DESIGN METHODOLOGIES OF COMPUTERS

Benjamin W. Wah
Department of Electrical and Computer Engineering
' and the Coordinated Science Laboratory
University of Itlinois at Urbana-Champaign
1101 W, Springfield Avenue
Urbana, IL 61801

Many of today’s computers are single-processor von Neu-
mann machines dJdesigned for sequential, deterministic. and
numeric computations and are not equipped for Al applications
which are mainly parallel, nondeterministic, and symbolic mani-
pulations. Consequentially, efficient computer architectures for
Al applications would be significantly different from traditional
computers. These architectures have the following requirements,

Symbolic processing. Al applications generally process
data in symbolic form. Primitive symbolic operations such as
comparison, selection, sorting. matching, logic set operations
(union, intersection and negation), contexts and partitions, tran-

sitive closure, and pattern retrieval and recognition are fre.:

quently used. In a higher level. symbolic operations on patierns
such as sentences, spesch, graphics, and images may be needed.

Nondeterministic computations. Many Al algorithms are
nondeterministic, that is, it is impossible to plan in advance the
procedures to execute and to terminate Wwith the available infor-
mation. This is attributed to & lack of knowledge and a complete
understanding of the problem and results in exbaustively
enumerating all possibilities when the problem is solved.

execution. With a lack of complete knowledge

and anticipation of the solution process, the capabilities and
features of existing data structures and funciions may be defined
and pew data structures and functions may be created wheti the
problem is actually solved. Further. the maximum size for a
given structure may be so large that it is impossible to allocate
the necessary memory space ahead of time. As a result, memory
space may have to be dynamically allocated and deallocated
when the problem is solved.

LEarge potential for parallel and distributed processing.
In parallel processing of deterministic algorithms, a set of neces-
sary and independent tasks must be found and processed con-
currently. This class of parallelism is called AND-parallelism.
In Al processing, the large degree of nondeterminism offers an
additional source of parsllel processing. Tasks at & nondeter-
ministic decision point can be processed in parallel. This latter
class is called OR-paralielism.

Knowledge management. Knowledge is an important com-
ponent in reducing the complexity of solving a given problem:
more useful knowledge means less exhaustive searching. How-

ever, many Al problems may have very high inherent complex- .

ity. hence the amount of useful knowledge may also be exceed-
ingly large. Further, the knowledge acquired may be fuzzy,
heuristic, and uncertain in nature. The management, representa-
tion. manipulation, and learning of knowledge are. therefore,
important problems 10 be addressed.

Research supported by the Nationsl Aeronautics and Space Administration
(NASA) under Contract NASA NAG 1-613 in cooperation with the Illinols Com-
puter Laboratory for Aerotpace Systems and Software (ICLASS), a NASA-
suppotied Center for Excellence.

Sesond Tnternational Conference of Supercomputing, San Prancisco, CA, USA,
May 4-7, 1987,

Open system. In many Al applications, the knowledge
needed 1o solve the problem may be incomplete because the
source of the knowledge is unknown at the time the solution is
devissd, or the environment may be changing and cannot be anti-
cipated at design time. Al systems should be designed with an
open concept and aliow continuous refinement and acquisition of
new knowledge. )

With these distinct features, the essential issues to design a
computer system to support Al applications can be classified into
the representation level. the control level, and the processor
level.

The representation level deals with the knowledge and
methods to solve the problem and the means to represent it. The
essential issues 10 be studied are the (a) kierarchy of mete-
knowledge, (b) domain-knowledge representation, and (¢) Al
languages and programming. Domain knowledge refers to
objects, events, and actions per se, while meta-knowledge
includes the extent and origin of the domain knowledge of a par-
ticular object, the reliability of certain information, and the pos-
sibility of an event 1o occur. In other words, meta-knowledge is
the knowledge about domain knowledge. Meta~knowledge can
be considered to exist in a hierarchy. There are many open prob-
lems related to the use of meta-knowledge: its unambiguous
specification, its consistency verification, the learning of new
meta-knowledge, and the use of appropriate statistical metrics.
Domain knowledge can be represented in a declarative form or in
a procedural form. A declarative representation offers a higher
potential for parallelism but are usually associated with a large
search gpace that may partly counteract the gains of parallel

