
LOAD BALANCING PROTOCOLS ON A LOCAL COMPUTER SYSTEM
Wmf A MULTIACCESS NEIWORK

Katherine M. Baumgartner and Benjamin. W. Wah

Department of Electrical and Computer Engineering
and the Coordinated Sciences Laboratory

University of Illinois at Urbana-Champaign
1101 W. Springfield Avenue

Urbana. IL 61801

ABSTRACT
Load bala.ncing has been shown to be effective in reducing

the average response time of jobs in local computer systems. In
this paper. we study protocols for use in load balancing stra­
tegies that can be implemented on existing local computer sys­
tems connected by multiaccess network. The protocols use the
existing broadcast capability of multiaccess networks to imple­
ment an efficient search technique for finding the extremum of a
set of numbers. Load balancing can be implemented by using
numbers which reflect the workloads in the computers. The load
balancing strategy is practical and effective because it has a con­
stant average overhead.

INDEX TEIU\4S: Broadcast. collision detection. dynamic pro­
gramming. load balancing. Markov chains. multiaccess networks.

1. INTRODUCI10N
The decreasing cost. the growth in technology. and the

diversification of applications have caused computer systems to
evolve from being centralized to being distributed. A distributed
computer system (DCS) may possess a large number of general
and special-purpose autonomous processing units interconnected
by a network. The primary function of the network is to allow
communications among devices. A secondary function is
resource sharing. a special form of which is load balancing. Load
balancing uses communication facilities to support remote job
execution in a user transparent fashion to improve resource utili­
zation and reduce response time. A decision to load balance is
made if the job is likely to be finished sooner when executed
remotely than when executed locally. Load balancing is neces­
sary since a job will almost always be waiting for service at one
processor while another processor is idle in a DCS with ten or
more processors [8].

Load balancing decisions can be made in a centralized or a
distributed manner. A centralized decision implies that status
information is collected. and decisions to load balance are made
at one location. An example would be a system with a job
scheduler at one location that collects jobs and dispatches them
to stations for processing. Theoretical studies on centralized load
balancing have been made by Chow and Kohler [4] and Ni and
Hwang (10]. The disadvantage of centralized scheduling is the
overhead of collecting processor status information and jobs. If
this overhead is large. scheduling decisions are frequently based
on inaccurate and outdated status information. In contrast. a
distributed load balancing scheme does not limit the scheduling
intelligence to one processor. It avoids the bottleneck of collect­
ing status information and jobs at a single site and allows the
scheduler to react quickly to dynamic changes in the system
state.

Load balancing can also be classified as state-dependent or
probabilistic [4]. A decision based on the current state of the
system is state-dependenl. A decision is probabilistic if an arriv­
ing job is dispatched to the processors according to a set of
branching probabilities that are collected from previous experi-

Re~earch supported Oy National Science Foundation Grant DMC 85-19649.

International Conference on Parallel Proce.uing, St. Charlell, Illinois, AugWlt
1987.

ence or are based on system characteristics. In the case that the
branching probabilities are derived from the service rates of pro­
cessors. the strategy is called proportioruzl branchi.ng [4]. It was
found that a probabilistic strategy for a single job class per­
formed better than a proportional branching strategy with a sin­
gle arrival stream [10]. An optimal probabilistic algorithm for
multiple job classes was found to be easier to implement than
state-dependent strategies. An optimal probabilistic load balanc­
ing algorithm with multiple arrival streams has also been shown
[11]. Other research on load balancing include studies character­
izing state-dependent load balancing, determining appropriate
state information. and proposing efficient algorithms [2. 5, 1, 8,
15] and topology-dependent strategies [3, 14].

State-dependent load balancing is implemented on the Pur­
due Engineering Computer Network. which is a system of com­
puters connected by a hybrid of Ethernet and point-to-point
links [6]. The load balancing decisions are distributed: each pro­
cessor decides whether to send its jobs for remote execution. A
processor polls other processors for status information about
their loads. decides which processor has the lowest load. and
sends the job for remote processing if the turnaround time is
shorter.

(1)

(2)

(3)

Some results of these previous studies are as follows.

A network witb load balancing performs better than a net­
work without load balancing.

State-dependent load balancing strategies result in better
performance than probabilistic strategies. but the overhead
associated with implementing tbem is higher.

Probabilistic strategies are sometimes insensitive to dynamic
changes in system load and may result in suboptimal perf or-
mance.

(4) Load balancing decisions considering the state of the source
only do not have the potential for performance improve­
ment that decisions considering tbe state of the server do

(5)
[15].
Extensive state information is not needed for effective load
balancing and can be detrimental to system performance [5].

(6) Status information used in a state-dependent decision must
be readily available. Decisions based on outdated or inaccu­
rate status information could degrade the performance.

(7) Load balancing increases network load which can impede
message transmissions.

This study considers load balancing on local computer sys­
tems connected by CSMA/CD networks. These networks have a
broadcast bus topology that allows only one job or message to be
sent across the network at a time. Response time is the amount
of time elapsed from job submission to job completion and is an
indication of the processor load. An efficient load balancing stra­
tegy will result in a minimum in response time and send a
minimum of state information across the network. Due to the
constraint of sending one job at a time across the bus. one such
strategy is to send a job from the processor with the maximum
load to the processor with the minimum load if the overhead of
sending these jobs is small. This paper proposes window proto­
cols for distributed search that can be im.ple.mented on existing
CSMA/CD networks. These protocols can be used to implement
an efficient load balancing strategy.

851

The organization of this paper is as follows. The section
following this introduction details a window protocol that can
be used for distributed extremum search on bus net~ork.s and
requires hardware modification ~o existin~ network mt~aces.
Section Three explains the extens10ns to thiS protocol for Imple­
mentation on existing networks without hardware changes. Also
described in Section Three is the implementation o~ a load
balancing strategy using the distributed search. Sectto_n Four
describes the implementation of and performance evaluat1on of a
load balancing strategy using the distributed search. and conclu­
sions are made in Section Five.

