M. M. Gooley and B. W. Wah, *“Reordering of Prolog Programs with And-Parallelism,” Proceedings of the 1988
Workshop on Languages for Automation, [EEE, Aug. 1988, pp. 219-244,

REORDERING OF PROLOG PROGRAMS
WITH AND-PARALLELISM

Markian M. Gooley and Benjamin W. Wah

- Coordinated Science Laboratory, University of Olinois
1101 West Springfield Avenue, Urbana, Tllinois 61801

Abstract- We present a method, order tracking, that allows reorder-
ing of Prolog clauses without reordering their solutions, Reordering clauses
lets u3 execule a program at lower cost and run more goals in AND-
parallel; order tracking ensures that the reordered clauses behave exactly
liks their originals. We extend our Markov-chain model for estimating pro-
bability and cost, adding crder tracking and a model for AND-paraliel exe-
cution. This allows us to estimate when reordering and AND-parallelism
will speed execution and when they will slow it.

1. Introduction

1.1, Mgtivation for our research

Various researchers have worked on the parallel execution of Prolog,
proposing models and abstract machines {4,5,8], but they have done little on
restrecturing programs to improve their parallel behavior. Eventually
something analogous to Parafrase [13], the Fortran vectorizer, should be
possible for Prolog: a restructurer 10 let a program make better use of paral-
lel hardware.

Parallel execution cannot make Prolog efficient. Recall that Prolog
executes a program by traversing an AND/OR graph {14] depth first, Often
it goes through several large subgraphs, each corresponding to a goal, only
10 fail later, On failure, Prolog backiracks, searching goals again to satisfy
its conjunction in another way. We know how to reorder goals and clauses
to reduce serial search [71; we can also do this for paralle] execution.

1.2. Defining the problem

We want to rearder the goals of Prolog clauses to minimize or at least
reduce the cost of execution. We also want the new order to allow more
goals to run in AND-paraliel as a parallel goal (when this reduces cost). If
a clause has muitiple solutions, changing the order of goals usually changes
the order of solutions: for some applications this does not matter (7], but in
general we want to avoid or carrectit.

1.3. Assumptions and definitions

We assume that the reader has some knowledge of Prolog, and
perhaps of Warren’s abstract Prolog machine {17}. We are concerned with
AND-parallel execution of independent goals; familiarity with some
scheme of AND-parallelism is useful but not necessary.

A predicate with name nama and number of arguments arity is

written name/axity. A variable not set Lo an atom or functor is unin~
stantiated or free; slse it is instantiated or bound, A wple of instantia-

‘lions corresponding to the arguments of a goal is called a mode, 1fa predi-

cate will not function in cenain modes (Z.e., they cause a run-time error ot
an infinite recursion), it demands a particular mode. A mods different
from one arising in the original program is legal for a predicate if it satisfies

1988 Workshop on Languager for Awtomation, [EEE, University of Maryland, College Park,
Maryland, August 1988

This ressarch was supporied in pant by the National Aeronautics and Space Administration
under grants NAG 1-613 and NCC 2-481.

any demands of that predicate, and does not change its behavior in certain
ways (which we describe later). .

1.4. Examples of improvement

Suppose that we call the ¢lause a (W, X} :~ b(X,¥), (¥, 2),
d (W, Z) ., with both variables uninstantiated. Assume that the predicates
b/2, &/2,and &/2 instantise their arguments, and calls to them in any
mods are legal. Under AND-parallel models such as RAP [5], goals may
run ir parallel if they share no uninstantiated variables: therefore the clause
in our example cannot, in this mode. Were the second goal first, the other
twa goals could be a parallel goal, because they share no variables.

Reordering also provide spesdups without parallelism. Supposs we
have sets of facts for wife/2, mothex/2, and (for single females)
femala/1, and the predicates

gmothar (GC, GM) 1~ gparzent {(GC,), femala(GM).
gparent (GC,GP) :~ parant (R,GP}, parent (GC,P) .

parent {C,P) :~ mothex {C,P).
parent (C,P) :- mothar {C, M), wife(P M}.

The query :- gmethes (X,¥). fndsall grandmother-grandehild
pairs; however, it finds a grandparent-grandchild pair first, instantiating the
variables GC and @M, about half the time promptly rejecting it. Changing
the first clause o

.gmother (GC,GM) :~ femals(GM), gparent (GC, GM) .

probably reduces the cost famala/l takes fewer calls than
gparent/2. Note also that female/l instantiates &M and thus the
mede of gparent/2: we consider fewer possibilities, making the goal
less costly. Unless only a tiny fraction of the females in the database are
grandmothers, the reordering pays.

