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ABSTRACT 
AND-tree evaluation is an important technique in artificial 

intelligence and operations research. An example is the divide­
and-conquer algorithm. which can be considered as the evalua­
tion uf a precedence graph consisting of two opposing AND-trees. 
In this paper. the optimal granularity of parallelism of AND­
tree computations is quantitatively analyzed. The efficiency 
analysis is based on both preemptive and nonpreemptive 
critical-path scheduling algorithms. It is found that the optimal 
grain depends on the complexity of the problem to be solved. the 
shape of the precedence graph. and the task-time distribution 
along each path. The major results consist of tight bounds on 
the number of processors. within which the optimal grain can be 
sought efficiently. In view of the optimal granularity. architec­
tural requirements for parallel AND-tree evaluations are also 
discussed. 

INDEX TERMS: AND trees. critical-path scheduling. divide­
and-conquer algorithms. granularity. processor-time efficiency, 
processor utilization. 

1. INTRODUCTION 
A wide class of problems arising in artiftcial intelligence. 

operations research, decision making, and various scientific and 
engineering fields involve finding a solution of a problem. which 
is made up of a large number of subproblems to be solved. Solv­
ing these subproblems can be represented as AND-tree computa­
tions. Examples include evaluating arithmetic expressions. 
searching possible solution trees of logic programs. ·-'evaluating 
functional programs. scheduling operations in assetD.bly lines, 
finding the extremum. merge-sorting. and quick-sorting. 

There are two kinds of AND-trees. intrees and outtrees. In 
an intree (resp. outtree), each node has at most one immediate 
successor (resp. predecessor). and the root is an exit node (resp. 
entry node). The intrees and outtrees specify the precedence 
relationships among_ the nodes. Every node is reachable from the 
entry node for an outtree or can reach the exit node for an 
intree. In recursive computations. such as divide-and-conquer 
algorithms. a problem is partitioned into smaller and distinct 
subproblems. and the solutions are found for the subproblems 
and are combined into a solution for the original problem. The 
procedure is applied recursively until the subproblems are so 
small that they can be solved directly. In this way, the evalua­
tion can be viewed as a process with two phases, the decomposi­
tion of subproblems based on an outtree and the composition of 
results based on an intree. Hence. the precedence graph is com­
posed of an intree and an outtree. We call this particular graph 
an outin. tree. Deterministic programs can be represented by 
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outin trees. Functional programming. which is considered as an 
important programming style to resolve the von-Neumann 
bottleneck. deals exclusively with AND-graphs [1]. Similarly. 
data-fiow graphs are AND-graphs [7]. 

Outin trees have the following characteristics. First. there 
is no cycle in an outin tree. Second. in contrast to general 
forests. an outin tree consists of one outtree and one intree and 
have a one-t<H:>ne correspondence of all the leaves in the two 
trees. We call these leaves the leaves of the outtn. tree. In this 
paper. we will mainly discuss cutin trees. However. the results 
derived apply to intrees and outtrees as well. Here. AND-trees 
and cutin trees are used synonymously. Figure 1(a) illustrates 
an cutin tree. whiq:J. reflects the precedence relationships among 
tasks in a merge-sort problem shown in Figure 1(b) to sort six 
elements. The nonterminal nodes in the outtree part represent 
decompositions. each of which split a (sub-)list into two smaller 
sublists, whereas the nonterminal nodes in the intree part 
represent composition, each of which generate a sorted list based 
on two smaller sorted sublists. 

Evaluation of cutin trees naturally suggests implementa­
tion on parallel computers due to the independence of subprob­
lems. AND-tree evaluations are important in evaluating logic 
programs. especially when parallel processing is used [5]. Stu­
dies conducted on parallel computers for executing divide-and­
conquer algorithms c8.n be classi.fied into three types. First. mul­
tiprocessors that are connected in the form of a tree. especially a 
binary tree. can be used to exploit the potential parallelism of 
divide-and-conquer algorithms [13·, 23]. A second approach is 
the virtual tree machine [2], which consists of a number of pro­
cessors with private memory connected by an interconnection 
network. such as the binary n-c:ube, and a suitable algorithm to 
decide when and where each subproblem should be solved. The 
third approach is a variation of the above approaches using a 
common memory. All processors are connected to the memory 
by a common bus [14]. 

To evaluate an AND-tree in parallel. it is necessary to 
schedule the subproblems to achieve high throughput and proces­
sor utilization. An important problem is to determine the proper 
granularity of parallelism. that is. the minimum size of a sub­
problem that should be computed by a single·processor. If the 
grain is too large, then the processors can be loosely coupled but 
may be under-utilized. In contrast, if the grain is too small. 
then the processors can be better utilized. but tight coupling may 
be necessary, and the communication overhead may be prohibi­
tive. The grain must be properly chosen to obtain a proper bal­
ance between processor utilization and communication overhead. 

In previous studies. one can find different points of view on 
the issue of granularity. Some researchers advocate a fine grain, 
while others suggest a coarse grain. For example. in designing 
the FFP machinll!'! [21]. a small grain is chosen based on the 
hypothesis that appropriately designed small-grain multiproces­
sors will prove superior to large-grain ones in supporting ease 
and generality of parallel computations. In contrast. in 
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Figure 1. The merge-sort problem represented as an cutin tree. 

Redtilow [17]. large-grain parallelism is used to minimize com­
munication overheads. Moreover. most previous studies on 
granularity were discussed qualitatively. In this paper. we will 
analyze the optimal granularity of parallel evaluation of cutin 
trees quantitatively. We will identify the factors that infi.uence 
the optimal grain, in particular. the relationship between the 
optimal granularity and the problem complexity. 

2. SCHEDULING PARALLEL OUTIN-TREE EVALUATIONS 
To analyze the optimal granularity of parallel evaluation 

of cutin trees. an asynchronous model for parallel computation 
is adopted here. The precedence graph of an cutin tree is 
oriented such that the entry node is at the top of the figure and 
the exit node is at the bottom. An arc is assumed to be always 
directed towards the bottom of the graph. The number inside a 
node is the task execution time, while the number next to a node. 
called its length, is the sum of the task execution times for nodes 
in the longest path from this node to the exit node. Figure 2(a) 
is an example of an outin tree. 

The execution time of a task can be interpreted as either its 
maximum. processing time or its expected processing time. In the 
former case, the worst-case time to complete the schedule is con­
sidered, while in the latter case the length of the schedule 
represents a rough estimate of the average time of computation. 
In some outin-tree problems, the execution time of each task can 

be predicted quite accurately. For example, in evaluating arith­
metic expressions, the time to execute a primitive operation. such 
as a multiplication, is known. In other cases. the average execu­
tion times may have to be estimated from statistics or from pre­
vious experience. In all cases. the communication overhead is 
non-trivial when preemptions are allowed. and the task time 
should also include the overhead of preemptions. 

Our goal is to choose an algorithm that minimizes the max­
imum completion time for scheduling outin trees on a set of P 
identical processors. and to find the optimal granularity based on 
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(a) Task precedence graph as cutin tree. 

A 

D E 
3 

H 2 

J 

9 

___ Q.. 

F, 4 

wave-front (k-2) 
att-4 

chain-task' ;.c:C2) 
element-task 

(b) Task precedence graph as e-outin tree using chain tasks. 
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(e) Nonpreemptive CPS scheduling of outin tree in Figure 2(a). 