2. WINDOW PII.OTOCOL FOil. DISTII.IBUTED EXTII.EMUM
SEAII.CHES

This section is divided into two parts. The first gives some
background on various contention-resolution protoc.ols.. The
second part desc::ribes a window protocol used for diStributed
extremum search. An example of the protocol is shown.

2..1. Contention Resolution
Ccrrier-sense-multi4ccess networks with coUision. detection

(CSMA/CD) are a type of local-area networks with packet
switching and a bus topology [12]. CSMA/CD networks evolved
from CSM.A networks that have listen-before-talk protocols to
avoid overlapping transmissions. The collision-detection ability
of CSMA/CD networks allows processors to additionally listen­
whae-tallc. so collisions resulting from simultaneous transmis­
sions can be detected and stopped immediately.

There are three types of protocols for contention resolution
in CSM.A/CD networks. Collision-free protocols strictly
schedule bus accesses. so no collisions occur. Contention
protocols function at the other extreme allowing p~~essors to
transmit whenever they find the bus idle. When colltStons occur
because of simultaneous transmissions. processors stop transmit­
ting. wait for some prescribed amount of time. an~ tr:,: again.
The backotf algorithm of Ethernet [9} is an example m th1s class.
The disadvantage of collision-free protocols lies in the overhead
of waiting for transmission. while the disadvantage of conten­
tion protocols is the time wasted during collisions. A third type
of contention-resolution protocol is the limited-contention proto­
col. This type of protocol chooses a processor for transmission
from among those waiting to transmit based on a priori informa­
tion. such as the channel load. The Virtual-Window Protocol
proposed by Wah and Juang [13] is an example of a limited­
contention protocol.

2..2. The Virtual-Window Protocol with Three-State Colli­
sion Detection

The Virtual-W,ndow Protocol (VWP) uses a three-state
collision-detection mechanism. After each attempted broadcast.
there are three possible outcomes: coUision (more than one
broadcast), idle (no broadcast). and success (exactly one broad­
cast).

Stations wishing to transmit packets participate in a conten­
tion period that consists of a number of contention slots. Each
station generates a random number called a conlention parameter
that is used for the entire contention period. The parameter is in
an interval with upper and lower bounds U and L. respet:tively.
Successive choices of smaller intervals in each contention slot
attempt to isolate the minimum contention parameter. The steps
performed by each station in a contention period are as follows.

procedure virtual_ window _protocol;
I* choose_ window() function returning upper bound for the
• next window
• contention state() procedure returning state of the network
• contend() - procedure to contend and broadcast
• ib_window lower bound for window to be chosen
• ub_ window upper bound for window to be chosen
• window_bd_up actual upper bound of window chosen . ,

contending • true;
lb_window • L;

852

ub_ window • U;
while contending do {

I* operations performed in one contention slot *I
window_bd_up-

choose window(lb window, ub window);
if (contentionJarameter ~ wind.ow_bd_up)

and (contention_parameter > lb_ window) then {
contend(contention_puameter);
contention_state(state);
if (state • idle) then

lb_ window- window _bd_up;
else if (state • collision) then

ub_wind.ow • window_bd_up;
else if (state • success) then

contending • fabe;
}elM

contending • fabe;

For regular message transfers. each station has equal chance
of being chosen for transmission. so the contention parameters
are random numbers generated from a uniform distribution on
the interval (0,1]. The stations maintain a common window
(interval) for contention. In a contention slot, stations having
contention parameters within the window broadcast a short sig~
nal to contend for the channel. If a collision or no transmission
occurs, the window boundaries are adjusted in parallel at all sta­
tions for the next contention slot. Stations having contention
parameters outside the window stop contending and wait for the
next contention period. The above steps are repeated until a sin­
gle station is isolated in the window. This station is the winner
and is allowed to transmit its packet. The distribution of the
contention parameters and an estimate of the channel load are
used to update the window efficiently, so the number of conten­
tion slots is kept to a minimum.

An uample of the VWP is shown in Figure 1. There are
five processors contending. and station i has contention parame­
ter x1• In this example, :x 1 =0.48, x2 =0.90, x3 =0.35. :x" =0.30.
and x5 =0.75. These contention parameters were chosen arbi­
trarily. but for different purposes they may reflect processor
loads or priorities. The windows chosen in these examples are
not the optimal windows but are chosen to illustrate the opera­
tion of the protocols. w 1 • the upper bound for the first window
chosen, is 0.51. All stations with contention parameters less that
or equal to 0.51 are allowed to broadcast, in this case stations 1.
3. and 4. The result of this contention slot is a collision. the
interval to be searched is updated to (0. 0.51]. and stations 2 and
S are eliminated from the contention. w 2 , the upper bound for
the next window. is 0.25. The result of the second contention
slot is idle (no broadcast). so the interval is updated to (0.25~
0 . .511. No stations were eliminated as a result of this contention
slot. For the third contention slot. the upper bound of the win­
dow is chosen to be 0.32. The result is a successful transmission.
so station 4 is isolated and '"wins" the contention.

L=O.O

L=o.o

L=O.O

Figure 1.

w,
a) First iteration

X"XJ Xt,

w ' 2
b) Second iteration U=l.O

,x.xl Xt,

' w, .
c) Third iteration

U=l.O

Example of the Virtual-Window Protocol. ~be
dashed lines indicate the portion of the interval bemg
searched during the current contention slot. The
current window. enclosing stations eligible to contend .
is delimited by (].

