... A

{(113] D. R Barstow, “An Experiment in Knowledge-Based
Automatic Programming,” in Readings in Al ead.
B. L Webber and N. J Nilsson, pp. 289-312, Tioga, 1981.

[114] Z Manna and R. Waldinger, "A Daductive Approach to
Program Synthesis,” Proc. 6th 1JCAI, pp. 542-551, Wil-
liam Kaufman, Los Altos, CA, 1979.

(118] D. R. Smith, “A Dasign for an Automatic Programming
System,” Proc. 7th LJCAIL, pp. 1027-1029, William Kauf-
man, Los Altos, CA, Aug. 1981.

{116} E. A. Faeigenbaum, "Knowledge Engineering: The Ap-

plied Side,” in Inteiligent Systems: The Unprecedented.

Opportunity, ed. J. E. Hayes and D. Michie, pp. 37-55,
Ellis Horwood Lid., Chichestar, England, 1983.

{117) D. 8. Lenat, “Computer Software for Intelligent
Systems,” Scientific American, vol. 251, ng. 3, pp.
204-213, Scientific American Inc., Sept. 1984.

(118] F. Hayas-Roth, *The Knowledge-Basad Expert Systam:
A Tutorial,”™ Computer, voi. 17, no. 9, pp. 11-28, .IEEE,
Sept. 1984. .

[119] F. Hayas-Roth, “Knowledge-Based Expert Systems,”
Computer, vol. 17, no. 10, pp. 263~-273, IEEE, Oct. 1984.

[120] F. Hayes-Roth, D. A. Waterman, and D. B. Lanat,
Building Expert Systems, Addison-Wesley, 1983,

[121] B. G. Buchanan, "New Research on Expert Systems,”
in Machine intelligence 10, a8d. J. Hayes, D. Michis, and
¥.-H. Pao, pp. 269-298, Eilis Horwood Lid., Chichaster,
England, 1982.

{122] w. B. Gevarter, An Overview of Expert Systems, Tach.
Rep. NBSIR 82-2505, Narl Bursau of Standards.
Washington, DC, 1982.

[123]1 D. S. Nau, “Expert Computer System,” Camputer, voi.
18, no. 2, pp. 63-85, |IEEE, Feb. 1983.

[124] R. Davis, “Expert Systems: Whare Are We? And Where
Do We Go From Hera?," The Al Magazine, pp. 3-22,
AAAl, Spring 1982,

[125] A S. Cromarty. “What Are Current Expert System

Tools Missing?,” Proc. COMPCON Spring, pp. 411-418,
{EEE, 1935.

[126] v. P. Kobler, *Overview of Tool for Knowiedge Base
Con struction,” Proc. Data Engineering Conf. pp.
282-285, \EEE, 1984.

(127) van Melle, E. H. Shortiitte, and 8. G. Buchanan,
“EMYCIN: A Domain-independent System that Aids in
Constricting Knowladge-Based Consuitation Programs,”
Machine Intelligence: Infotach State of the Art Report
9, Infotech internaticenai, London, England, 1981.

[128] van Melle, A. C. Scott, J. S. Banneit, and M. Peairs,
The EMYCIN Manual, Tech. Report HPP-A1-16, Com-
puter Science Dept., Stanford Univ., Menio Park, CA,
1981.

[128] L. Erman, P. London, and S. Fickas, "The Design and
Example Use of HEARSAY-ii,” Proc. 7th IJCAI pp.
409-415, Wiltiam Kaufman, Los Altos, CA, 1981.

[130] H. P. Nii and N. Aialio, "AGE {Attempt to Genaralize):

A Xnowiedge-Based Program for Buiiding Knowladge—~

Based Programs,” Proc. Gth IJCAIL pp. 645-6585, William
Kaufman, Los Aitos, CA, Aug. 1979.

SIGART Newsletter, April 1986, Number 96

[131] C. Forgy and J. McDermott. "OPS--A Domain-
Independent Production Systems Language,” Proc. 5th
IICAlL, pp. 933-939, William Kaufman, tos Altos, CA,
1877,

[132] M. Stefik, D. Bobrow, S. Mittal, and L.° Conway,
“Knowiedge Programming in LOOPS: Report on an Ex-
perimental Course,” The Al magazine, pp. 20~30, AAAI,
Fall 1583.

[133] 4. Fain and F. Hayes-Roth, et al, Programming in
ROSIE: An introduction by Means of Examples. Tech.
Note N-1646-ARPA, Rangd Corp., Santa Monica, CA,
1982,

[134] R. Greinar and D. Lenat, “A Representation Language,”
Proc. First Natt Conf. on Ai, pp. 165-169, William Kauf-
man, Los Altos, CA, 1980.

t135] R. Davis and B. Buchanan, *Mata-ievel Knowledge:
- Overviaw and Appiications,” Proc. 5th LICAI, pp.
920-928, william Kaufman, Los Altos, CA, 1977.

(136} S. M. Waeiss and C. A. Kullkowski, “EXPERT: A System
for Daveloping Consuiting Modeis,” Proc. 6th IJCAL pp.
942-947, william Kaufman, Los Altos, CA, 1979.

[137] R. O. Duda, J. G. Gaschnig, and P. E. Hart, “Model
Design in the PROSPECTOR Consultant System for
Minaral Exploration,” in Expert System in the Micro-
Electronics Age, Edingburgh Univ. Prass, Edingburgh.
England, 1978

[138) B. G. Buchanan and E. A. Feigenbaum, "Dendral and
Meta-Dendral: Thair Applicatians Dimension,” Al, vol.

11, nQ. 1-2, pp. 5~24, North~Holland, 1978.

[138] D. B. Lenat and J. §. Brown, “Why AM and EURISKQ
Appear 10 Work?,” Al, vol. 23, no. 3, pp. 269-294, North-
Hoiland, 1984.

{140] C. Mead and L Conway. Introduction to VLS| Sys-
tems, Addison-Wesley, 1980.

{14%]) B. P. Treleaven and c. Philip, ed., VLS| Architectures,
Prentice-Hall, 1983. '

[142] C. L Seitz, ed., Proc. Caltach Conf. on Very Large
Scale Integration, Caltech, Pasadena, CA. Jan. 1979.

[143] Proc. 2nd Caltach Conf. on Very Large Scale Integra-
tion, Computer Sclence Prass, 1981.

[144] R. Bryant, ed., Proc. 3rd Caitech Conf. on Very Large
Scale Integration, Computer Science Press, 1983.

[(145] P. C. Treleaven, “VLS| Processor Architectures,” Com-
putar, vol. 15, no. 6. pp. 33-45, IEEE, June 1982,

(146] T. Williams, “Semiconductor Memories: Density and
Diversity,” Computer Daesign, pp. 105-1186, PennWail,
Aug. 1984,

[147] H. T. Kung, “Let's Design Algorithms for VLSI
Systems,” in Proc. Caitach Conf. on VLSI, ed. C. L. Seitz,
pp. 65-9Q. Caltech, Pasadena. CA. Jan. 1979.

[148] M. J. Foster and H. T. Kung, “The Design of Special-
Purposse VLS! Chips.” Computer, vol. 13, no. 1, pp.
26-40, IEEE, Jan. 1980.

[149] J. Grinberg, G. R. Nudd, and R. D. Etchelis, "A Cellular
VLSI Architecture,” Computer, vol. 17, no. 1, pp. 69-81,
IEEE, Jan. 1984,

Page 37

{1501 C. L. Seitz, "Concurrent VLS! Architectures,” Trans. on
Computers, voi. C-33, no. 12, pp. 1247-1265, |EEE, Dec.
1984.

[151] J. A. B. Fortes, K. §. Fu, and B. W. Wah, “Systematic
Approaches to the Design of Algorithmically Spacified
Systolic Arrays,” Proc. Int'l Conf. on Accoustics, Speech,
and Signal Proc., pp. 8.9.1-8.9.4, IEEE, 1985,

[152] 5. E. Fahiman and G. E. Hinton, "Massively Parallel
Architectures for AL NETL, THISTLE, and BOLTZMANN
Machines,” Proc. Nat’l Conf. on Al pp. 109-113, AAAI,
1943. :

[153] D. Bitton, D. J. Dewitt, D. K. Hsiao, and J. Menon, “A
Taxonomy of Parallel Sorting,” Computing Surveys, vol.
16, no. 3, pp. 287-318, ACM, Sept. 1984,

[154] L. D. Ullman, “Some Thoughts About Supercomputer
Organization,” Proc. COMPCON Spring, pp. 424-432,
{EEE, Feb. 1984.

{155] C. D. Thompson and H. T. Kung, "Sorting on a Mesh-
Connected Parallel Computer,” Comm. of the ACM, vol.

20, no. 4, pp. 263-271, ACM, April 1877,

(156] C. D. Thompson, “Tha VLS| Complexity of Sorting,”
Trans. on Computers, vol. C-32, no. 12, pp. 1171-1184,
IEEE, Dec. 1983.