Figure 2. Outin tree and CPS scheduling. 



this scheduling algorithm. Our scheduling problem is similar to 
the P/tree/Cm•x scheduling problem in which tree precedence 
graphs are considered [12. 6. 4]. Note that the proper granular­
ity is related to the scheduling algorithm. If the underlying 
scheduling algorithm does not minimize the completion time, 
then the granularity found with respect to this scheduling algo­
rithm is suboptimal. In this paper. our analysis of optimal 
granularity is based on optimal scheduling algorithms. The 
method of granularity analysis used here can be applied to 
choosing the best grain for other scheduling algorithms. 

If preemption is allowed, P/preemption.intree/Cm•x can be 
solved optimally either by Muntz and Coffman's Critical Path 
Scheduling (CPS) algorithm in O(N) time [22]. or by other 
polynomial-time algorithms [9]. In the CPS algorithm, the next 
job chosen is the one with the longest length of unexecuted jobs. 
This longest path is called the critical path. If preemption is not 
allowed, then optimal scheduling algorithms have been obtained 
only for two cases: (a) all tasks have equal execution times and 
the precedence relationships are in the form of an intree (Hu's 
algorithm) [15] and (b) when two processors are used [3]. Hu's 
optimal scheduling algorithm is indeed a CPS algorithm. Many 
other cases have been proved to be NP-hard [2S. 19]. Besides 
efficient and optimal. the CPS algorithm is easy to implement 
and. consequently. is one of the most common scheduling algo­
rithms [20. 18]. 

In case that the precedence graph is a tree, that all proces­
sors are identical. and that each task requires 'tt· 0<t1~tm.x. 
units of time to complete. the nonpreemptive CPS algorithm 
turns out to be almost-optimal in the sense that 

T,(k) "i T.,Ck) "i T,(k) + t..ax (2.1) 

where T np(k) and T p(k) are, respectively. the total times 
required by the nonpreemptive and preemptive CPS algorithms 
using k processors [16]. Some researchers have strived for 
nonpreemptive scheduling algorithms to solve scheduling prob­
lems with tree precedence [12. 8,18]. Recently. Garey. Dolev. et 
al. have studied the scheduling of forests consisting of intrees 
and outtrees. Given a fixed number of processors. polynomial 
algorithms with high complexities to find an optimal.schedule of 
these forests have been developed [10. 8]. 

In our research. we are interested in a special. but widely 
used. case of cutin trees. From the point of view of optimai 
granularity, evaluating an out in tree can be divided into the 
splitting. all-busy. and combining phases with respect to k. the 
fixed number of processors. In the splitting phase. the problem is 
decomposed. and the number of busy processors i$! increased 
from one up to at most k-1 (the number of busy ·processors 
must always be less than k if the number of available tasks at 
any time is less than k). In the combining phase, the subprob­
lems are composed. and the number of busy processors is 
decreased from at most k-1 to one. During these two phases. 
some processors are idle. In contrast. in the all-busy phase. all 
the k processors are busy. Schindler has proved that the 
schedule of a precedence graph is optimal if either the computa­
tions can be completed in only the all-busy or combining phase. 
or it can be partitioned into the all-busy and combining phases 
by a ''heightline" [24]. We will show that this result can be 
extented to scheduling cutin trees. and that the CPS algorithm 
guarantees the optimal preemptive scheduling and near-optimal 
nonpreemptive scheduling of cutin-tree evaluations. 

To analyze the properties of preemptive CPS. in short, 
PCPS, algorithms. it will be more convenient to represent a task 
(a node of the cutin tree) of execution time 'tt by a chain-task, 
which is ~ element-tasks (or element-nodes. or in short. e-tasks or 
e-nodes). each of which has one unit of execution time (see Fig­
ure 2(b)). We will use a subscript i in the task identifier to indi­
cate the i'th e-task in the chain-task. Hence, F2 is the second e­
task of task F. The new cutin tree is called the element-outin 
tree (or e-outin trH). For each chain-task. the e-task farthest 
from the exit e-node of the e-outin tree is called a task-head e-

node. It is easy to verify that the length of the task-head e-node 
is the same as the length of the original multiunit task. Two e­
nodes are said to be in the sarr12 e-level of the e-outin tree if their 
lengths are identical. that is. the e-level number of an e-node is . 
equal to its length assuming that the exit e-node is in Level 0. 
To distinguish between nodes and levels in the original cutin tree 
Cas exemplified by Figure l(a)) and in the e-outin tree (as 
exemplified by Figure 2(b)), we will use tasks and levels with 
respect to the original cutin tree and e-task and e-level with 
respect to the e-outin tree in subsequent discussions. 

. There is another variation of preemptive scheduling algo­
rtthms called General Scheduling (GS) discipline [22]. which is 
extremely useful in studying the granularity of parallel cutin­
tree evaluations. In the GS algorithm. each processor in the sys­
tem is considered to have a certain amount of computing capa­
city rather than as a discrete unit, and this computing capacity 
can be assigned to tasks in any amount between zero and the 
equivalence of one processor. For example, if we assign half of a 
processor to task P1 with execution time 'tj. then it will take 2·'tj 
units of time to complete P1• In the OS discipline. one processor 
is assigned to each of the k e-nodes farthest from the exit e-node 
of the e-outin tree to be evaluated. If there is a tie in the lengths 
among u e-nodes for the last v. u>v. processors. then v/u of a 
processor is assigned to each of these u e-nodes. Each time when 
either (a) a chain-task of the e-outin tree is completed. or (b) a 
point is reached where. if we continue with the present assign­
ment. some e-nodes will be computed at a faster rate than other 
e-nodes that are farther from the eXit e-node. then the processors 
are reassigned to the remaining tree according to the CPS princi­
ple. Situation (b) occurs when an e-node that is being computed 
has the same length as that of some unexecuted task-head e­
node(s). In this case. one (or part of a) processor must be 
assigned to the unexecuted task-head e-node. 

The GS discipline is illustrated in Figure 2(c). Muntz and 
Coffman have proved the equivalence between the GS and PCPS 
~lgorithms [22]. That is. if preemptions are permitted. then the 

processor-sharing" capability is not needed for optimal schedul­
ing. To illustrate this equivalence. Figure 2(d) shows the 
preemptive schedule for the corresponding e-outin tree in Figure 
2(b). Note that in the scheduling algorithms discussed in this 
paper. all idle processors, if any, must be used to compute an 
available executable task. 

. In pra~tice, p:eemptions are usually restricted at the begin­
n_mg o~ a trme untt. so the overhead of a practical PCPS algo­
rtthm lS equal to that of Hu"s algorithm. which assumes that 
tasks have unit execution times. From Eq. (~.1). we have [22] 

T,(k) = T,.(k) "i T•(k) "i [T,.(k) + 1] = (T,(k) + 1](2.2) 

where Tb(k) and T 111(k) are the times required by Hu's and GS 
algorithms, respectively. Eq. (2.2) shows that the behavior of 
GS is ve~ close to that of any PCPS algorithm that only allows 
pr~ptlons at the beginning of a time unit. In subsequent dis­
cusstons. the results will be derived without any restriction on 
the allowable times for preemptions. Moreover. we will use GS 
as a model to analyze the properties of PCPS algorithms. The 
granularities derived are the same as those when the PCPS algo­
rithm is used. 

