
l
From: Proceedings of the Twelfth

& Applications Conference - ,
Annual International
pg. 443-450

Computer Software

LEARNING HEURISTIC FUNCTIONS FOR

NUMERIC OPTIMIZATION PROBLEMS

Matthew Lowrie and Benjamin Wah
Coordinated Science Laboratory

University of Illinois
1101 West Springfield Avenue

Urbana, IL 61801

ABSTRACT

Numeric optimization problems have arisen in a wide variety of
fields, from economics to physics. Learning strategies are becoming more
practical and can be seen as a strong method for increasing the efficiency of
systems as weD as acquiring new concepts and relations. In this paper,
learning techniques are applied to enhance the efficiency of computer
solution to numeric optimization problems. The goal of the paper is 10
provide a framework for approaching learning of heuristic functions for
numeric optimization problem solutions. The outline of a system,
Techniques using Experimentation for Acquisition and Creation of
HEuRistics 2.0 (,TEACHER 2.0), for learning heuristic functions is
presented. The system is unique in that it combines many learning
teclmiques into one coherent system. It can be a powerful learning system
as it allows generation of heuristics based on an amalgamation of learning
techniques and strategies. The value of the system is illustrated by an
example where TEACHER 2.0 learns a new heuristic which is superior to
the typical heuristic for that problem domain.

KEYWORDS AND PHRASES: Branch and bound, frames. guidance
function. hewistic searches, knapsack problem. learning methods, numeric
optimization, transformation function.

I. INTRODUCTION
Since the invention of computers, the applications where they can be

applied have expanded rapidly. This can be seen to be the result of both the
expanding capabilities of computers, and better understanding of programs
along with continual improvement of software development environments.
In the future, computers may continue to expand their processing abilities,
and the size as well as class of solvable problems should continue to grow.
A powerful technique to promulgate this expansion employs machine
learning. A system capable of learning and adjusting to more efficiently
solve problems has a clear advantage over a system that does not learn
[21].

In this paper, the design of learning systems to enhance processing
efficiency are considered. The specific form of processing discussed is
efficient search _algorithms. The class of problems, where the method for
design of learning systems is applied, is numeric optimization problems.
These problems continue to be an important application for computer
solution and arise in a great diversity of fields, from economics and
business to physics and computer science. Automated techniques for
acquiring knowledge which makes this form of processing more efficient
can be extremely valuable. Learning of dominance relations has been
explored in earlier work on the TEACHER 1.0 system [25]. This research,
TEACHER version 2.0, represents design of a learning system applied to
learning other heuristic functions.

The approach employed in this paper to developing a machine
learning system is outlined in Figure 1. This approach to learning is specific
to the development of systems for increasing the efficiency of computation
algorithms. The way this strategy is mapped into the presentation of the
paper is as follows. In order to identify the specific goals of the learning
system, the issues involved in solving numeric optimization problems are
presented in Section II.A. The motivation for using numeric optimization
as a testing ground for learning heuristics is given in Section II.B. The final

Research wu partially SUpPorted by Nationlll Aeronautics and Space Administration
Grant NCC 2-481 and Natiooal Science Foundation Gnmt MIPS 85·19649. Research of M. B.
Lowrie was also supported by a Ph.D. Scholarship from AT&T Bell Laboratorie!.

Computer SoftW&le and Application• Conference, IEEE, October 1988.

CH2611-2/88/0000/0443$01.00 © 1988 IEEE
443

step in defining the learning problem is identification of system objectives.
This is done in Section II.C. The ultimate goals of the learning system
include enhancement of the efficiency of processing and an increase in the
size of problem solvable on existing computers.

Prior to developing the framework of the learning system, it is highly
desirable to identify existing learning techniques and strategies. This
identification includes analysis of their potential uses in the learning System.
This is the topic of Section Ill. The emphasis of this section is not on
reviewing well known learning techniques, but on analyzing the utility of
existing learning techniques for numeric optimization problems, and on
developing an alternative philosophy that enables the development of a
learning system that does not rely on only one learning technique.

Once the strategies and teclmiques have been discussed and
evaluated, the design of a system for performing this task is presented.
Section IV begins with a discussion of problem representation, and follows
a strategy for development of a complete learning system. The system is
unique due to its utilization of many different learning strategies and
paradigms. The potential value of TEACHER 2.0 is demonstrated by its
application to the 0/1 knapsack problem. TEACHER 2.0 is shown to be
capable of discovering new heuristics that are superior to the hewistic
usually employed for that problem. The new heuristics enable solution of
problems 20% larger (20% more variables), for a given amount of computer
resources.

II. DEFINITION OF THE LEARNING PROBLEM
In this section, the domain and goals of the learning system are

developed. The end-goal of the learning system is to enhance the efficiency
of searches, and extend the size of solvable problems which use search
techniques. This statement of a goal is not sufficient to begin designing a
learning system as it says nothing about the problem domain,
characteristics, and how search efficiency may be increased. This section.
therefore, is devoted to analysis of how this end-goal may be approached.

ll .A. Search Solutions to Numeric Optimization Problems

Numeric optimization problems may be represented as integer
programming problems. A linear integer programmin..s pro~lem may be
written in the form: Maximize: CT ·X; S~bject to: A ·X= b, X~ 0 and
integer, where Z denotes a vector z, and Z represents a two-dimensional

Definition of
Learning Problem

Select Problem Identify System

Area and Define Objectives and

Solution Strategies Areas to Apply
Learning

Development J '::noose I<no~le<lg~ ~ of System

Evaluate
Representauon for ,------,

Learning Select Strategies ' .
Alternative l J and design a ' Test 1

Approaches I Strategy:
system • ' to Learning l Propose Strategies~

'------.J

for Learning

Ftgure 1. Approach to Design of Learning System

matrix Z. Nonlinear integer programming problems have a similar
representation, but have objective and/or constraint equations which are not
linear. The techniques in this paper are discussed in tenns of linear numeric
optimization problems.