[157] C. C. Hsiao and L. Snyder, "Omni-Sert: A Versatile
Data Processing Operation for VLSL” Proc. Intl Conf. on
Paraliel Processing. pp. 222-225, IEEE, 1983.

[158] L. E. Winslow and Y. C. Chow, "The Analysis and
Design of Some New Sorting Machings,” Trans. on
Computers, vol. C-32, no. 7, pp. 677-683, IEEE, July
1983,

[159] M. A, Bonuccelli, E. Lodi, and L. Pagli, “External Sort-
ing in VLSL" Trans. on Computers, vol. C-33, no. 10, pp.
931-934, IEEE, Oct. 1984,

[160] G. Baudet and D. Stevenson, *Optimal Sorting Al-
gorithms for Parallel Computers,” Trans. on Computsrs,
vol. C-27, no. 1, pp. 84-87, IEEE, Jan. 1978.

[161] F. P. Preparata, "New Parallel-Sorting Schemes,”
Trans. on Computers, vol. C-27, no. 7, pp. 669-673,
|EEE, July 1878,

[1682] C. P. Kruskal. “Searching, Merging, and Sorting in
Parallel Computation,” Trans. on Computers, voi. C-32,
no. 10, pp. 942-946, IEEE, Oct. 1583.

[163] B. W. Wah and K. L. Chen, "A Partitioning Approach to
the Dasign of Selection Networks,” Trans. oh Com-
puters, vol. C-33, no. 3, pp. 261-268, IEEE, March 1984.

[164] A. C. C. Yao, “Bounds on Selection Naetworks,” SIAM
J. on Computing. voi. 8, no. 3, pp. 566-582, SIAM, Aug.
1980.

[165] L. J. Guibas, H. T. Kung, and €. D. Thompsocn, “Direct
VLSl Implementation of Combinatorial Algorithms,”
Proc, Caltech Conf. on VLS), pp. b09~525, Caitech,
Pasadena, CA, 1979,

[168] P. A. V. Hall and G. R. Dowling, "Approximata String
Matching,” Computing Surveys, vol. 12, no. 4, pp.
3a81-402, ACM, Dec. 1980.

[167] C. Hoffmann and M. O’Donneli, “Pattern Matching in
Trees,” J. of the ACM, vol. 21, ne. 1, pp. 68-95, ACM,
1982,

SIGART Newsletter, April 1988, Number 96

[168] A. Apostolico and A. Negro, “Systolic Algorithms foe
String Manipulations,” Trans. on Computers, vol. C-33
no. 4, pp. 361-364, IEEE, April 1984,

[169] J. Ace, Y. Yamamoto, and R. Shimada, "A Mathod tor
improving String Pattern Matching Machines.” Trans. on
Software Engineering, vol. SE-10, no. 1, pp. 116-120.
IEEE, Jan. 1984,

{170] S. R. Ahuja and C. S. Roberts, *An Assoclative/Paralisl
Procassor for Partial Match Retrieval Using Super-
imposed Codas,” Proc. 7th Annual Symp. on Computer
Architecture, pp. 218-227, [EEE/ACM, May 1980.

[171] K. Goser, C. Foelster, and U. Rueckert, “Intelligent
Memories in VLSI" information Sciences, vol. 34, no. t,
pp. 61-82, Elsevier, 1984.

[172] 8. L Tanimoto, “A Boolean Matching Operator for
Hierarchical Cellular Logic,” Proc. Computer Society
Workshop on Computer Architectura for Pattern
Analysis and Image Database Management, pp.
253-25%6, I[EEE, Oct. 1983,

[173] R. Gonzalez-Rubio, J. Rohmer, and D. Terral, "The
Schuss Filter: A Processor for Non-Numerical Dats
Processing.” Proc. 11th Annuai Int1 Symp. on Computer
Architecture, pp. 64-73, IEEE/ACM, June 1984.

[t74] H. C. Du, "Concurrent Disk Accessing for Partial
Match Retrieval,” Proc. Int] Conf. on Parallel Processing,
pp. 211-218, IEEE, 1982.

[175] D. P. Bertsekas, “Distributed Dynamic Programming.”
Trans. on Automatic Control, vol. AC-27, no. 3, pp.
610-616, IEEE, June 1982.

[176] 4. Casti, M. Richardson, and R. Larson, "Dynamic Pro-
gramming and Parallel Computers,” J. of Optimization
Theory and Applications, vol. 12, ro. 4, pp. 423-438,
Planum Press, Nov. 1973.

[177] P. N. Yianilos, "Dedicated Comparator Matchas Sym-
bol Strings Fast and Intelligently,” Electronics, pp.
113-117, McGraw-~Hill, 1983.

[178] R. J. Douglass, A Qualitative Assessment of Paral-
telism in Expert Systems,” Software, vol. 2, no. 2, pp.
70-81, |[EEE, May 1985.

[178] C. Forgy, A. Gupta, A. Newell, and R. Wadig, "Initial
- Assessment of Architectures for Production Systems,”
Proc. Nat'l Caonf. on Al pp. 116-120, AAAl, Aug. 1984.

[180] €. Tick and D. H. D. Warren, “Towsards a Pipelined
Prolog Processor,” New Generation Computing, vol. 2,
no. 4, pp. 323-345, OHMSHA itd. and Springer-Verlag,
1984. .

[181] J. S. vitter and R. A. Simons, “Parallel Algorithms for
Unification and Other Complete Problermns,” Proc.
ACM'84, pp. 75-84, ACM, Oct, 1984.

[1821 J. 8. vitter and R. A. Simons, “Parallel Algorithms for
Unification and Other Complete Problems,” Trans. on
Computers, IEEE, to appear 1986.

[183]) G. . Steale Jr. and G. .. Sussman, “Dasign of a Lisp-
Based Microprocessor.,” Comm. of the ACM, vol. 23, no.
11, pp. 628-645, ACM, Nov. 1980.

[184] E. A Feustel, “On the Advantsges of Tagged
Architectura,” Trans. on Computers, vol. C-22, no. 7, pp.
644—-656, [EEE, 1973.

[185] M. J. Atailah and S. R. Kosaraju, "A Generalized Dic~
tionary Machine for VLSL” Trans. on Computaers, vol.
C-34, no. 2, pp. 151-155, {EEE, Feb. 1985.

[186] H. Schmeck and H. Schroder, "Dictionary Machines
tor Ditferent Modeis of VLSI," Trans. on Computers, vol.
C-34, no. 5, pp. 472-475, {EEE, May 1985.

[187] A. L Fisher, *Dictionary Machines with a Smail Num-
ber of Processors,” Prac. 11th Annuai Intt Symp. on
Computer Architecturs, pp. 151~156, IEEE/ACM, June
1984,

{188) A. K. Somani and V. K Agarwal, “An Efficient VLSI
Dictionary Machine,” Proc. 11th Annual intT Symp. on
Computer Architecture, pp. 142-150, IEEE/ACM, June
1584.

(189] T. A. Ottmann, A. L. Rosenberg, and L J. Stockmeyer,
“A Dictionary Machine (for VLSI),” Trans. on Computars,
vol. C-31, na. 8, pp. 892-897, IEEE, Sept. 1982.

[190} M. J. Carey and C. D. Thompson, An Efficient Im-
plemantation of Search trees on Of{log N) Processors,
Tech. Rep. UCB/CSD 82/181, Computer Science Divi~
sion Univ. of California, Berkelay, CA, April 1982, ’

{191] C. E. Leisarson, "Systolic Priority Queuss,” Proc, Cal-
tech Conf. on VLSI, Caltach. Jan. 1979.

{192] J4. L Bentley and H. T. Kung, "A Tree Machine for
Searching Problems,” Proc. Intl Conf. on Paraliel
Processing. pp. 257~266, IEEE, 1979,

[183]) §. W. Miller, ed., "Specisl Issue on Mass Siorage
Systems.” Computer, vol. 18, no. 7, IEEE, July 1985,

(194} S. W. Millar, ed., "Spacial Issue on Mass Storage Sys-
tems Evolution of Data Center Architectures,” Com-
putar, vol. 15, no. 7, lEEE, July 18982.

(185] H. A, Frocman', ad., “Special Issue on Backend Storage
Networks,” Computer, vol. 13, no. 2, IEEE, Feb. 1980..

[196] D. K. 'Hsiao. ed. “Special issue on Database
Machines,” Computer, vol. 12, no. 3, IEEE, March 1979.

[197] G. G. Langdon Jr., ed. "Special Issue on Database
Machines,” Trans. on Computers, vol. C-28, no. §, {EEE,
June 1979.

{198] H. Horal and D. DeWitt, "Database Machine: An idea
whose Time has Passad?.” Database Machines, pp.
166167, Springer-Verlag, 1983,

[198] F. J. Malabarba, “Review of Avagilable Database
Machine Technology,” Proc. Trends and Applications,
pp. 14-17, |IEEE, 1984.

[200] J. Shemer and P Neches, "The Genaesis of a Database
Computar,” Computer, voi. 17, no. 11, pp. 42-56, IEEE,
Nov. 1984.