The window-selection process is formulated as a dynamic
programming problem. and details have been shown e~where
[14]. Analyses and simulations have shown that contention can
be resolved in an average of 2.4 contention slots. independent. of
the number of contending stations and the distribution funct1on
of the contention parameters. if the parameters are independent
and identically distributed [13].

The VWP can be implemented easily by minor hardware
modifications of an existing Ethernet interface [14]. The global
window can be maintained by updating an initially identical
window with a common algorithm and using the identical infer~
mation broadcast on the bus. Assuming that the information
broadcast is received correctly by all stations. the global window
will be synchronized at all sites.
3. WINDOW PROTOCOLS WITil TWQ.STATE COu.ISION
DETECTION

The VWP locates the extremum of a set of independent
contention parameters using information gathered during three­
state collision detection. An iteration of the protocol is a conten­
tion slot. Additional hardware modifications to the network
interface are required.

The VWP cannot be implemented easily at the applications
level. Many existing networks do not make three-state
collision-detection information available to the applications
software because a contention slot is a small amount of time (50
to 100 microseconds) relative to the time required to propagate
information through all levels of software to the applications
level (hundreds of microseconds). At the applications level. each
station has an independent search parQJTWter. and an iteration is a
broadcast slot which is a contention resolution at the network
interface followed by a broadcast of a message to all stations. A
broadcast slot has twa possible outcomes. idle (no stations
attempt to broadcast). or transmission (one or more stations
attempt to broadcast resulting in contention resolution, and one
station broadcasts its search parameter). A broadcast slot may
consist of a number of contention slots. and information about
each contention slot is nat sent to the applications level.

There are a number of differences between searching at the
applications level and the network leveL
(1) The contention parameters are the search parameters for the

VWP. which is not the case for the window protocol at the
applications level.

(2) An iteration of the VWP is a contention slot with three pos­
sible outcomes: idle, collision. and success. An iteration of
the window protocol at the applications level is a broadcast
slot with two possible outcomes: transmission and idle.

(3) An iteration of the VWP takes less time than an iteration of
the window protocol at the applications level. Normally. a
contention slot takes tens of microseconds. while broadcast­
ing a short message takes hundreds of microseconds.

Since the information available for window selection is
different at the applications level. the decision process has to be
modified. Three possible window-search strategies to identify
the minimum are described below. They are the one-broadcast
strategy. the two-broadcast strategy. and the combined strategy.
The identification of the maximum is similar and is not
described. For each strategy, the algorithm, an example, the
technique for making window choices. and an implementation
are shown. In contrast to the VWP. dynamic programming
methods to optimize window choices are not used here because
the Principle of Optimality is not satisfied. The performance of
these strategies are compared using the number of broadcast slots
they require to isolate the minimum search parameter.

3.1. One~Broadcast Strategy
The one-broadcast strategy allows a maximum of one

broadcast slot per iteration. Starting with an interval (L.U].
each station has a search parameter x1 in the interval. The sta-

853

tians maintain a global window on the interval. Stations with
parameters within the window attempt to broadcast their search
parameters. and if there are one or mare parameters in the win­
dow. there will be a contention resolution followed by a broad­
cast of one of the search parameters. In that case the upper
bound of the interval will be updated to the value broadcast. If
there are no parameters within the window, the lower bound of
the interval is updated to the upper bound of the window used,
and the protocol continues. The minimum is identified when the
lower bound of the interval is equal to the upper bound. The
steps each station performs are outlined below.

procedure one_broadcast_strategy;
I' choose_ window() function returning choice for upper bound of
' next window
' broadcast state() procedure returning results of broadcast slot
'broadcast(} procedure to contend and broadcast
• parameter_broadcast search parameter broadcast if broadcast_state
• returns transmission
• lb_ window lower bound for window to be chosen
• ub_ window upper bound for window to be chosen
• window _bd_up actual upper bound of window chosen
'I
searching - true;
lb_ window • L;
ub_window. U;
while searching do {

window bel up • choose window(lb window, ub window);
if (searc:h_p4rameter ~ wii\dow _bd_up) and -

(search_parameter > lb_window) then {
broadcast(seuch_parameter):
broadcast_sta te(state, parameter_ broadcast);
if (state- idle) then

lb_window • window_bd_up
else if (state- transmission) then

} else ub_wi.ndow • parameter_broadcast;

searching • false;
if (ub_window • lb_wlndow) then

searching • false;

An example of the one-broadcast strategy is shown in Fig­
ure 2. The stations and parameters are the same as the example
in Figure 1. For the first iteration (Figure la). the upper bound
of the window chosen is 0.51. Stations 1. 3, and 4 attempt to
broadcast their parameters. Suppose that station 3 is the winner
and transmits. The nex.t interval to be searched is (O.x3). Let
the upper bound of the next window chosen be 0.33. Only sta­
tion 4 trys to transmit its parameter, and x .. is broadcast. The
search has not concluded even though x.. is the minimum because
the fact that it was the only station broadcasting is not available
to station 4 or to the other stations. The next window chosen is
0.25. There is. of course. no broadcast. This process will con­
tinue until the bounds of the window isolate x... and the
minimum is globally known.

The choice of the window in each broadcast slot is based on
the probabilities of the twa states, transmission and idle. which

L=O.O

L=O.O

L=O.O

w,
(a) First iteration

X.'\3

wj

(b) Second iteration

~

w,.
(c) Third iteration

., .,

u;, 1.0

U= 1.0

U= 1.0

Figure 2. Example of the Window Protocol using the one­
broadcast strategy. The dashed lines indicate the
portion of the interval being searched during the
current broadcast slot. The current window is
delimited by (].

are dependent on previous broadcasts. If a previous broadcast
slot resulted in the transmission of a value. say Xbt• then any
subsequent transmissions must be less than Xbt· This implies
that any subsequent x1s broadcast were eligible to broadcast dur­
ing the iteration that Xbt was broadcast, but lost the contention.
The probability of the subsequent transmissions must be condi­
tioned. on the fact that any x1s in the current window did not
broadcast when they were eligible during previous iterations.
The choice of the window is, thus. dependent on previous broad­
casts. hence. the choice cannot be optimized by dyna.rnic p~
gramming methods because the Principle of Optimality is not
satisfied.