i In contrast, procedural schemes allow the
specification and direct interaction of facts and bheuristic infor-
mation, hence climinating wasteful searching but may over-
specify the precedence constraints and restricts the degree of
parallel processing. In choosing the appropriate representation
scheme and language, tradeoffs must be performed on the
amount of memory spece required to store the knowledge, the
inference time, the expected usage of the knowledge, and the
underlying computer architecture and technological limitations.

The control level are concerned with the detection of
dependencies and parallelism in the algorithmic and program
representations of the problem to result in correct and efficient
execution. The important issues in this level are (a) truth
maintenance, (b) partitioning and restructuring, (c) synchroniza-
tion, and (d) scheduling. Truth maintenance consists of recog-
nizing the inconsistency, meodifying the state to remove the
inconsistency, and verifying that all inconsistencies are detected
and corrected properly. Partitioning and restructuring refer to
the decomposition and reorganization of the knowledge base and
the Al program to result in more efficient processing. lIssues
similar to those considered for conventional multiprocessing sys-
tems are involved. However, the methods to resolve each are
different due to the nondeterministic and dynamic nature of exe-




cution. Synchronization is used to maintain the correct execu-
tion under semantic and data dependencies. Data dependencies
are specified through abared variables, However, in a number of
declarative languages such as PROLOG, it is difficult to specify

itic depend directly. s subgoals in a clause are
specified as & set rather than as a sequence. New languages that
combine the feature of functional languages to specify parallel
tasks and that of logic languages to specify nondeterminism are
evolving. Scheduling refers to the selection of ready tasks o
assign to available processors. Scheduling can be static or
dynamic. The difficulty in designing a good scheduler lies in the
beuristic information to guide the nondeterminigtic gearch. In
practice, the heuristic information may be fallible. As a result,
some Al architects do not schedule nondeterministic tasks in
parallel and only consider static scheduling.

The processor level consists of the micro-level, macrolevel,
snd system-level architectures. Microlevel architectures to sup-
port Al processing consist of primitive architectural designs that
are fundamental to applications in AL Special features in Al
languages that are overhead-intensive can also be supported by
hardware. Examples of these architectures include the
unification hardware, tag bits for dynamic data-type checking,
and hardware stacks. The macrolevel is an intermediate level
between the microlevel and the system level. Macrolevel archi-
1ectures are (possibly) made up of & variety of microlevel archi-
tectures and perform more complex operations. Ezamples
include the dictionary and database machines, architectures for
searching, and architectures for managing dynamic data struc-
tures (such as the garbage-collection bardware). The system-
level architectures available today are generally oriented
towsrds one or a few of the languages or knowledge-
representation schemes and are designed to provide architectural
support to overhead-intensive features in these schemes. Exzam-
ples include systems to support functional programming
languages, logic languages, cbject-oriented Ianguages, production
rules, semantic networks, and special applications such as
robotics and image understanding. : )

Based on these issues. the various degign methedologies can .
be classified as top-down, bottom-up, and middle-out. :

Top-down design methodology. This approach starts by
defining. specifying. refining, and validating the requirements of
the application. devising methods to collect the necessary
knowledge and meta-knowledge, choosing an appropriate
representation of the knowledge and meta-knowledge, studying
problems related to the control of correct and efficient execution
with the given representation scheme, identifying functional
requirements of components. and mapping these components into
software and microlevel, macrolevel and system-level architec-
tures subject to technological and cost constraints. The process is
iterative. The Japanese Fifth Generation Computer System pro-
ject is an attempt to use a top-down methodology to design an
integrated user-oriented intelligent system for a number of
applications. Since the requirements are loose and span across
multiple applications. the language developed is oriented towards
general-purpose usage.