[201) P. 8. Hawthorn and 0. J DeWitt, “Performance
Analysis of Altsrnative Database Machine
Architectures,” Trans. on Software Engineering, vol.
SE-B, no. 1. pp. 61~75, IEEE, Jan. 1982.

(202] E. Babb, "Joined Normal Form: A Storage Encoding
tor Relational Databases,” Trans. on Database Systems,
vol. 7, no. 4, pp. 588-614, ACM, Dec. 1982.

[203) D. Gajski, W. Kim, and S. Fushimi, “A Paraltel Pipelined
Relational Query Processor: An Architectural Overview,”
Proc. 11th Annual Intl Symp. on Computer Architacture,
pp. 134-141, IEEE/ACM, June 1984.

SIGART Newslatter, April 1986, Number 96

[204] M. Kitsuregawa. H. Tanaka, and T. Moto-oka,
“Application of Hash to Data Base Machine and its
Architecture,” New Genearation Caomputing, vol. 1, no. §,
pp. $3-74, OHMSHA Ltd. and Springer-Verlag, 1883.

[205] D. €. Shaw, Knowledge-Based Retrieval on a Rela~
tional Database Machine, Ph.D. Dissertation, Stanford
Univ., Manlo Park, CA; also as Technical Report, -Colum-
bia Univ., New York, NY, Aug. 1980.

[206] Y. Tanaka, “MPDC~Massive Parallel Architacture for
Very Large Databases,” Proc. Int') Conf. on 5% Genera-
tion Computer Systems, pp. 113-137, ICOT and North-
Holland, 1984.

[207} K. Murakami, T. Kakuta, and R. Onai, “Architectures
and Hardware Systems: Parallel Inference Machine and
Knowledge Base Machine,” Prac. Intl Conf. on 5™
Generation Computer Systems, pp. 18-36, ICOT and
North-Holland, 1984.

{208] S. Shibayama, T. Kakuta, N. Miyazaki, H. Yokota, and
K. Murakami, “A RAslational Databasa Machine with
Large Semiconductor Disk and Hardware Relational Al
gebra Processor.” New Generation Computing, vol. 2,
no. 2, pp. 131-155, OHMSHA Ltd. and Springer-Veriag,
1984.

{209] C. KXeliogg. "Knowledge Management: A Practical
Amalgam of Knowledge and Data Base Tachnology.”
Proc. Net't Conf. on Al, pp. 306-308, AAAL 1882,

[210] €. Keilogg. “Intelligent Assistants for Knowledge and
Information Resourcas Management,® Proc. 8th [JICAI
pp. 170-172, William Kaufinan, Los Altos, CA, 1983,

f211]1 P. M. Neches, “Hardware Support for Advanced Data
Management Systems,” Computer, vol. 17, no. 11, pp.
29-40, IEEE. Nov. 1984,

[212] W. A. Kornfeid, “The Use of Parallelism to Implament
a Heuristic Search,” Proc. 7th LICAl, pp. 575-580, wii-
liam Kaufman, Los Altos, CA, Aug. 1961.

[213) W. A Kornfeld,. “Combinatorially Implasive
Algorithms,” Comm. of the ACM, vol. 25, no. 10, pp.
734-738, ACM, Oct. 1982.

{214] B. W. Weide, "Modsling Unusual Behavior of Parallel
Algorithms.” Trans. on Computers, vol. C-31, no. 11, pp.
1126-1130, IEEE, Nov. 1882.

{2158) E. Horowitz and A. Zorat, "Divide-and-Conquer for
Parallei Processing,” Trans. on Computers, vol. C-32,
no. 6, pp. 582-585, IEEE, June 1883.

[218] M. A. Frankiin and N. L Soong. “One-~Dimensional
Optimization on Muitiprocessor Systems,” Trans. on
Computers, vol. C-30, no. 1, pp. 61-68, IEEE, Jan. 1981,

[217] S. G. Akl, D. T. Barnard, and R. J. Doran, "Design,
Analysis and implemantation of & Parallel Trae Search
Algorithm,” Trans. on Pattern Analysis and Machine In-
teliigence, voi. PAMI-4. no. 2, pp. 182-203, IEEE, March
1882. :

[218]) E. Dekel and $. Sahni, “Binary Treas and Paralle!
Scheduling Algorithms,” Trans. on Computers, wvol.
C-32, no. 3, pp. 307-315, IEEE. March 1983.

[218] 4. L Baar. H. C. Du, and R. E. Ladnar, “Binary Search
in a Muiltiprocessing Environment,* Trans. on Com-
puters, vol. C-32, no. 7, pp. 667-677, IEEE, July 1983.

Page 39

ety

[220] T. H. Lal and S. Sahni, "Anomalies in Paralfel Branch
and-Bound Algorithms,” Comm. of the ACM, vol. 27, no.
B, pp. 594-602, ACM, June 1984,

[221] G.-). Li and B. W. Wah, "Computational Efficiency of

Parailel Approximate Branch-and-Bound Algorithms,”

Proc. {intl Conf. on Parailel Processing, pp. 473-480,
IEEE, 1984,

[222] G.~J. Li and B. W. Wah, “Coping with Anomalies in
Parallel Branch-and-Bound Algorithms,” Trans. on
Computers, vol. C-35, no. 4, IEEE, April 1986.

[223] T. H. Lasi and A. Sprague, "Performance of Parallel
Branch-and-Bound Algorithms,” Trans. on Computers,
vol. C-~34, no. 10, pp. 962-964, IEEE, Oct. 1985,

{224] D. H. Fishman and J. Minker, “lI-Representation: A
Clausa Reprasentation for Paralle! Search,” Al, vol. 6,
no. 2, pp. 103-127, North~Helland, 1975.

{2258] R. A. Finkel and J. P. Fishburn, “Parallelism in Alpha-
Beta Search,” Al voi. 19, no. 1, pp. 89-106, North-
Holland, 1982,

[226] T. A. Marsland and M. Campbell, "Parallel Search of
Strongly Ordered Game Traes,” Computing Surveys, vol.
14, no. 4, pp. 533-551, ACM, Dec, 1982,

[227] F. J. Peters, “Tree Machine and Divide-and-Conquer
Algorithms,” Lecture Notes CS 111 (CONPARS1), pbp.
25-3%, Springer-Veriag, 1981,

[228] M. R. Sleep and F. W. Burton, “Towards a Zaro As-
signment Parallel Processor,” Proc. 2nd Int1 Conf. on
Distributed Computing Systems, pp. 80-85, IEEE, April
1981,

[228] J. A. Harris and D. R. Smith, "Simulation Experiments
of a Tree Organized Multicomputer,” Proc. 6th Annual
Symp. on Computer Architecturs, pp. 83-89, I[EEE/ACM,
April 1979.

[230] M. Imai and T. Fukumura, "A Parallelized Branch-and-
Bound Algorithm Implementation and Efficiency,” Sys-
tems, Computaers, Controls, vol. 10, no. 3, pp. 62-70,
Scripta Publishing, June 1979,

"

[231] B. C. Desai, “A Parallel Microprocessing System,
Proc. Int1 Conf. on Paralisi Processing, p. 136, IEEE,
Aug. 1979.

[232] O. I. El-Dessouki and W. H. Huen, "Distributed
Enymeration on Between Computers,” Trans. on Com-
puters, vol. C-29, no. 9, pp. 818-825, IEEE, Sept. 1980.

(233] W. M. McCormack, F. G. Gray, J. G. Tront,
R. M. Haralick, and G. 5. Fowier, "Muiti-Computer Paral-
lsl Architecturas for Solving Combinatorial Problems,”
in Multicomputers and Image Processing Algorithms
and Programs, ed. K Preston Jr. and L Uhr, pp.
431-451, Academic Prass, 1982.

[234] M. Imai, Y. Tateizumi, Y. Yoshida, and T. Fukumura, "A
Multicomputer System Based on the 8inary-Tree Struc-
ture: DON(2),” TGEC, vol. EC83~23, no. 1, pp. 19-30,
IECE of Japan, 1983.

[235] Q. F. Stout, “Sorting, Merging, Selecting and Filtering

on Tree and Pyramid Machines,” Proc. Int1 Conf. on
Parallel Processing, pp. 214-221, IEEE, Aug. 1883.

[236] B. W. Wah, G.~J. Li, and C. F. Yu, “The Status of
MANIP~-A Muiticomputer Architecture for Solving
Combinatorial Extremum-~Search Problems,” Proc. 11th

SIGART Newsletter. April 1986, Numhaer a8

Annual Int'l Symp. on Computer Architecture, pp
56-63, IEEE/ACM, June 1984.

[237] B. W. Wah and Y. W. E. Ma, “MANIP--A Multicomputer
Architecture for Solving Combinatorial Extremum-
Search Problems,” Trans. on Computers, vol. C-33, no.
5, pp. 377-390, IEEE, May 1984,

{238] R. Finkel and U. Manber, "DIB—-A Distributed Im-
plementation of Backtracking,” Proc. 5th Int’l Conf. on
pDistributed Computing Systems, pp. 446-452, IEEE, May
1985.