Assume that station i has an independent search parameter
x1 with distribution F(x) and density f(x). The following
definitions are used to formulate the problem of choosing the·
upper bound of the nut window as a recurrence after k broad­
casts.
NEtCa.b.vlt,qlt):

the minimum expected number of broadcast slots to isolate
the minimum x1 using a one-broadcast strategy. given that
there have been k previous broadcAsts with values and
corresponding upper bounds of windows stored in the k­
element arrays vlt and qt.. respectively;

of>.(a.b.w.v'.q'):
the probability of a transmission on the interval (a.w]. given
that there have been k previous broadcasts with values and
conesponding upper bounds of windows stored in the k­
element arrays vlt and qlt. respectively;

9E(a.b.w.vk,qt.):
the probability of idle on the interval (a. w]. given that there
have been k previous broadcasts with values and
corresponding upper bounds of windows stored in the k­
element arrays vlt and qt., respectively.

The notation vt. and qt. indicates a set of k values broadcast and
the ccinesponding upper bounds of windows used. vk and qt. are
the k.u1 value and the corresponding upper bound of window
used. It follows directly from the above definitions that

cJ>.(a,b, w, y& ,q") + e,(a. b, w,v& ,q")= 1.0. (1)

After k successful broadcasts. there are 2(k+l) subinter~
vats on the interval (a.U]. They are Ca. w]. (w. Vt.]. Cvt, qt.]. (qt..
Yt.-11 •.... Cvt. q.J, and (q1 • U]. For reference, they can be num­
bered from left to right and from 1 to 2(k+l). Lets be a set of
elements (s. }. where s. is the number of xis in the itll. subinter­
val. Let S be the set of s that are possible with the previous
windows and values broadcast. and let I be a subset of S such
that s 1 =0. The set I is the subset of S that corresponds to a dis­
tribution of x1s. such that there will be no x1s in (a. w] and that
the result of the broadcast slot is idle. Then

"'"I [~ I v, btoadmt with a 1 tl 41 Pr arrangement s].t...Pt window up.--- bound q 1'
l'l _ tEl 1•1 r-· I
~s- .

E I n ~ I v, btoadca" with. I II , E s P arrangement s]:._Pr window upper bound q11 5

(2)

The probability of a given arrangement is found using the
distribution function F(x). Let b(a,b,i)=[F(b)-F(a)]i then

Pr(arrangement s] = ~~~ lb(a, w ,s1) \n~s11b(w, vir. ,s2)

[n-r .. l
S l•l b(v1 ,qtos2Hl)b(ql>U,sn+z).

2k+l

Pr(vc broadcast with a window upper bound qt. Is) is easily
determined because each station in the subinterval search bas
equal probability of winning and broadcasting in a broadcast
slot. so

b•L

wz,1,11

L~
/ y•

TRANSMISSION
SUCCESS

(U-wu)<5

• IDLE

"""''"'""'" ~
~L,.

(a) Decision tree

1 2 n

TRANSMISSION IDLE

b• ,.,,,, y I w2,2 I\~
W'2,l,b

TRANSMISSION IDLE

TlANSMISSION 101..11 TllANSMISSION IDLE

(b) Data structure

Figure 3. Decision tree and data structure for the exact solution
of the one-broadcast strategy. Each triangle in the
decision tree indicates where a window choice is made.
The data structure shows a method for storing the
windows.

854

p I v 1 broadcast with a 1 I 1
r window upper bound q1 I s = ;;::;:;:u ·

E ,,
)"t

Using a conditional density function

fc(a,w,xll)=
f(x11) f(xb)

Pr(a<x11 -E;;w) F(w)-F(a)
(3)

the choice of the upper bound of the next window is formulated
as a recurrence. Let

y(a, w, v" ,q")= Jr.(a, w,x11)NEl(a,x11 , vk+1 ,q"+1)dx11
•

then

Na,(a,b,v",q")= min ll++£(a.b,w,v",qlr.)-y(a,w,v",q") (4)
o.<w<ll

+ 9s(a,b, w,V' ,q")N11 (w, b, vll,q")).
with NE1(a.b.vk,qlt)=l for <all b=a. The first term on the
right hand side of Eq. (4) counts the current broadcast. The
second term is the expected number of additional broadcast slots
to isolate the minimum if the current broadcast slot results in a

transmlSSlOn. y is the weighted average number of broadcast
slots for the value broadcast. xb, and the probability that this
value was broadcast. The third term is the number of additional
broadcast slots if the current broadcast slot is idle.