At time t. an e-node is said to be active if either a processor 
or part of a processor is assigned to it. The total number of 
~tive e-nodes may be greater than the number of processors 
smce some e-nodes may share processors. All active e-nodes 
form. a wave-front in the e-outin-tree evaluation. Two particu­
lar ttmes of the wave-front are of special interest: taCk) and 
t.e(k). The computation enters the all-busy phase at t_(k) and 
enters the combining phase a.t t.c(k). In both times. the wave­
fronts serve as ph~boundaries. We call the former phase­
boundary B.(k) and the latter B.c(k). 

For the task graph in Figure l(a). if the PCPS algorithm is 
employed, then ta(2)=1 and t.c(2)=8.5 (see Figures 2(c) and 
2(d)). The corresponding phase-boundaries 8..(2) and B (2) are 
indicated in Figure 2(b). •<= 



If a preemptive (resp. nonpreemptive*) CPS algorithm is 
applied, then the computational times required by k processors 
to complete the splitting. all-busy and combining phases are 
denoted by T,.(k). T,.(k) and Tpo(k) (resp. T.,.(k). T 0 ,.(k) and 
Tnpc(k)). In the intree part of an e-outin tree. each e-node 
corresponds to a path to the exit e-node. while each e-node ~the 
outtree part may have more than one path to the exit e-node. 
The longest path from an e-node to the exit e-node is selected as 
the execution-path through this e-node. For an e-node, if more 
than one such longest path exist, then a left-to-right orienU!-tion 
or any tie-breaking rule is used to break the tie. In the outtree 
part. if an e-node has q immediate successors. one of which is in 
its execution-path called the immediate execution-successor. then 
the other q-1 immediate successors serve as heads of new 
execution-paths. called path-heads. As a result. each active e­
node corresponds to a unique execution-path to the exit e-node. 

For example, in Figure 2(b). the execution-path from e­
node A1 is (Al. C1, F1. Fz, F3. 11• 12, J1. J2) and e-node B1 is the 
head of the execution-path (B1 , D1 • Dz. 0,. H1 • J1 • J2). Note that 
when k processors are used. only the topmost k-1 path-heads 
are active in the splitting phase. Other path-heads are active in 
the all-busy phase. 

Let A(t.k) be the set of active e-nodes at time t when k 
processors are used. This set can be divided into two classes in 
terms of the lengths of the corresponding execution-paths. At 
time t. the active e-nodes whose execution-paths are the shortest 
among all active e-nodes belong to a subset A.,(t.k), and lie in a 
single e-level. called the mintmal acttve e-level. The other active 
e-nodes belong to another subset A11(t,k). (If t and k are obvious 
in the context. they will be omitted for brevity). For example, 
in Figure 2(b), when t is 2, e-nodes D1 and 0 1 belong to A.(2.2). 
and e-node F1 belongs to A 11(2.2). 

In the following four propositions, we will show the pro­
perties of the PCPS algorithm. which are related to the optimal 
granularity of parallel cutin-tree evaluations. It is easy to 
observe that the active e-nodes are executed at different rates 
depending on whether the assigned processor is shared or not. 
Let r1( t) be the processing rate in e-node per time unit of active 
e-node i at time t. The following proposition distinguishes the 
processing rates under various conditions. 

Proposition 2.1: During a parallel evaluation of an cutin tree 
with k processors. r 1(t). the processing rate of active e-node i at 
timet. satis:fies the following equations. 

l = 1 if e-node iEAb(t.k) or I A(t.k) I "k 
ri(t) < 1 otherwise ., 

where IA(t,k)l is the number of active e-nodes in the sei A(t.k). 
Proof: This follows from the OS strategy immediately. 0 

Proposition 2.1 reflects the following facts. First. in the 
splitting and combining phases. the processing rate for any e­
node is one. that is. an e-node is processed in each tim.e unit. 
Second. if an active e-node is not in the minimal active e-level. 
then one processor (rather than part of a processor) has to be 
assigned to it. that is, its corresponding processing rate is one. 
Third. in the all-busy phase. if the number of active e-nodes is 
equal to the number of processors. then the processing rates for 
e-nodes in the minimal active e-level is also one. Only when the 
number of active e-nodes is larger than the number of processors 
used. the processing rates of e-nodes in the minimal active e­
level are less than one. 

Let hmu: be the length of the critical path in the cutin tree 
to be evaluated. Since at least one time unit is needed to com­
plete each e-node, it is evident for any scheduling algorithm that 

T(k) il> h~ (2.3) 

where T(k) is the completion time using k processors under a 
preemptive or nonpreemptive scheduling discipline. The follow­
ing proposition shows the relationship between T pCk) and the 

• We will di.scuss nonpreemptive CPS al&orithms In Section 4. 

+ 
shape of the phase-boundary. 

Proposition 2.2:u (a) Tp(k) > hmu implies that all a~tive e­
nodes on the phase-boundary B" are located in the same e-level. 
(b) If an active e-node on the phase-boundary B" belongs to Ah• 
then T p(k) = hmax• 

The example in Figure 2 illustrates Property (a) above. At 
time t-4. e-node G1 in the critical path "enters" the set A,. and 
hereafter all active e-nodes are in the same e-level. Proposition 
2.2 reflects the fact that preemptive scheduling algorithms distri­
bute work uniformly among the available processors, thereby 
reducing the computational time required in the combining 
phase. This is the reason for a preemptive algorithm to run fas­
ter than the nonpreemptive counterpart. 

To investigate the optimal granularity. we need to examine 
the phase-boundaries when different numbers of processors are 
used. The following proposition compares two boundaries with 
respect to k and k+l processors. In subsequent discussions. the 
phase-boundary in a .ringle e-level will mean that all active e­
nodes on this boundary have execution-paths with the same 
length. 

Proposition 2.3: .. If phase-boundary B"(k+l) is in a single e­
level. then the phase-boundary B"(k) must be in a single e-level. 

If the phase-boundary B.e(k+l) is not in a single e-level. 
then there are k.' O<k'<k. active e-nodes belonging to Ab(k+l) 
on this phase-boundary. During the splitting and all-busy 
phases. we can partition the (k+ 1) processors into two groups. 
The first group consists of k' processors that only evaluate e­
nodes in the k' execution-paths from the topmost k' path-heads 
to the k' e-nodes. Other (k+l-k') processors constitute the 
second group. which evaluate all e-nodes in the two phases 
except for e-nodes in the aforementioned k' execution-paths. 
Accordingly. we can prove the following proposition. 

Proposition 2.4:•• If an cutin tree is evaluated by the PCPS algo­
rithm, then T.,(k+l) il> T.,(k), and Tpo(k+l) il> T"(k). 

The following theorem shows that the PCPS algorithm. can 
be used to find the optimal preemptive schedule for cutin trees. 

Theorem 2.1.: PCPS is a minimum-completion-time scheduling 
algorithm for an cutin tree. 
Proof: Let ~pll(k) and ~pc(k) be the total amount of idle times in 
the splitting and combining phases when the PCPS algorithm. is 
applied and k processors are used. Clearly. 