[239] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. "On-the-Fly Garbage Collection:
An Exercise in Cooperation,” Comm. of the ACM, vol.
21, no. 11, pp. 966-975, ACM, Nov. 1978.

[240] H. G. Baker Jr., "List Processing in Real Time on a
Serial Computer,” Comm. of the ACM, vol. 21, no. 4, pp.
280-294, April 1978.

[241] H. C. Baker Jr. and C. Hewitt, "The Incremental Gar-
bage Collection of Processes,” Proc. Symp. on Al and
Programming Languages, also SIGART Newsletter, pp.

55-59, ACM, Aug. 1977.

[242] J. J. Martin, "An Efficient Garbage Compaction
Algorithm,” Comm. of the ACM, vol. 25 no. B, pp.
571-581, ACM, Aug. 1882.

{243] D. Spector, "Minimal Overhead Garbage Collection of
Complex List Structure,” SIGPLAN Notices, vol. 17, no.
3, pp. 80-82, ACM, 1982,

[244] Y. Hibino, "A Practical Paralle! Garbage Collection Al-
gorithm and WHs Implementations,” Proc. 7th Annual
Symp. on Computer Architecture, pp. 113-120,
IEEE/ACM, May 1980.

[245] R. Fenichel and J. Yochelson, “A Lisp Garbage-
Collector for Virtual Memory Computer Systems”
Comm. of the ACM, vol. 12, no. 11, pp. 611-612, ACM,
Nov. 1979.

[248] J. M. Barth, "Shifting Garbage Colliection Overhead to
Compile Time,” Comm. of the ACM, vol. 20, no. 7, pp.
§13-518, ACM, July 1977,

[247) H. Kung and S. Song, An Efficient Parallel Garbage
Collection Systems and MIts Correctness Proof, Technical
Report, Department of Computer Science, Carnegie-
Mellon Univ., Pittsburgh, PA, Sept. 1977.

{2248] L Deutsch and D. Bobrow, "An Efficient Incremental,
- Automatic Garbage Collactor,” Comm. of the ACM, vol.
19, no. 9, pp. 522-526, ACM, Sapt. 1976.

[249] D. Bobrow and D. Clark, "Compact Encoding of List
Structure,” Trans. on Prog. Language and Systems, vol.
1, no. 2, pp. 266-286, ACM, 1978,

[250] 1. A. Newman and M. C. Woodward, “Alternative Ap-
proaches toc Multiprocessor Garbage Collection,” Proc.
int'l Conf. on Paraltel Processing, pp. 205-210, IEEE,
1982,

[2671] G. Steele, "Multiprocessing Compactifying Garbage
Collection,” Comm. of the ACM, vol. 18, no. 9, pp.
495-508, ACM, Sept. 1975.

[252] J. Darlington, “Functional Programming (Chapter 5}"
in Distributed Computing, ed. F. B. Chambers,
D. A. Duce, and G. P. Jones, Academic Press, London,

- 1984.

~ Machine?,” SIGSAM Builetin, vol. 12, no. 4, ACM, 1678,
(254] J. Fitch, *Do We Really Want 2 Lisp Machine?,”
SEAS/SMC Annual Mesting, ACM, Jan. 19380.

[255] E. Myers, “Machine that Lisp,” Datamation, vol. 27, no.
8, pp. 105-108, Technical Publishing, Sept. 1981,

[256] T. Xnight, The CONS Microprocessor, Al Working
Paper 80, MIT, Cambridge, MA, Nov. 1974,

{257] A. Bawden, R. Gresnblatt, J. Holloway, T. Knight,
0. Moon, and D. Wainreb, “The Lisp Machine.” in Al: An
MIT Parspective, ad. P. H. Winston and R. H. Brown, vol.
1. pp. 343-373, MIT Press, 1979.

[258) 5. R. Schoichet, “The Lisp Machine,” Mini-Micro Sys-
tems, pp. 68-74, Cahners Publishing, June 1978.

[258) R. G. Greenblatt, T. F. Knight, J. T. Holloway, and
D. A. Moon, A Lisp Machine,” Proc. 5th Workshop on
Computer Architacture for Non-Numeric Processing, pp.
137~138, ACM, March 1880.

[260] T Manuel, “Lisp and Prolog Machines are
Proliferating,” Electronics, pp. 132-137, McGraw-Hill,
Nov. 1983.

[261] W. Myers, “Lisp Machinas Dispiayed at Al Cont.,”
Computer, vol. 15, ne. 11, pp. 79-82, IEEE, Nov. 1982,

[262] T. Kurokawa, “Lisp Activities in Japan,” Proc. 6th 1J-
CAl, pp. 502-504, William Kautman, Los Altos, CA, 1879.

[263] D. Weinreb and D. Moan, Flavors, Massage Passing in
the Lisp Machine, Al Mamo 602, MIT Lab, Cambridgs,
MA, Nov. 1980.

[264] L Walker, "Lisp Language Gets Special Machine,”
Electronics, pp. 40~41, McGraw~Hill, Aug. 25, 1981.

[265] D. A. Moon, *Architecturs of the Symbolics 3600,
Proc. 12th Annual Intlt Symp. on Computer Architec-
ture, pp. 76-83, IEEE/ACM, June 1885,

[268] ... Moarae, The Intarlisp Virtual Machine Spacification,
Tech. Rap. CSL 76-5, Xerox PARC, Palo Alto, CA, Sapt.
1976.

[267] D. G. Bobrow, The LOOPS Manual, Tech. Rep. KB-
VLSI-81-13, Xerox PARC, Palo Alto, CA, 1982,

[268] B. Sheil. “Family of Personal Lisp Machines Speeds Al
Program Development,” Electronics, pp. 153-1566,
McGraw~Hill, Nov. 1383.

[269] H. Hayashi, A. Hattori, and H. Akimoto, “ALPHA: A
High~Performance Lisp Machine Equipped with a New
Stack Structure and Garbage Cotlection System,” Proc.
10th Annual intt Symp. on Computer Architecture, pp.
342-348, IEEE/ACM, June 1983.

{270) H. Akimoto, 5. Shimizu, A. Shinagawa, A. Hattori, and
H. Hayashi, "Evaluation of the Dedicated Hardware in
FACOM Alpha,” Proc. COMPCON Spring, pp. 366-368,
IEEE, 1985.

{2711 G. J. Sussman, J. Holloway, G. L. Stasl Jr., and A, Ball,
“Schame-79~--Lisp on a Chip,” Computar, voi. 14, no. 7,
pp. 10-21, IEEE, July 1981

{272] G. Stesl and G. Sussman, Design of Lisp-Based

Processar, or SCHEME: A Dielactric Lisp or Finite -

Memories Considered harmful, or LAMBDA: Tha U~

SIGART Newsletter, Aprit 1986, Number §6

o TR TR g TR R B FERAREEREEs W R E o op TEEER Sy WEEREEREs S gy er TEVEETR
March 1979,
{273] M. Griss and M. Swanson, “"MBALM/1700: A

Microprogrammed Lisp Maching for the Burroughs
B81726,” Proc. MICRO-10, ACM/IEEE, 1977.

[274] K Taki, Y. Xaneda, and S. Maekawa, “The Experimen-
tal Lisp Machine,” Proc. Bth |JCAI, pp. B65-867, William
Kaufman, Los Aitos, CA, Aug. 1978.

[275] E. Goto, T. Ide, K Hiraki, M. Suzuki, and N. Inada,
"FLATS, A Machine for Numerical, Symbolic and As-
sociative Computing.” Proc. 6th IJCAI, pp. 1058-10686,
William Kaufman, Los Altos, CA, Aug. 1979.

{2761 P. Deutsch, “Experiance with a Microprogrammed In-
terlisp Systems,” Proc. MICRO, vol. 11, ACM/IEEE, Nov.
1978.

[277] M. Nagao, J. L. Tsujii, K Nakajima, X. Mitamura, and
H. Rho, "Lisp Machine NK3 and Measurement of [ts
Performance,” Proc. 6th 1JCAI, pp. 625-&27, William
* Kaufman, Los Aitos, CA, Aug. 1978.

[278] N. Gresenfeid and A. Jericho, “A Protessional's Per-
sonal Computer System,” Proc. 8th Inti Symp. on
Comp. Architecture, pp. 217~-226, IEEE/ACM, 1381.

[279] J. P. Sansonnet, M. Castan, and C. Percebois, "M3L: A
List-Directad Architecture,” Proc. 7th Annual Symp. on
Computer Architecture, pp. 105-112, IEEE/ACM, May
1980.

