From:

90’s; Sept. 14-16, 198;

Conference on Future Trends in Distributed Computer Systems in the
Hong Kong

A GLOBAL LOAD BALANCING STRATEGY FOR A
DISTRIBUTED COMPUTER SYSTEM '

Katherine M, Baumgartner and Benjamin W. Wah

Department of Electrical and Computer Engineering
and the Coordinated Sciences Laboratory
University of Hlinois at Urbana-Champaign
1101 W. Springfield Avenue
Urbana, IL 61801

ABSTRACT

Distributed Computing Systems (DCSs) evolved to provide commun-
ication among replicated and physically distributed computers as hardware
costs decreased. Interconnecting physically distributed computers allows
better communication and improved performance through redistribution (or
lead balancing) of workload. In this paper, we describe a load balancing
stralegy for a computer system connected by multiaccess broadcast net-
work. The strategy uses the existing broadcast capability of these networks
to implement an efficient search technique for finding stations with the
maximum and the minimum workload. The overhead of distributing status
information in the proposed strategy is independent of the number of sta-
tions. This result is significant becanse the primary overhead in load
balancing lies in the collection of status information. An implementation of
the proposed strategy on a network of Sun workstations is presented. It
consists of two modules that are executed at all participating computers; the
distributed-search module that isolates the maximally and minimally loaded
computers, and the job-migration module that places a job based on the load
extremes.

INDEX TERMS: Broadcast, collision detection, distributed computer sys-
tem, dynamic programming, load balancing, multiaccess networks.

1. INTRODUCTION

Early computer systems were centralized due to the cost of replicat-
ing hardware and additional staffing. As hardware costs dropped, it became
possible for smaller organizations to own computer systems, Consequently,
several compuler installations could be present on a college or industrial
campus, and local area networks (LANSs) evolved o allow communication
among the compulter installations. The resulting collection of resources and
the communications medium are Diswibuted Computer Systems (DCSs).
This trend is even more prevalent now as networks of personal computers
and workstations are common in the work place.

The nerworks which connect comnputers and workstations allow com-
munication, but they also have the capabitity for allowing efficient sharing
of resources. Since the demands for computing power are continually
increasing, the network can be used for scheduling (or load balancing)
operations during time when it is otherwise idle. DCSs can provide g cost-
effective solution to increase the computing power available to a single user
if jobs can be scheduled to exploit the potential parallelism. Livney and
Melman [LiMB82] have shown that in a system of n independent processors
modeled as M/M/1 sysiems [Kle75]), the condition in which a job is waiting
for service at one processor while another processor is idle occurs 70% of
the time for traffic intensities (the ratio of arrival rale to service rate) rang-
ing from 0.5 to 0.8, This idle-while-waiting condition indicates the possi-
bility of reducing the average job delay. With a global scheduling strategy
for a DCS, the occurrence of this condition can be reduced and, conse-
quently, the overall performance can be improved.

Research lupponed by National Aercnautics and Space Administrution Contract NCC 2481
and Nagi Foundation Grant DMC B5-19649.

Conlference on Future Trends in Distribused Computer Sysiems in the 90°s; Seplember 14-16,
1988; Hong Kong.

1.1 Scheduling Terminology

There is a considerable amount of conflict in the literature concerning
the terminology used to describe the atributes of scheduting strategies,
This section discusses terminology for classifying scheduling strategies.
First, some previous classifications of scheduling strategies are reviewed.
Using these resulis, the terminology used in this paper is described next.

‘Wang and Morris developed a classification of scheduling algorithms
{WaM85]. Their criteria for classification is whether the strategy is source
initiated or sink initiated, meaning whether overloaded resources seek to
alleviate their load, or lightly loaded resources actively pursue more work.
Additionally, the level of information dependency is & factor. Information
dependency refers to the level at which a resource has information about the
current state (or workload) of other resources.

The terminology used in global scheduling (or locad balancing)
[ChK79, NiH81, Wal83, BaW8S, EaL86, Ezz86] is varied and conflicting.
Some features commonly discussed are whether the scheduling inelligence
is centralized or distributed, and whether the scheduling decisions are static
(independent of the current state of the system) or dynamic (dependent on
the current state of the system). This characteristic is also referred to as
being deterministic versus probabilistic, or adaptive versus non-adaptive
(adaptability also refers (o a differsnt atiribute as discussed below). These
features are useful for comparing scheduling strategies and indicating the
potentiat of a given scheduling algorithm, .

The informal classification used for load balancing problems above
was formalized by Casevant and Kuhl in an atnempt to unify the diverse
notation used [CaK88]. Their classification was designed for distributed
computing systems.’ This classification consists of two pans: a hierarchical
classification and a flat classification. The hicrarchical classification is used
o show where some characteristics are exclusive. The flat classification
gives definitions of autributes that are not exclusive. Several obgervations
about this taxonomy are as follows.

1. Adaptability refers to long-term algorithm state-dependency rather
than short-term state-dependency for scheduling decisions. Adaptabil-
ity is available with both static and dynamic scheduling decisions since
the algorithm can be static or dynamic for one time interval, and then
change for the next time interval.

2. Load balancing and optimality are considered characteristics of
scheduling strategies, rather than requirements of the scheduler,

3. One-time reassignment and dynamic reassignment (corresponding to
preemption in the one-processor case) are considered strategy charac-

" teristics rather than capabilities of the DCS.

4. Bidding in the flat portion of the classification and cooperation in the
hierarchical portion are not distinct.

The terminology used here is not exclusively adopted from any of
these sources for the following reasons. Wang and Morris' classification
focuses on only two aspects of the sirategy (initiation location and informa-
tion dependency), so it not extensive enough. Casevant and KuhI's taxon-
omy i3 not used exclusively becapse there is overlap between their
classification of scheduling strategies and requirements of a scheduler,

Table ! summarizes the terminology used in this paper. The first
characteristic is the level of scheduling which indicates whether scheduling
is among resources, or within a resource. Next is the rule basis, which



Table 1. Rewsed Clasgification.of Schaduhgg Strategies
Characteristic Valoes. Explanation

Leve! of Schadnl- . [uuamomvs. E
ing ' Inter-resource | node or resource as opposed o

' among nodes or resources.
There may be mukiple sub-
levels of  intra-resocurce
scheduling. Also called globat
versus local.

Refers to scheduling within a |.

‘Rule Basis Staticvs, Refers to the flexibility of
scheduling rules to react to the
current State of the system. A
- static schedule bases rules on
unchanging system charac-
teristics. A dynamic schedule
bases rules on the current state
of the sysitem. Also called
state-dependency.
Describes where the responsi-
bility for scheduling decisions
‘lies. This applies primarily to
dynamic rule basis since static
rule basis implies a centralized
decision. Hybrids are also
- possible.

Location of Con- _ Distributed Vs,
ol : Hierarchical vs.
Centralized

Negotiated vs.
. | among ‘locations of control.
-] This applies to distributed or
- hierarchical control since cen-
tralized control does not have
separate cooperating modules,
Which processor initiates job
movement: the overlogded
processor- (source mmated) or
| the ‘underloaded = processor
- {sink mitiated).
Refers to flexibility of the
algorithm, and whether -the
algorithm changes execution
based on job characteristics of

Source vs,
! Sink vs.
Both

Initiation

Adaptability " Adapiable vs.
Non-adaptable

‘Describes  the  intgraction |

the system,

rcfersm whatthe schediiling decisions are based upon, the static system
characteristics or the dynamic state of the system. Naote that this is different
from the static versus dynamic arrivals of jobs 10 a DCS. Next is the loca-
tion of control. In case that job distribution can be controlled, the control-
ling processors can negotiate to make scheduling decisions, or function
independenily. Initiation and adaptabitity are the final two characteristics.
mm&aamm«mmmuumwmmmum:z

1.2 Pmlauc Work

In this section, lhetesultsofpmvioussmdmmahowubymupmg-

: pmblemsmcmdingwwhethaptwessxngreqmems .of arriving jobs-are_

specified stochastically {as a distribiition) or deterministically (in exact
amounts).

