FAULT TOLERANT NEURAL NETWORKS
WITH HYBRID REDUNDANCY

Lon-Chan Chu and Benjamin W. Wah

Coordinated Science Laboratory
University of Hlinois at Urbana-Champaign
1101 West Springfield Avenue
Urbana, IL 61801
chu%aquinas@uxc.cso.uiuc.edu

ABSTRACT

In this paper, a fault-tolerant neural network with hybrid redundancy is proposed and analyzed. A hybrid
redundancy is a combination of spatial redundancy, temporal redundancy, and coding. It is based on the homo-
geneity of both structures and operations of neurons. By storing multiple sets of weights in a processor and by
recomputing the outputs of neurons with multiple processors, faults in the processors can be detected and corrected.
This architecture can highly increase the reliability of a neural network so that a fairly large number of faulty neu-
rons can be detected and that the outputs of these faulty neurons can be recovered. The redundancy of this architec-
ture is fairly low if only certain critical neurons, such as output neurons, are implemented with this technique.

KEYWORDS AND PHRASES. Error correcting codes, hardware implementation, hybrid redundancy,
multi-layer artificial neural networks, spatial redundancy, temporal redundancy.

1. INTRODUCTION

Neural networks have strong potendals for applications in robotics, signal processing, pattern classificaton,
and combinatoric optimization [2,4,5)]. Although neural networks are robust to failures, neurons affecting outputs
that control critical devices must be reliable. Failures of these neurons may cause incorrect signals to be sent to
these critical devices.

Two methods can be applied to increase the reliability of neural networks. First, possible failures can be
accounted for in the training process, so the network can recover from these failures when they occur. Second, as
suggested by Moore [6], the neurons can be made fault tolerant, so that failures can be recovered without affecting
the outputs of neurons.

We approach the problem of increasing the reliability of neural networks by designing fault-tolerant neurons,
We present in this paper a powerful but simple hybrid redundancy method, which can be applied on a well-frained
multi-layer neural network. In such networks, the neurons can be classified into a limited number of isomorphic sets
in which neurons in a set have identical inputs (or activations from neurons in other sets). By replicating the
weights used by one neuron in a set 10 other neurons in the same set, other neurons in the set can be used to recom-
. pute the output of the given neuron. A similar idea of recomputation has been proposed for bit-sliced ALUSs [7] and
iterative logic arrays [1]. We show in this paper that the resulting design is very robust, even when a considerable
namber of neurons are faulty.

The faunlts in a system may be transient, intermittent, or permanent {3]. Traditonal fault-tolerance strategies
include spatial redundancy, temporal redundancy, and coding [8]. A typical technique of spatial redundancy is the
triple module redundancy (TMR) which is useful for coping with transient, intermittent, and permanent faults. The
hybrid redundancy model we propose is more reliable and less costly than the TMR, which fails when two-out-of-

This research was supported panly by National Science Foundation Grant MIP 88-10548 and by National Aercnautics and Space Administration
Grant NAG 1-613.

Intemational Joim Conference on Neural Networks, 1990,

IT - 639

three redundant neurons fail. Our proposed method uses spatial as well as temporal redundancy to recompute the
outputs using a number of neurons receiving identical inputs. It can cope with transient, intermittent, and permanent
faults. It improves traditional methods based on temporal redundancy, which recompute outputs in #ime and are
gencrally useful for filtering out transient faults. Our proposed method also incorporates error correcting codes in
correcting errors in circuits that cannot be covered by spatial and temporal redundancies,

This paper is organized as follows, Sections 2 and 3 define the hybrid redundancy model and the model of
neural networks, respectively. Section 4 describes the mechanism for constructing a neural network based on the
hybrid redundancy model as a building block. Sections 5 and 6 show the reliability and overhead of owr method.
Conclusions are drawn in Section 7.

2. M-WAY HYBRID REDUNDANCY MODEL

In this section, we present an m-way hybrid redundancy model based on spatial and temporal redundancies.
The model is defined formally as HR = <P, B, DA, m>, where P is a set of synchronous processing elements (PE),
B is a broadcast bus used by the external host to broadcast inputs to all PEs in P, DA is a decision auwtomata for
error detection and recovery, and m is the degree of redundancy. The architecture is shown in Figure 2.1. The DA
is a ring of n decision cells (DC) connected in the form of a ring. All PEs are synchronous in the sense that they
receive inputs, produce results, and sends outputs at the same time. Each PE is associated with a DC, which pro-
duces the recovered outputs and reports the fault status of its corresponding PE. We assume that the outputs pro-
duced by the PEs are continuous and bounded and that the bus is fauli-free. The first assumption implies that each
output value can be represented in a fixed number of binary bits. Note that our design also applies to cases in which
the output values of neurons are binary or discrete. The assumption on the reliability of the bus is reasonable
because the hardware complexity of the bus is much smaller than that of the rest of the system.