There are many ways to solve integer programming problems. The
basis for these solutions may employ enumeration, Bender's
Decomposition, cutting planes, or group theory [5]. In this paper, emphasis
is placed on search techniques, which are based on the concept of
enumeration. In the search, the intial problem is transfonned by a
transformation function, or branching rule, into subproblems. Subproblems
are branched on until a solution is found.

In the design of a heuristic search, the heuristic seeks to exploit the
characteristics of the problem domain. Consequently, the greater the
restrictions in a class of problems for which heuristics are sought, the
greater potential for finding effective heuristics. Such numeric optimization
problems include the carg~?loading problem, the 0/1 knapsack probiCm (a
restricted version of cargo~loading), numerous scheduling problems,
inventory problems, etc.

For discussion purposes, only one of these problems will be referred
to: the 0/1 knapsack problem (0/IKP). The 0/IKP is defined as: Maximize:
vr ·X, subject to: ~ w;·x; '5.K' and. Xi = 0,1. In this representation, Xi is 1

.~
if item i should be placed in the knapsack, and 0 otherwise.

A technique for solving optimization or semioptimization search
problems is branch and bound (B&B) search [9,16]. Search strategies
such as A*, AO*, SSS"', B*, alpha~beta, and dynamic programming are
specific instances of the general form of B&B algorithms [9]. B&B
algorithms consist of the transformation function defined above, a technique
for selecting the next node for expansion (guidance function), and a pruning
mechanism. The original pruning functions involved only upper and lower
bound functions. The lower OOund function is the best value of a solution
known to be achievable. Usuany, the lower bound is just a known solution.
An upper bound function is a value which the value of the best solution
achievable from that node cannot be better than. Nodes which have upper
bounds less than a known lower bound may be pruned. Pruning functions
may also take the form of dominance relations.

II.B. Numeric OptimizfJlion as a Problem Domain

Numeric optimization problems are a natural research environment
for studying learning sttategies. The techniques currently employed are wen
researched, and a good deal of experience has been gained. The formal
nature of mathematical areas of research creates the advantage of easy, or at
least provable and formal, evaluation of the results of the system. The
relations employed by a numeric optimization problem solving system are
comprised of mathematical functions. These functions are also wen
understood, "well~behaved" and natw-al for implementation on a digital
computer. While research in this area is natmal, advances in learning and
search techniques may still be applicable to less fonnal domains.

Mathematical topics had received such great attention by researchers
since the time of Pythagoras. The attention of many researchers not only
indicates the importance of the field, but lends a formalism to the
environment which is advantageous. In addition, learning new concepts in
such an environment will clearly demonstrate the value of a learning system
~- the ability to add knowledge to the knowledge readily achievable to man
alone.

The learning technique employed by a computer, at least in this case,
utilizes the strengths of a computer which man lacks. These strengths
include 100% accurate memory, and the ability to evaluate potentially
millions of expressions per second. Although man is (and may always be)
the greatest thinker, some of the advantages of his intuition can be
countered in this way. Since the computer will rely on different strengths, it
is natural to hope that the computer will "discover" strategies which man
has not found by his superior intuition.

In the design of a heuristic search, the heuristic seeks to exploit the
characteristics of the problem domain. Consequently. the greater the
restrictions in a class of problems for which heuristics are sought, the
greater potential for finding effective heuristics. For this reason, classes of
numeric optimization problems which have restricted domains are sought.
Such problems include the cargo~loading (also referred to as resource
allocation problems), the 0/1 knapsack problem (which is a reslricted
version of the cargo-loading problem), the scheduling problem, the
inventory problem, etc.

444

II.C. System Objectives

In this section, the objectives of the research are more fonnally
discussed. The end~goal of the system is enhancement of perfonnance of
search solutions. The domain for which this task is explored encompasses
numeric optimization problems. The intermediate goals, and technique for
measuring the performance of the search is discussed firsL This is followed
by an analysis of how these goals may be approached. This Section is not a
discussion of how the system will perfonn learning. Instead, it is a
discussion of the goals and types of knowledge the system win try ro
acquire in order to achieve those goals.

Measuring Search Performance. On a real computer system, the
performance of a search can be identified with the time necessary for
completion of a problem. The learning system may not, in general, be
perfonned on the same system as the solution of the problem is to be
performed. In addition, it may be desirable to acquire knowledge that will
promote efficiency on many computer systems.

The usual and most obvious measure for determining the efficiency
of a search is the number of nodes expanded by the search. In fact, search
complexity is usually measured as the relation of the number of nodes
expanded to the problem size. The number of nodes expanded by a search
technique is cenainly a strong measure of search performance. Each
expanded node requires processor time for expansion, and must at some
point be stored in memory.

It has been shown that a bound function must be quite accurate to
avoid exponential number of nodes expanded, on the average. Analytical
results have been obtained for when this time is exponential and when it is
polynomial, on the basis of the accuracy of the heuristic bound function
[18].

Unfortunately, number of nodes expanded is not the only relevant
indicator of search perfonnance. The communication behavior is a factor
that also greatly impacts search performance. In searches implemented on a
single processor system with hierarchical memory, memory behavior is the
facet of communication behavior that affects perfonnance. In a best~first
search, all active nodes must be stored in immediate memory since any of
them may be selected as the next node to be expanded. In a depth~first
search, this memory requirement is not as strict since memory access is
much more local. Depth-first searches require only linear amount of
memory. As a result, depth-first search can perform some searches in less
time even though best-first search expands fewer nodes !22]. In parallel
search, communication of nodes and pruning information is the constraint
on performance [23].

Another standard by which a heuristic may be measured concerns the
complexity of the processing at each node. The more complex a heuristic
is, the greater knowledge it should possess. The greater knowledge should
be reflected by fewer nodes requiring expansion in the search [8]. Thus.
very knowledgeable heuristics are desirable. More complex heuristics,
however, may require greater resources. Thus, a simpler heuristic may be
able to investigate more potential solutions in a lesser amount oftime [1].