A great deal of research was doné for scheduling tasks with exact a
priori knowledge of execution requirements during the 1960s and 1970s.
This work has besri described in several books [CoM67, Bak74, Cof76] and
survey papers [Gon77, GA.77]. Thisis a class of problems that frequently.

- " occur in a manufacturing environmerit-and ere scheduling problems at a
" inter-resource: level. ‘ Scheduling strategies for this type of problems have
been discusséd extensively {CoM67, Grl.77]. Solutions are optimal, near
optimal, approximaie, or heuristic. Schedules may be explicit time-event
pairs or static rules; such as the shortest-job-first rule. Scheduling inteli-
gence in this case is centralized.
As -DCSs evolved, scheduling problems -related to computing
environment received more attention. Some early scheduling problems for
the mulnpmcessm' envimnmem considered schedulmg tasks with acyclic

precedence requirements with no communication among tasks {RaC72,
GoR72]. These studies assumed that a reasonable estimate of resource
requirements could be obiained with a preprocessing phase of & program,
Results of these studies included a method for determining the minimum
computation time, and 2 method for determining the minimum number of

. processors 1o achieve the minimum computation time [RaC72]. Also, a

comparison of a centralized vezsus a decentralized algorithm indicated that
the decentralized algorithm performed better,

Scheduling tasks with intertask communication is a more difficult but
more realistic problem. Improving performance requires limiting excessive’
communication and evenly disuributing the workload among processors. If
ali tasks are scheduled on.one processor, there is ne communication cost,
but there is no benefit from a multiplicity of processors, If the tasks are dis-
tributed such that processor utilization is complesely uniform, full advan-
tage of the multiplicity of processors is realized; hbowever, communications
costs may be so large that the benefits of concurrent execution are fednced.
Since the goals of limiting communication and balancing load are direcily
conflicting, tradeoff must be made in obtaining the maximum performance,

Several stdies .wers -performed by Stose [Sta77, StB7S, Sto78;

'RaS?Q]mwhmhﬁemhﬁmmh:pmongpbswasrememdmm

The nodes Tepresent tasks with execution requiremems, the edges are
labeled with commuaication costs. Communication is required for one
module w0 signal its successar on completion. An assignment of tasks is
specified by a cut that divides the graph into a3 many sets as there are pro- .
¢essors. mcostofmcass:gnmmluequaltolhemoftheuecuﬂm
costs plus the sum of the commuuication costs tasks that are not
assigned W the same processar, that is, the sum of the weights of the edges
on the cut. Consequently, the minimum cost assignment corresponds (o the
minimum cutset, The overhead of thiz method is sufficiently large so that it
is limited to system with two to three processors. A similsr mapping prob-
lem for larger systems wai explored by Bokhari [Bok81) in which com-
municating modules were placed as much as possible on adjacent proces-
sors. Other approaches to this problem include graph matching [ChHS0,
RaS?Q].matbeumdcalmmnung [Weg80, ChHB0], beanch and bound
optimization [Mal.82], and heuristics [ApI78, ChHS0, KrHBSU;, LoL81,

- Efe82]. Anopnmﬂmlumfmﬂnu—wcmwwﬁadhym

‘and Abraham [ChA82).
Mabovesnaaegwsmfmmicmofjohs mdthellmepu

' themselves are static. Their execution time is 100 long for them to be effec-

tive for dynamically arriving tasks. Their utility is, therefore, useful during
meplacmmgphmofnsysmorforspeml-pmpousymmwhkhm
ing is critical:’ Sdledulmgslralegwst‘ordymmmllyamwngjohcﬂm
usc these techniques due to time constraints. -

: Ismesmnamnmpomntmdevdopmgmgmfadynmn_
scheduling problems with stochastic nesource requirements include tradeoff
between balanced load and communication overhead, location of controf,
status information used for the scheduling decisions, audlheunnamn
point,

‘The tradeoff between balanced load and communication overhead has
been distussed carlier, In deciding the location of control, the complexity’

_-ofﬂwschednhngalgonﬂunandnsbeneﬁmmnstbeconmderqd. A central-
ized location of coniral may allow the scheduling strategy to be simpler.

However, the decision point has the potential of becoming a bottleneck and
a critical failure point. If & distributed decision is made, the overhead of
distributing status information can be so high that the benefit of load balanc-
ing is reduced. Trace driven simulation results by Zhou [Zho86] show thit

- nejther centralized or distributed strategies are always superior, and that

communication overhead s important for both. The- third congideration is
what statys information to use for scheduling decisions, Studies indicas
thatexoesswestams:nformatmnsnotouﬂyunneoemy butcanbedaln )
memal [LiM82, WaMB85, TaT85]. :

Several centralized, static scheduling strategies have been proposed,
Proportional branching is & static, sink initiated strategy in which jobs are
routed to processors with a probability determined by the relative power of
the processors [ChK79). Ni and Hwang found optimal, static, sink-initiated
strategies for single and multile job classes under centralized contiol



[NiH81]. An optima) static. source-initiated strategy was found by Tantawi
and Towsley for scheduling jobs that are modeled as independent tasks
because they can react to changes in the system state. Chow aad Kohler
proposed three dynamic centralized strategies with a job dispatcher (sink
initisted) and found the one that maximizes throughput gives the best per-
formance.
Dumbuwddmmmwummwmpmmanmnlm
mwmmmmmam;mwmmm
cally, distributed and dynamic stratégies require negotiation among partici-
pating processors, which involves communication of status information, and
the selection of processors involved in the scheduling decision. The sim-
plest methed is to- maintain a centralized table with load information, and
processors can consult the table before sending jobs for remote execution
(HwC82L. © This medlod has the similar pmb!ems as the centralized

dhpatchcrmthemof:ehahﬂurmdbomeneck Anouwwchmquensm

have each: processor broadcast its load and keep track of she loads of other

processors.. This, in effect, is equivatent to duplicating the workload table’

at each processor [LiM82, ZhoB6). Aliematively, only significant load

changes can be broadcast, resulting in a decrease in network taffic [LiM82,

Zho86], Other -methods of exchange involve nearest neighbors [Wil83,

Kel84]. Smknwwlnspmposedssmgythatmcludesah:ddmgphasem

which negotiations take place {RaS84, Sta83]
‘Somes;smﬁcammulcsofllwumvwmsmdiesueasfonows.

1. Load balancing is beneficial since load imbalance occurs frequently in

.- asystem with ten or more processors.

2. Exmwmmfmmmmakcaloadhalmmsdecmmumt
necessary and may be derrimental. .

3. Sink-initiated strasegies have the potential for improved performmoe
over spurce-initigied ones.

4. Dynamic strategies have greater potential that non-adaptive ones.

5. ' Centralized strascgics may have reliability and boutleneck problems.