1.5, Previous work

Warren [19] uses a simple heuristic 10 reorder goals of conjunctive
queries to a Prolog database. Speedups are up 10 several orders of magni-
tude, but the method fails for Prolog programs in general, Li and Wah {14]
model Prolog clauses as Markov chains, allowing one o compute approxi-
mately the cost and probability of success for a clause from their values for
each goal; one need provide them only for ground clauses because they pro-
pagate upwards. Goals can be reordered to minimize the cost, We greatly
extend this in our paper [7], giving reswrictions on reordering; however, we
do not show a way 1o prevent reardered goals from giving reordered results.
Instead, we give *‘levels of equivalence’ that different types of reordering
preserve; these are stilf useful when exact equivalence is not essential and
we want to avoid overhead.

Many Prolog dialects, execution models, and abstract machines sup-
port AND-parallelism. Parallel dialects include Parlog {2) and Concurrent
Prolog [16); with these, the programmer annolates variables to show the
system how to avoid binding conflicts, Conery's AND/OR parallel execu-
tion [4] requires no annotations, but performs much run-time analysis.
DeGroot's Restricted AND-Parallelism [5), extended by Hermenegildo
(8,9,10], tests variables at run-time for groundedness and independence: if
a putatively parallel goal passes the tests, it runs in parallel; otherwise its
parts run serially. Our reordering method uses extensive siatic analysis that

makes some run-time tests unnecessary. Chang et. al. [1] use static analysis
expressty to find AND-parallel code.
1.6. Organization and goals of this paper

First we consider machines to support AND-parailelism: a simplified
absract machine and, after some necessary background on the Warren
Abstract Machine (WAM) [17], Hermenegildo's {8]. Then we show how
reordering goals reorders results, present order tracking, a method for
solving the problem, and modify both the serial and parallel machines to
support the method. Predicates with side-effects restrict both serial reorder-
ing (71 and AND-parallelism [6]; we describe how our method can
amelicrate this problem. We then summarizs other restrictions on reorder-
ing,

In our previous paper [7] we extended the Markov-chain model of
clause execution to full serial Prolog; here we further extend it to inciude
AND-parallelism and our new method. This should allow us to estimate at
compile-time, when parallel exccution pays, when reordering pays, and
when it is wise to combine them, We discuss future work and give conclu-
sicns.

2. Machines for AND-parallelism

2.1. Properties of a machine

A machine has processors able to communicate with each other by
some means. Each sither runs a serial Prolog interpreter, consists of a Pro-
log engine such as a Warren machine, or cmulates a Prolog engine; each
has a copy of the program. Communication has some cost, not necessarily
fixed. We can consider the machine either a set of processors or of
processes running on them.

AND-parailel execution is straightforward at this level of abstraction.
A processor, or unit, receives a goal (o soive, Tt tries to mawch this to a
clause of the comresponding predicate. Suppose that it succeeds and
reaches, within the clause, & parallel goal: a conjunction of goals that is o
run in parallel, For every goal of the conjunction, it sends information to
another unit, letting it solve the goal. As each unit finishes ils goal, it sends
its results back to the **parent unit,” the one working on the parent clause.
If any constituent goal of the parallel goal fails, the unit tunning that goal
informs the parent unit, which sends a "'kill" signal to all units working on
parts of the paratlel goal; this is propagated to any descendants running
paraliel subgoals.

We need parameters for the costs of various operations, such as cal-
ling & remote goal {c,,.g), retuming the resuit of a remote goal (Crucuive)s
reporting failure or broadeasting a kill signal {cgur. Cuuds Our unit of cost is
the (local) predicate call, which we assume takes roughly constant time;
therefore we can measure the cost of an operation as the number of calls
that can be made during it. Because of our generalized model we assume
single (fixed or average) values for these parameters, but for many methods
of communtication they would be functions.

Even this generalized model for an AND-parallel machine shows us
how the cost of communication between processors affects the speed of
execution. Expensive communication, clearly, makes running goals on
rentote processors impractical. As we discuss later, we must estimate the
cost of each way of executing a set of goals: will parallel execution pay?

2.2. Specific machines :

We now describe the Warren Abstract Machine (WAM) [17] and an
AND-paralle] extension of it designed by Hermenegildo (8] We limit the
details o those necessary for expiaining our reordering techniques and cost
model; the descriptions are taken largely from Hermenegildo’s paper [8].
Ngtse that our methods nesd not be limited to these particular machine
models.

2.2.1. The Warren abstract machine

The WAM is Warren's extension of the execution model described in
his doctoral thesis [18]. It has become the standard model for serial Prolog.
Figure 2.1 shows the data areas of the WAM.