It would be desirable to be able to evaluate heuristics directly in
terms of these goals. The only way to do this is to try the heuristic on a
large number of problem instances of the type and size of the end
application of the heuristic. Let N denote the problem size. Typically, N
represents the number of variables in the problem. e.g. the number of items
in the 0/lKP. Solution of problems with large N may require too much
computation time to anow the use of lhis technique to evaluate the large
number of potential heuristics. This is especially significant in the case of
heuristics that do not effectively trim the number of nodes evaluated. One
alternative is to use the heuristic being evaluated on random problems, and
measuring how many of these problems it can solve within a certain
constraint such as number of nodes expanded. Another alternative is to
measure the performance of the heuristic on a large number of problems
with smaller N. The final alternative is to develop measures which allow
evaluation of the heuristic without perfonning complete searches. An
example of this would be measuring the mean error of a bound function on
a set of sample nodes. The problem of evaluating heuristics is considered
in greater detail in Section IV.

Learning Targets: The system explores three types of heuristics:
bound function, guidance function, and transformation function. Each of
these functions has a strong effect on the performance of a searcJ:· In
general, search performance is a function of all three of these funcuons.
Learning of these three functions is by no means the only way to enhance

1
I
'

Table 1. Targets for Learning System.

Function Type Usual Form Possible Description and Comments
Paramet

Bounding Function Mathematical
Expression

Node
Description

Composed of an expression or algorithm for computation. May be composed of+,-,*,/, max,
min, l;. ll· r., v, etc. Since heuristic is appropriate for all n (size of problem). operations are
usually on sets of elements such as L. and r.. Is subject to monotone and admissibility
restrictions.

Guidance Function Mathematical
Expression

Node Description,
Search History,

Same as bounding function, but without monotone and admissibility restrictions. Non set
operations are more common when incopomting penalty functions.

Penalt Functions
Transformation i such that:
Function <constraint> &

<Constraint> ...

Node Description,
Search History,
Penalty Functions

Is restricted to an integer value or subset of variables to branch on. May be modeled as
I (gJ(Node),g2(Node), ...),where f selects a g; (such as max or min), and g sub i (Node)
represents an evaluation of the value of using a transformation: i (such as branching on
variable i in the 0/lKP .

search performance. Learning of dominance relations is another technique
that was explored by the TEACHER 1.0 system [25].

The quality of both the heuristic bound function and the heuristic
guidance function greatly affect the performance of search solutions to
numeric optimization problems. The bound function determines the
pruning power of B&B searches. The guidance function determines the
behavior and efficiency of the search when it is implemented on a real
computer system, as well as influencing the number of nodes expanded in
search strategies containing a depth~first component. The transformation
function also strongly influences search behavior and the number of nodes
expanded. In general, search perfonnance is a function of these three search
parameters.

A learning system should take advantage of the fonn that the function
takes. The forms of these three functions are demonstrated in Table 1. In
guidance and transfonnation functions, search history and penalty fWictions
incorporated as parameters of the function have not been explored in detail
in the literature, but are promising areas for the learning system to explore.

III. LEARNING HEURISTIC FUNCTIONS
In this Section alternative strategies for approaching the problem of

learning heuristic functions for numeric optimization problems are
discussed. Once the available strategies and properties of heuristics have
been detailed, an evaluation of the potential uses of these techniques in a
learning system may be performed. In Section IILB. an alternative approach
to learning is developed. The approach is valuable because it enables
development of a system that takes advantage of many learning techniques.

Table 2. Application of General Learning Techniques

Learning Example Use
Techniaue

Instruction TIERE· Basis of most known heuristics; too
SIAS restrictive of a paradigm for learning
NANO- known heuristics; incorporation of
KLAUS facilitv to take advice is desirable.

Deduction PLANNER Requires unit to propose alternatives for
FOO verification; useful for verification of

boundin« functions.
Analogy CARL Only useful for problems with similar

base; cannot derive functions based on
unknown conceots;

Induction/ SPARC Restricts Ieamer to a narrow focus; not a
Example ARCH preferred strategy in general; neural

LEX networks can be applied for learning
guidance functions.

Induction/ Cluster Data is already clustered, a way of
Clustering describing the cluster is sought;

additionally, obtaining attributes for
clusterin« is difficult.

Induction/ BACON Useful for deriving relationships
I Quant Ant. ABACUS between attribute and real values.

Induction/ AM Useful for deriving attributes and
Theorv Fonn EURISKO relations.
Induction/ INC.AQ System should base decisions on a large
Incremental ARCH set of search data; incremental learning

technique is preferred.

445

III .A. Uarning Techniques Applied to N~UMric Optimization Heuristics

Learning techniques in the past have been categorized as being based
on: rote, instruction, deduction, analogy, and induction. Induction is further
categorized on the basis of induction type [2,13,14]. In Table 2, the
techniques, some example systems using the technique, and their potential
application are enumerated.

Techniques specific to learning heuristic functions include: analogy
[4], constraint alteration [6,18], heuristic rules [10, 11], probabilistic
estimation [19], systematic exploration [24]. genetic learning (20], and
explanation·based [15]. Constraint alteration is a powerful technique
which formulates heuristics by simplifying the problem. This is done by
either adding or removing constraints. Heuristic rules guide the search for a
heuristic with if <cond> then <do> rules. The uses of these learning
techniques are summarized in Table 3.

III .B. An Alternative Approach to Uarning Heuristics

Learning strategies in the past have focused on using one technique
for learning heuristics. An example is the "use" of constraint relaxation to
derive linear programming as a heuristic for integer programming. A set of
inputs, such as the problem description and analogous problems, are input.
A single learning technique, such as analogy or constraint relaxation, is
employed. The result is a potential heuristic.

An attribute is defined as a formula or relation which describes a
problem instance. For example, linear programming is an aztribute for the
integer programming problem. The goal Of the system, then, is to generate
attributes which effectively perform a heuristic function, such as a guidance
function. The approach to learning developed in this paper is depicted in
Figure 2. The environment inputs the problem description. any possibly
analogo.us problems, known hewistics, etc. The learning system then uses
multlple learning techniques to derive attributes. These attributes enter a
pool, which are also potential heuristics. Attributes may be combined with
the environmental inputs or other attributes and used as inputs to multiple
learning techniques which generate new attributes. Intuitively, this
technique is very strong. The results of different learning strategies can be
combined using a third learning strategy. In general, attributes are potential
heuristics which may be derived using an amalgamation of many learning
techniques. Examples of learning which use this approach will be
presented in Section IV.