Boundary conditions must be set to terminate the evalua­
tions after a reasonable number of broadcast slots. In practice,
the xis may represent indistinguishable physical measures when
their difference is less than a. It is assumed that when the win­
dow size is smaller than a. the probability that two stations have
generated parameters in this interval is so small that contention
can always be resolved in one step. The boundary condition
beComes Ne1Ca.b,v' .q') =I for all (b-a) < 6

Using 11 8;;:1/(lOn). the evaluation of the rec:WTen<:e equa­
tion is complex. The complexity bec:omes apparent when the
window choices are shown in a decision tree in Figure 3. Each
triangle in the decision tree corresponds to a decision point. The
labels on the two lower corners show the lower and upper
bounds of the interval to be searched. and the contents of the tri­
angle. wa,b,c• is the window upper bound for the current broad­
cast slot. The subsc:ripts of the window upper bound indicate
the iteration number. whether the last iteration outcome was
transmission or idle (transmission - 1. idle - 2). and the value
broadcast if the last iteration was a transmission. There are two
branches from each decision point corresponding to the two pos­
sible outcomes in each broadcast slot. Starting from the root. if
the broadcast slot results in a transmission of b. then the search
will terminate if (b-L)<S: otherwise, the search will continue
with a new decision point corresponding to the interval (L,b]. If
the broadcast slot is idle. then the search will terminate if
(U-wu)<S. Otherwise. the search continues with the interval
(wu.Ul The data structure shown in Figure Jb is used to store
the information in the decision tree. The top of the structure
contains the roots of decision trees with different numbers of
processors. For a given n 1, there is an initial window Wu, and
two pointers to substructures corresponding to the two out­
comes. transmission and idle. Note that the substructure for a
transmission contains windows for each of the possible values
that can be transmitted on the subinterval.

The tree shows the final window choices. but during com­
putation of the best window choice for each decision point. all
possible choices of windows have to be tried. For each possible
window. there can either be a transmission or no transmission.
If there is a transmission. all possible values within the window
must be considered as the possible value broadcast. Each level of
the tree indicates the outcome of an iteration. For every decision
in the exact solution. the entire tree above the current decision
point. which is determined by vk and qt.. must be taken into con­
sideration in computing the next set of branching probabilities.
With 6 = 1/(10n), and n = .5, there are 69.007.690 decision points.
and for n=6. the number increases to 8.501.194.726. The
number of decision points increases so rapidly that the problem
becomes intractable. Fortunately. reasonable results can be
obtained using a heuristic decision based on the current upper
and lower bounds only.

In the approximate solution, the probabilities of transmis­
sion and idle are assumed to be independent of previous broad­
casts and are computed without information from previous
broadcasts. The following definitions are used.

NAl(a.b):
the minimum expected number of broadcast slots to isolate
the minimum x1 using an approximate solution of the one­
broadcast strategy. given that all x1s are in (a, U]. and that at
least one x1 is in (a. b];

<f>.(a.b.w):
the probability of a transmission on the interval (a. w]. given
that all x1s are in (a,U], and that at least one x1 is in (a.b];

6A(a.b.w):
the probability of no transmission on the interval (a.w1.

given that all x1s are in (a.U], and that at least one x1 is in
(a.b].

It is obvious that

cp,.(a,b,w)+9,.(a,b,w)=l.O. (5)

There are two cases to consider when calculating 9A(a.b.w),
namely. b=U and b¢U. When b=U. it is uncertain whether
there is a x1 at b. and the arrangements of the n x1s must be con­
sidered. so

6,(a,U,w)- (F(U)-F(w))'. (6a)

(F(U)- F(a))"
When b ;e U. there must be a station at b, since b is only updated
to a value of x1 in the event of a transmission. In this case we
are only concerned with the placement of at most (n-1) of the
X1S•

(F(U)-F(w))"-1

(F(U)- F(a))-1

The recurrence for choosing the window is

N,.l(a,b) = a<~'!:b 11 +~,.(a, b, w) [{rc(a, w,x~o)N,.1 (a,x")dx~o[(7)

+ 9,.(a, b, w)N,.1(w,b)j.

Again. the three terms on the right hand side of the above
equation count the current broadcast slot. additional broadcast
slots in the event of a transmission, and additional broadcast
slots if the current broadcast slot is idle.

The assumption that contention can be resolved in one step
when the window size is smaller than a holds. so the boundary
condition NA1(a.b) = 1 for all (b-a) < 8 is used again. The deci­
sion tree is the same as for the exact solution. but there is a sav­
ings since many of the nodes at different levels are duplicates.
The data structure for storing the windows is simply a two­
dimensional array. The number of decision points for the
approximate solution is determined by the values of a and b.
The total number of unique nodes with S=l/(10n) is
((10n)2 + 30n)/2. which is determined by counting the decision
points indicated by the above recurrences. For n=S and n=6.
the numbers of decisions points are 1325 and 1890, respectively.
and the complexity of the solution is considerably reduced from
the exact solution. The performance results of the one-broadcast
strategy will be discussed in Section 3.4.

3.2. Two-Broadcast Strategy

A problem in the one-broadcast strategy is that it may take
a large number of iterations to determine that there are no sta­
tions in the interval. even after the station with the minimum
search parameter has broadcast. An alternative is to allow up to
two broadcast slots per iteration and use the second slot to deter­
mine whether there are any stations with search parameters
smaller than the parameter broadcast in the first slot. Initially.
as with previous strategies, the interval is (L.U]. and each station
has a search parameter xt on the interval. A global window is
determined. and stations with parameters within the window
attempt to broadcast their search parameters. If there are no
search parameters in the window. the strategy proceeds as in the
one-broadcast strategy: the lower bound of the interval is
updated to the window's upper bound. and the protocol contin­
ues. The difference between the one- and two-broadcast stra­
tegies occurs when there are parameters within the window. In
this case. the upper bound is updated to Xbt• the value broadcast.
and a second broadcast slot is allowed for all stations with
x1 < Xbt· If the second slot is idle. xb 1 is the minimum. and the
algorithm terminates. If there is a broadcast. the next iteration
begins with X~o2 • the second value broadcast. as the upper bound
of the interval. Note that xb2 is smaller than Xbt· The steps for
each iteration are shown below.