The code area holds the program, compiled into WAM obiect code.
The heap holds data structures and global variables, which are created,
altered, and discarded (on backtracking) as necessary. The stack contains
environments and choice points. The WAM pushes an environment onto
the stack on entering a clanse. An environment has value cells for variables

tocal to the clause, and pointers that show where within its parent clause
execution will continue when the clause completes, Environments can be
discarded when they are no longer needed [20], or can have variable cells
removed [17].

The WAM pushes a choice point (CP) onta the stack upon entering a8
predicate, A CP conains copies of registers, sufficient to restore the state
of the machine, and a pointer to the next untried clause of the predicate. if
the current clause fails, the WAM checks the last CP (pointed o by register
B), restores the saved state, and tries the glternative clause. Restoring the
state reclaims the stack and heap space used by the failed clause, but it can-
not undo instantiations 1o variables decper in the data arcas. the trail
records instantiations which have to be undone on backwacking. The

B ——nd pr. il
(A = o 20 -

Figure 2.1: Data areas of the Warren abstract machine (WAM).
WAM also has argument registers to pass arguments in a predicate cail,
and a push-down list for unification. -

2.2.2. The RAP abstract machine

Hermenegildo [8] presents a multiprocessor made of modified
WAMs. He describes the additions a WAM needs to support AND-
parallelism, and then proposes extra hardware and an altered execution
modsl. A processor must be able to agsign parallel work 1o other processors

=” __l___ Tegh J,

Choice point,
Toc 1D Slaws
°TF " eniries =
» cthergoals |
Foc, 1T Stants Résd!
goals 1o
¥ of goals 1o Wil Tor
TR of goat slots
F1P
Siatus

"""F -

GS——.h---’-—-- ANLY
ot ¥
e

Goal frame

Figure 2.2: Data areas for one processor of the RAP machine.

and keep track of the state of this work, yet it should retain the useful
feamires of the original WAM. Hermenegildo shows that his design does
these things and supports AND-parsilelism, Figure 2.2 shows the data
arezs for one processor of the design.

Records for parallel calls, parcall frames, now appear on the stack.
Each processor also has a new goal stack onto which it pushes goal frames
for goals which are ready to be executed in parallel. Each goal frame con-
1ains the information needed for remote execution, viz.: a pointer 1o the
predicate being called, a copy of the argument registers for the call, the
predicate’s arity, a pointer 10 its ‘‘parent’” parcall frame (EFP), and its
position within that parcall frame. When execution of a clause reaches a
parallel call, a goal frame is pushed onto the goal stack for each of the
goals, and processors (including the one executing the clause) can *'steal”
these frames and start 1o executa the goals.

A processor creates a parcall frame on the stack for each parallel catl,
Within this frame, each goal has a three-field slot: the number of the pro-
cessor that “*stole” it for execution, a bit telling whether it still has altemna-
tives, and a *‘ready’’ bit telling whether the goal's frame wiil actually be
put on the goal stack (for when ¢xecution backtracks into the parallel set,
the retry involves only goals with alternatives). The frame also holds the
number of goals left to schedule, the number of goals executing but not
completed, a pointer to the beginning of the first goal of the panallel call
(the Put Instruction Pointer, used after hacktracking to find paraliel goals to
push on the goat stack for the retry), a status bit 1o show if the parallel cail
has been backtracked into, the top of the goal stack when the parallel call
began, a paointer to the previous parcall frame, and the previous parcall
frame pointer (CEPF). There is also a new register, PF, which points o the
last parcall frame -- the one 10 try in case of backtracking.

The parcall frame chiefly supports backmracking., The scheme {101,
which we also follow though our cost mede!s could support others as easily,
works like this. In a clause with a paraliel goal, goals can fail in three
places: before the parallel goal, within it, and after it. In the first case, we
backtrack as usual; in the second, the paralle] goal fails and we backtrack o
the goal before it; in the third, we backtrack as usual until we re-enter the
parallel goal, There we consider only the goals that have altemnatives
(recall that bit in a parcall frame’'s siof). We backtrack between them in the
usual way, when one succesds, we lump those on its right into a smaller

parallel goal and execute it (this is the use of the *‘ready”” bits). If the goals

ali fail, we backtrack to the goal before the original parallel goal.

3, Order tracking

Supposs that we want 10 reorder the goals of a clause o promote
AND-paratiel execution or inexpensive execution of goals. Assume that no
restrictions on reordering [7] (summarized later) interfere. If we reorder the
goals of the clause, we usuaily reorder the solutions to the clause. Often
this is unacceptable: we want the transformed program to behave just like
its original.

3.1. Reordering goals reorders results

Consider this simple example; we have:
-a{X,¥):- biX, 2), e(¥,2).