[280] J. Sansornet, D. Botelia, and J. Pere2, “Function Dis-
tribution in s List-Directed Architecture,” Microprocess-
ing and Microprogramming, vol. 9, no. 3, pp. 143-153,
North-Hotland, 1982,

(2811 J. P. Sansonnet. M. Castan, C. Percebois, D. Botella,
and J. Perez. "Direct E£xecution of Lisp on a iist—
Diracted Architecture,” Proc. Symp. on Architectural
Support for Programming Languages and Qperating
Systems, pp. 132-139, ACM. March 1982,

[282) E. von Puttkemer, °“A Microprogrammed Lisp
Machine,” Microprocessing and Microprogramming, vol.
11, na. 1, pp. 8~14, North-Holland, Jan. 1983.

[283] R. Williams, "A Muitiprocessing System for the Direct
Execution of Lisp,” Proc. 4th Workshop on Computer
Architecture for Non-Numaeric Processing., ACM, Aug.
1978.

[284] D. McKay and S. Shapiro, “MULT}--A Lisp Based Mul-
tiprocessing System,” Conf. Record of Lisp Conf., Stan-
ford Univ.,, Menlo Park, CA, 1980. ’

[285] M. Model, "Muitiprocessing via Intercommunicating
Lisp Systams,” Conf. Record of Lisp Conf, Stanford
Univ., Menlo Park, CA, 1880.

[286] C. Hewitt, "The Apiary Netwark Architecture for

Knowledgeable Systems,” Cont. Record of Lisp Conf,
pp. 107-117, Stanford Univ., Menlo Park, CA, 1880.

[287] A Guaman, “A Heterarchical Multi-Microprocessor
Lisp Machine,” Proc. Workshap on Computer Architac-
ture for Pattern Analysis and Image Database Manage-
ment, pp. 308-317, IEEE, Nov. 1981.

. [288] S. Sugimoto, K. Agusa, K. Tabata, and Y. Ohno, "A
Multi-Microprocessor System for Concurrent Lisp,”©
Proc. intl Conf. on Parallel Processing, pp. 135-143,
IEEE, 1983. :

Page 41

[289] Y. Yamaguchi, K. Toda, J. Herath, and T. Yuba, “EM-3:
A Lisp-Based Data-Driven Machine,” Proc. Int’) Conf. on
5" Ganeration Computer Systams, pp. 524-532, ICOT
and North—~Holland, 1984.

[290] Y. Yamaguchi, K. Toda, and T. Yuba, “A Performance
Evaluation of a Lisp~Based Data-Driven Machine
(EM-3),” Proc. 10th Annual Int'l Symp. on Computer
Architecture, pp. 363-369, IEEE/ACM, June 1983.

[291] W. K. Giloi and R. Gueth, "Concepts and Realization
of a High-Performance Data Type Architecturae,” nt’l
J. of Computer and Information Sciences, vol. 11, no, 1,
pp. 25-54, Plenum Press, 1982,

[292] P. C. Treleaven and R. P. Hopkins, “A Recursive Com-
putar Architecture for VLSL” Proc. 9th Annual Symp. on
Computer Architecturs, pp. 228-238, |EEE/ACM, April
18982.

[293] M. Amamiya, R. Hasegawa, 0. Nakamura, and
H. Mikami, "A List-Processing-Oriented Data Flow
Machine Architacture,” Proc. NCC, pp. 144-151, AFIPS
Press, 1982,

[254]) M. Amamiya and R. Hasagawa, "Dataflow Computing
and Eagar and Lazy Evaluations,” New Generation Com-
puting, vol. 2, no. 2, pp. 105-125, OHMSHA Ltd. and
Springer-Verlag, 1884,

{295] H. Diel, "Concurrent Data Access Architecture,” Proc.
intl Conf. on 5™ Generation Computer Systems, pp.
373-388, ICOT and North-Holland, 1984.

[296] G. Coghill and K. Hanna, "PLEIADES: A Mul-
timicroprocessor Interactiva Knowladge Base,”
Microprocessors a&nd Microsystems, vol. 3, no. 2, pp.
77~-82, IPC Business Press, England, March 1979,

[297] M. Deering, J. Faletti, and R. Wilensky, "PEARL--A
Package for Efficient Access to Reprasentations in
Lisp,” Proc. 7th LCAIL pp. 930-232, William Kaufman,
Los Altos, CA, Aug. 1981,

{298] H. Samet, "Code Optimization Considerations in List
Processing Systems,” Trans. on Software Engineering,
vol. SE-8, no. 2, pp. 107-113, IEEE, March 1982.

[299] S. Tatf “Tha Desian of an MBBOO Lisp Interpreter.”
Byte, pp. 132-152, McGraw-HIll, Aug. 1879,

[300] P. Deutsch, "Bytalisp and its Alto Implementation,”
Conf. Record of Lisp Conf, Stanford Univ,, Menlo Park,
CA, 1980.

{301] S. P. Levitan and J. G. Bonar, *Threa Microcomputer
Lisps,” Byte, pp. 388-412, McGraw-Hill, Saept. 1981.

[302] T. King, “Expert Systems with 68000 and Llisp,”
Microprocessors and Microsystems, vol. 8 no. 7, pp.
374~376, IPC Business Press, England, Sept. 1984.

[303] W. D. Strecker, "Clustering VAX Superminicomputers
into Large Multiprocessor Systems,” Electronics, pp.
143-148, McGraw-Hill, Oct. 20, 1883.

[304]) C. Hewitt, "Viewing Control Structure as Patterns of

Passing Messages,” Al, vol. 8 no. 3, pp. 323-364,
Narth—-Hotland, 1877.
[305] The Xarox Learning Research Group. “The

Smalltalk-80 System,” Byte, pp. 36-48, McGraw-Hili,
Aug. 1981,

[3061 A. Piotkin and D. Tabak, “A Tree Structured Architec—

SIGART Newsletter, April 1986. Number 98

ture for Semantic Gap Reduction,” Computer Architec-
ture News, vol. 11, no. 4, pp. 30-44, ACM SIGARCH,
Sept. 1883,

[307] S. R. Vegdahl, "A Survey of Proposed Architectures
for the Execution of Functional Languages,” Trans. on
Computers, vol. C-33, no. 12, pp. 1050-1071, IEEE, Dec.
1984,

{308} P. S. Abrahms, An APL Machine, Ph.D. Dissertation,
Stanford Univ., Menlo Park, CA, Feb. 1370,

{309] K. J. Berkling, "Reduction Languages for Reduction
Machines,” Proc. Inti Symp. on Computer Architecture,
pp. 133-140, IEEE/ACM, 1975,

[310] M. Castan and E. {. Orgenick, "M3L: An HLL-RISC
Processor for Parallel Execution of FP-Language
Programs,” Proc. 9th Annual Symp. on Computer Ar-
chitecture, pp. 239-247, IEEE/ACM, 1982.

[311] G. Mago, "A Network of Microprocessors to Execute
Reduction Languages, Part I,” Intt J. of Computer and
Information Sciences, vol. 8, no. 5, pp. 349-385, Plenum
Press, 1979.

[312] G. Mago, "A Network of Microprocessors to Execute
Reduction Languages, Part I.” Int'l J. of Computer and
Information Sciences, vol. 8, no. 8, pp. 435-471, Plenum
Press, 1978,

[313] G. Mago, “Making Parallel Computation Simple: The
FFP Machine,” Proc. COMPCON Spring, pp. 424-428,
IEEE, 1985.

[314] R. M. Keller, G. Lindstrom, and S. Patil, "A Loosaly~-
Coupled Applicative Multiprocessing System,” Proc.

NCC, pp. 813-622, AFIPS Press, 1979,

[315] A. L. Davis, "A Data Flow Evaluation System Based on
the Concept of Recursive Locality,” Proc. NCC, pp.
1079-1086, AFIFS Press, 1875,

[316] J. T. O'Donnell, A Systolic Associative Lisp Computer
Architectura with Incremental Parallel Storage Manage-
ment, Ph.D. Dissertation. Univ. of lowa, lowa City, IA,
1981.)

[317] D. P. Friedman and D. S. Wise, “Aspects of Applica-
tive Programming for Parallel Processing,” Trans. on
Computers, vol. C-27, no. 4, pp. 289-296, IEEE, Apri
1978.

[318] w. A. Kornfeld, "ETHER--A Parallel Problem Solving
System,” Proc. 6th 1JCAI, pp. 490-482, William Kaufman,
Los Altos, CA, 1979.

[319] J. Darlington and M. Reeve, ALICE and the Parallel
Evaluation of Logic Programs, Preliminary Draft, Dept.
of Computing, Imperial College of Science and Tech-
nology, Londgn, England, June 1983.

[320] K. Smith, *"New Computer Breed Uses Transputers for
Parallel Processing,” Electronics, pp. 67-68, McGraw-
Hill, Feb. 24, 1983.

[321] F. Hommes, "The Heap/Substitution Concept-—An im-
plementation of Functional Operations on Data Struc-
tures for a Reduction Machine,” Proc. 9th Annual Symp.
on Computer Architecture, pp. 248-256, IEEE/ACM, April
1982.