855

_proced1U'e two_broadc:ut_strategy;
I' same parametets u procedure one_broa.dcast_strategy .,
searching • true;
lb window • L;
ub- window • U;
while searching do (

vindow bel. up • choose window(lb window, ub_ window);
if (search_s)&rameter :Et Window _bd_Up) and

(aearch....,JMU&meter > lb window) then {
broadcut(search___parameterh
bro6deut_state(state, parameter_broadc:ut);
lf (state • idle) then

lb window • window bd_up;
else if-(state • transmiutoft> then(

1• seconcl broackut attempt •t

}
} ebo

1f (seuc:h_parameter < pa.rameter_broadc:ut) and
(searcb_pa:ameter > lb_window) then (

broadcut(seu1:b_parametet);
broadcut_state<state, parameter_broadcatlt);
if (state • idle) then

seuching • falae;
ebe if (state • transmission) then

} ebo
ub_window • parameter_broadcast;

searching • fabe;

seuching • fabe;
if (ub window • lb window) then

seU"ehing • fabei

An e:sample of the two-broadcast strategy is shown in Fig­
ure 4. The stations and contention parameters are the same as in
previous examples. The first window chosen is (0.0.51]. and as
in the one-broadcast case. stations 1. 3, and 4 contend. Assume
that station 1 wins and broadcasts x1. To determine whether
there are stations with parameters less than x 1 • all stations with
parameters less than x 1 • namely. stations 3 and 4. are allowed to
contend. Assuming station 3 wins. it is globally known that x 1
is not the minimum. and the interval to be searched next is
updated to (0. x3). Let the next window chosen be 0.31. Station
4 is the only one aUowed to broadcast. so it wins the contention.
In the subsequent contention period. there is no broadcast. so it is
globally known that x.. is the minimum.

Each x1 has search parameter x1 with distribution F(:x) and
density f(x). The following definition is used.

NE2(a.b,vk,qk):
the minimum expected number of attempted broadcasts to
isolate the minimum x1 for an exact solution using the two­
broadcast strategy. given that there have been k previous
broadcasts with values and corresponding upper bounds of
windows stored in the k-element arrays vt. and qt. respec­
tively.

With ¢>B and 9E as before. and

•
y(a, w, vk ,qk) = ~fc(a, w.x .. 1) [1 +

~< q') { r.<,J N~<• ,q')d•.,r· .. .
the recurrence for the two-broadcast case is

Nc(a,b,vk,qt)=a<n:~b~l +t;.(a,b,w,vk,qk)y(a,w,vll.,qt) (8)

+ 9e(a,b, w, vk ,qt)N81(w, b,vk ,q"')}

with the condition that Nez(a.b) = 1 for all b =a.

The same physical limitations exist as with the one­
broadcast strategy. so the x1s are considered indistinguishable
when their diJferenc:e is less than 8, and the boundary condition
is NE2(a.b) = 1 for all (b-a) < & • The decision tree implement­
ing the above strategy is the same as that shown in Figure 3.

L=O.O
(a) First iteration

X. X,

.:•.

L=O.O
(b) Second iteration

•• ,.
broadcut

l"'
broadcut

U=!.O

,.
broadc:ut

l"
btoadcaat

U=!.O

Figure 4. Example of the window search using the two­
broadcast strategy. The dashed lines indicate the
portion of the interval being searched during the
current broadcast slot. The current window is
delimited by (].

The exact solution becomes intractable when the number of pro­
cessors is large as in the one-broadcast case. so an approximation
that does not use the history information is adopted here. For
the approximate solution. let

N,u(a,b):
the minimum expected number of attempted broadcasts to
isolate the minimum x1 for an approximate solution using
the two-broadcast strategy. given that all x1s are in (a,U],
and that at least one Xt is in (a,b].

and use fi>A· and 9A as before. Let .
)"(a,w)= Jrc(a,w,xt,l)

•

11 + ~.(a,x",x")7 f,(a, w,x.,)N.,(a,x.,)dx.,~x,1 •
The recurrence is

N,u(a, b)= a<~~b~l + ~"(a,b, w)y(a, w) + 9A(a, b,w)N,u(w,b)l {9)

with the condition that NA2(a.b)=l or all (b-a) < S. The data
structure for the approximate solution and the number of
decision points are the same as those for the one-broadcast stra­
tegy. The performance of the two-broadcast strategy will be
discussed in Section 3.4.

3.3. Combined Strategy

A problem in the two-broadcast strategy is that the win­
dow for the second broadcast slot is chosen suboptimally when
there are stations with search parameters smaller than the
current broadcast value. Therefore. a better solution is to com­
bine tbe one-broadcast and two-broadcast strategies and to make
a decision in each iteration whether one broadcast or two broad­
casts will be used. The objective is to minimize the expected
number of future broadcasts. The procedure is a combination of
the one-broadcast and two-broadcast procedures shown above
and is illustrated by the following example shown in Figure S.
For the first iteration. the one-broadcast strategy is used with a
window of (0. 0.51]. For the second iteration, the two-broadcast
strategy is used with a window of (0. 0.33], and on the second
broadcast. it becomes globally known that J:-4 is the minimum.

The recurrence formulation to optimize the window in each
iteration has two parts corresponding to the two strategies. Let
NAcCa.b) be the the minimum exJ)e(:ted number of broadcasts to
isolate the minimum x1 using a combined strategy and an
approximate solution. given that all x 1s are in (a. U], and that at
least one x1 is in (a,b]. The recurrence formulation for tb.e com.-

856

L='O.O
(<>)First iteration

X. '1",

L=O.O

(b) Second iteration

,.
broadcast

...
broadcast

U=l.O

Figure 5. Example of the window search using the combined­
broadcast strategy. The dashed lines indicate the
portion of the interval being searched during the
current broadcast slot. The cunent window is
delimited by C].

bined strategy is expressed in terms of the one- and two­
broadcast strategies. If

one-broadcast= 1 +¢,.(a, b, w) [frc(a,w,xii)N ... c(a,x.)dxb\

and
•

y(a,w)= Jr.(a,w,x111)x
•

11 + ~.(.,x ... x ..) f f,(a,x .. ,x.,JN,c(a,x.,ldx.,ldx"

then

two-broadcast= 1 + f»A(a,b, w}y(a, w) + 9A(a,b, w)N,.c(w, b),

and the recurrence is

NAc(a,b) = min lm.in(one-broadcast, two-broadcast)!, (10)
•<•<•

The number of decision points for the approximate solution is
the same as that of the previous two strategies. The decision tree
is the same as that shown in Figure 3, but the data structure
differs slightly from that used for the previous cases because the
strategy (one-broadcast or two-broadcast) must be stored in
addition to the window for each iteration.