Table 3. Application of Heuristic~Specific Learning Strategies.

Rules

Systematic
Exploration

Use

may

Figure 2. Approach to Learning Heuristics.

IV. TEACHER 2.0: A System for
Learning Heuristic Functions

TEACHER 2.0 is a framework for construction of learning systems.
The targets of a TEACHER 2.0 system are numeric heuristic functions to
increase efficiency of search solutions to numeric optimization problems.
The presentation of TEACHER 2.0 is organized in the following way. First,
the overall learning strategy employed is reviewed in Section IV.A. The
knowledge representations for learning employed in TEACHER 2.0 are
then discussed 41 Section IV.B. The system organization is then presented
in Section IV.C. Finally, an example of how the system perfonns learning is
given in Section IV .D.

lV .A. Learning Strmegy

The learning of effective heuristics is seen to be a very difficult topic.
As a result, the most powerful learning system possible is desired. For this
reason, the TEACHER 2.0 system seeks to utilize all of the available
learning strategies, where they are most effective. The philosophy of design
for TEACHER 2.0 was outlined in Section ill.B.

In the TEACHER 2.0 system, a hierarchy of learning tasks is
discerned. This hierarchy is composed of three levels: attribute generation,
attribute management, and evaluation. The attribute generation level is
composed of the learning techniques that generate potential heuristic
functions. The attribute management level is concerned with managing the
pool of attributes as well as the scheduling of attribute generation. Finally,
the evaluation level compares and computes the efficiency and performance
of the attributes. In order to evaluate potential heuristic functions, the
system actively generates sample instances of the problem.

Each type of heuristic may require different techniques for learning.
For example, the fonn of a bound and transfonnation function may differ.
The system should utilize this during its learning process. The fonns of the
three types of heuristic functions were detailed in Table 1.

IV .B. K1Wwledge Representations
There are three types of knowledge representations the system must

be concerned with: representation of the domain problem (e.g. 0/IKP),
representation of sample searches generated by the system, and
representation of the search space of potential heuristic functions. Each of
these will be considered separately.

Representation of Domain Problem: A useful representation for
learning problems in the mathematical domain is frame representations.
Frame representations were used in the AM and EURISKO systems
[11,12). More significantly, frames were utilized in TEACHER 1.0 for
numeric optimization problems [24,25J. Many of the numeric
optimization problems had similar representation in a frame environment.
For example, the 0/lKP, scheduling, and inventory problems can be
represented efficiently in frames, as depicted in Table 4.

The slots in Table 4 are sufficient to describe the problem and the
search space. An additional slot should be allocated providing a procedure
for expansion of a node. Since many of the problems that the system might
work on will have heuristics, additional slots could be allocated for known
heuristics. Since the system will be generating sample search trees of the
problem, it might alsb be desirable to provide range and random generation
functions for generation of problem instances.

Representation of Sample Searches: Sample searches are used in
TEACHER 2.0 for evaluation of candidate heuristics. The system actively
generates example problems. The frame representation can also be used for

446

Table 4. Frame~Like Representations for Numeric Optimization Problems.

F me Slots Problems
Name 0 I sack Sche Ioven

Variables x1=0,1: p,: X;,y;:
0: i not in sack location of task 1 amotmt bought,
1~ i in sack in schedule sold in "odj

Properties value: v1 Execution Time: y, Sale Price: s1
weight w; Deadline: d, Buy Price: b1

Late Penalt ; Wt

Constants Capacity: K #of Tasks: n Init. Invent: v
#of Items: n #of Periods: n

Objective Maximize Minimize

%X;v; %(p;+Y;)w; tS;-y;b;
-

Constraints ~w;,;R" all teT: v+~X;-y;SB, ' ' Prt'¥t $ d, , .
. . l

y;$v+1~ Xj-Yj

all i 'e l. .. n

representation of sample searches [24, 25]. As in Table 4, slots can be
allocated to variables, except that values for the variables would be
included. An additional slot can be included for the nodes of the search.
Each node of the search would have slots describing that node of the search.

The technique used for evaluation of an attribute depends on the type
of heuristic the system is endeavoring to learn. Examples of these will be
discussed specifically in Section IV.

Representation of Search Space of Heuristics: As in Figure 2,
each term can be considered to be an element in a pool of atrributes. Each
attribute is stored as a record. An example of an Attribute Record for a
transfonnation function for the 0/1 KP would be as.follows.

Attribute Record
Name ATT2
Form max;: v·!w·
Evaluation (Evaluation Tunle)
Used In AIT4.AIT6
Attributes
Contains AITI.AIT8
Attributes

This record is just an example of some of the fields that may be used.
Additional fields may be incorporated in a 1EACHER 2.0 system to assist
scheduling of the search and other operations (see Section IV.D).

The pool of attributes is a tree·like data structure that classifies the
attrib.utes on basis of its evaluation tuple. The evaluation tuple is based on
the type of heuristic being learned, and the relative importance of the
objectives of the learning system.

JV.C. System Overview

The techniques for learning and representing knowledge and data in
1EACHER 2.0 have been presented. In this section, an overview to the way
that these techniques are mapped into a software architecture is provided.
The relation of the major components of TEACHER 2.0 are detailed in
Figure 3. The functional desqiption of the COJJ}p,onents follows. The
Attribute Generators are the primary learning elements in the TEACHER
2.0 system. Each Generator systematicaily explores possible heuristics, in
the order determined by the Manager. The Manager determines this order
heuristically. Each attribute is considered to be a. potential heuristic. Each

Figure 3. 1EACHER 2.0 Software Architecture

1
Table 5. Example Attribute Generators.

Attribute MayBe Comments
Generator Used For

Advice All* Allows user to input known heuristics, or functions which the user would like explored; merely forwards user input
Taking to the Manager.

Combinator All Generates secondary attributes only; combines attributes on the basis of the evaluation field of the attribute records
in order to enhance the measure(s) ·of the evaluation field.