6.  Communication of scheduling information should not interfere with
regular message transfers.

7. There is a mismatch between the capabilities of the network and the
communications required for schednling operations.

1.3. Objectives and Organization
A global scheduling strategy is studied in this paper, with an objec-

tive of Snding the maximum ansinable performance of such a strategy. A

system with a broadcast bus is chosen becanse a bus connection is common

in many local DCSs and workstations. - This paper describes the proposed

strategy, the motivation for its development, its implementation, and its per-
formance.  Section 2 describes a scheduling strategy thiat tramsfers workload

from the maximally loaded procesgor: 1o the ‘minimally loaded processor.

'I'heseqwmofopuatms the technique for: isolating the. processors, a -

characterization of load: distribution, and performance based on simulations
are detailed. In Section 3, the implementation of the proposed strategy is
described. ‘Anoverview of the software is presented, foitowed by a detailed
description of each program module. ‘Wext, the performance of the swategy
“on a network of Sun’ workstations is. shown. Conclummsmdsugxesmns
for future work are drawn in Section 4.

SCHEDULIN‘G STRATEGY

In&tssecnonanmmwwofmescheduhngmblanonahmdcas:
bus is presented. Figure I shows & diagram of the system under considera-
tion. There are multiple identical processors connected by 2 broadcast bus.
Each processor ¢an have aivivals exiemal (o the system or from the bus.
Jobs aré modeled as independent tasks. If jobs are migraled to a processar
across the bus, the results must be returned to the originating processor
when: execution is completed. Moreover, the queue at each processor is
finite: only a limited number of jobs may be waiting for execution.

2.4 Uﬂ\fﬁiﬂpﬂ'ﬂm of the Strategy

'I‘Imﬁmtstepmdeﬁnmgaprmedure:sm ﬁndthosesyswm states in
which job redistribution can.result in improved perforntance. Obvioasly the -
occurrence of the idle-while-waiting condition must be decreased as must

External Amivals: . Logad from External Arrivels 100d from

emote P

|, = | e
T T T
Result Job Rawalt Job
Remum Migration ‘m Migration
i | L i

Figure 1." Model of a Broadcast Bus:

the occutrence of any state that makes idle-while-waiting more lilely. In'a
batch processing systein, idle-while-waiting ‘will not occur' whea these is at
least one job at each processor at any time.  Hence, the likelihood of idie-
whde-wamngcmhemmhnmednﬁfpbsmeveulydﬂrﬂ:m in a mul-
tiprogramming systems, assuring that processors are busy is riot sufficient 1o
minimize idle-while waiting: Since the response time for each job is
degraded as more jobs.are added to the active queus, it is important 1o dis-
tribuie all available jobs evenly, while attaining reasonable response time.
An impoartant point here is that the number of jobs at a processor,
while frequently a good reflection of load, is not always adequate. ‘Other
famﬂmmymmmmmewmﬂmuapwmphwul
differences of processors (such as speed or size of main memory), paging
activity, and the ratio of procesging activities and input/foutput sctivities in

jobs.

The strategy discussed'here uses the queue length of active jobs ata

~PrOCEssOr as a menic to indicats workioad. A quéue length imbalance will

make the idle-while-waiting condition more likely.  Hence, a load redistri-
bution: action is needed when there ia sigaificant difference between queue
lengths, such that the estimated wotal overhead of migrating a job, queneing
debyaammepmmmdlmxemﬂngmﬂuklummm.
ajob would experience at its source quese.
Anadealwdumbumnofpbs.ummmemmdistheqm
fength at each processor, is to have equal number of jobs ai each processor.
Since a single bus is used to connect all the computers, only dne job can be
migrated at-any one time, and it is not possible to perform such an ideal
redistribution in one step. The miovement with the most impact is to take a

- job from: the maximally loaded processor, ‘and send it o0 the minimally

loaded processor.. Such a strategy is both source- and sink-initiated. Addi- -
tionally minimial status information needed because it is only necessary 1
1dennfythenmumﬂyandthemm1mallyloadedmcm

Three openmusxczequiredfmtlﬁsmdimbmma
bus network: idennﬁmmoflhemumﬂlymmumnmaﬂyhadedpm-
cessors, job migration, and result retum. Migrating jobs ‘and retwrning
results are spraightforward becanse existing communication facilities can be
utilized; however, identifying with tlie load extiemes efficiendy
is more difficult. Such an operation should have very low complexity,
prefesably independent of the nimber of processors connected to the bus.
Anymualuedschedulmgalgoﬁmm suchaspul.ths.umtmnhlehae.

2.2, Scheduling SQquem
Thaeare_mteesﬁepsmdevelopmslheschednhnsuqm 1denu

mmmmmﬁmmmgmmm-
ties, There are four types of tasks that require the use of the network: regu-
lar message transfers, identifying the maximally and the minimally loaded
processors (max/min identification}, job migration, and resplt retomn. Regu-
lar message transfer is assigned the highest priority, since it is the ariginal
purpose of the network. The priorities of the remaining tasks are deter-
mined by considering the relative averheads in terms of the additional sotal
system delay (the sum of the delays of all jobs) incurred.



First, the refative priority between identifying the
maximalty/minimally-loaded-processor pair and the migration of the job
between the (i~1Y* pair is determined. Two casés are considered. The first
is when there are idle processors. If job migration is done first, then the
migrated job ‘can begin execution immediately upon arrival at the destina-
tion processor, %o its delay is incréased by the time required (o send it
across the network. In contrast, if the max/min identification is done first,
then the same job will incur; the delay of that operation as well. Clearly,
migrating the job first is beder. The second case is when there are no idle
. processore. . The ordering of the wsks is not critical in this case, since
migrating the job first does nat immediately contribute to réducing the job
deldy, -as the job may ot begin execution upon arrival at the destination.
This result is trie for any. joby-mijgration and max/min identification, and
pesforming thie migeation first will result in a total delsy equal to or smaller
than performing the max/min identification first. Consequently, job migra.
tion should have higher priarity over max/min identification.

Nmmmmommnmnmmmﬂjongmu

cwmdﬂﬂd. ‘When thers are no idle processors; delay is added directly w0
the job waiting for result requrn. Since the job waiting for job migration
mnnmbeablembegmexecnmimmadmelyuponmvalatu\edeﬂuna :
ticn, result retwrn should take precedence. When there are idle processors, .

both the delay for job migration and the delay for result retinn will reduce
the overall delay. Performing the result return first always improves the

overall pesformance as much of more than: performing. job: migration firsy. - .

huahmymmﬂtmﬂmmﬂeﬂdmyshwmmm
nm;hnmiunuﬁcauonbyasmhrmmnent. i

In' summary, meprwﬁtymdamgfumsksumgmbnsmmku '

(1) regular message transfer, (2) result retum, (3) job migration, and @
max/min identification.

e mwhduﬁuzmmycmsmsofmmmmmemm :
repeaiedly. The ‘fisst is10- detesmhiie which of the. current tasks has the -
highest pricrity, and the secand sep is w execute that task, - Due to-the ord-

ering of the priotities; only one joblwill ever be waiting: for job migration,
but potentially more: than one may be waiting for result retum.