[322] W. E. Kluge, “Cooperating Reduction Machines”
Trans, on Computers, vol. C-32, no. 11, pp. 1002-1012,
IEEE, Nov. 1983,

[323] R. M. Kagilar and F. C. H. Lin, "Simulazed Parformance
of a Reduction-Based Multiprocessor,” Computer, vol.
17. no. 7, pp. 70-82, IEEE, July 1984,

(324] R. M. Keller, F. C. H. Lin, and J. Tanaka, "Rediflow
Muitiprocessing,” Proc. COMPCON Spring, pp. 410-417,
IEEE, 1984,

{325] T. Clarke, P. Gladstone, C. Maclean, and A. Norman,
“SKIM--The §, K, | Reduction Machine,” Conf. Record of
Lisp Conf., Stanford Univ., Menlc Park, CA, 1980.

[326) P. Traleaven and G. Mole, "A Multi~Processor Reduc-
tion Machine for User-Defined Reduction Languages.”
Proc. 7th Int'l Symp. Computer Architecture, pp.
121~130, IEEE/ACM, 1980,

[327] D. G. Bobrow, “M Prolog Is the Answer, What is the
Quastion?.” Prac. Int'l Cont. on 5" Generation Computer
Systams, pp. 138~145, ICOT and North-Holland, 1984.

(328} H. Ogawa, T. Kitahashi, and K. Tanaka, "The Thaorem
Prover Using a Parallal Processing System,” Proc. 6th
INCAIL, pp. 665-667, Williamm Kaufman, Los Altos, CA,

Aug. 1979.

{329] S. |. Nakagawa and T. Sakai, “A Parsilei Tree Sasrch
Method,” Proc. 6th IJCAI, pp. 628-632, William Kaufman,
Los Aitos, CA. Aug. 1979,

{330] C. Smith, “The Power of Paralieiism for Automatic
Programming Synthesis,” Proc. 22nd’ &nnual Symp. on
Fnd. of Computer Science, ACM, 1981.

[331] M. J. Wise, "EPILOG = Prolog + Data Flow: Argumaents
for Combining Prolog with & Dats Driven Mechanism,”
SIGPLAN Notices, vol. 17, no. 12, pp. 80-86, ACM, Dec.
1982.

[332] §. Umeyama and K Tamura, "A Parallel Execution
Model ot Logic Programs,” Proc. 10th Annual Symp. on
Computer Architecture, pp. 348-355, IEEE/ACM, June
1883.

{333] A. Ciepislewski and S. Haridi, “Exacution of Bagof an
the OR-Parailei Token Maching,” Proc. intl Conf. §™
Genarstion Computer Systems, pp. 551-560, ICOT and
North-Holland, 1984.

{334] H. Yasuhara and K. Nitadori, “ORBIT: A Paraliei Com-
puting Modse! of Prolog,” New Genaeration Computing,
vol. 2, no. 3. pp. 277-288, OHMSHA Ltd. and Springer-
Veriag, 1984.

{336} D. DeGroot. “Restricted AND-Parailelism,” Proc. int!
Cont. on 5" Genaration Computers, pp. 471-478, ICOT
and North-Holland, Nov. 1984.

[336] T Knhabaza. “Negation as Failure and Parailelism,”
Proc. Int'i Symp. on Logic Programming, pp. 70-75,
IEEE, Feb. 1984,

[337] G. Lindstrom and P. Panangagden, "Stream-Based Ex-
acution of Logic Programs,” Proc. int'l Symp. on Logic
Programming, pp. 168-176, IEEE, Feb. 1984.

[338] G.~J. Li and B. W. Wah, "MANIP-2: A Multicomputer
Agchitecture for Evaluating Logic Programs.” Proc. Intt
c::n;. on Parallel Processing, pp. 123-130, IEEE, June
1985.

[338] J. H. Chang. A. M. Despain, and D. DaGroot, "AND-
Parallelism of Logic Programs Based on A Static Data
Depandency Analysis,” Proc. COMPCON Spring, pp.
218-225, IEEE, 1985.

SIGART Newsiatter, April 1986, Number 96

[340] J. S. Conery and D. F. Kibier, “Parailel Interpretation
of Logic Programs,” Proc. Conf. on Functional Prograim—
ming Languages and Computer Architectura. gp.
163-170, ACM, 1881.

[341] 4. S. Conary and D. F. Kibler, "AND Parallelism and
Nondeterminism in Logic Programs,” New Generation
Computing, vel. 3, no. 1, pp. 43-70, OHMSHA Ltd. and
Springer-Verlag, 1985,

f342) D. A. Carlson, “Parallel Processing of Tree-Like

Computations,” Proc. 4th Intt Conf. on Distributed
Computing Systems, pp. 192-198, IEEE, May 1984.

[343] M. D. Rychener, “Control Requiremants for the Design
of Production System Architectures.” Proc. Symp. on Al
and Programming Languages, aiso SIGART Newsletter,
pp. 37-44, ACM, Aug. 1977,

‘[344] K. Ofiazer, "Partitioning in Paraliel Processing of

Production Systems,” Proc. Int] Conf. on Parallel
Processing, pp. 92—-100, IEEE, 1984.

[345] M. £ M. Tenorio and D. |. Moldovan, "Mapping
Production Systemns into Multiprocessors.” Proc. Int't
Cont. on Parallel Processing, pp. 56-62, IEEE, 1985,

[346] B. V. Funt, *Whisper: A Problem=-Salving System
Utilizing Diagrams,” Pro¢. 5th IJCAJ, pp. 458-464, Wil-
liam Kaufman, Log Altos, CA, Aug. 1977.

[347] J. P. Adam. et al, The IBM Paris Scientific Center
Programming in Logic Interprater: Overview, Report,
{BM France Scientific Centar. Oct., 1984.

[348] Y. Igawa, K. Shima, T. Sugewara, and 5. Takagi,
“Knowledge Represantation and inference Environment:
KRINE--An Approach to Integration of Frame. Prolog
and Graphics,” Proc. Int’l Cont. on 5% Generation Com-
puter Systems, pp. 643-651, ICOT and North~Holiand,
1984.

[348] M. Yokota, et al, “"A Microprogrammad Interpratar for
Personal Sequentiai Inferance Machine,” Proc. Int't Conf.
on 5" Generation Computer Systems, pp. 410-418,
ICOT and North-Hoiland., 1984.

[350] W. F. Clocksin, “Design and Simulation of a Sequen-
tial Prolog Machine,” New Generation Computing, vol. 3,
no. 2, pp. 101-120, QHMSHA Ltd. and Springer-Verlag,
1285.

[351] M. §. Johnson, “Some Requirements for Architectural
Support of Software Debugging,” Prac. SIGPLAN Symp.
on Compier Construction, pp. 140-148, ACM, .June
1982.

[352} N. Tamura, K. Wada, H. Matsuda. Y. Kaneda, and
S. Maekawa, “Sequaential Prolog Machine PEK," Proc. Int’]
Conf. on S' Generation Computer Systems, pp.
542-550, ICOT and North—-Holland. 1884.

[3s3} D. B. Lenat and J. McDermott, "tess Than Genarai
Production System Architactures,” Proc. 5th LJCAI, pp.
223-932, William Kaufman, Los. Altos, CA, 1977.

[354] C. J. Hogger. "Concurrent Logic Programming.® in
Logic Programming, ed. S.-A. Tarnlund and K Clark, pp.
198-211, Academic Press, 1982.

[355] M. H. van Emden and G. J. de Lucena—Fiho,
“Pradicate Logic as a Language for Parailel
Progremming,” in Logic Programming, ed. S.-A

Page 43

Tarnlund and K. Clark, pp. 188-198, Academic Press,
1982,

v

[356] E. Y. Shapiro, Subset of Concurrent Prolog and its In-
terprater, Tech. Rep. TR-003, ICOT, Tokyo, Japan, 1983.

[357] A. J. Kusalik, "Serialization of Process Reduction in
Concurrent Prolog,” New Generation Computing, vol. 2,
no. 3, pp. 289-298, OHMSHA Ltd. and Springer-Verlag,
1984,)

[358] P. Borgwardt, “Parallel Prolog using Stack Segments
on Shared-Memory Multiprocessors,” Proc. Int’l Symp.
on Logic Programming, pp. 2-11, 1EEE, Feb. 1984,

[359] K. Ueda and T. Chikayama, “Efficient Stream/Array
Processing in Logic Programming Languages,” Proc.
Int') Conf. on 5! Genaration Computer Systems, pp.
317-326, ICOT and North-Holland, 1984.

[360]1 E. Shapiro and A. Takeuchi, "Object Oriented Pro-
gramming in Concurrent Prolog,” New Generation
Computing, vol. 1, no. 1, pp. 25-48, OHMSHA Ltd. and
Springer-Verlag, 1983.

[361] N. Suzuki, “Concurrent Prolog &8s an Efficient VLSI
Design Language,” Computer, vol. 18, no, 2, pp. 33-40,
IEEE, Feb. 1985.