. bim,n). bi{n, o). bi{o,p}.
c(xp). a(a,o}. clt,n).
The query :~ a{J,K). gives answers J=m, K=t; J=mn, K=s;

Jmo, Kear in that order. If we swap the goals of the clauss for a/2, the
ordex of the three answers is reversed.

3.2. How to correct this

Suppose that a predicale is non-deterministic. It or its descendents
contain disjunctions, as multiple clauses or written explicidy. We can
represent the predicale as an AND/OR graph (or tree, if there is no recur-
sion), an AND node for each clause and an OR node for each disjunction.
The sons of each’ AND node are goals; the sons of each OR node are
members of disjunctions, Label the arcs from an OR node o its sons with
numbers, in the order in which Prolog tries them: viz,, the order they are
written in the program. OR nodes with one son need no labels.

We can use strings of bits as labels; a disjunction of n alternatives
needs[logon bits. Figure 3.1 is a labeled graph for this program:

a:= b, g, d,

a:- a, &,

a;- g, h, &,

a:=- 3, k.

b~ 1 b= m. bi=n ar- o.
d:= p. d:~ g. a:-r £:- 8.
£:= L, g:i= u. gi= V. hi=w,
h:~ =. i:- ¥y. ji= = j:= al.

Figure 3.1: A labeled AND/OR graph

Now if we traverse the graph depth-first, ag Prolog would execute its pro-
gram, appending labels to a bit-string as we oy altermatives and remaving
them when we backtrack, each solution yields a unique string, The smings
are in order: a sclution’s string is always larger than its predecessor's, if we
give the leading bit of two strings (whether ones or zeroes) the same
significance and wreat strings as binary numbers. Thus the strings tell us the
original order of the answers to a predicate.

Now suppose that we include labels in compiled code. We also add
to each choice point of the WAM two flelds: one for a bit-string, the other
for the bit-string’s current length. When the WAM calls & predicate for
which we want to keep rack of order, it includes space at the end of the
choice point for the bit string, copies the label of the first altemnative,
advances the length counter, and procesds. The next choice point copies
the string and length, and appends the next label, on backtracking to a
choice point, the WAM replaces (within the string) the label of the current
alterngtive with that of the new one. In this way we get a bit-string for each
salution.

We have a reordered conjunction of goals, not necessarily an entire
clauss, for which we want to find the original order of results, We have a
record of the original order of goals. At compile-time, we see which goals
are responsibie, in the original order, for instantiating variables; we have
these generate bit-strings as they run. (Note that it is **safe’” but wasteful to
generate a bit-string for every goal of the conjunction; therefore we can
include any goal that migh instantiate a variable.) Running the reordered
conjunction gives a set of bit-strings for each of its answers. We pad the
strings with zeroes, so that all strings produced by the same goal have the
same length, We ammange the swings of a solution into the original order of
the goals, and concatenate them, forming what we call a signature for the
solution.

Treating signatures as binary numbers and sorting solutions by
increasing order of signatures gives us the same arder of solutions as for the
original conjunction. Our restrictions on reordering (7] guarantee that the
set of solutions it unchanged. Each solution is made up of the solutions 0
the goals of the conjunction, and the order of the bit-strings produced by a
goal is the order in which its AND/OR subtree is searched. A signature
therefore represents a trace of execution for the original order of goals, and
the higher the signature, the later the solution.

3.3, Details of the implementation

This method, order tracking, sclves the problem of out-of-order
results; however, the modified choice points described earlier are only part
of the necessary mechanism. We describe first the additions to the WAM
and then those for the RAP machine, (Note that Hermenegildo has
independently proposed a similar [abeling scheme (9] to prevent problems
with memory management on the RAP machine; perhaps some of the over-
head could be shared.)

3.3.1. Modifying the WAM

Once we reach a reordered conjunction, we must find all its solutions
before we can proceed, as in a bagof [3), because in general we cannot
know in what order they are found, We store cach solution (and its signa-

{re), sort tem, and return the nrst. When the WAM backiracks mto the
reordered conjunction, it gets the next stored solution, and 50 on until the
soiutions are used up and backiracking procseds to an earlier point.

If 2 reordered conjunction does not take up an entire clause body, we
create a new predicais for it, one having & single clanse with the reordersd
goals for a body: e. g., if we swap the two middle goals of t:= a, b,
e, d., wemewrite tas t;~ a, tl, d. and £l:- &, b. (with
appropriate variables). When we call the new predicate we create a reord-
ering frame on the stack; this is a choice point with the BP (next altema-
tive) pointer replaced by a pointer (RP’) 10 a new area called the reorder-
ing heap, and a new field to count the number of soludons. The reordering
heap holds solutions as long as they are needed, and has an extrd machine
register (RP).pointing to its top. Figure 3.2 shows the features added to the
WAM.