Decomposition All Generates secondary attributes only; decomposes attributes into their subcomponents; also proposes tenns in
problem representation as attributes.

Permutor All Generates secondary attributes only; takes as input a single attribute and modifies it to generate a new attribute; for
exam_p_le, cha!!&ffigv;+w; to v,4w;.

Analogy All Perfonns two functions; proposes attributes on the basis of analogous problems; proposes attributes on the basis of
attributes discovered by other (or this) Generator.

Relaxation Bound Proposes atttibutes which are discovered through relaxation of some constraint; relaxation techniques suffer the
Guidance disadvantage of generating 'relaxed.' problems which may not be solvable; generates attributes on a greedy

algorithm way; for example 0/lKP guidance function, selection of consecutive items which maximize (v1 lw;), until
the capacity constraint is violated.

Penalty Guidance Proposes penalty tenns to be associated with erratic memory behavior, such as backtracking; for example, use of
Transfonnation heuristic rules tq_g_~erat~~ty for selection of nondepth-first node.

History Guidance Proposes attributes which are based on changes which occur or accumulate from parent to child nodes; has not been
Transfonnation explored in the use of guidance functions; TEACHER 2.0 presents a new avenue for exploring guidance functions

which incorporate search history; an examole is the chan9:e in bound function from pani"nt to child.

*Relevant to learning of bound, guidance, and transfonnation functions

attribute is evaluated by the Evaluator and given a set of scores on its
performance.

ATTRIBUTE GENERATORS: The Attribute Generators are
responsible fOI' derivation of attributes on the basis of the problem
description frame. It should not be restricted to any one technique for
learning. Analogy, deduction, instruction, relaxation techniques, and other
schemes may all be used as Attribute Generators. Some example Attribute
Generators are presented in Table 5.

Table 5 provides descriptions of some techniques for learning
attributes. The fact that some of these techniques are appropriate for
learning more than one type of heuristic function does not mean that the
same generators may he used for each of the different functions. In general,
the form of heuristic functions is determined by the restrictions under which
it is constrained. Thus, a Combinator Generator employs a similar learning
technique for both guidance and transformation functions, but the specific
rules it uses are different.

Each Generator uses a different type of knowledge about generation
of attributes. Representation of that knowledge is important 1EACHER 2.0
uses two forms of representing this processing knowledge: procedural, and
heuristic rules.

A procedural module in an Attribute Generator follows a set of
actions, procedures. or rules which are explicitly stated in the program. An
example would be code in the Decomposition Generator to propose each
entity variable as an Attribute (in the appropriate Conn, i.e. max (entityi) for
transfonnation, or Itentity; for guidance).

'
A heuristic rules module in an Attribute Generator represents

knowledge in the form of a set of:
if <condition> then <follow procedure to generate attribute(s)>

statements. A simplified example is the following rule from a Combinator
Generator:

if [(ATT_A~val.>O) and (AIT_B=;:oeval.<O)J then propose:

<prOCedure for generating proper
format for attribute ATT_NATI_B>

This rule assumes that each evaluation field has a positive value for a
productive heuristic, and a negative value for attributes which are
detrimental. For this rule, its condition is dependent on the type of
evaluation function employed. These rules differ slightly from the
production rules [171 form of knowledge representation in that every
condition match results in proposal of an attribute (subject to the Scheduler
in the Manager). This is due to the fact that generation of all possible
(preferably effective) attributes is desired.

Both procedural and heuristic rule modules may be active in a given
Generator. In fact, the procedural representation may be thought of as a
heuristic rule in • 'if <true:> then < ... >'' fonnat.

447

MANAGER: The Manager is responsible for handling the pool of
attributes and scheduling the search using the physical resources available,
such as time, and memory. Each attribute is considered to be a potential
heuristic. The Manager is responsible for presenting attributes to the
evaluator for evaluation, thereby controlling the scheduling of the
Evaluator. The Evaluator (see below) is not be able to perfonn a complete
evaluation of a heuristic; evaluation is done by experimentation. An
attribute is evaluated for a fixed time quantum. After that quantum the
MANAGER determines whether to continue evaluation on that attribute.
begin evaluation of a new attribute, or continue evaluation of an attribute
which had been set aside previously. Implicit to the task of generating new
heuristics on the basis of old ones•and handling the search of heuristics is
the task of scheduling for the search. The manager has two subcomponents:
the Scheduler, and the Record Manager.

The Scheduler: The Scheduler is responsible for detennining what
areas and techniques should be searched. and prioritizes them. The
A TI'RIBtrrE GENERA TORS use many techniques for learning new
attributes. Some of these techniques may he more or less effective at
learning new attributes. depending on the target numeric optimization
problem. The Scheduler detennines which techniques should receive the
greatest attention. The Scheduler also detennines which attributes, in the
pool of attributes, have the greatest potential for use in the learning of new
heuristics.

In both cases. the Scheduler detennines priority in the same way. The
basis is empiricism, the technique or attribute which in the past has yielded
,the best candidates receives higher priority for new learning. If an impasse
is reached, i.e. a moderate amount of time has passed without the retwn of
an effective tenn or attribute, then the learning effectiveness of that tenn or
attribute is decreased. The initial rating of an attribute is made on the basis
of the infonnation supplied by the EVALUATOR. Thus, the Scheduler can
be thought of as performing a best-first search over the space of possible
heuristics.

The Scheduler also detennines the resources to be used by the
EVALUATOR in order to evaluate an attribute. Attributes are evaluated for
fixed time quantums. After the time quantum, the Scheduler determines
whether the evaluation should continue, or a different attribute should be
evaluated in that quantum. In this way, very bad heuristics will be
evaluated quickly (not consuming are a large amount of the computer
resourCes), while sb'onger attributes will be evaluated more carefully.

The Record Manager: The Record Manager maintains a data
structure containing the records of attributes. A sample record was
illustrated in Section IV .B. For convenient access, the Record Manager may
categprize attributes by the manner in which they relate to good behavior of
a heuristic, as determined by the EVALUATOR.