Bottom-up design methodology. In this approach. the
designers firgt design the computer gystem based on a computa-
tional model. such as dataflow. reduction. and control-flow, and
the technological and cost limitations. Possible extensions of
existing knowledge-representation schemes and languages
developed for Al applications are implemented on the given sys-
tem. Finally, the Al applications are coded using the representa-
tion schemes and languages provided. This is probably the mogt
popular approach to apply & general-purpose or existing system
for AI processing. However, it may result in ineficient process-
ing. and the available representation schemes and languages may
not satisfy the application requirements.

Middle-ont dexign methodology. This approach is a
short-cut to the top-down design methodology. 1t starts from a
proven and well established knowledge-representation scheme or

Al language (most likely developed for sequential processing)
and develope the architecture and the necessary modifications to
the language and representation to adapt to the application
requirements and the architecture. This is the approach taken by
many designers in designing special purpose computers for Al
processing. It may be subdivided into top-first and bottom-first,

_although both mzy be iterative. In a top-first middle-out metho-

dology, studies are first performed to modify the language and
representation scheme to make it more adaptable to the architec-
ture and computational model. Primitives may be added to the
language to facilitate parallel processing. Nice features from
several languages may be combined. The design of the architec-
ture follows. In the bottom-first middle-out methodology, the
chosen language or representation scheme is mapped directly into
architecture by providing hardware support for the overhead-
intensive operations. Applications are implemented using the
language provided. LISP computers are examples designed with
the bottom-first methodology.

Some observations on supporting efficient processing of Al
applications can be drawn.

(1) Better understanding and representation of meta-knowledge
are required to design better parallel algorithmg. Many Al
algorithms are heuristic in nature, and wupper bounds on
complexity to solve these problems have not been esta-
blished as in traditional combinatorial problems. Hence. the
use of better beuristic information. based on common-sense
or meta-knowledge and better knowledge representation can
have far greater impact on performance than what improved
computer architecture can provide.

(2) Better Al software management methods are essential in
developing more efficient and reliable software for Al pro-
cessing. Al systems are usually open systems and cannot be
defined based on a closed-world model. The language must
be able to support the acquisition of new knowledge and the
validation of existing knowledge. Probabilistic reasoning
and fuzzy knowledge may have to be supported. Tradi-
tional poftware design methodologies must be extended to
accommodate the characteristics of Al applications.

(3) Paralielism and better computer architectures cannot over-
come the exponential complexity of exhaustive enumeration
and are not very useful to extend the solvable problem
space. For a problem with a size that is too large to be
solved in a reasonable amount of time, it is unlikely that jt
can be solved by parallel processing alone. even if & linear
speedup can be achieved. In genersl, problems of low com-~
plexity can be solved by sequential processing or in
hardware if they are frequently encountered: problems of
moderate complexity should be solved by parallel process-
ing: and problems of high complexity should be solved by a
combination of heuristics and parallel processing.

(4) In many Al systems developed today. tasks and operations
implementad in hardware are those that are frequently exe-
cuted and bhave polynomial complexity. These tasks and
opergtions are identified from the languages or the
knowledge-representation schemes supported. The architec-

_tural concepts and parallel processing schemes applied may
be either well-known conventional concepts or new concepls
for nondeterministic and dynamic processing.

(5) It is not clear on the speeciup that paralle]l processing of non-
deterministic tasks will provide. although the potential to
process these tasks in parallel is large. Without appropri-
ately guiding the search and and detecting redundant com-
putations, much of the power of parallel processing may be
directed toward fruitless searches.

The role of the computer architacts lies in choosing a good
represantation, recognizing overhead-intensive tasks to maintain
and learn meta-knowledge, identifying primitive operations in
the languages and knowledge-representation schemes, and sup-
porting these tasks in hardware and software.