[362] A. Taueuchi and K. Furukawa, “Bounded Buffer Com-
munication in Concurrent Prolog.” New Generation
Computing, vol. 3, no. 2, pp. 145-155, OHMSHA Lid. and
Springer-Veriag, 1985. .

[363] K. Clark and S. Gregory, PARLOG: Parallal Program-
ming in Logic, Research Rep. DOC 84/4, Imperial Coi-
lege, London, England, 1984,

[364] L. M. Pereira and R. Nasr, "Delta-Prolog, A Distributed
Logic Pragramming Language,” Proc. Intl Conf. on 5t
Generation Computer Systems, pp. 283-291, ICOT and
North-Holland, 1984,

[366] L. M. Uhr, “Parallel-Serial Praduction Systems,” Proc.
6th [JCAI, pp. 911-918, Willilam Kautman. Los Altos, CA,
Aug. 1979.

[366] E. Shapiro, “Systolic Programming: A Paradigm of
Parallel Processing,” Proc. Int1 Conf. on 5" Generation
Computer Systems, pp. 458-470, ICOT and North—
Holland, 1984,

[367] C. Rieger, R. Trigg, and B. Bane, "ZMOB: A New Com-
puting Engine for AlL" Proc. 7th LICAI pp. 955-960, Wil-
liam Kaufman, Los Altos, CA, Aug. 1981,

[368] R, Trigg. “Software on ZMOB: An Object-Oriented
Approach,” Proc. Workshop on Computer Architecture
for Pattern Analysis and Image Database Management,
pp. 133140, IEEE, Nov., 1981,

[369] U. S. Chakravarthy, S. Kasif, M. Kohli, J. Minker, and
D. Cao, “Logic Programming on ZMOB: A Highly Parallel
Machine,” Proc. Int't Conf. on Parallel Processing, pp.
347-349, |[EEE, Aug. 1882,

[370] M. Weiser, 5. Kogge, M. McElvany, R. Pferson, R. Post,
and A. Thareja, "Status and Performance of the ZMOB
Parallel Processing System,” Proc. COMPCON Spring,
pp. 71-73, IEEE, Feb. 1985.

[371] S. Kasif, M. Kohli, and J. Minker, "PRISM: A Parallel in-
ference System for Problem Solving,” Proc. 8th IJCAI,
pp. 544-546, William Kaufman, Los Altos, CA, 1983.

SIGART Newsletter, April 1986, Number 96

[372] A. M. Daspain and Y. N. Patt, “Aquarius—-A High Per-
formance Computing System for Symbolic/Numaeric
Applications,” Proc. COMPCON Spring, pp. 376-382,
IEEE, Feb. 1985.

[373] A. Koster, “Compiling Prolog Programs for Paraflal
Execution on a Cellular Machine,” Proc. ACM'84, pp.
167-178, ACM, Oct. 1984,

[374] L. Bic, "Execution of Logic Programs on a Dataflow
Architecture,” Proc. 11th Annual Intft Symp. on Com-
puter Architecture, pp. 290-296, IEEE/ACM, June 1984,

[375] R. Hasegawa and M. Amamiya, “Parallel Execution of
Logic Programs based on Dataflow Concept,” Proc. Int’
GConf. on 5% Generation Computer Systems, pp.
507~516, ICOT and North-Hofland, 1984.

[376] K. B. Irani and Y. F. Shih, "Implementation of Very
Large Prolog-Based Knowledge Bases on Data Flow
Architectures.” Proc. 1st Conf. on Al Applications, pp.

. 454-4589, IEEE, Dec. 1984,

[377] S. J. Stolfo and D. E. Shaw, DADO: A Tree-Structured
Machine Architecture for Production Systems, Technical
Report, Columbia Univ., New York, NY, March 1982.

{378] A. Gupta, "Implementing .OPS5 Production Systems
on DADOQ,” Proc. int'l Conf. on Parallel Processing, pp.
83-91, IEEE, 1984,

[379] S. J. Steoifo and D. P, Miranker, "DADO: A Parallgl
Processor for Expert Systems,” Proc. Int'! Conf. on
Parallel Processing, pp. 74-82, IEEE, Aug. 1984,

[380] S. J. Stolfo, "Five Parallel Algorithms for Production
System Execution on the DADO Machine,” Proc. Nat'l
Conf. on Al, pp. 300-307, AAAI, Aug. 1984,

[381] W, Dilger angd J. Muller, “An Associative Processor for
Theorem Proving,” Proc. of the Symp. on Al pp.
489-497, {FAC, 1983.

[382]) 1. Takeuchi, H. Okuno, and N. Dhsato, “TAQO--A Har-
monic Mean of Lisp, Prolog, and Smalltalk,” SIGPLAN
Nuotices, vol. 18, no. 7, pp. 65-74, ACM, July 1983.

[383] A. L. Davis and 5. V. Robison, "The FAIM-1 Symbolic
Multiprocessing System,” Proc. COMPCON Spring, pp.
370-375, IEEE, 1985,

[384] N. V. Findler, Associated Network, Academic Press,
1979.

[385] 5. E. Fahiman, "Design Sketch for a Million-Elemant
NETL Machine,” Proc. 1st Annual Natl Conf. on AL pp.
249-252, AAAI Aug. 1980.

[386] W. D. Hillis, “The Connaction Machine: A Computer
Architecture Based on Cellufar Automata,” Physica, pp.
213-228, North-Holland, 1984,

[387] Thinking Machines Corporation, The Connection
Machine Supercomputer: A Natural Fit to Application
MNeeds, Tech. Rap., Thinking Machines Corporation,
Walitham, MA, 1985.

[388) D. I. Moldovan and ¥, W. Tung, SNAP: A VLSI Ar-
chitecture for Al Processing, Technical Report PPP
84-3, Univ. of Southern California, Los Angeles, CA,
1984.

[389] D. &. Moldovan, "An Associative Array Architecture In-
tended for Semantic Network Processing,” Proc.
ACM'84, pp. 212-221, ACM, Oct. 1984.

Pama A4

{390] G. E. Hinton, T. J. Sejnowski, and D. H. Askley,
Boltzmann Machine: Coastraint Satisfaction Network
that Learns, Tech. Rep. Carnegie—Mailon Univ., Pitts-
burgh, PA., 1984.

[391] D. H. Askiey, G. E. Hinton, and T. J. Sajnowski, “A
Learning Algosithm for Boltzmann Machines,” Cognitive
Sciance, vol. 3, no. 1, pp. 147-168, 1985.

{332] R. Davis, “Report on the Workshop on Distributed AL"
SIGART Newsiettar, no. 73, pp. 43-52, ACM, 1880.

[393} R. Davis, "Report on the Sacond Workshop on Dis-
tributed Al,” SIGART Newslatter, no. 80, pp. 13-83, ACM,
19482,

-[394] M. Fehiing and L. Erman, "Report on the Third Annuai
Workshop on Distributed Al* SIGART Newsietter. no.
84, pp. 3-12, ACM, 15883,

[395] R. G. Smith, “The Contract Net: A Formalism for the
Cantroi of Distributed Probiem Solving,” Proc. Sth IJCAI,
p. 472, William Kaufman, Las Altos, CA, Aug. 1977,

[396] R. G. Smith, A Framework for Distributed Problem
Soiving,” Proc. 6th LICAI, pp. 836-841, William Kautman,
Los Altos, CA, Aug. 1979,

[397] R. G. Smith and R. Davis, “Frameworks for Coopera-
tion in Distributed Problem Solving,” Trans. on Systams,
Man and Cybernetics, vol. SMC-11, no. 1, pp. 61-70,
IEEE, Jan. 1981.

[398] J. Pavlin, “Pradicting tha Performance of Distributed
Knowladge-Basaed Systems: A Modeling Approach,”
Proc. Nati Conf. on Al, pp. 314-318, AAAIL, 1883,

(359} D. D. Carkill and V. R. Lesser, “The Use of Mata-Leval
Controt for Coordination in a Distributed Problem Solv-
ing Network” Proc. 8th LICAI pp. 748-756. William
Kaufman, Los Altos, CA, Aug. 18983.

[400) V. R. Lesser and D. D. Corkill, "The Distributed Vehicle
Monitoring Testbed: A Tooi for Investigating Distributed
Problem Solving Networks,” The AP Magazine, pp.
15-33, AAAIL Fall 1983.

[401] S. Cammarata, D. McArthur, and R. Steeb, “Strategies
of Cooperation in Distributed Problem Soiving,” Proc. of
8th 1JCAI, pp. 767~770, William Kaufman, Los Altas, CA,
Aug. 1983,

{402] A. S. Gevins, "Overview of the Human Brain as a Dis-
tributed Computing Network,” Proc. Int't Conf. on Com~-
puter Design: VLS1 in Computers, pp. 13-16, {EEE, 1983.

[403] W. Fritz and The Inteiligent System, SIGART Newslet-
ter, no. 90, pp. 34-38, ACM, Oct. 1584.