Al
A2
'
:
An
n ke rare-ve anity
BCE backtrack
BCF continuation
B brr—— previous CP
[|———veordering-heap pointer
TR’ trail and
H' heap pointers
Reordaring fame
cont environment continuation
cont. coda pointers
B
B2
E bit-atrings
Bn
Y1
Y2
H permanent
: vaziables
Tn
Reardering environment

Figure 3.2: Additions to the WAM to support arder tracking.

The machine copies its (new) RP register into the RP® field of the
reordering frame, and makes a reordering environment on the stack for
the reordered goals. This is an environment with fields for the bit-srings
produced by each goal. When the conjunction produces a solution, the
machine creates a signature from the bit-strings, combines it with the solu-
tions to form a sclution frame that it pushes onto the recrdering heap, and
increments the solution counter of the reordering frame. We force back-
tracking and find all solutions, discarding the environment as usual.

Now the RP’ pointer of the reordering frame points w the first solu-
tion frame on the reordering heap, Extra hardware sorts the solution frames
by signature; there are several possibie ways 1o do this. We might create a
sorted linked list of solution frames, which would make moving them
unnecessary; instead, we sort them such that the first solution is at the top of
the reordering heap and the last lowards the bottom, which allows us to
reclaim some space as solutions are used. When the sorting is done, the
reordering frame remrns the first solution and decrements its solution
counter. On backtracking it fetches the next solution from the reordering
heap, decrements its solution counter, and updates RP and RP' as nesdad.
When no solutions remain, the machine backiracks 10 the previous choice
point, as usual.

If a reordered conjunction is a descendant of another, the ancestor
expects a label from it as part of a bit-siring. We keep the bit-strings and
signatures short by assigning a label to each of the descendant’s solutions,
rather than passing the signatures. We lose no information because these
solutions are already in the correct order. This method is also useful if a
descendant goal, not reordered, has such a large search tree that the bit
string is too short o distinguish solutions.

3.3.2. Modirying the RAP machine

The processors of the RAP machine require the same modifications
as the WAM, also, they need a field in the goal frame w hold a signature.
Note that the parts of a parallel goal can be called in any order without
changing the order of results, because they are independent. None of them
will ever be a call to a new predicate of reordered goals, although they may
have such calls as descendants. Similarly, a new predicate generated for 2
conjunction of reordered goals may include a paralle! goal: in fact, if
reordering has put into a paralle} goal a goal that, in the original ordering,
instantiated variables, the entire parallel goal must be in the new predicate,

3.4, Order tracking and side-effects

We have shown {7] that goals with side-effects (IO, modifications to
the database such a3 asserta and retract) cannot be reordered. For
example, if we have the clause a:- b, o, d., and e has a side-effect,
putting ¢ before b expresses the side-effect even if b fails; putting &
before o prevents ity being expressed if d fails. Goals with side-effects
are fixed; No goal of a clause may be moved from one side of a fixed goal
to the other. The effect propagates upwards: predicates cailing fixed predi-
cates are ‘‘responsible’’ for the side-effects of their descendants and are
also fixed.

DeGroot [6] has studied how side-effects affect AND-parallelism: all
goals that occur before a side-effect must complete before the side-effect
goal can execute, and all goals that occur after one must wait until it is
finished before they can execitte. He divides side-effects into hard and soft;
the latter (. g., writa) cannot affect later goals, so that those later goals
can begin execution before the side-effect goal finishes. Compile-time
analysis should allow us to show that particular instances of assert and
ratract are also soft.

We can “‘cache’* soft side-effects with solution frames on the reord-
ering heap, thereby keeping the order of side-effects correct This lets us
reorder fixed goals, so long as their instantiations are preserved.

4, Other restrictions on goal-reordering

We have seen how certain built-in predicates demand particular
modes, and how side-effects can fix goals; we now summarize other impor-
tant restrictions. For details, see our earlier paper [7].

4,1, The cut

The cur, written !, is notorious for aliering program behavior.
Encountered during forward execution, a cut succeeds immediately; during
backtracking, it makes its predicate fail without wying ‘any of its later
tlauses.

In the body of a clause a cut is not mobile, but it does not fix its
ancestor predicates. Instead it commits the carlier goals of the clause w
their first solutions. Without order-tracking, we cannot reorder those goals
or any of their descendents, because reordering would probably change that
first solution. Order tracking works poorly with cuts, because it finds all
solutions for each reordered conjunction of goals, though enly one solution
is needed.