On consideration:associated with priorities is overhead. The discus-
sfon abave assumes that each of the steps hais similar overhead. If the over-
. - heatls associated. wimtasksmommdemblyd:ﬂmt.pnm:ymfm

chignges: A specific case is processors sharing -secondary storage. Job
nuyatnmwdmnhmmnhavehwﬂ'ovmdmmhasymmmen o

one without'a shared -disk. Fﬁemsfensnmexplicltlyneeded since all
processors have .access toa common storage. Further, if the
mm&mmsmmmmmmenitwmcfﬁmtnmm
scheduhmrdiagwmwm :

23 lhxlmn identification’ :

" Carrigr-sense-multidecess Tetworks. with collision - dmenon
(CSMAJCD) are & type. of local-area network with packet swilching and 3
bus topology [Tan81). CSMA/CD networks evolveéd from CSMA networks
that ‘have lisien-before-talk protocols 10 avaid overlapping. transmiissions.
| The colligion:detection ability of CSMA/CD setworks allows:processors &
‘additionally listen-while-talk, so collisions resuliliig from slmuimneum
-wmmumcmbedmcudandsmppedmedlmly

There aro (hres  types’ of - coniention’ resohmon'pmmcols for

CSMAJ/CD networks. . Collisionfree protocols. strictly schedule bus
accesses; so no collisions occur, - Contention proocols function at the other
extreme allowing processors to iringmit whenever they find the bus idle.

Whenooniumsaocubecauseotmulumouammom.mm_

: ummnimwmformpresuibedamoumotume,mduyam
Mbacknﬂ'almonmmofﬂthm:[r«lemélnsmexammemmmclaas

“The disadvantage of collision-free protocals lics in the overhead of waiting

for transmission, while the disadvantage of contention protocols is the time
wasted during collisions. The third type of conention-resolution protocol is

the limited-comsention protocol; This type.of protocol choses & processar .
- {0r transmission from ‘among thasé waiting o transmit based on a priori -

information; such ‘as the channel 1dad, The Virtal-Window Protocol pro-
poscdby: Wah ‘and Juang [Wal83, JuW84] is an- example of a’limited-
contention protocol.

pmvixmsl._vmm
function remming the upper hound for the oext window

* comengion_state() procodure niuming the state of the astwork
* contend( poocadure 10 contand and broadcast argaenest
* Ib_window © 0 dower biund for window 10 choss

* ub_windaw . uppit bound for window to'be chosss:

* Lo :

contending = trus;

Tb_window = L;

ub_window o U;

while contending de {

_bd op) -
. M(mm:-b_m)ml
comand(soicention; parameter);
contendion_stas{stato),
1F (e = i) tholm
b window » window_bd_up;
elna if (st o collision) them -
. w-mdaw-wmdow_bd_up:
dul’(unamm)m to
. m..m

contending = fale;
Fim:ez. mvmm Wiaduwm

sibhwwom:mﬂisbn(mmﬁanmem idh(mhm - |
. and success (exactly one broadcast). Stations wishing 1 transmit packets - -

participats in a contention period that consista of a namber of contention
slots. Bachmmgemamdumnumbuuulmmn-
fer that is used for the entire contention. pericd. The parameter is in an
mmvalm:huppermdlwubomdsﬂmdhmﬂiwly Soccessive
cmofmdlerinmahhmhmmnotmmmm-
minimum contention parameter, '!‘hemplmedbyudxmﬁonma'-
emtenﬁmpeﬁodseﬂwnmﬁzwz. ‘
qummmmmwmmm«m‘
mhmmmwmmmmmm
3&wmed&omaumfoamﬁmhmmﬂnmn!(o,i} The statiois
‘maintain a common window (interval) foi comention. ' In's contention slot,
_stations having contention patameters. within.the window broadcast a short
signal o contend for die chanhel, ‘If a collision or 1o trensmission: occars,
mmmmmnummmmmwummtumm
contention slot.  Stations having contention parametars outside the window
stop contending and wait for the next contention period. The shove sieps
arc repeated until a-single station is isalated in the window, ‘This station is
the winner and is allowed 10 transmit its' packet. The distribution of the -
contention ‘parameters and an estimate- of the channel: kiad: are used 0
mtﬁcm:;wefﬂcieaﬂy mtheuumbetntcmmﬂnumwma
um.

mm“mmmwummmmﬂm
m:mcmmmmmmwmm Wy, the

"-upper bound for the first window:chosen; is 0.51. -All siations with conten- - . .

anmmhaaﬂmmequalmoslmaﬂowednmhumm;
case smtiony 1, 3, and 4, The regult of this contention slot is 4 collision, the )
intezval to be searched is updated to (0, 0.51], and stations 2 and § sre clim-
inated from the comention,. "Wy, the upper bound: for the next window, is.

025, mms&mmmmmm(mmm sothe

.interval is updated to- (0.25, 0:51}: No stations were aliminated a5 & reyolt -

- of this conmention slof. For the third contention slot, the upper bound of the

window. is chosen 10 be 0.32. mmmwmmm '
sm4mwlmedmd“m"ﬂ|econwnm :
lewmdow-selecmprmeﬂlsﬁmmlawdsndymmm-
ming problem, and details have been shown elsewhere [Wal85). - Analyses
andsmulaﬁnnshaveslmwuﬂmconmwcanbemminmaw

* of 2.4 contention siots, indépendént of the number of contending stations -
mmemmmmmofmemmmmid»m e

are independent and idengically distributed [WaJ83]:

mvahcammeummofamothdepemmmm .
pmcmmgmfocmgamaeddmgdmmeomﬂmdmm




in a contention siot. Many exisung networks da net make the ihree-stale
collision-detection information. available to the applications software
because & contention slot is s small amount of time (50 to 100
microseconds) relative -to the time required to propagate information
through all levels of software o-.the applications level (hundreds of
microseconds). As a result, the VWP cannot be implemented easily at the -
applications level in:software, and: additional handware modification 10 the
network interface ig required:

To implement an efficient max/min-search protocol at the applica-
mnslevdofmexuﬁngwmmmﬂmmnnd:fymgﬂnha:dm two
impostant steps must be taken, Firsy, the algorithm must be simplified
compensate for the additional overhiead for communicating status informa-
tion to.the applications Jevel. Second, since information conceming out-
come of conention is not readily available at the applications level, the pro-
tocol must be redesigned 10 use only readily available information.

At the applications level, each siation has an independent seerch
parameter, which reflects the focal workload. An iteration st this level isa
 broadcast slot, which consists of resolving contention at the network inter-
face, followed by a broadcast of a message 1o all stations. ‘A broadcast slot
‘has_ two possible -outcomes,  idle (no. stations attempt 10 broadcast), or
transmissicn (on€ or more statiofns atlempt o broadcast resuliing in conen-
tion fesolution, and-one-station broadcasts its search parameter). A broad-
cast slot may consist-of a number of contention slots; however, information
about each ouumauonslousnotm:otheapphcauons level,

-‘There are a number-of differences between searching at thé applica-
nonslevelandmenetworkleve!. : .

1. The comtention paramcms are the. search parameters - for: the VWP,
'chhzsnotmecasermmemndowpmmolatmeapphcaumslevel

2. AnmmmofmeVWPwacontemmslmwnmthepossxblcaut-_
comies: idle, collision, ahd sutcess. An iteration of the window protocol
atmeappheatimievdmabmadcastslmwmnwopossableonmna.
frensmission and idle. .

3._.-Anmnhmot‘thsVWPlahslusmmﬂmnmﬂerauouofdnwmdow

.-..mlmclulheapphmuomhvel ‘Normally, & contenition slot takes tens.
- of microseconds, whﬂebmudcasﬂngashortmessagelakeshun&mdsof
microseconds.