EVALUATOR: The Evaluator is responsible for evaluating and
rating a heuristic. The basis for this determinatiort is the empirical
relationship the heuristic has with sample problems. The Evaluator is

Table 6. Possible Evaluation Functions.

Target
Function Number of Nodes

Criteria for Ev,_,al,u';ae'ti,o00n_,o,_f ___ --,--------;;,--c:-:--,--:---------1
Communication Processing

Como1exitv
Bound CSS*; correlation to real value; mean%

error; average depth of prune; probability of
CSS; number of nodes measures~ average
difference between best and second best
bound; etc.

Average at each ncxte.

Guidance CSS; number of node measures; probability
of hopping; Probability of hopping from

Average at each node.

Transfer·
mation

node that is eventuall _,e"-va.,I,uaoeted=:'-'e"tc".---+-:----:--;--:-7-c-..,.--.-co-----1
CSS; guidance function measures; etc. Average at each ncxte; detennination if can

be done in preprocessing; etc.

*CSS: Comolete Search Samples.

composed of two units: a Rating Unit. and a Tree Generator. The Rating
Unit assigns values to the evaluation field in an attribute record. The Tree
Generator generates sample searches and nodes for use by the Rating Unit.

The Rating Unit: The Rating Unit is responsible for determining the
relationship between a potential heuristic and the performance of an
''optimal'' heuristic. The relationship between an attribute and ''optimal''
performance is strongly determined by both the objectives of the learning
task and the type of heuristic learned. A guidance function, for example,
may wish to both minimize the number of nodes expanded and minimize
backtracking. In both cases, the evaluation process will be much different
than when evaluating a transformation function. The form that the Rating
Unit takes is dependent on the type of heuristic to be learned.

In Section II.C, three measures were described that reflect the
perfonnance of a search using a heuristic: number of nodes, communication
behavior, and processing time required for evaluation at each node. It
would be very lime consuming to use a potential heuristic fur performance
of a complete solution to many problem instances and averaging their
behavior, in order to evaluate the potential heuristic. It would be preferable
if other measures could be developed that do not require such a large
computation for each individual measurement. Some possibilities for these
measure are indicated in Table 6.

The degree to which any of these measures reflects the larger goal of
number of nodes expanded, memory behavior, or etc., is dependent on the
problem domain. The Rating Unit is responsible for detennining the relative
importance of the measures, and must inform the Manager of the function
used to combine the fields into an overall ranking of the function. The
Rating Unit ''learns'' which measures are appropriate by comparing the
measures to real search perfonnance.

The role that these measures plays in the fonnulation of attributes
depends largely on the objectives of the user. If there is no memory
hierarchy, then the user may not care about memory behavior, and may
only be concerned with the average number of nodes expanded. The
relative importance of the measures is dependent on the system on which
the search will be implemented. Thus, the user is responsible for supplying
available measures, and the Evaluator determines the role each measure
plays.

Naturally, evaluation of a given heuristic function is impacted by the
specific functions used for the other two types of functions. There are two
alternatives. One is to evaluate the attribute on the basis of several
combinations of heuristic functions. The other strategy is merely to use the
best known functions for the other heuristics and iteratively refine each type
of heuristic.

Tree Generator: The Tree Generator generates sample nodes for use
by the Rating Unit. This involves generation of problem instances, and
solving these problem instances. As there may be no known heuristic for
solution of the problem, the Tree Generator must solve problem instances
by exhaustive enumeration, with a random transformation function.

Unfortunately, this prevents the use of extremely large examples by
the tree generator. This is not necessarily a disadvantage. It has been
postulated that most heuristics behave more accurately near the end of a
search [18]. Thus, resolution can be performed accurately at this level. If a
heuristic is thought to be a very good candidate, it can later be tested' on
larger trees. Nodes from a large number of sample searches should be used
in order to keep from biasing the evaluation of the nodes. In the case where
no evaluation function has been discovered, the evaluator will interact
directly with the tree generator for performance of searches using the

448

attribute being evaluated. Measurements on these searches will then be
used as the criteria for evaluation.

IV .D.Illustrative Example

In this section, a greatly simplified example of the 1EACHER 2.0
method for learning heuristics is presented. The intent is to demonstrate
how the components of 1EACHER 2.0 interact. As transformation
functions have the most restricted fonn, they are natural candidates for the
simplified example. The result of the example is counterintuitive. This
illustrates the value of developing systems such as 1EACHER 2.0.

The problem will be to learn transfonnation functions for the 0/IKP
with the bound function which repeatedly places the remaining item with
max(v;lw;) into the sack, until the capacity of the sack is exceeded. The
guidance function is best·first search on the basis of the bound function.
The uansfonnation function will be evaluated on the basis of problems with
the value and weight of each item being random and uniformly distributed.
I through 10. The capacity for sample problems will be K = (N /2)*(random
uniform 1 through 1 0). The distribution of K increases with N so that
reasonable searches with roughly half the items fitting into the sack are
generated. The relative values of potential transfonnation functions are
dependent on the bound and guidance functions, as well as the distributions
for sample problems. This example is merely exemplar of how 1EACHER
2.0 performs learning.

To avoid unnecessary complexity in the example, only transfonnation
functions which statically order the selection of items are considered. As
the ordering is indepindent of the node, this ordering can be done prior to
starting the search, and processing time is not an issue. In this example, the
Evaluator evaluates attributes by generating complete sample searches, and
taking measurements. For the example, only number of nodes generated
will be used as a measure of the performance of the heuristic. The quantum
used for evaluation in the simple example is a fixed time unit (time being
measured in number of nodes expanded). The number of problems solvable
in the time unit is indicative of the quality of the transformation function.

The usual transformation function used is max.(v;lw;) [3, 7]. In the
example, this transformation function is input by the user through ~
Advice Taking Generator. The search generated by TEACHER 2.0 JS
illustrated in Figure 4. In the figure, each box contains the number of the
attribute, the name of the Attribute Generator which generated the attribute,
the attribute itself, the attribute(s) used as input(s), and the evaluation (x)
For the figure the evaluation, x. is just an average over 1000 random~y
generated problems of size N = 20. The performance of the search ts
described by Table 7. For simplicity, all atttibutes are assumed to be of the
form max;:(att).