T,(k) = .z>.,(k) + T(l) +4>po(k) 
. k (2.4) 

Minimizing Tp(k) implies minimizing C~pc+~pc). In the PCPS 
algorithm, once an e-node is available. that is. its predecessor 
node has been finished, a processor is assigned to it immediately. 
The time spent in the splitting phase for any schedule cannot be 
shorter than that in the PCPS algorithm.. It also means that ttP" 
for the PCPS algorithm is the minimum. We now consider ~pc· 
If the phase-boundary Bac is not in a single e-level. then 
Tp(k)=hmax according to Proposition 2.2. That is. the PCPS algo­
rithm achieves the minimum computational time T(k) according 
to Eq. (2.3). What we need to consider is the case when the 
phase-boundary Bac is in a single e-level. This boundary is indi­
cated by a dark line B in Figure 3. 

Suppose that an arbitrary scheduling algorithm. is used. the 
corresponding phase-boundary is denoted by B'. which is shown 
as a dashed line in Figure 3. Note that it is impossible for all e­
nodes on boundary B' to be beneath boundary B. otherwise at 
least one processor is idle before the wave-front achieves B.' 
V(hich implies that B' is not a phase-boundary. In other words, 
at least one e-node on boundary B' is above or on boundary B". 
Similarly. it is impossible for all e-nodes of boundary B' to be 

" Due to spaco llmita:tion, tho proofs of Propoaitions 2.2 'thru 2.4, Lemmas 3.1 
thru 3.4, and all lemmas and 'theorems in Section 4 are omitted. 
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Let Npe and Nc' be the amount of task times in the combin­
ing phase of the PCPS and another scheduling algorithm. Let 
Tc'(k) and ~c.'(k) be the computational time and the total idle 
time in the combining phase when an arbitrary scheduling algo­
rithm using k processors is adopted. If Tpc(k) equals Tc.'(k). then 
N,.(k);i>N,'(k). hence. (~,'-4>,.) - (N,.-N,') ;> 0. If T,.(k) is 
less than Tc'(k), since at least one e--node on boundary B' is 
beneath or on boundary Bac.• (Nc.'-Npc) cannot be larger than the 
amount of task times for e--tasks beneath B' and above B (the 
shaded area in Figure 3). Sinc:e, from Proposition 2.1, the pro­
cessing rate for any path in the combining phase is·:one. then 
after (Tc'-Tpc) time units. all e--nodes in the shaded area in Fig­
ure 3 must be completed. As less than k e--nodes can be com­
pleted during a time-unit in the combining phase. the amount of 
e-nodes in the shaded area must be less than k(Tc'-Tpc)· There­
fore. 

(~,'- ~,.) = [k(T,'-T,.l -(N,' -N,.)] > 0. 

This means that ~pe• the total idle time in the oombining phase. 
is also minimum for the PCPS algorithm. The proof does not 
imply that the PCPS algorithm is the unique optimal algorithm. 
but rather that the amount of idle times introduced by the PCPS 
algorithm is the minimum. a ' 

3. OPTIMAL GRANULAl!ITY IN PREEMPTIVE SCHEDUL­
ING 

The c:riteria generally used to define the optimal granular­
ity are the processor utilization (PU). k'f2. and A T2. where k is 
the number of processors. T is the computational time. and A is 
the area of a VLSI implementation. The c:omplexity of divide­
and~nquer algorithms in an SIMD model and the conditions to 
assure the optimal proc:essor utilization have been studied [14]. 
However. processor utilization inc:reases monotonically with 
decreasing number of processors. whic:h means that PU ac:hieves 

the maximum when one processor is used. Henc:e, PU is not an 
adequate measure for the effec:ts of parallel processing. A more 
appropriate measure is the k'f2 criterion. which c:onsiders both 
PU and computational time. since 

kT'(k) = T(~~(k) where PU ~dup and T(k) ~~p 
To minimize k'f2 means to reduc:e the computational time and to 
maximize the processor utilization. k'f2 is linearly related to 
A 'f2 if the area of connection wires is proportional to the area of 
pr:ocessing elements. as in systolic arrays. Both computational 
time and proc:essor utilization are important in many applica­
tions. hence. kT2 is a good criterion to optimize. In other appli­
cations. such as real-time processing. the c:ompletion time may be 
more c:ritical and the PU is a secondary consideration. In this 
case. a different optimization c:riterion may have to be used 

In this paper, we have adopted k'f2 as a c:riterion of 
processor-time efficiency to derive the optimal granularity for 
parallel cutin-tree evaluations. That is. given an cutin-tree. we 
need to either choose k to minimize k'f2. or given a fixed k, deter­
mine the type of Cutin trees (their shapes. complexities, etc.) and 
its proper size that c:a.n be solved most efiic:iently by this system. 

It is difficult to find the optimal granularity with respect to 
k~ directly because the optimal granularity depends on the exe­
cution time of eac:h task and the shape of the outin tree. We 
now try to fmd an effic:ient and systematic method to determine 
the optimal grain via an intermediate variable, the total idle 
time. Let ~p(k) (resp. ~np(k)) be the total amount of idle times 
when a preemptive (resp. nonpreemptive) scheduling algorithm 
with k processors is used. ~p(k) takes into account the idle 
times in both the splitting and combining phases. Clearly. 
~,(k) = [~,.(k)+ol>,.(k)] and 

kT(k) = T(1) + ~(k) (3.1) 

Eq. (3.1) holds for both preemptive and nonpreemptive schedul­
ing algorithms. 

The total idle time ~p(k) is related to both k and kT2• The 
following two lemmas show the difference between the total idle 
times when different number of processors are used. 

Lemma 3.1: .. Suppose that an outin tree is evaluated by the 
PCPS algorithm. then 

[~,(k+1)- ~,(k)]"' hm.x (3.2) 

where hmu: is the length of the c:ritical path. 

Lemma 3.2:'' Suppose that an outin tree.is evaluated by the 
PCPS algorithm. then 

[~,Ck+1)- ~,(k)] ;> [T,_(k) + T,.(k)] > o (3.3) 

Lemma 3.3:'' Suppose that an outin tree is evaluated by the 
PCPS algorithm. then 

T,(k+1).; T,(k) 

The above lemmas reveal that when the number of proces­
sors used are increased. the total idle times must increase. and 
the difference of the total idle times with respect to k 1 and k2 
l?""cessors is bounded by (k2-k1)[T,.(k)+T,.(k)] and 
lk2-k1)·hmu:• respectively. From these facts. we c:an determine 
the conditions under which k'f'! is either monotonically inc:reas­
ing or decreasing with respect to k. The following theorem 
shows the relation between ~p(k) and k'f2. 

Theorem 3.1: Suppose that an outin tree is evaluated by the 
PCPS algorithm. kTp2(k) is monotonically inc:reasing with k if 
[~,(k+1)-4>,(k)] > T,(k)/2. kT.;'(k) is monotonically decreas­
ing with kif [~,(k+1)-4>,(k)] < T,(k)/(2 + 1/k). 