Since the information available for window selection is different at
the applications level, dndec:mnpmcesslnswbemodxﬁed. Three possi-
ble window-search - strategies for idenufying the minimum are the one-
broadcast strategy, the swo-broadcast strategy, and the combined strategy.
‘The -identification’ of the maximum is similar and is not described. The
algorithm, the iechnique for making window choices, and an implementa-
tion are shown for the onie-broadcast strategy. The other two strategies are
described briefly here, as their performance is inferior [BaW87]. In con-
wast to the VWP, dynamic programming: methods ‘w optimize window
choices are not used because the Principte. of Optimality is not satisfied.
The performance of these strategies are comipared using the mumber of
broadcast siots ey requite o isolae the minimum search parameser.

The one-broadeast strategy allows a maximum of one broadcast slot
per iteration, Starting with an interval (L U] cach station has a: search
parameter Xx; in the interval. The siations aiaintain a global window on the
interval.  Stations: with. parameters within the window attempt to broadcast
their search parameters; and if there are one or more parametess in the win-
dow, there will be a contesition resolution followed by a broadcast of cne of
the: search parameters,  In that case the upper bound of the interval will be
updated 10 the value broadeast, . If there are nio parameters within the win-

dow,’the lower -bound of the interval is updated 1 the upper bound:of the . .
wmdowused.mdﬂ:spmmolconnnues The minimum is identified when -

ﬁ:ehwu'bmmdofthemwlsequauomeupperbound. 'nwstcpseach
monperfomsareonﬂmedml’mre& :

) MmhdebmdcmzmmgyushMmFgm4.
Thuum&vcpmcemcummdmg.uﬂmanihumnwnﬁmpmmem

x;; :In’ this-example, x; =048, x3=0.90, x3=0.35, x5=0.30; and x5=0.75..

‘These cornitention parameters were chosen asbimarily, but for different pur-

poses they may reflect procéssor loads or priorities. For the first iteration, - -

- the upper bound-of the window chosen is:0.51. Siations 1, 3; and 4 attempt
"tobmadmatlhe:rpamnem Supposematsmuou';!nsmewmnerand

1+ choose_window(} " function retuming choice for the apper bnd of nax window
* broadeast_state(} procedurs retarning the results of the broadcast slos

* brosdcan) procedure 1o contend and broadeast srgument

* parameter_broadcas starch paraoster bcast if broadcast_stam rexeny tremamission
* lb_window Tower bound for window 1 ba diosen

* ub_window upper biotnd for window 1o be choses

* window_bd_up actual upper bound of window chosm

*f

searching = true;

I window =L,;

ub_window = U;

whie searching do {

window_bd_up = choots window{Jb_window, oh_window);
if (search_paramater $<=3 window_bd_up) and
{search_parsmeser > Ib_window) then |
 broadcasi(eearch_parameter);
brosdcast_siste(state, parmeter_broadcast);
if (saasn = idle) them
lb_window = window_bd_up
alve if (stite = trmemission) then -
.. ub, whdowsmm :
] oloe S )

searching = fulee;
: I(ubwmdow-lh_whdow)&u
um:hi.u = falad; -

Fing mo;»msm
ransmits. 'memtmmalwhesemhedu(om Letaheupperbumd

. of the next window chasen be 0.33. Only. station 4 wys to transmic ity

‘parameter, and X is broadcast.” The search has not concluded even though :

‘u:sdnnﬂnimumbecamethefactﬂmuwasmeonlymonm ’

is not available to station 4" or to:the other stations. ‘The next window.

. -chosen is 0.25. There is, of course, no broadcast. This process will con-
: nnuemulﬂwbounchoiﬂnwmdow:sohwx‘,andmemmmugb-.

‘bally known,
mclneeofﬂlewmdowinewhbmadcastslotnhmdmlhewu-

_-bab:huesofthetwoms.mmm.wluchm&pmdeatm C
- . previous broadcasts. If & prévioas: bioadcast slot resalted in the transmis-
. - sion of & value, say xu1, then'any subsequent transmissions miist be Jass tian:

Xpt. mumphummmymbuqmmhmmemuum
cast during the iteration that x,; was broadcast, but lost the contention, The
probebility of the subsequent transmissions must be conditioned on the fact
umanymmthecmentwmdowdnnmbmdcmwunwmdlﬂ
ble during previous iterations. The choice of the window is, thus, depen-
thmmmmmmmawnm

Amumeﬂmtsmmihasmumpendeutwcupum with
distribution F(x) and density f(x}. mfolbvdngdeﬁmnnsuem:;ﬁm
mulmemepmblmnofchoosmgmeupperbmmdofmemmnmln'
recurrence after k hroadcasts.

Ngi(ab,ve,g¥) the minimum expecled number of mmnm Lo iso-
la:cthenummmxlusmgaone-huadxmtm
- piven that the current interval under consideration is
(a,b]; that thare is at least one x; in (8, b], and that there
have been k prévious. broadcasts with values and
corresponding upper bounds of windows: stored in. the
’ k-clement arrays vE and g¥, respectively;
de(ab,w,vEqt): - the probability-of a wansmission on the inperval (xw),
given that there have been k previous broadcasts with
- values and comesponding. uppér bounds ‘of windows
A storedmﬂxek—elementamyzv‘andq‘ mspm:mly'
Ba(a_,b.w‘\r“.q“):
there hgve been k previous broadcasts: with valnes and -
mmspon&nguppaboundsufwmmmmu.
k-elmemmmv‘mdq‘.mpecﬂmy o

Thcmm@mdq*indlumamofkvalmmmmer

coeresponding. upper: bounds of windows used. v and q; are the k* valpe '
andtbecmecpondmguppetbm_ndofmudowm !tﬁollowadlrecdy-
ﬁommeahovecbﬁmumsthat

MM.WV"H")*‘BB(&I:.WV‘.Q“)*lO _ : S m

ﬂwmbabxmyof:dieoumemmal(a.w},pmm _—
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Figure 4. Example illustrating the One-Broadcast Strotegy

After k successful broadcasts, there are 2(k+1) subiniervals on the
interval (a,U}. They ave (a, wl, (%, wel, (. @1, (qer Vet ks -, vy, @], 2nd
(q1. U]. For reference, they can be numbered from left 1o right and from 1
to 2(k+1). Let s be a set of elements { s; }, where s is the number of x;s in
the i subinterval. Let S be the set of s that aze possible with the previous
windows and valnés broadcast, and let I be a subset of S such’ that 5=0.
The set [ is the subset of S that corresponds to a distribution of x;s, such that
Ttl':re will be no x.a in (a, w] and that me result of the broadcast slot is idle.

en -

’;[Pr[atrangement -s]f;Pr[vi broadcast with w = g; | s]J

Bg= . @
& Pr{armangement s]#?r[vi broadcast with w=g; | s]
] - =

The probability of a given arrangement is found vsing the distribution
function F(x). Let b(a,b.i)=[F(b)~F(@)] then _

Priarrangement Sl=[ ;‘l] bla,w;s:) “;:'] bW ,ve,8) - -

n-28
Smat ]b(\fl.qx.snﬂ)b(t‘h-U.sz)l )

Pr(vy broadcast with a window upperbound g, | s). is easily determined
because each station in the subinterval searched has equal probability ot‘
wmmng and broadcasting:in a brondcast slot, so