4.2, Semi-fixity

Some predicates behave differently in different modes; for example,
the built-in var/1 succeeds only for an uninstantiated argument. We
must preserve the mades of such predicates under reordering, or at least the
instantiations of variables that cause this to happen, or the reordered pro-

will be wrong. Usually the behavior involves a unification or test that
aiways succeeds or fails in some mode, but due o a cut has no aliemative,
For example,

a{x, ¥ ,b):= 1,

a(X, ¥, 2):- e (%, ¥), d{¥, zZ).
matches only its first clauss if none of its arguments are instantiated, but
probably only its second if the last argument is, Any reordering that
changes the latier situation to the former is wrong, and that last argument is
the *‘culprit.’”* A way to preserve the mode of a culprit variable is to fx its
goal with respect to other goals that might change its instantiation; hence
we call such predicates semi-fived. The only legal mode for a semi-fixed
predicate is the one in which it was called in the original program. Semi-
fixity propagates to ancestors if culprit variables also appear in the clayse
head.

‘5. The Markov-chain model

We want the expected cost and probability of success for calling a
predicate, given those for the predicates its clauses call (recall that we
measure cost as number of predicate calls). We model a Prolog clause as
an absorbing Markov chain [7], after Li and Wah [14]. The cost and proba-
bility of the clause follow from properties of its chain; combining results for
clauses gives them for the predicate. 'We summarize our earlier work, then
present new models for order tracking and parallel goals.

£.1. Overview of earlier work

Consider k:- a, b, ¢, d. We know the probability p; and
cost ¢; for each goal i, To find the expected probability and cost of a single
solution 10 the clause, we model it as the Markov chain of Figurs 5.1 We
give each goal a state, label the arcs with success and failere probabilities,
and add absorbing states § and F for success and failure.

Transitions of the chain mimic Prolog execution. We start in the state
of b, proceading to ¢ if b succeeds, or going to F if it fails, In every i we
move forward (probability p;), or backtrack (probability 1=-p,). Evenmally
we Stop in an absorbing state: success or failure,

If we want the cost of finding all solutions w a conjunction of goals,
as in a bagof, a setof, or a reordered conjunction under order tracking, we
add an arc of probability | from 5 back to the last geal. When we find a
solution we backtrack, looking for another, until we fail.

The success probability pei., of the clause is that that the process
ends in state 5. ¥, for all goals i, is the expecied cost of a solution, ¢;
being the expected cost of goal § and v; the mean number of visits by the
process to state {. Therefore we calculate p.p., and all the w: texibook
{12] mathematics,

Begin with the transition matrix P, An clement Py is the probability
of a ransition from state § to state j; § has index 1 and F index 2. The chain
has r states, s of which are transient. Consider four submatrices of the rxr

pia) p) pE) pd

Figure 5.1: A clause body as a Mgrkov chain.

S

I, the identity matrix, for transidons between absorbing states; R,
sx(r—s), for transitions into absorbing siates; Q, sxs, for ransitions between
transient states, The zero mswix, (r—s)xs, shows that nothing leaves an
absorbing state. Here is P for our example:

1 ¢ 0 0 0 0
0 1 0 o 0 0
¢Cl-p, 0 p, 0O O
Pe=1o 0 1p, 0 py O
o ¢ 0 1-p, 0 p
pa O 0 0 1-pg Q

The matrix N = (-)™ provides our answers. Its first row contains
the nombers of visits v; for the transient states, because we start in the first
state. The product NR gives the success probability p.a.,: the first element
of the column of state § (column 1); we take the dot product of that column
of R and the first row of N. We find N; numerically; if we have ¥ goals, we
invert an NxN matrix, and do 2% multiplications and sundry additions for
the probability and cost. If we use an analysis program written in Prolog,
we might call a C rontine to generate and invert the matrix.

For each calling mode we find the least costly reordered version of a
predicate, Different modes may benefit from different goal orders, and the
cost of each goal varies with its own mode. After finding probability and
cost for each clause, we combine the probabilities to find the conditional
probabilities for the clauses in order, multiply these by the costs, and get the
expected probability and cost for the entire predicate.

Cost and probability of a clause come from those of its goals; in data.
base programs, these come from costs and probabilities of facts. In such
programs only facts have non-variable arguments, so that their heads might
fail. Evaluating a fact costs one call; its success probability is problematical
unless the call is uninstantiated, when it is unity. We can, like Warren [19],
find domains for each argument; a domain might be the set of constants in
that argument of the predicate, or perhaps the set of all constants in the pro-
gram. We take the probability as []!domain; 1! for every position i that
has aconstant in both fact and call.