[404] K. Xawanobe, “Current Status and Future Plans of the

© ™ Ganeration Computer System Project,” Proc. int
Conf. on 5 Gaenaration Computer Systems, pp. 3-36,
ICOT and North-Holland, 1984.

[408] P. C. Treleaven and | G. Lima, “Japan's
§t"-Generation Computer Systams,” Computer, vol. 15,
no. 8, pp. 79-88, \EEE, Aug. 1982.

[406] T. Moto-oke, “Overview to the 5 Generation Com-
puter System Project,” Proc. 10th Annual Intl Symp. on
Computer Architecture, pp. 417-422, |EEE/ACM, June
1983.

{4071 L Bic, “The 5" Ganeration Grail: A Survey of Related
Research.” Proc. ACM'84, pp. 283-297, ACM, Oct. 1984,

SIGART Newsistter, April 1986, Number 86

[408] S. Uchida and T. Yokoi, “Sequential inference
Machine: SiIM Progress Report,® Proc. Int'l Cont. on 5™

Generation Computer Systems, pp. 58-81, ICOT and

North-Holland, 1984,

[408] T. Yokoi, S. Uchida, and ICOT Third Laboratory,
“Sequantial Inferance Maching: SIM--its Programming
and Opaerating System,” Proc Intl Cont. on 5'* Genera-
tion Computer Systems, pp. 70-8%1, ICOT and Nornth~
Holland, 1984.

{410] K. Taki, M. Yockota, A. Yamamoto, H. Nishikawa,
S. Uchids, K. Nakashima, and A Mitsuishi, "Hardware
Design and Implementation of the Personal Saquential
Inference Machine (PSi},° Proc. Int1 Conf. on 5%
Generation Computer Systems, pp. 398—409 ICOT and
North-Holland, 1584,

[4311] M. Yokota, A. Yamamoto, K. Taki. H. Nishikawa, and
" 8. Uchida, “The Design and Implementation of a Per-
- sonal Sequential inference Machine: PSL" New Genera-

tion Computing, vol. 1, no. 2, pp. 125-144, OHMSHA Ltd.
and Springer-Veriag, 1983.

[412) K. Murakami, T. Kakuta, R. Onai, and N. Ito “Research
on Parallel Machine Architacture for 5'™-Ganaration
Computer Systems,” Computer, vol. 18, no. 6, pp.
76-92, IEEE, June 1985.

[413] T. Moto-oks, H. Tanaks, H. Aida, K Hirata, and
T. Maruyama, “The Architecture of a Paraliel Inference
Engine {(PIE)" Proc. Int'l Conf. on 5'™ Generation Com-
puter Systems, pp. 479-488, ICOT and North-Holiand,
1984,

[414] A. Goto, H. Tanaka, and T. Moto-oka, “Highly Parallel
Infarence Engine PIE-~Goal Rewriting Model and
Machine Architecture,” New Generation Computing, vol.
2, no. 1, pp. 37-58, OHMSHA Ltd. and Springer-Verlag,
1984.

[418] S. Uchida, “Interence Machine: From Seqguential to
Parailiel,” Proc¢. 10th Annual Int’l Symp. on Computer Ar-
chitecture, pp. 410-416, IEEE/ACM, June 1383.

{416] N. 1to and M. Shimizu, “Datatiow Based Execution
Mechanisms of Paraliel and Concurrent Prolog,” New
Generation Computing, vol. 3, no. 1, pp. 15-41,
OHMSHA Lid. and Springer-Vaerlag, 1985,

{417] K Murakami, T. Kakuta, N. Miyazaki, 5. Shibayama,
and H. Yokots, “A Relational Data Base Machine: First
Step to Knowledge Base Machine,” Proc. 10th Annual
inti Symp. on Computer Architecture, pp. 423-425,
IEEE/ACM, June 1883.

[418'1 K Furukawsa and T. Yokoi, "Basic Software System.,”
Proc. int'l Conf. on 5 Generation Computar Systems,
pp. 37-57, ICOT and North-Holtand, 1884,

{419] C. D. McCrosky, J. J. Glasgow, and M. A. Jenkins,
*Nial: A Candidate Language for 5" Genarstion Com-
puter Systems,” Proc. ACM'84, pp. 157-166, ACM, Qct.
1984. ‘ .

{420] D. Michia, “Induciive Rule Generation in the Context
of the 5' Ganeration,” Proc. Intt Machine Learning
Waorkshop, pp. 85-70, Univ. of iltincis, Urbana, IL, June
1883.

{421] T. Maneul, "Cautiously Optimistic Tone Set For Sth
Ganeration,” Electronics, pp. 57-63, McGraw-Hill, Dec.
3, 1984.

Page 45

[422] K. G. Wilson, "Science, Industry, and the New
Japanese Challenge.” Proc. IEEE, vol. 72, no. 1, pp. 6-18,

[EEE, Jan. 1984,

[423] "ESPRIT: Europe Challenges U.S. and Japanese
Competitors,” Future Generation Computer Systams,
vol. 1, no. 1, pp. 61-69, North—Holland, 1984.

[424] M. van Emden, "Towards a Western 5'h-Generation
Computer System Project,” Proc. ACM'84, pp. 298-302,
ACM, Oct. 1984,

[425) Proc. ACM'B4 Annual Cont.: The 6 Generation Chat-
lenge, ACM, 1984. -

[426] J. Darlington and M. Reeve, “ALICE: A Multi-processor
Reduction Machine for the Parallel Evaluation of Ap-~
plicative Languages,” Proc. Conf. on Functional Pro-
gramming Languages and Computer Architecture, pp.
65~74, ACM, 1981,

(4271 1. W. Moor, An Applicative Compiler for a Parallel
Machine, Research Report DoCB3/6, Impaerial College,
London, England, March 1983,

{428] J. Darlington, A,). Field, and H. Pull, The Unification
of Functional and Logic Languages, Tech. Report, Im-
periel Colfege, London, England, Feb. 1985.

[429] M. Dawson, A LISP Compiler for ALICE, Tech. Report,
imperial College, London. England, 1985,

[430] "Special Issue on Tomarrow's Computers,” Spectrum,
vol. 20, no. 11, pp. 51-58, 69, IEEE, Nov. 1983,

BINDINGS

Jim Hendler (tormerly Brown University)
Computer Science Dept.
University of Maryland
College Park, Maryland 20742
301-454-2002

Adolfo Guzman (sabbatical year)
MCC
Parallel Processing Program
9430 Research Blvd.
Echelon Building #1, Suite 200
Austin, TX 78759
512-343-0860

SIGART Newslatter, April 1886, Number 96

ABSTRACTS

The following abstracts may be ordered from:
Box 3CRL

Computing Research Laboratory

New Mexico State University

Las Cruces, NM 88003

Syntax, Preference and Right Attachment
Yorick willks, Xiuming Huang and Dan Fass
MCCS-85-5 .

The paper claims that the right attachment rules for
phrases originally suggested by Frazier and Fodor are
wrong, and that ngne of the subsequent patchings of the
rulés by syntactic methods have improved the situation.
For each rule there are perfectly straightforward and in-
definitely large classes of simple counter-exampies. We
then examine suggestions by Ford et al, Schubert and
Hirst which are quasi-semantic in nature and which we
considar ingenious but unsatisfactory. We offer a
straightforward solution within the framework of
preferance semantics, and argue that the principal issue is
not the type and nature of information required to get ap-
propriate phrase attachments, hut the issue of where to
store the information and with what process to apply it.
We present a prolog implementation of a best first algo-
rithm covering the data and contrast it with closely related
ones, all of which are based on the preferences of nouns
and prepositions, as well as verbs.

Machine Translation in the Semantic
Definite Clause Grammars Formalism
Xiuming Huang

MCCS-85-7

The paper describes the SDCG (Semantic Definite
Clause Grammars), a formalism for Natural Language
Processing (NLP), and the XTRA (English Chinese Sentence
TRAnstator) machine transtation {MT) system based on it.
The system translates general domain English sentences
into grammatical Chinese sentences fn a fully automatic
manner. It is written in Prolog and impiemented on the
DEC-10, the GEC; and the SUN workstation, respectively.

SDCG is an augmentation of (Pereira at al 80)'s DCG
{Definite Clause Grammars) which in turn is based on CFG
(Contaxt Free Grammars). Implemanted in Prolog, the
SDCG is highly suitable for NLP in general, and MT in par-
ticular.

A wide range of linguistic phenomena is covered by
the' XTRA systern, including muitiple word senses, coor-
dinate canstryctions, and prepositional phrase attathment,
among others.

Bad Metaphars: Chomsky and Al
Yorick Wilks
MCCS-85-8

The paper argues that the historical divisions batween, on
the one hand, cluster of approaches to language under-
standing by computer known as Al and, on the other, the
Transformational Grammar system of Chomsky were
caused not so much by matters of principie {as between a
scientific linguistics and computational applications) or by
methodology, as by Chomsky's attachment over the years
to a succession of unfortunate metaphors is explain his
position. As recent developments in finguistics have
shown, once these are removed there are no issues of
principle (though there may continue to be differences of