Prv; brca@acast with a window ispper bound g; | 5)= 1, . @

Using a conditional density function

fxo) _ fix) )

fela.wxy)= A<KREW w)—F(a)

the choice of the upper bound of the next window is formulated as a
recurrence. Let -

wa._w.vk_.qr):]‘fc_ca._w.x.,)ﬂs.(m.vm.qw)dxb . ®
Nei(a,b.vk.g= _rr‘gg,{ 1+ ¢efa.b,w,v* gt Wa.w.vh.q4)

+ﬁn(a,b,w.v“,q*)Ns;(w.b.v*,q“)} . )
with ' _ '
Ne(abwg=1 . forallb=a,

Thie first tsrm oni :he right hand side of Eq. 7 counis the current broadcast,
The: second term is the expected number of additional broadcast slots to iso-
late ‘the minimum if che current broadcast stot results in a transmission. 7y is
the weighted average number of broadcast stots for xu, the value broadcast,

and the probability that this value was broadcast. The third term is the
number of additional broadcast slots if the current broadeast slot is idle. :

Boundary conditions must be set to terminate the evaluations after a
reasonable number of broadcast slots. In practice, the x;s may represent
indistinguishable physical measures when their diffevence is less than 8. It
is assumed that when the window size is smaller than 5, the probability that
two siations have generated parameters in this interval is so small that con-
tention can always be resolved in one step. The boundary condition
becomes

Nei(a,bve,g)=1 forall (b—a)<3s.

Using a 8=1/(10n), the evaluation of the recurrence equation is com-
plex. .

The data structure shown in Figure 5 is used to siore window choice
information. - The top of the structure contains pointers o initial windows
for different numbers of processors: For a given m;, there is an initial win-
dow wy,, and two pointers to substructures. corresponding to the two out-
comes, transmission and idle. Note that the substructure for a transmission
contains windows for each of the possible values that can be transmitted in
the subinterval.

The data structure shows the final window choices, but during com-
putation of the best window choice for ‘each decision ‘point, all possible
choices of windows havé o be tried. For each possible window, there can
either be a Lransmission or 0o transmission. If there is & transmission, aff
possible values within the window miust be considered as the possible value-
broadcast. Each level of the structure indicates thé outcome of an Heration.
For every decision in the exact solution, the entire struciure above the
current decision point, which is determined by v* and g¥, must be taken into
consideration in computing the next set of branching probabilites. With
§=1/(10n), and n=35, there ar¢ 62,007,690 decision points, and for n=6,
the number increases to 8,501,194,726. The number of decision points
increzses so rapidly that the problem becomes intractable, Fortunately, res-
sonable results can be obtained using a hearistic decision based on the

- current upper and lower bounds only.

. In the approximate solition, the probahilities of ransmission and idle
areassumedmbemdepmdeatafpmviousbmadcaslsmdmmpuwd
without information from: previous broadcasts. The following definitions
are used.
Na(ab)y:  the minimum expected number of broadcast slots to isolate
the minimum %; usmgauappmxnnmesolumnofmewe-
broadeast strategy, given r.hat all :qs are in (a,U], and that at
least one x; is in’ (a,h]. :
the probablhty of a transmission o the interval (a,wi, given
thatallxlsmm(a.U] and thstatlenstonemlsm(a.b].

the- pmbablmyofnouaaszmss:mmme iiterval (a,w], given
that alt x;s are in (a,U], and that at least one x; is in (a,b].

It is obvious that
oatabw)+8uabw)=10. ®

dalab,w):

Balabw)

wiis | - ; -‘_"z.u- N co
Irai N SRV \\mmsmssmn IDLE

TRANSMISSION IDLE TRANSMISSION IDLE

. S Figure 5. Data structure



There are two cases to cansider when calculating 94(a,b,w)}, namely, b=U
and b= U. When b=U, it is uncertain whether there is a x; at b, and all
amangements of the n x;s must be considered.

When b#U, there mist be a station at b, since b is only updated 1o 2 value
of x; in the event of a transmission. In this case we are only concerned with
the placement of at most (n—1) of the x;s.

I
- ~Fwpt
ouab) o= BN (10

The recurrence for choosing the window is

Naab)= aé‘:.','lb{ 1+ h(a.b.w)“f;(a.w XoiNat (a.xb)dxb}

+93(&b.W)NA|(W,b)} . an

- Agdin, the three tefms on the sighit hand side of the above equation
count the current broadcast slot; additional broadeast slots in the event of a
translmssmn. ancl additional broadcast slots if the curmnt broadcast slot is
e assumption that.contention can be resolved in one step when the

wmdow size is smaller than 8 holds, so-the boundary condition

Nm_(l.b)ﬂ 1 f‘x all (b a)<8

iz used again. The data structure for swring the windows s sunply a two-
- dimensional array. - The number of decision ‘points for the approximate
mluumudemrmmedbythcvﬂuesofaandb The total number of unique
nodes with &=1/(10n) is ((10n)%+30n)/2, Which is determined by counting
- the decision pomtsmdlcatod by the above recurrences. Forn=35and n=6,
. the numbers of decisions pomls arg. 1325 and’ 1890, respectively, and the
complexity-of the solufion ig conigiderably reduced: from:the exact solution,

" The: lwo—bmadcast and combined slrategws differ from :the one-

: :-bmadcaswasem menumberofbmadmstslolsperneraum For the two-

broadcast sirategy, 1wo-broadcast slots- are:allowed: per-ileration. The first
broadcast stot uses a window choice similar to the one-broadcast sirategy
The  second broadcast -slot is ssed only .in the event that there was a
transimission on the first broadcase slot; if the result of the first broadcast slot
is idle; the search continues to the next iterntion. All stations with x; less
than: the value broadcast during the first broadcast slot are allowed to broad-
cast, If there is no ransmission during the second broadcast slat, the global
minimum is the value sansmiited during the first broadcast slot; if there is a
transmission-on. the second broadeast slot, the search continues to another
iteration.” The Objﬂcu\'e in investigating the two-broadcast strategy is to
truncale the search in the event that.the minimum is broadcast in. the first
broadcast slot. The: combined strategy uses both the cme-broadcast and
two-brondeast strategies. In eacht ileration, the approprigle strategy along
with the window is selected. The objective here is to achicve the beneﬁis of
both strategics.

The simulation results for the distributed window search are shown in -

Figure 6. The windows were gencrated using the equations derived above.
The: broadcast parameters were generated from ‘a-uniform diswribution  in
(8,1), and sufficient cases were simulated until 'a confidence imerval of 0.95
was reached. Thenumbe:efbmadcastslmsmhnundedhyZMor the ong-
: braadcas: sttamgy Results of simutating the two-broadeast and combiried
stiategies *are: also. shown -in Figure 6. The performame of the two-
" broadeast strategy usboundedbyﬂ broadcast slots; so it is-not as good-as
" the one-broadcast strategy.” Tlie performance -of the combined strategy is

* the same:ds the ohe: broadcasl su-awgy, but it has higher, overhead. [n snm- o

mary ‘the one-broadcast strategy is superiqr in performance.

“The: ‘proposed schéme is practical as a result of the consianit expected' T
numba- of broadcast slots. The time required for a contention; slot is

o appmxunately 50 microseconds; .and the time réquired 1o broadcasta’ search

: . parameter:is. estimared at approximately 100 microsecands. If it takes 120
" micraseconds to:resclve contention and 100 microseconds to wransmit a 1-.
‘Kbyte packet; then ¢ach load balancing decision:to ldenul‘y the maxxmally :

and the' mmlmally Toaded ptocmwors reqmres less than T mﬂhsecond.