3..4. Simulation Results for the Approximate Distributed
Search

The simulation results for the distributed window search
using the three strategies are shown in Figure 6. The windows
were generated using the equations derived in Sections 3.1
through 3.4. The broadcast parameters were generated from a
uniform distribution in (0,1]. and sufficient cases were simulated
until a confidence interval of 0.95 was reached. The number of
broadcast slots is bounded by 2. 7 for the two-broa~cast strategy.
and by 2.6 for the one-broadcast and combined strategies. The
two-broadcast strategy is not as good as the one-broadcast stra­
tegy because, although it can reduce the number of broadcast
slots after the minimum has been identified. it uses suboptimal
window choices for earlier broadcast slots. The combined stra­
tegy always chooses the one-broadcast strategy. so their results
are identical. The overhead for the combined strategy is higher
than that of the one-broadcast strategy because the strategy for
each decision point must be stored in addition to the window
choices. For these reasons, the one-broadcast strategy is superior
to the other two.

The proposed scheme is practical as a result of the constant
expected number of broadcast slots. The time required for a

857

- ... -~- ~----

2-

Broadcast Slots
1-

0 10

o · ·o Combined Strategy

"'- • Two Broadcast Strategy

__. One Broadcast Strategy

20 30 40 50
Number of Processors

Figure 6. Results of the simulations for different window-
search strategies.

contention slot is approximately 50 microseconds. and the time
required to broadcast a search pa.rameter may be estimated at
approximately 100 microseconds. It follows that each broadcast
slot would require on the order of 220 mic:roseconds if 2.4 con­
tention slots [14] were required to resolve contention. If it takes
120 microseconds to resolve contention and 100 microseconds to
transmit a 1-Kbyte paek.et. then the overhead of each load
balancing dec:ision to identify the maximally and the minimally
loaded processors is equivalent to transmitting 5.2 1-Kbyte
packets.

4. IMPLEMENTATION OF LOAD BALANCING USING A
DISTRIBUTED WINDOW SEARCH

The objective of load balancing is to evenly distribute jobs
to processors. so the system load is balanc::ed. This will minimize
the time when a job is waiting for service at a proc:essor while
other processors are idle. An optimal load balancing strategy in
a distributed system would try to distribute jobs to processors in
a way similar to a multi-server system with a single queue. suc:h
that jobs never wait while processors are idle. This is not possi­
ble for a bus system because delay is incurred when jobs are sent
across the network. and only one packet can be sent across the
network at a time. For load balancing to be practical. it is neces­
sary to efficiently identify the maximally and the minimally
loaded processors and send a job from the maximally loaded pro­
cessor to the minimally loaded processor if the tum-around time
will be shorter. This allows the system to use the current status
information to make an accurate load balancing dec:ision.

There are four types of tasks that require the use of the
network: regular message transfers. identifications of the maxi­
mally and the minimally loaded processors (maximin
identification), job migrations. and result returns. The relative
priorities of these tasks must be determined. Regular message
transfer is assigned the highest priority since it is the original
purpose of the network. and load balancing operations should
not interfere with it. The priorities of the remaining tasks are
determined by considering the relative overheads in terms of the
additional total system delay (the sum of the delays of all jobs)
incurred.

First. the relative priority between the identification of the
itb maximally/minimally-loaded-processor pair and the migra­
tion of the job between the (i-l)th pair is determined. Two
cases are considered. The first is when there are idle processors.
If job migration is done first. then the job can begin execution
immediately upon arrival at the destination processor. so its
delay is increased by the time to send it across the network. In
contrast, if the maximin identification is done first. then the
same job will incur the delay of that operation as well. Clearly.
migrating the job first is better. The second case is when there
are no idle processors. The ordering of the tasks is not critical in
this case. since migrating the job first does not immediately con­
tribute to reducing the job delay as the job may not begin execu­
tion upon arrival at the destination. This result is true for any
job migration and maximin identification. and performing the

migration first will result in a total delay equal to or smaller
than performing the maximin identification first. As a result.
job migration should have higher priority over maximin
identification.

Next, the relative priority between result return and job
migration is considered. When there are no idle processors. delay
is added directly to the job waiting for result return. Since the
job waiting for job migration will not be able to begin execution
immediately upon arrival at the destination processor. result
return should take precedence. When there are idle processors.
both the delay for job migration and the delay for result return
will add directly to the overall delay. Performing the result
return first always results in performance equal to or better than
performing job migration first. It is also easy to see that result
return should always have precedence over maximin

· identification by a similar argument.

In su.m.mary. the priority orderings for tasks using the bus
network. is (1) regular message transfer. (2) result return. (3)
job migration. and (4) max/ min identification.

The load balancing strategy consists of two steps that are
executed repeatedly. The first is to determine which of the
eurrent potential tasks has the highest priority. and the second
step is to execute that task.. Since the number of priority levels
is small, the stations can resolve the highest priority level in a
linear fashion. Due to the ordering of the priorities. only one job
will ever be waiting for job migration, but potentially more than
one may be waiting for result return.