If we allow full Prolog with recursion, it becomes harder 1o tell the
likelihood that a call unifies. if an argument position is non-variable in both
the goal and the clause head, the probability is no longer 1. For constants,
we can use domains, as with facts. For structures, the predicates are usually
recursive, with a special case matching empty stuctures. The size of a
structure affects hoth the probability and cost of a call; the system or user
must estimate structure size before run-time. It might suffice to provide a
set of parameters, giving the probability of a maich for each type of term,
the ““typical”’ size of a data strecture, and so forth,

5.2. A model for order tracking

Suppose we apply the Markov model to a clause body and find that
some of its goals will run at lower cost if they are reordered, We construct
a single-clause predicate from these goals. The clause head contains only
variable arguments, so that it always maiches a call. 'We model this clause
using the **ajl-solutions’” Markov chain mentioned earlier; the one with the
added unit-probability arc from the success node to its predecessor. This
tells us the least expensive order of the goals, as well as the expected
number of solutions., (The additional arc keeps the success state S from
being an absorhing state, so that we know the expected number of visits to
it} Putting this order into the usual chain gives an estimate of the probabil-
ity of success.

The first solution of the order-tracked predicate is extremely expen-
sive, but later solutions require only the cost of copying data from the
reordering heap, Figure 5.2 shows a Markov chain for a clause that calls an
order-tracking goal. We represent the goal by two nodes: the first (labeled
1) bears the expected cost of finding all solutions (plus any overhead costs),
and succesds with the probability py that any solution is found; the second
(labeled b}, reached only on backtracking, bears the cost of looking up solu-
tions, and the success probability p; = i;—'-—, where s is the number of solu-
tons. .

Pr

oW O ()
1-py o

Figure §.2: A clause that calls an order-tracking goal.
33. A wodel for AND-parallel goals

Suppose that we have a independent goals forming a parallel goal.
We know the probability of success and the expected cost of each; we want
the probability of success and the expected cost for the entire parallel goal,
Because the subgoals are independent, the probability of success is simply
the product of those for the subgoals.

For this model, we assume sufficient processors are available 1o run
each subgoal of the parallel goal: therefore, when the parallel goal
succeeds, we consider it to cost as much as its most expensive subgoal,
because the parallel expression does not complete until afl of its goals have
completed, We are not counting the totat number of calls executed on the
processors running the goals, but only how scon the parallel goal will be
completed,

The cost of a failing parallel goal is more difficult to find. For a
subgoal { with expected cost ¢;, we approximate the cost as a random vari-
able U;, exponentiaily distributed with mean ¢; and thersfore having param-
eter A= r:i (Note that the usual Markov chain gives us a single expected

cost for c&mpleﬁon rather than one for success and another for failure.)

= iz

Bach U, then, has density f, = cie % and distribution F;=1—e © .
§

Now we want the expected cost of the first failure; this is the first order

" statistic for the vasiables Uj [11], A strightforward but tedious derivation

based on a heuristic technigue [11] shows that the first order statistic has an
exponential density, just like those of the constituent goals, but with param-
eter =73, —1_-. 30 that the expected cost of failure for the parallel set is
‘];- _ jml M
Aoor 1

.'?1 L]

Note that we can easily include the overheads of parallel execution in
this model. Recall that sending a goal to a remote processor causes a delay,
as doss remrieving a result, Therefore we might take the cost of success as
mlax(c.v}i-c,..‘-t-c,,‘,‘-,,. ‘We add such delays to the cost of each goal before
iwln

we computs the expected cost of failure, To that cost of failure we also add
the cost of sending a failure message to the parent unit, and the cost of the

parent unit killing execution of the other goals, giving — n + Crait + Chitt

im] &

Figure 5.3 shows a chain for a clause that contains a parallel goal. It
is so complex because we have to model two unusual features of a parallel
goal: the differing costs of success and failure, and the backiracking
scheme. We use 2 “"dummy’’ node (labeled d} of no cost © select success
or failure, and two deterministic nodes to bear their costs (s, and f;). Recall
that when execution backtracks into the parailel goal after failure, back-
tracking proceeds in the usual reverse order (amongst goals with altema-
tives) untt a goal succeeds. Then all goals w the right are reactivated in
parallel. Using static analysis we can eliminate most of the goals that have
no altenatives (again, this is not crucial: a few deterministic goals included

Figure 5.3: A clause containing a parallel goal.
erroneously wil} not greatly alter the estimates of ‘probability and cost). We
_have, then, a chain of nodss that represents backtracking between goals of
the paralle! goal, with additional nodes that represent parallel retries of cer-
tain subsets of the parallel goal,

6. Coanclusions

We presented a method, order tracking, for reomdering clauses of
both serial and AND-parallel Prolog without changing the order of solu-
tions. We described serial and parallel Warren machines, and showed what
must be added to them to make our method work. After summarizing our
Markov-chain reordering method, we further extended it to cover order
tracking and AND-parallelism, and showed an example of how reordering
can promote AND-parallelism and faster execution.