1] 10 L 30 L+ - 50
Number of Processors
Figure 6. Results of the Protocol Simulation
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Figure 8. Load Maximums and Minimums for One Hour

2.4. Distribution of Load Averages

The knowledge on the distribution: of workload {or load averages) is
needed in the distributed search in order 10 choose the windows. In this
section, the load averages on a system experiencing a real workload are stu-
died to determine its characteristics ‘and whether global scheduling has
potential to-improve performance.

The sindy consisted of measuring the load on a system of 10 Sun
workstations (servers and clients). 'Every sixty seconds, the one-minuté
load average was measured and logged. The load data was analyzed using
an adjusied Komolgarov-Smimov tést [LaK82; Tri82]: This goodness-of-fit
test can be used to detect differences. between. a normal distribution and the
empirical distribution indicated by the measwred data. The agreement was
measitred over fime. The: results indicate that te- diswibwtion of load aver-
ages can be estimated using a nermal distribution, as 80 percent of the time

_umthesyswmmacuve.;hednsmbu&omsmﬂunﬂﬂiofanwmldm o

bution.

L mresulrsofthcstndyaresmwnmﬁgmeﬂands Figun?slm -
the maximum and ‘minimurms.load averages over time; The minimum is -

.. almost always zerd, and:the:maximum varies. The peak -wilization. is

betweensamplenumber?ﬂ()and 1400 which reflects the load from lp.m. ’
until midnight. From 1'a.m. until 11 am., the Joads. measured were uni-

formly low ($1). There isa potcntial benefit from global scheduling during

that time. Figure 8 s.huws one hour of ‘the mmunum. avuagc. and max-

" imum load averages. -
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Figure 9. Difference Between the Empirical and Normal Distributions

3. IMPLEMENTATION

The Sun system on which the global scheduling strategy has been
implemented consists of servers and clients conmected by Ethernets. The
servers have secondary disk sworage; and the clients do not. A client can
access a server’s disk via the network, and is allocated a portion of the
scrver’s disk for swap space. Swapping over the network is a part of the

regular message transfer. A network file system (NFS) allows transparent

access to remoto file sysiems.  This mechanism allows uniform access by
the clients to secondary siorage,

“The Sun system is multiprogrammed.  When a process is initiated on
a server o a client, a core image of that process containing run-time infor-
mation exists in the swap space associated with ‘that server or client. Thiy
care image may be quite large (on the order of several megabytes). Since it
i8 not possible 1o copy from one swap space 1o another, the only way to
tmngler the care imags is over the nistwork. Moreover, due 10 the size of
the core ‘image, this: transfer would have high overhead (on the order of

-geconds). ‘Owing o this overhead; the current implementation migraies jobs

caly. at' their entry point. Fumeumammwnumﬂnghbelschednlmg
strategy. will study preemption strategics,
Fhere -are ‘two program ‘modnles {(daemons) that comprise the

-scheduling strategy in the current implementation: the searcher, and the job

migrator. The search ‘daemon periodically pasticipates in a-search for the
minimum. The scarch at'a processor is initiated in one of two ways. First,
when an alarm signal occurs, the daemon determines if its local load is in
(L. wyl. I itis, then the job ia transmitted. - Second, the:daemon is activated
when a packet arrives from: another processor. The search daemon obtaing
load: informatidn (in'the current implementation die foad average) directly
fram the kesnel. Job migration is performed by sending the necessary infor-
mation of :a job at'enry point o 8 remote processor. Result return is per-
formed when execution. of the migrated. job is completed. Priorities of the
various phases in Joad balancing are not.enforced due ‘o the high overhead
of explicit priority resolution (as discussed in Section 2).

3.1. implementation of the Distributed Search

ThcmhformemwmumhadmmauytakuZTbmadcastslm
on the average (see Section 2). Table 2 shows the simulation resulis of the
search truncated 'at one broadcast slot. This table shows that, under this
coudmon.meabﬂmm:ﬁmmulmﬂed?ﬂm?%pumtofﬂwum,md
there are 18.6:10 23.1 percent of the unresolved casés in which all search
parameters are in the interval {wy, U} and no workload information is
broadcast. Unresolved searches are not critical here because they reflect 8
condition in which' no processors are lightly loaded enough to accept addi-
tional jobs. For cases that are resolved, those that do not find the absolute
minimum have a one to two percent difference from the absofute minimum.

Since workload information is heuristic in nawre, stalt errors in sdentifying

processors for load balancing are not critical. -An important wadeoff we
haveachiemduthatmwmhhmultsmobmdatsubmnmﬁylow
overhead.

The minimum scarch as implemented on the Sun network is-shown in
Figuweé 10, Execution is initiated, as mentioned above, by an alarm signal,
or by a packet srriving from another search module. When an alarm is
received, the processor’s current loud is compared to the lower bound of the

-window. If the load is smal] than the lower bound, it is broadcast with a

timestamp. and. processor address. If a packet is received, the load is

#* INTERVAL constant indicating time intorval at which search ia performed
* pacicet( information containsd in the packets exchangad

. losd  processorload

- sounrce processor addmss

*}

‘M_nm{ufomau-mmdiahdm

tirmestanp tmestamp of the load stams
. minimum_load load at thie minimally loaded processos
:} inimum,_locsti location of the minimaily loaded processor
* current_time() fumction retuming the cirent Lime
* current, Joad() fonction retuming the current losd st s processor
* set_alaem() function 10 set an alarm signal ARGUMENT saconds from now
* on_alarm(} function that sety 2 call o the argomans wien ws slirrn ocons
* reser_alarm(} function to esot the slani sigral io0 ARGUMENT secondy feom now
* weit,_srival) function that waits for the srrival of & packet
"wriuo writes w s fils
structure Load_status Joad_statos; /% giobal structure containing Koad stapes *f
procediie main;
on_siam(seisd_packetQ);
yet_alamm(INTERVAL);
while {TRUE)
receive_packet();
endwhile
ond
procedire send_packet;
¥ (current, load() < window) then
packetload = carrenz_load();
packet.scurce = MY_ADDRESS;
broadcsst{peckes);
endif
set_alami(INTHRVAL);
wmd
'Mn_uui_ve_pduo:
wait_ariv
VALY
i {current._time(} > load | namus.time) then
load_sistoe miniaun foed = packet. Joed:
load minimum,_locstion = packis,_s
. P i .
write(load_status);
endif s
end
Figure 10. Procedures for minimum search
Table 2. Results of Simulation for the Truncated Search - -
no.of | %ofsrches | %resivdsarches | avrank - % diff of
procs nresivd . finding min of result | result from min
3 200 - 78.00 0,194 2790
4 136 7604 0224 L2
5 20.1 : 73.97 0,268 2.086
[ 218 | 73.66 0.252 1.665
7 214 C73260 0279 1.506
8 205 70.57 0292 1495
9 231 T2.82 0.256 1.151
10 21.8 404 . 0256 0959

accepted as the minimum and is stored with. the current time. If more than
one processor sénds. a load packet due 1o their both receiving an-alann
simultaneously, the minimum load is. accepted. I the loads are identical,
the processor address is used as a tie breaker. The alarm is set when pack-
ets are received, so the process is loesely synchronized. - .

mmmuofmwdmmmmwﬁkwmm
current status of the network. As the status (the minimum load; and the
location of the processor with the minimum: load) is stored, the cuvent time
is also stored. When the statis information is read from: die. file, the time
stamp is checked and is used to determine if the Joad value is out of dae. If
the status information is oot of date, the processor congiders itself ineligible
for job migration until it receives another status packet. This time stamiping
allows an unreliable commusication mechanism’ 10 be used to COMMUNICAS
load information (broadcast datagrams) which reduces network waffic in the
form of acknowledgements. In casé that Joad information is lost by cae
processor, that processor does not migrate packets. 'mshasmhumlﬂu,.
on the overall performance of the scheduling strategy.  Moveover, since
packet loss is a relatively rare occurrence, acknowledgemenis ss an
UNNGCESSAry price to pay.