The example is specific to the 0/lKP, but the approach and rules used
for attribute generation are applicable to other problems as well. For
example the (only) rule used by the Decomposition Generator in the
example is:

if <rule in form xr y> then <propose attribute x and attribute 1/y>
where r is a negative relation

This rule distinguishes between positive relations, such as addition and
multiplication, and negative relations such as division and subtraction. The
heuristic involved is similar to a rule used by the Combinator:

if <attribute xis "good"> and <aUribute y is "good"> then
<propose attribute (x + y) and attribute (x * y)>

It is based on the assumption that if x and y are good, then x added or
multiplied toy may be better. In the above rule, the definition of "good" is

1
!

Node: 2 v \ Node:9 \

Node: 10
Decamp. Combinator

Node: 8
v lOv +w

Pennutor Combinator~
(160.2/25.4)

v+w (158.2,26.0)
w

(193.3,40.1) (179.9,28.5)
Node: 11 Node: 13

Node: 1 Node: 3 Pennutor Analogy
Node: 7 f----.. v"'*4+ w Adv. Takin! Decamp. Node: 6 v**2 + w

Combinator
v/w 1/w Permutor (161.4,26.4) (158.2,26)

v(v + w)
(241.9,38.8) (1128,147) (159.5,24.4) ~ +(1/w)**

Node: 12 ~ (159.5,24.4) JNodeNwnb
Node: 4 Permutor

Permutor Node: 5 v•w
[Generated b

Attribute:
(173.4,29.4)

y

V+ 1/W "== Permutor (evaluation
(159.5,24.4) ..,. **2 + (1/w

(159.5,24.4)

Figure 4. Example Learning of Transformation Functions for the 0/lKP

specific to the evaluation used. and is PartiallY determined by the Manager.

The order of expansion in Figure 4, indicated by the node number, is
representative of the manner in which the Manager would control the
search. Heuristics which have been evaluated to be the best. and heuristics
which show dramatic improvement in their evaluation are likely to be
scheduled earlier in the search. The search tree in Figure 4 is representative
of where the Manager could stop the search; all expansions of nodes have
failed to improve the evaluation measures. In reality, the search would be
much larger. Many more rules would be invoked, and many more attributes
would be explored. The specific rules invoked for generation and beginning
the search from maxt(vdw;) were done for the purpose of generating an
illustrative example.

Table 7. Example Search Nodes.

Node Comment
Node I In ut by user through Advice TakinR: Generator.
Node2 Decomposition of Node 1.
Node3
Node4 v; lwi is just v1 * ~- . Permutor changes the multiplication

' to addition. This is a reasonable heuristic substitution as
addition and multiplication are both riositive relatians.

NodeS Two permutations of node 4. The permutation is an
Node6 example if a heuristic rule for changing the relative weight

of the two partS.

Node? Nodes 5 & 6 failed to improve Node 4. The Manager
would try to combine 2 & 4 as they are the most promising
heuristics so far. This node is an attempt by the
Combinator to combine nodes 2 & 4.

NodeS Node 3 is a dramatic change from Node 1. This makes it a
candidate for negation or inversion. This is done by the
Permutor.

Node9 A Combinator assembly of Nodes 2 and 8. Node 8 is a
dramatic improvement from Node 3. This makes the
Scheduler increase its priority for formulation of
heuristics.

Node 10 These are all permutations of node 9. Node 9 was an
Node 11 improvement of node 8, and so further modification of this
Node 12 node would be scheduled.
Node 13 This is an example of how the Analogy technique of

learning may be used in ways other than analogy from
other problem domains. Squaring v; in Node 11 resulted in
an improvement. Analogy is then used to take this a
gr~ter extreme by raising v1 to the fourth.

449

The best heuristic discovered in this search. with respect to average
number of nodes was max(v14+w;) and ma.x(lOv;+w;). The best with
respect to average number of backtracks was max(v;+w;). Just ma:c(v;)
performs surprisingly well. It is interesting to note that the max(v;/w;)
heuristic was one of the worst heuristics explored. A plot of the
performance of some discovered heuristics, and the max;(v;lwt) heuristic is
shown in Figure 5. The figure serves two purposes. First. it indicates that
the use of N = 20 was adequate for evaluating the heuristics. Second, it
highlights the value of the system. This figure illustrates the gains possible
by applying TEACHER 2.0 to numeric optimization problems. At N = 30,
the heuristic is already giving a nearly twofold improvement in number of
nodes expanded. As N grows, so does the improvement. Looking at the
curves, it can be seen that this small piece of the TEACHER 2.0 search
space enables a problem with 20% more variables to be solved using the
same resources.

The example illustrates the value of systems like TEACHER 2.0 and
the fact that there is a great deal of knowledge which has yet to be gained in
this area. This example is illustrative of the functioning of TEACHER 2.0.
The actual derivation of interesting new transformation functions, however,
was more a function of the actual evaluation of the alternatives as the
specific fonn of TEACHER 2.0.

1500

Averal¢ 000

Number
of Nodes

500

5

o Trans. Func. v/w

o Trans. Func: random item

4 Trans. Func. 10v+w

10 15 20
Number of Items in Problem

Figure 5. Average Number of Nodes Performance
of Transformation Functions.

25 30

Table 8. Learning Techniques Used in TEACHER 2.0.

Unit
Primary Learning

Comments Techttioues
Relaxation Generates Attributes
AnaloltV Generates AttribUtes

Attribute Instruction Generntes Attributes
Generator Systematic Generates Attributes

EXoloration
Heuristic Rules Generates Attributes

Mana.2:er Heuristic Schedulin OfT ks.
Probabilistic Estimation

Evaluator Statistical Analysis For rating heuristics
Experimentation

The superior performance of the ''learned'' transfonnation functions
is due to the ability of the function to make branches which allow pruning
higher in the search tree. This results in fewer avernge number of nodes
expanded. In general, humans are not always good at determining the
features of the ttansformation function which allow earlier pruning. For this
reason, TEACHER 2.0 is capable of making a contribution in this area.