Proof: By Eq. (3.1). we get 



(k+l)T~(k+l)- kT~(k) (3.4) 

[T,(l) + <l>,(k+l)]2 [T,Cl) + <l>,(k)]2 

= ~~--k~+Ifl------ k 

= k[T ,Cl)+<I>,Ck+l)]2 - k[T ,Cll+<l>,(k)]'- [T ,Cll+<l>,(k)J' 
k k+l 

_ [<l>,(k+ll-<l>,(k)] [2T,(l)+<l>,(k+ll+<l>,(k)]- kT,i'(k) 
- k+l 

_ [<l>,(k+l)-<l>,(k)] [(k+!)T,(k+l)+kT,(k)]- kT,i'(k) 
- k+l 

Since. from Lemma 3.2, ~p(k+1) > ~p(k). hence 

(k+l)T,(k+l) = [T,(l)+<l>,(k+l)] (3.5) 

> [T,(l)+<l>,(k)] = kT,(k) 

From Eq's (3.4) and (3.5). we conclude that if [<l>,(k+l)-<l>,(k)] 
> T_,(k)/2. then (k+l)T,'(k+l) > kT,i'(k). By Lemma 3.1, Eq's 
(3.4J and (2.3), we obtain the following condition. 

T,(k) 
If [<l>,(k+l)- <l>,(k)] < 2 + 1/k. 

then [(k+l)T,'Ck+l)- kT,i'(k)] 

< I~;~~) [2kT,(k)+T,Ckl]- kT,i'(k) I= 0 0 

Theorem 3.1 restricts the region within which we need to 
find a value k that minimizes kTi(k). In other words, the 
approximate condition that adding a processor will not degrade 
the processor-time efficiency is that all processors will be busy at 
least half of the time. 

In the example shown in Figure 2. Tp(l) = 18. Tp(2) = 10.5, 
<1>,(2) = 3. T,(3) = 9, and <1>,(3) = 9. (Readers are suggested to 
schedule this cutin tree with three processors). Since 41p(2) = 3 
< T,(l)/3 = 6. and [<1>,(3)- <1>,(2)] = 6 > T,(2)/2 = 5.25. 
according to Theorem 3.1. we can conclude that the use of two 
processors minimizes k"r for this cutin tree. 

A question about the monotonicity of [kT 2(k+l) 
-kT,'(k)] now arises naturally. If [kT,'(k+l) -kT/Ck)] is 
increasing monotonically with k, then kT i(k) is a unimodal 
function of k. and the optimal value of k can be found easily. 
This monotonicity will be proved in the following theorem. 

Theorem 3.2: Suppose that an outin tree is evaluated by the 
PCPS algorithm. then kTff(k) is a concave function of·k. that is. 
k'f2(k) achieves the minimum when k = k.' and k'fl(k) is mono­
tonically decreasing (resp. increasing) with k when k < k' (resp. 
k > k'). 
Proof: To show kT ff(k) is a concave function of k, we need to 
prove that its second-order difference is positive. namely. 
[(k+2)T,'(k+2)- (k+l)T,'(k+!)] > [(k+llT/(k+l)- kT,'(k)]. 
Let A(kT,'(k) denote [(k+l)T,'(k+l)- kT,'(kJ]. Then 

A(kT,'(k)) = k[T,'(k+l)- T,'(k)] + T,'(k+l) (3.6) 

A((k+l)T,'(k+l)) = (k+l)[T,'(k+2)-T,'(k+1)]+T,'(k+2) (3.7) 

Subtracting Eq. (3.6) from Eq. (3.7) and applying Eq. (3.1) 
yields 

A((k+!)T,i'(k+l))- A(kT,'(k)) (3.8) 

= (k+2)[T,'(k+2)- T,'(k+l)]- k[T,'(k+l)- T,'(k)] 

= [T,(k+2) + T,(k+ll] [<I>,Ck+2)- <I>,Ck+l)- T,(k+l)] 

- [T,Ck+l) + T,Ck)] [<I>,Ck+l)- <I>,Ck)- T,Ck+!)] 

From Eq's (2.3) and (3.8) and Lemmaa 3.1. 3.2 and 3.3, we con­
clude that {A((k+llT,'(k+l))- A(kT,'(k))} > 0. 0 

We have found the condition under which kT/ is increased 
or decreased based on the intermediate variable. ~p(k). and that 

kT ff is a concave function. Next. we will determine the number 
of processors such that kT~ is minimum for a given outin tree. 

Note that in the original cutin tree (see Figure 2(a)). each 
node is a multiunit task, and tasks in a level may have different 
lengths. If there are m(i) tasks in level i, then there are m(i) 
paths from level i to the exit node. Among these paths. the 
minimum length is denoted by 0 (i). Similarly. we can define the 
depth of a node as the sum of task-times along a path from the 
entry node to and including this node, and denote the shortest 
depth from the entry node to level i by d(i). 

Given k processors, we can find Ct.• a particular level in the 
intree part of the original cutin tree, such that m(ck), the 
number of tasks in this level. is less than k, but m(ct.+l) ~ k. 
This particular level is called the minimum-all-busy level. Like­
wise, in the outtree part. there is a level called the maximum-all­
busy level and denoted by St.• such that m(sk) < k and 
m(st.-1);;.. k. By recognizing the minimum-all-busy and 
maximum-all-busy levels, we can roughly estimate the locations 
of the phase-boundaries. Recall from Proposition 2.2 that 
T p(k) = hmax if the phase-boundary Bac is not in a single e-level. 
In this case, (k+l)Ti(k+l) > kTi(k). To achieve the minimum 
kT i(k). the number of processors should be reduced until the 
phase-boundary appear in a single e-level. (When Bac(k) is not 
in a single e-level but BacCk-1) is. kTi(k) may be minimum.) 
This observation shows that the use of the minimum-all-busy 
level to estimate Tpc is acc:urate in most cases. The following 
lemma shows that the shortest length from the minimum-all­
busy (resp. maximum-all-busy) level to the exit (resp. entry) 
node gives the lower-bound computational time in the combining 
(reap. splitting) phase. 

Lemma 3.4: ... Suppose that an cutin tree is evaluated by k pro­
cessors. If St. and Ct. are the maximum-all-busy and minimum­
all-busy levels. then (a) T,.(k);. d(stl. and (b) T,.(k);. 0 Cc.). 
Further. if the phase-boundary B.c(k) lies in a single e-level. 
then T pc = 0 (c,t.). 

This lemma is illustrated by the example in Figure 2(a). 
Suppose that three processors are used. the maximum-all-busy 
level contains tasks B and C. and the minimum-all-busy level 
contains taska Hand I. T,.(3) (reap. T,.(3)) cannot be less than 
2 (resp. 3) because if either task B or C. which are associated 
with the shortest depth from the entry node to this level. is not 
finished. then the computation cannot enter the all-busy phase. 
Likewise. if task H has been assigned to a processor. then the 
computation must have entered the combining phase. Since 
B,/2) lies in a single e-level, T,.(2)- Q (c,) = 3. 

For an arbitrary outin tree, 

T,.;. t,.. T,.;. t 0 , aod <1>,;. Ct..+ t.,.) (3.9) 

where ten and tex are the task times of the entry and exit nodes. 
respectively. 

When more than one processor are used. some processors 
must be idle when the entry and exit nodes are evaluated. If the 
times spent in evaluating the entry and exit nodes dominate over 
all other computations. then parallel processing is deftnitely 
inefficient. The following corollary identifies the condition under 
which sequential computation is better than para1:1e1 processing. 