Increasing Prolog’s speed of execution will require 2 combination of
restructuring methods and extensions to the Warren engine. We intend w0
study both OR- and AND-parallelism 1o see how they might be promoted
by changing program stucture. However, serial execution is still
inefficient; restructing needs to ensure that each processor of a parallel
machine runs efficiently.

We aiso need to study side-effects under resucturing and parallel-
ism. Our earlier work [7] and that of DeGroot [6] will provide a good start-
ing point, but it has been concerned with what reorderings and AND-
parallel executions are forbidden by side-effects; we plan to look at more
types of restructuring and parallelism, and try to circumvent the side-effects
rather than be restricted by them.

7. References:

[11 1.-H.Chang, A. M. Despain, and D. DeGroot, "AND-Parallelism of
Logic Programs Based on a Static Data Dependency Analysis,” Dig-
. est of Papers of COMPCON Spring '85, pp. 218-225, February 1985.

21 K.L.Clark and §.Gregory, "PARLOG: Parallel Programming in
Logic,” ACM Transactions on Programming Languages and Systems,
vol. 8, pp. 149, 1986.

(3] W.F.Clocksin and C. 8. Mellish, Programming in Prolog, Springer-
Verlag, Berlin, 1984,

{41 J.S.Comery, Parailel Execution of Logic Programs, Kluwer
Academic Publishers, Boston, 1987,

{51 D.DeGroot, "Restricted AND-Parallelism,” Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, pp.
471-478, ICOT, 1984,

[6] D.DeGroot, "Restricted AND-Parallelism and Side Effects,”
Proceedings of the 1987 Symposium on Logic Programming pp. 80-
89, [EEE, August 1987,

{71 M. M. Gooley and B, W. Wah, "Efficient Reordering of Prolog Pro-
grams,” Fourth International Conference on Data Engineering, o
appear, [EEE, February 1988,

(8] M. V.Hermenegildo, "An Abstract Machine for Restricted AND-
parallel Execution of Logic Programs,” Proceedings of the Third
International Conference on Logic Programming, Springer-Verlag,
Berlin, 1986.

[9] M. V. Hermenegildo, "Relating Goal Scheduling, Precedence, and
Memory Management in AND-parallel Execution of Logic Pro-
grams,” Proceedings of the Fourth International Conference on Logic
Programming, pp. 556-575, MIT Press, Cambridge, 1987,

[10] M, V. Hermenegildo and R. I. Nasr, "Efficient Management of Back-
tracking in AND-parallelism,” Proceedings of the Third International
Conference on Logic Programming, pp. 40-54, Springer-Verlag, Ber-
lin, 1986.

[11] P.G.Hoel, S.C.Port, and C.I.Stone, [mroduction to Probability
Theory, Houghton Mifflin, Boston, 1971.

[12] J.G.Kemeny and J. L. Snell, Finite Markov Chains, Yan Nostrand,
New York, 1965.

(13] D.J. Kuck et. al., "The Effects of Program Restructuring, Algorithm
Change, and Architecturs Choice on Program Performance,”
Proceedings of the International Conference on Paraliel Processing,
pp. 129-138, IEEE, August 1984.

{14] G.-J.Li and B.W,Wah, "How Good are Parallel and Ordered

Depth-First Searches?” Proceedings of the International Conference
on Parallel Processing, pp. 992-999, IEEE, August 1986,

[15] C.S.Mellish, "An Altemnative to Structure Sharing in the Implemen-
tation of a Prolog Interpreter,” in: Logic Programming, pp. 99-106,
Academic Press, New York, 1982.

[16] E.Y.Shapiro and A. Takeuchi, "Object Oriented Programming in
Concurrent Prolog,” New Generation Computing, vol. 1, pp. 2548,
1983, :

{17} D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Note
309, October 1983, SRI International, Menlo Park; CA.

[18] D.H.D. Warren, Applied Logic -- Its Use and Implementation as a
Programming Tool, Technical Note 250, June 1983, SRI Inema-
tional, Mento Park, CA.

{19] D.H. D.Warren, "Efficient Processing of Interactive Relational

"~ Database Queries Expressed in Logic,” Seventh Conference on Very
Large Data Bases, IEEE, 1981,

(20} D.H. D, Wamen, "Optimizing Tail Recursion in Prolog,” in: Logic

Programming and ¥is Applications, pp. 77-90, Ablex, 1986.