V. CONCLUSIONS
In this paper, the problem of learning heuristic functions for

increasing the efficiency of search solutions to numeric optimization
problems was discussed. A strategy for development of a learning system
was developed, tailored to the domain of learning for numeric optimization
problems. The strategy was then carefully followed.

Design of the system began with an analysis of the problem domain,
and the areas and characteristics of the target of the learning process. Three
types of heuristics were found to be of interest: bound function's, guidance
functions, and transformation functions. Many learning techniques, both
general and specific to heuristic functions were then delineated and
evaluated.

Finally, a system for learning heuristics was proposed. The system
was designed using as many learning techniques as possible. A learning
philosophy was developed which enables coherent incorporation of many
learning strategies into one system. Attributes can be generated by many
different learning techniques, and allow the system to generate heuristics in
one or many steps. This makes a powerful system capable of learning
hewistics based on more than one learning strategy.

By allowing more than one learning technique, the system is not
restricted to learning only a small class of potential heuristics. By
dynamically scheduling the search process, the system not only learns
heuristic functions for numeric optimization problems, but is capable of
tuning itself to perform the Jeaming task more efficiently. The system is
unusual in its use of many different learning strategies; the strategies are
enumerated in Table 8 by where in the system they are employed.

VI. REFERENCES

{1] H. J. Berliner, "An Examination of Brute Force IntelJigence,"
IJCA/, pp. 581-587. 1981.

[2] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, "An Overview
of Machine Learning," in Machine Learning. ed., R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell. Tioga, 1983.

[3] R. S. Garfinkel and G. L. Nemhauser, Integer Programming. New
York, NY: John Wiley & Sons, 1972.

[4] J. Gaschnig, "A Problem Similarity Approach to Devising
Heuristics: First Results," IJCAJ, pp. 301·307, 1979.

[5] A. M. Geoffrion and R. E. Marsten, "Integer Programming
AJgorithms: A Framework and State·Of·the·Art Survey,"
Management Science, pp. 465-491, May 1972.

[6] A. M. Geoffrion, "Lagrangian Relaxation and Its Uses in Integer
Programming Problems," Mathematical Programming Study, val.
2, pp. 82-114, 1974.

[7] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Rockville, Md.: Computer Science Press, 1978.

450

[8] V. Kumar and L. Kanal, A. Martelli, and U. Montanari, and Judea
P«;.arl, "Knowledge versus Search: A Quantitative Analysis Using
A ," Arti,ficiallntelligence, vol. 20, pp. 1·13, 1983.

[9} V. Kumar and L. N. Kanal, "A General Branch and Bound
Formulation for Understanding and Synthesizing And/Or Tree
Search Procedures," Artificial InteJJigence, val 21, pp. 179-198,
1983.

{10] D. B. Lenat, "The Nature of Heuristics," Artificial Intelligence, vol.
19. pp. 189-249. 1982.

[11] D.B. l.enat, "EURISKO: A Program That Learns New Heuristics
and Domain Concepts; The Nature of Heuristics ill: Program
Design and Results," Artificial Intelligence, vol. 21, pp. 61·98,
1983.

[12] D. B. Lenat, ''Theory Formation by Heuristic Search; The Narure of
Heuristics II: Background and Examples,'' Artificial Intelligence,
vol. 21. pp. 31·59, 1983.

{13] R. S. Michalski, J. G. Carbonell, and T. M. MitcheU, Machine
Learning: An Artificial Intelligence Approach, Vol. I, 2. Los Altos,
Ca.: Morgan Kaufman Inc., 1983, 1986.

[14] R. S. Michalski, "Understanding the Nature of Learning: Issues and
Research Directions," in Machine Learning: An Artificial
Intelligence Approach, ed., R. S. Michalski, J. G. Carbonell, and T.
M. Mitchell. Los Altos, CA: Morgan Kaufmann, 1986.

(15] S. Minton and J. G. Carbonell, "Sirategies for Learning Search
Control Rules: An Explanation·based Approach," in Proc. Tenth
lnt' I Joint Conf. onArtificiallntelligence, Milim, Italy, pp. 334·337,
Aug. 1987.

[16] L.G. Mitten, "Branch·and-Bound Methods: General Formulation
and Properties," Oper. Res., val. 18, pp. 23-34, 1970, Errata in
Opec. Res. 19 (1971) 550.

[17] A. Newell, "Production Systems: Models of Control Structures,"
in Visual Information Processing, ed., W. G. Chase. Academic
Press, 1975.

[18] J. Pearl, Heuristics-·lntelligem Search Strategies for Computer
Problem Solving. Reading, MA: Addison-Wesley, 1984.

{19] L.A. Rendell, "A New Basis for State--Space Learning Systems and
a Successful Implementation," Artificial /nJeJ/igence, val. 20, pp.
369-392, 1983.

[20] L. A. Rendell, "A Doubly Layered. Genetic Penettance Learning
System," Proc. oftheAAAJ, pp. 343-347,1983.

[21] H. A. Simon, "Why Should Machines Learn?," in Machine
Learning: An Artificial intelligence Approach, ed., R. S. Michalski,
J. G. Carbonell, T. M. Mitchell. Los Altos, Cal.: Morgan Kaufmann
Publishers Inc., pp. 25-37, 1983.

[22] B. W. Wah and C. F. Yu, "Stochastic Modeling of Branch·and·
Bound AJgorithms with Best-First Search," IEEE Trans. on
Software Engineering, vo1. SE·ll, pp. 922-934, Sept 1985.

[231 B. W. Wah, G. J. Li, and C. F. Yu, "Multiprocessing of
Combinatorial Search Problems,'' IEEE Computer, val. 18, pp. 93·
108,June 1985.

[24] C. F. Yu, Efficient Combinatorial Search Algorithms. West
Lafayette, IN: Ph.D. Thesis, School of Electrical Engineering,
Purdue University. Dec. 1986.

[25] C. F. Yu and B. W. Wah, "Learning Dominance Relations in
Combinatorial Searches," Trans. on Software Engineering, vol.
SE-14, No.8. Aug. 1988.