All three types of contention-resolution protocols discussed
in Seetion 2.1 can be used for performing load balancing opera­
tions with varying degrees of efficiency. Regardless of whether
the decision is made in a centralized or a distributed manner,

load information must be colle<::ted at decision locations. For an
n-processor system. if the scheduler utilizes the message-passing
subsystem for routing status information. then (n- 1) point-to­
point transmissions of processor status information are required
for a centralized decision, and n broadcasts of load information
are required for a distributed decision. Status information can
be propagated ulore efficiently with the distributed window
search by using contention parameters that reflect processor
loads. As estimated in the last section. an average of 5.2 1-
Kbyte packet times are required to make a load balancing deci­
sion.

The values for the windows can be stored in a table as
described in Section 3. The table space required to store the
entire tree for varying processor loads is large. but acceptable
results can be achieved by storing only the first four levels
because contention is usually resolved in less than four itera­
tions. Window boundaries in the pruned subtrees and windows
for channel loads with no decision trees stored are obtained by
interpolations. The storage space to store the decision trees for
the one-broadcast strategy with loads varying from one to 100
processors is 5 Kbytes if windows are stored using 16 bits. The
performance in this case is indistinguishable when more levels
are used.

The average response time for a system using this load
balancing strategy has been derived using an approximate queue­
ing network and verified with simulation results [I]. The results
show that at low traffic intensities, situations for which load
balancing is beneficial do not occur frequently. When the load
balancing interval is large. the effectiveness of load balancing is
reduced as a result of the communication delay incurred. Conse­
quently. load balancing bas the greatest benefit at moderate
traffic intensities and at load balancing intervals that are smaller
than the average service time.

S. CONCLUSIONS
In this paper. we have presented an efficient technique for a

distributed extremum search and a load balancing protocol using

858

this tec::hnique. The search tec::hnique can be implemented on
existing CSMAICD networks at the applications level. This is
important because it is typically not possible to make hardware
modifications to existing networks. The maximum or the
minimum of a set of numbers can be identified in a small
bounded number of broadcast slots on the average. Since the
search tec::hnique has a constant average behavior. a load balanc­
ing algorithm using this efficient search technique is feasible.
Performance of the load balancing was found to be favorable at
low to moderate traffic intensities, and load balancing intervals
(the total time to perform m&IImin identifi.cation. job migration,
and result transfer) that are small relative to the average service
time. The results of the analysis can be used to determine a sys­
tem size that allows load balancing to be beneficial.

IIEFERENCES

[1] K. M. Baumgartner and B. W. Wah, "The Effects of Load.
Balancing on Response Time for Local Computer Systems
with a Multiaccess Network.," Proc. Int'l. Con/. Cotntnum­
cations. June 198S. pp. 10.1.1-10.1.$.

[2] T. C. K. Chou and J. A. Abraham. "Load balancing in Dis­
tributed Systems." IEEE Tran.s. Software Engineering, Vol.
SE-8. July 1982. pp. 401-412.

[3] W. W. Chu. L. J. Holloway. M. T. Lan. and K. Efe. '"Task
Allocation in Distributed Data Proc::essing.'' IEEE Computer,
Nov. 1980, pp. $7-68.

[4] Y. C. Chow and W. Kohler. "Models for Dynamic Load
Balancing in a Heterogeneous Multiple Processor System,"
IEEE Trans. Ccmp., Vol. C-28, May 1979, pp. 3$4-361.

['] D. L. Eager. E. D. Lazowska, and J. Zahorjan. "Adaptive
Load Sharing in Homogeneous Distributed Systems," IEEE
Trans. Software Engi.n«ring, Vol. SE-12, May 1986. pp.
662-67$.

[6] K. Hwang. W. Croft. B. W. Wah. F. A. Briggs. W. R. Sim­
mons, and C. L. Coates. "A Unix-Based Local Computer
Network With Load Balancing," IEEE Computer, Vol. U .
Apr. 1982, pp. 5S-66.

[7] A. Kratzer and D. Hammerstrom, "A Study of Load Level­
ing.'" Proc.IEEE COMPCON, Fall1980. pp. 647-654.

[8] M. Livney and M. Melman. "Load Balancing in Homogene­
ous Broadcast Distributed Systems... Proceeding of tlw
ACM Computer Network Performance Symposium, 1982,
pp. 47-SS.

[9] R. M. Metcalfe and D. R. Boggs. '"Ethernet : Distributed
Packet Switching for Local Computer Networks."' CACM,
Vol. 19, July 1976. pp. 39S-404.

[10] L. M. Ni and K. Hwang. "Optimal Load Balancing Stra­
tegies for a Multiple Processor System," Proc.. Int'l. Con.f.
Parallel Processing, Aug. 1981. pp. 352-357.

[11] A. N. Tantawi and D. Towsley. "Optimal Static Load
Balancing in Distributed Computer Systems," Journ.al of
the ACM, Vol. 32. Apr. 1985, pp. 445-46$.

[12] A. S. Tanenbaum. Computer Networks, Prentice Hall Incor­
porated, New Jersey. 1981.

[13] B. W. Wah and J. Y. Juang. "An Efficient Protocol For Load
Balancing on CSMAICD Networks,'' Proc. Eighth Confer­
ence on Local Computer Networks, Oct. 1983. pp. 55-61.

[14] B. W. Wah and J. Y. Juang. "Resource Scheduling for Local
Computer Systems with a Multiaccess Network."' IEEE
Tran.s. Camp., Dec. 1985, pp. 1144-1157. also in "Efficient
Contention Resolution Protocols for Local Multiaccess Net­
works,'' U.S. Patent 4,630,264, Dec. 16, 1986.

[15] Y. T. Wang and R. J. T. Morris, "Load Sharing in Distri­
buted Systems.'' IEEE Trans. Com.p., Vol. C-34. Mar. 1985,
pp. 204-217.