The search was tested on two Sun systems: one with a server (Aqui-

nas) and two clients (Calvin and Hobbes), and one with a server (Dwarfs)-

and ten clients. On Aquinas, the search was resolved in 50 to 80 mil-
liseconds, and on Dwarfs, the searches were resolved in 150 to 180 mil-
liseconds. The performance on Dwarfs can be considered the worst case
becanse the Ethernet cable the clieats are connected with is at the allowable
length limit. The results for both Aquinas and Dwarfs were consistent with
the simulation results in which the absolute minimum was located 70 per-
cent of the 1ime for resolved searches. -

The search for the maximum load is not performed explicitly. It was
observed that if a processor’s load was above the initial window in the
minimum search, its load was the maximum the majority of the lime. Asa
result, processors with loads above the - inilial window can migrate the
current job if the minimum load is current, and an explicit search of the
maximally loaded processor is not needed.

A poicntial problem with not explicily identilying the maximally
loaded processor is that a lightly loaded processor may be swamped by jobs
from more heavily loaded ones. There are two solutions 1o resolve this
problem. First, a processor may only be allowed to migrate jobs if it has a
load higher than the upper bourid of the initial window and a new arrival.

- Second, a processof may be allowed to migrate at most one job between
searches. Our performance data indicate that swamping is not a problem

for a moderaie number of participating procéssars. However, if preempuon _

were implemented, it would be necessary to identify a unique maximuam, as
a large fraction. of the processors may be preempiing jobs at any time.

: Another obvious wchmque for distributing status information is to
broadcast it periodically, as is done with the rwhiod dacmon in Unix. Te
determine the savinigs of using the proposed method as opposed o using the
technique of the rwhod dacmion, the resource tilizalion of both was meas-
_ ured for the period of one hone, The overhead is summarized in Table 3.
. For comparison, a daemon that only: broadcasts the load average value is
studied (as opposed to the rwho daeson which broadcasts other informa-
tion'as well). These results indicate that both rwhod and the simple broad-
cast dacion introduce cons:derably more commumcauon overhead lhan the
search dacmon proposcd here.

3.2. lmplomcmmlon of Job Mlgl'ﬂtlﬂl‘l and Result Return

in the general case, result return and job migration require that input’

file (and executable fites if necessary) be sent over the network from the
saurce processor to the destination processor, and that output files be sent
back. In:the Sun environment, it is not necessary 1o send files from the
source to the destination bécause all processors-and clients have access 10
the same secondary storage. In this environment, job migration requires
sending the commiand from the source to the destination, and résult return
requires sending any error information back.

The job migration decision is made as shown in Figure 11. First the
current load of the processor is cotnpared to the first window for the max-
imum search. If the load is above the first window, the global minimom
location and its timestamp are read from a local file. IF the timestamip indi-
cates the minimum is current, the job is executed on the processor with the
minimum load using a remote shell. This causes any error messages associ-
ated with the remote execution to be sent back directly. The remote shell
uses a reliable communication mechanism (TCPAP protocol), sa execution
of the job is guaranteed.

3.3, Pertormance of the Scheduling Strategy )

n thls secucm, the response time of a sysiem with global schedulmg
is compared to thé response time of a system without global schéduling.
: The system used was the: server, Aqumas, with lhe two clients,” Calwn and
' CPU-bound job or sképt for the amount of time the job consumed during its

last executior, with equal: probability. As these processes were: executed,
the load and the amount of time consumed by executing. processes was

tabirlated.  Also, a history of the initiaton of jobs was created. During the

second porticn of the test, the global scheduling strategy was enabled, and
" the jobs were initiated actording to the lusmry Again the load was moni-
tored and the execution time tabulated.

Fu's;. workload was generaled by processes that either initiated a.

Table 3. Comparison of Overhead for Status Distribution
Deamon System Time User Time Number of
Seconds Seconds Broadcasts |
search 0.1094 0.0137 65
broadcast 0.2593 0.0316 181
rwho 0.2633 0.0613 181
Table 4. Performance of the Global Scbednling Stmeg
Job Time w/out Job Time with ,
. Name Gicbal Sched. | _Globat Sched. | - ®PIff
Aquinas (server) 18963 18540 223
Calvin (client) . 12143 10430 14.10
Hobbes (client) 7319 5612 19.22
Totals 38425 34882 ___9.2
PmmVAmemchunngmmmman :uu:hiapetfmnd
. T}RESI-IOI.D d g mini thﬂ'emhnm loads forload I-.luuu;
. lcld_muu{ S
- timestamp umemmp of the Ioad statis
*  minimun_leed load a1 the minimally losded p
. . L i oflhe" iy loaded p
L ]. : .
* current_time() functwu mumm;lhe current time
* current_load() g the load st a p
* read(} - function to md!mm afile ’
"exeelm__locullyo ﬁmmmum;mndu:bewmm
.y . 0. fenction o * : P14 rencte
procedure mlgme(mmd):
read(load_stamag); -
I (ourren,_time() > (luad_muu.umm-m + INTERVAL) tbu
te_locally( 4

eise if (current_load() > Sw sub ! sub max$) and
(cumtJondO > (load_siatus.load + THRESHOLD)) thea
y d, load_,m:.lomuu):

endif

" Figure 11, Procedure for Jjob migration
Themultsassummanumeable4slmwamall:mmvunmfot“
the server, and & much larger improvement for the clients. This is expected
as the server is a much faster computer than the clients, and has direct
access 1o the secondary storage through the VME bus rather than the Ether-
net. As gresult, the clients will benefit more by sending jobs w the server.

4. CONCLUDING REMARKS

The problem of global scheduling on distributed computing sysienis
has been smdied. An efficient distributed technique for determining the
extremutn of a set of numbers has been developed, and can find the
exremum in 2.7 iterations on the average, independent of the number of
participating stations, The search technique can be used to efficienily distri-
bute status information for scheduling decisions. A load balancing strategy
using the distributed search was designed and implemented on a network of
Sun workstations,

Areas for future research include adding preemption capabilities,
investigating the problem of an accurate load measure, and predicting job
requirements. Preemption would allow redistribution when load imbatance
occurs between arrivals, especially in the case of longer jobs. This would
mcreaselheunhtyofﬂwloadbalancmgmms. The problem of an
mmmmadmmmmmmntmuwmnmmmvmefm
scheduling strarsgies. Atthough the number of processas in the run quése is
agoodmmm.oﬂwrfmasconmbmmﬂnloaﬂmhasm

- characteristic of the participating processors and local activities, such a3

page faults, percentage of the: CPU that is utilized, andpemenmofthe
main memory that is: utilized. Another problem that has not been ade-
quately addressed to date is that of estimating the fiture requirsments of &
job. This will allow scheduling decisions to be based on future sctivity
tmherthnnsolelyuponpastevems.
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