Corollary 3.1: Suppose that an cutin tree is scheduled by the 
PCPS algorithm and (t,.+t.,.) > T(l)/2. then sequential process­
ing. i.e .• k•l. achieves the minimum k'f2. 
Proof: This follows from Theorem 3.1 immediately. 0 

Having proved a series of propositions. lemmas. and 
theorems. the main theorem to derive the optimal granularity 
under the PCPS scheduling algorithm can be obtained now. In 
the following theorem. the region on k in which we can find the 
optimal granularity of parallel outin-tree evaluation is given. 

Theorem 3.3: Suppose that an AND-tree is evaluated by the 
PCPS algorithm and k> 1. then 



(k+1)T;'(k+1) > kT;'(k) if k > lT,(l). and (3.10) 
hm~ 

(k+1)T 2(k+1) < kT 2(k) if k < lT'(
1
)+t,.+t,,- _!.) (3.1i) 

p p 2~ 2 

Proof: From Lemma 3.2. 

A<l>,(k) ;J> T,.(k) + T,.(k). (3.12) 

Since the idle time of each processor cannot be larger than 
(T_,.+Tpc:)• we have 

<~>,(k).; (k-1) [T,.(k) + T,.(k)] (3.13) 

By Theorem 3.1. Eq's (3.1). (3.12) and (3.13). the condition that 
guarantees the monotonic increase of kTff(k) with k is 

(k+1)T;'(k+1) > kT;'(k) (3.14) 

if [T (k)+T (k)] T,(l) + (k-1)[T,.(k)+T,.(k)] 
,.. pe> lk . 

On the other hand, when all tasks but those in the critical path 
can be completed by (k-1) processors during hmu: 
- [T ,.(k)+T ,.(k)] time-units. i.e .. 

(k-1) > T,(l)-~ (3.15) 
hm~ [T ,.(kJ+T ,.(k)]' 

the phase-boundary Br.c must not be in a single e-level. As dis­
cussed before. the optimal grain cannot be larger than the RHS of 
Eq. (3.15) plus one. By Lemma 3.4. Eq·s (3.14) and (3.15). 

(k+l)T;'(k+l) > kT;'(k) if 

k > . l T,(l) 1 T,(l) ) 
mm. d(s~~:)+O lee) ' hmax- [d(s~~:)+Q lcc)J (J.l6) 

The condition described in Eq. (3.10) is obtained from Eq. 
(3.16). 

Note that A~p(k) =Eii hmax• and that 
kT,(k) > [T0(1)+t,.+t,,] according to Lemma 3.1. Eq·s (3.1) and 
(3.9). By Theorem 3.1. the following result can be derived. 

T,(l) + t,. + t, 
(k+1)T;'(k+1) < kT;'(k) if h~ < 

2
k + 

1 

which is equivalent to Eq. (3.11). 0 

To find optimal granularity. we need to search the small 
region of k defined by Theorem. 3.3. The lower and upper 
bounds of this region are. respectively. {Tp(l)/(2~) -1} and 
{2T,(l)/(h~) + 1}. Note that we have not made any assump­
tion about the distribution of task times in deriving these 
bounds. Since kTl is a concave function of k (Theorem 3.2). the 
desirable number of processors ean be found easily by a binary 
search. The binary search can be completed within about 
log,(T0(1)/h~) steps. Each step in the binary search tests 
whether ~(kTl(k)) is positive. If it is. then a smaller value of k 
will be checked in the next step. otherwise. a larger k will be 
tested. 

For any k inside the search region. the phase-boundary 
Bac(k) is in a single e-level. hence the location of Bac(k) can be 
uniquely determined without knowing the detailed schedule. 
Accordingly. 

<~>,(k) = k[T,.(k) + T,.(k)]- [N,.(k) + N,.(k)] 

where NPI(k) and Npc:(k) are the amount of task times in the 
splitting and combining phases. From Lemma 3.4. 
Tpc:(k) = 0 (ct.)• and TPI(k) can be found directly from the e­
outin tr~- As a result. 

kT;'(k) = [T,(l) + o!>,(k))2 
k 

For instance. suppose that N items need to be sorted. It is 
well-known that T(l) • N·lo~N if a merge-sort algorithm is 
used. In this case. the overhead in the intree part dominates that 

of the outtree part. For the intree part. 
hma~~: = N + N/2 + · · · + 1 = 2N-1. so the lower and upper 
bounds of the search region can be determined from Theorem 
3.3, which are close to (lo82N)/4 and lo82N. respectively. Since 
there are only (3·log2N)/4 candidate values in this search region. 
log2log2N steps of a binary search can guarantee to find the 
optimal grain pf parallel merge sorting. For problems such as 
evaluating numerical or logic expressions and finding the llUlX­

imum (or minimum) value. all task times are identical. 
Theorem 3.3 predicts that the optimal grain is between 
N/(2·log2N) and 2N!log2N. Figure 4 shows the simulation 
results of applying a nonpreemptive CPS algorithm to a binary 
intree of 4096 terminal notes and tt=1 for all i. Since all tasks 
have unit execution times. the performance of the nonpreemptiv~ 
CPS algorithm is very close to that of GS algorithm (see Eq. 
(2.2)). In this example, kT2 is minimum when 431 processors 
are used. which is between N/(2·log,N) (-170) and 2N/logzN 
(oo683). 

The above analysis reveals that the optimal grain of an 
outin-tree evaluation is related to the following parameters: 
(a) T(l). the time required by a sequential evaluation, which is 

the sum of all task times in the cutin tree; 
(b) hmax• the length of the critical path; 
(c) d(sc). the shortest depth from the entry node to sk. the 

maximum-all-busy level; and 
(d) 0 Cct.)• the. shortest length from ck• the minimum-all-busy 

level. to the exit node (recall that ck and sk depend on k). 
T(1)/hmax refl.ects the shape of the outin tree, while T(1)/d(st.) 
and T(l)/0 (sk) refiect the distribution of the task-times. If the 
outin tree is "wide" and nearly balanced. i.e., Tp(l)lhmax is large. 
then a :fine grain is more appropriate. otherwise. a coarse grain is 
more suitable. Further. if tasks in levels closer to the entry and 
exit nodes have longer execution times. i.e •• Tp(l)/[d(sk)+O (ck)] is 
small, then the optimal grain should be larger. otherwise. a :liner 
grain is better with respect to kT2. Both T(l)/hmax and 
T(1)/[d(s,)+O (c,)] are related to the problem complexity. We 
will again show the infi.uence of problem complexity on the 
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Figure 4. Simulation results to :find the optimal granularity of 
evaluating an intree with 4096 leaves and unit execu­
tion times for all nodes. 



optimal granularity in the next section. where nonpreemptive 
algorithms will be used. 

4. OPTIMAL GRANULAJUTY IN NONPREEMPTIVE 
SCHEDULING 

Nonpreemptive CPS algorithms are similar to the PCPS 
algorithm except that preemption is not allowed. In the 
nonpreemptive CPS algorithm. one processor is assigned to each 
of the k nodes farthest from the exit node. If there is a tie in 
lengths among more than one node. then a left-to-right tie­
breaking rule is used to assign a processor to one of these nodes. 
When a task of the outin tree is completed. the free processor is 
assigned to the node farthest from the root in the remaining 
outin tree to be evaluated. Figure 2(e) illustrates an example of 
nonpreemptive CPS scheduling. In general. nonpreemptive 
scheduling is more practical due to the smaller task-switching 
overheads; however. it is more difficult to predict its perfor­
mance and determine the optimal grain in parallel processing. 

The problem of determining the optimal granularity of 
nonpreemptive CPS algorithm is complicated by its anomalous 
behavior. Graham has proved that if an AND-tree is evaluated 
twice by using k 1 and k 2 processors. respectively [11]. then 

T •• Ck1)" [ 1 + k 2 -1 l 
Tnp(k2) k1 

The above inequality implies that the anomaly 
T0 p(k+llrr •• Ck) < k/(k+1) is possible. In other words. kT,i'.Ck) 
is generally not a concave function of k and cannot be searched 
by a binary search or other efficient searc:h methods. 

In a special case. if the execution times of tasks of an out­
tree are monotonically decreasing as the tree is decomposed. then 
it will be shown below that ~np(k2) > cltnp(kl) holds for 
k2 >2k1. Likewise, the same relation holds for the case when the 
execution times of tasks of an intree are monotonically increas­
ing as the tree is composed. Here. the optimal granularity of 
cutin-tree computations based on a nonpreemptive CPS algo­
rithm can be bounded in a relatively small region. The assump­
tion on monotonic distribution of task times is valid in divide­
and-conquer algorithms. 

In this sectiOJ.l. we will develop conditions under which k"fl 
is monotonically increasing or decreasing with k for the special 
case in which the task times are monotonically decreasing in the 
outtree and monotonically increasing in the intree. We will 
investigate the difference of the total idle times with respect to 
different number of processors under nonpreemptive ·-CPS. The 
following lemma gives the lower and upper bounds of 
[ <~> •• ck,l- <~> •• ck,ll. 

Lemma 4.1:" Suppose that an outin tree is scheduled by a 
nonpreemptive CPS algorithm and that tt>tJ if task i is a prede­
cessor (resp. successor) of task j in the out tree (resp. in tree) put. 
then 

[<~> •• Ck2)- <~> •• Ck1)] ~ {(k2-k1)[T,_(k1) + T,.Ck1)] (4.1) 

- k 1t,,.Ck1)} > o if k 2 > 2k1 

[<~> •• Ck2)- <~> •• Ck2)] .; {(k2-k1)[T.,(k2) + T,.(k2)] (4.2) 

+ t<,t,,.Ck2)} if k, > k 1 

where tnpa(k) is the longest task-time among all tasks in the all­
busy phase when k processors are used. 

We should point out that the above lemma holds for the 
case in which a part of the phase-boundary is in the intree and 
another part is in the outtree. The above lemma. is true because 
the task time of a node in the all-busy phase is less than either 
TPII or Tpe from the assumption of monotonically distributed 
task times. That is. [TPI(k1) + Tpe(k1)] > tnpa(kl) is always true 
regardless the location of the phase-boundary. 

Similar to Theorem 3.1. we first study the relationship 

between kT2 and the idle times. The following theorem gives the 
conditions under which k'fl is monotonically increasing or 
decreasing based on the intermediate variable ~np(k). 

Theorem 4.1:** Suppose that an outin tree is scheduled by a 
nonpreemptive CPS algorithm and that t 1>tJ if task i is a prede­
cessor (resp. successor) of task j in the outtree (resp. intree) part. 
then 

kzTfP(kz) > k1TlpCk1) if [cltnp(k2)- cltnpCkl)] (4.7) 

> [ k,;k
1 

T npCk,) I and k2 > 2k1; 

k,T,i'.Ck2) < k,T,i'p(k,) if [<~> •• Ck2)- <~> •• Ck1)] (4.8) 

[
2(k,-k,)k, I 

< lk
1
+3k

2 
TnpCkl) and k2 > k1 

The main theorem to find the optimal granularity can be 
derived from Theorem 4.1. Before this theorem is proved. the 
following lemma is needed. 

Lemma 4.2:" For a given cutin tree, suppose that both PCPS and 
nonpreemptive CPS algorithms are applied, then 
[T •• ,(k)+T.,.(k)].; [T.,(k) + T,.(k) + t,,.(k)]. 

The example in Figure 2 illustrates this lemma. Here. 
[CT.,.+T ... l- CT,.+T,.ll = 1. which is Jess than t,,. (-3). 

Theorem 4.2: .. Suppose that an outin tree is scheduled by a 
nonpreemptive CPS algorithm and that tt>tJ if task i is a prede­
cessor (resp. successor) of task j in the outtree (resp. in tree) part. 
then k, the number of processors that minimizes kT:pCk). is 
bounded between [Tnp(l)+t.n+t,J:]/(8hmax) and 3Tnp(l) 
/[d(s,)+O (c,) - 2t,,.Ckl] 

As an example. we can determine the area within which the 
optimal granularity can be found for the parallel merge-sort of 
N elements. In this problem. the computational overhead in the 
intree is dominant, so only the part of the intree has to be con­
sidered in the scheduling. From Theorem 4.2. the lower bound 
of the search region is Clog2N)/16, since Tnll) = N·log2N and 
hmu<2N. If N is large enough. then [d(St)+O (ck)- 2!npaCk)] 
will be larger than 1.5N, hence. the upper bound of the search 
region is 2·1ogzN. 

Comparing these bounds with .Theorem 3.3. we see that the 
range within which an optimal-grain for a nonpreemptive 
schedule can be found is larger than that of a preemptive 
schedule. Moreover. kT2 is not monotonically decreasing or 
increasing with k for nonpreemptive scheduling. i.e .• kT2 is not a 
unimodal function of k. hence, an exhaustive search is required 
to find the optimal grain. 

To predict the optimal order-of-magnitude granularity in 
general. we now briefly discuss the asymptotically optimal 
granularity of parallel outin-tree evaluations with nonpreemp­
tive CPS algorithm. Let C(n) be the overhead of a node in the 
intree. which has n leaves rooted by this node. C(n) represents 
the overhead of combining the results from its immediate prede­
cessor nodes in the intree. Likewise. let DCn) be the overhead of 
a node in the outtree, which has n leaves rooted by this node. 
O(n) represents the overhead of decomposing the given node into 
its immediate successor nodes in the outtree. For an cutin tree 
with N leaves. C(N) and O(N) represent the overheads of the 
exit and entry nodes, respectively. Let e be the set of functions 
of the same order. For problems such as summing a set of 
numbers. finding the maximum of N numbers, and returning 
logical values to the main goal in evaluating logic programs. 
C(n) = 6(1). In quicksort and merge sort. C(n)+D(n) = 6(n). 

The asymptotically optimal grain depends on the complexi­
ties of C(n) and D(n). The higher the order-of-magnitude com­
plexity of C(n) and D(n) are. the larger the granularity is. 
When the order-of magnitude complexity of C(n) (and/or D(n)) 



is large. the time spent in the combining (and/or splitting) phase 
is dominating the time in the all-busy phase. and the perfor­
mance gain in the all-busy ph~ with finer grains is negligible. 
In other words, a small granularity may result in und~­
utilization of processors. 

To isolate the impact of the complexities C(n) and D(n) on 
the optimal granularity from the shape of the cutin tree, we dis­
cuss the complete binary outin tree. and assume that. for all 
nodes in a level of the intree (resp. outtree) part. the order-of­
magnitude complexities of C(n) (resp. D(n)) are identical .. This 
assumption enables us to estimate T(l). The following theorem 
gives the condition under which the asymptotically minimum 
kTl is achieved for various complexities of C(n) and D(n). 

Theorem 4.3:" Suppose that a nonpreemptive CPS algorithm is 
applied to evaluate an cutin tree of N leaves by k processors. 
Assume that. for all nodes in a level of cutin tree. the order-of­
magnitude complexities of C(n) (and D(n)) are the same and that 
t 1>tJ• if task i is a predecessor (resp. successor) of task j in the 
part of the outtree (resp. intree). Then the order-of-magnitude 
kTl(N) is the minimum if 9(T.,_(k(N))) 
= 9(T.,_(k(N))+T.,.(k(N))). 

The above theorem shows that if the number of leaves of 
an cutin tree is very large. then, to achieve the minimum 
kT 2(k). the number of processors should be chosen such that the 
tmres required by the all-busy phase and the total times required 
by the other two phases are approximately equal. This result 
also shows the relationship between the processor utilization and 
k'P!. Let N~e be the amount of task-time in the splitting and 
combining phases. and T0 p&(k) = [T"PI'(k)+Tn~(k)]. Then. for 
arbitrary cutin tree computations. an asymptotically optimal 
granularity is achieved when 

( ) 
kT.,.(k) + NK 

PU k = -,;:;::;..-=r ikT.,P'(k) 
Since T11pa(k) 4ii N. Et (k-1lTnpa(k). we conclude that the 
corresponding processor utilization is between 0.5 and 1. In 
other words; when a problem is solved by a parallel divid~ 
and-conquer algorithm and there are a large number of leaves in 
its cutin-tree representation, to pursue more than 50% processor 
utilization will reduce the utilization-time efficiency. According 
to Theorem 4.3. the asymptotically optimal granularities with 
respect to various C(n)+D(n) are summarized in Table 1. 

Complexity ~o 

of C(n)+D(n) Opti,mal Architectural 
1 E;nE;N Granularitv Requirements 
9(logln) 

9 
[lo;IN] 

A very large number 

sl>O of processors: tree or other 

efficient interconnection 
9(n'logln) A large number of 

O<r<1 [ N'~ l processors; tree or other 9 
log:IN 

sl>O efficient interconnection 
9(n login) A small number of 

sl>O e(log,N) processors: loosely coupled: 
simple interconnection 

9(n•) 9(1) Single or few processors; 
o>1 sharedmemC>rY 

Table 1. Asymptotically optimal granularities in parallel pro­
cessing of cutin trees with respect to order-of­
magnitude kT2 {N is the number of leaves of the outin 
uee). 

S. CONCLUDING REMARKS 
In this paper. we have derived tight bounds within which 

the optimal granularity of parallel AND-tree evaluations under 
preemptive and nonpreemptive critical path scheduling can be 
found. For nonpreemptive scheduling. the asymptotically 
optimal granularities with respect to various problem complexi­
ties have been derived. These theoretical results provide an 
upper bound on the number of processors to achieve the 
minimum k~ criterion. 

According to our efficiency analysis. we found that the 
optimal granularity depends on the problem complexity. the 
shape of the precedence graph (balanced or skewed). and the 
task-time distribution along each path (random or monotonic). 
It is usually di.ffi.cult to predict the shape and the task-time dis­
tribution. One possible way is by statistical analysis. In con­
trast. the complexity of a problem to be solved is generally 
known before the problem is solved. 

The complexity of each node in the cutin tree is an impor­
tant factor that influences the optimal granularity. As illus­
trated in Table 1, if C(n)+D(n) is 9(nP), p>1. and a large 
number of processors are used. then the processor-time efficiency, 
k'f-2. must be poor regardless of the capacity of the interconnec­
tion network. In this case. the time needed to evaluate a sub­
problem will be increased quickly during the decomposition pro­
cess in the outtree and the composition process in the intree. 
Hence, the root and exit nodes of the tree are obvious 
bottlenecks. In contrast. if C(n) and D(n) are 9(1), then the 
time needed to evaluate any subproblem is bounded by a con­
stant. and the root and exit nodes will not be bottlenecks. 
Examples of this kind of problems include finding the maximum 
and evaluating an arithmetic expression. Here, a fine-grain 
architecture is appropriate. and a large speedup will be obtained 
by using a large number of processors. Tree-structured com­
puter archite<:tures [13. 21] and virtual-tree computers [2] are 
good candidates in these applications. In cases when C(n) equals 
either 9(n) or 9(lofn). s~O. the time needed to evaluate a sub­
problem is increased slowly during the decomposition process in 
the outtree and the composition process in the intree. A 
medium-grain architecture will be more cost-effective. For 
example. to sort 4000 elements by a parallel merge-sort algo­
rithm. using ten to twelve processors will be a good choice. For 
many practical problems, especially when divide-and-conquer 
algorithms are used. the precedence graph is nearly balanced. and 
the task-times of all nodes in each level are approximately equal. 
hence, the nonpreemptive critical path scheduling algorithm may 
be viewed as a parallel breadth-first search. In this case. well 
balanced workloads with overlapped process communications 
can be assigned to the processors working under an SIMD model. 
The optimal grains will, therefore. be close to the theoretical 
ones predicted in Sections Three and Four. The architectural 
requirements for various cases are summarized in Table 1. 

In many problems. the order-of-magnitude complexities of 
C(n) and D(n) may be dilferent. For example. for the quicksort 

algorithm. C(n)•9(1) and D(n)-S(n). that is, most of the com­
putational overhead is spent in the decomposition phase. and the 
composition operation is trivial. In contrast. for the merge-sort 
algorithm. C(n)-e(n) and D(n)-9(1). In many logical and 
functional programs, the return operation is usually simple. i.e .• 
C(n)-9(1). but the complexity of a subgoal or function call 
depends on the number of the parameters passed and the method 
of copying data. For these problems. the optimal grain can be 
determined by the part of the tree that has dominant overhead. 

The shape of the AND-tree and its task-time distribution 
are also important factorS to be considered. Let Tp(1)/hmu: be 
"average width" of an AND-tree. The optimal granularity is 
found to depend strongly on the average width. If the AND-tree 
is ''wide.'' then the degree of parallelism is high and the granu­
larity can be small. On the other hand, if the AND-uee Is "nar­
row:· then the degree of parallelism is low and the granularity 



is necessarily large. Here. the tree m.11y have to be restructured 
to arrive at a different representation. 

In many problems involving AND-trees. the trees are usu­
ally irregular. and the workloads may be data dependent. An 
important functional requirement is, therefore. the ability to 
dynamically distribute the workload in the architecture. For a 
computer architecture with a small granularity. an efficient 
interconnection network is needed. In a loosely coupled system 
with a coarse grain. an effective load balancing mechanism is 
necessary. Here, process communications may not be well over­
lapped with computations. and the corresponding task-times 
should include the communication overhead. As a result, the 
optimal number of processors may be less than the theoretical 
values predicted in Sections Three and Four. 
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