A special case of the hybrid redundancy mode! is the non-redundant model NR=<P,B>. This has the same
architecture as that of HR except that it has one storage bank in each PE and no decision cells.

The architecture of PE; € P consists of an input buffer, m+1 storage banks (SB,, $B,, ..., $B,) of equal size,
an arithmetic and logic unit (ALU), a register file, an error-correcting-code {ECC) encoder, an ECC decoder, and an
output buffer (see Figure 2.2). The SBs are used to keep operands, such as the connection weights of a neural net-
work. To achieve the m-way spatial redundancy, SB;; of PE; has the same content as SB G-k modn, 0 WheTE

Inputs

Recovered
QOutputs

Figure 2.1. Architecture of the m-way hybrid redundancy model.

II - 640

O0<i<n-land 1£k<m. The register file keeps temporary operands and intermediate results. The control unit exe-
cutes and issues all necessary operations. The ECC encoder generates single-error-correction, double-error-
detection (SECDED) codes and append them to output codes. The ECC decoder uses the SECDED code to correct
a single error or detect double errors in the inputs. Both can be implemented with simple combinatorial logic gates.
The PEs corresponding to input and output nevrons have no ECC decoders and encoders. Error correction and
detection ar¢ implemented in the PEs rather than the DAs in order o minimize the logic circuits in the latter.

A PE operates in major cycles, each with m+1 minor cycles. PE; receives inputs from the broadcast bus at
the same time as other processors. It then repeats a sequence of operations for m+1 minor cycles. In minor cycle k,
0<k <m, it compule its resulf based on the values in SB;, and output the results to DC;. The sequence of instruc-
tions carried out in each cycle are identical for all processors and all cycles (using different inputs). The major
cycle is then repeated for another set of inputs from the host. .

Redundancy in space and time are used in this model. The m-way spatial redundancy is achieved by assign-
ing 5B, of PE; to have the same content as 58 (i+t)modn,0, Where 0<i<n—1 and 1<k<m. The m-way temporal
redundancy is accomplished by the m extra cycles in each PE. Since (a) all PEs receive identical inputs in a major
cycle, (b) $B;; of PE; bas the same content as SB ;4 mod s, 0 (C) Operations carried out in all minor cycles are identi-
cal, and (d) minor cycle k in PE; uses inputs from 8B; ;. and the host, we can conclude that the outputs generated by
PE; in minor cycle k is the same as the outputs generated by PE(_jymoan in minor cycle k—j, where 0< j <k, assum-
ing all PEs are fault-free. Redundancy in the form of error correcting codes are implemented in the PEs in order to
detect failures in the DCs. A single error in the generation of the recovered code in a DC can be comrected using the
SECDED code.

The DA is a ring of n DCs, each of which is responsible for correcting the output of the corresponding PE.
Suppose PE; generates its output at time t. This output is redundantly generated by PE;.;, 1<j<m, at time ¢+].
These m +1 redundant outputs are shifted sequentially into DC;, which computes the majority of the m+1 codes.

J’ Register File |-

384
ECC |
Encoder T
S8, QUTPUT
Siorage Oupur
Banks _ Buffer
SB =1
5Bin Unit

Figure 2.2, Architecture of a PE.

Il - 641

Qutput Signal OS,

from PE, (b Bits)
Lateral Input
Signal LIS,
from DCy; e - I.ateral Cutpur

(b Bits) Signal LOS;

to DC(,-;',I) ol n
Register R; (b Bits)
b-bit b-bit
Data Bus Data Bus
Bit Bit Bit Bit
b-1 b-2 1 a
NG DEC NG DEC NG DEC INC DEC
Counter Counter Counter Counter

Ciay Cioz Cu ¢ Cie

Sign Sign Sign Sign
Bit Bit . Bir Bit

5-bit I . b-bit

Data Bus

Recovered
Ouiput Signal
(b Bits)

Figure 2.3. Architecture of DC;.

The architecture of DC; is shown in Figure 2.3. Its left and right neighboring cells are DC iy mean and
DCy; 41y modn. Tespectively, DC; receives its inputs from PE; in the first minor cycle of each major cycle and from
BC1ymodn (as signal LIS;) in subsequent minor cycles. Without loss of generality, let the inputs received by DC;
be represented in & bits, which include the data and the SECDED code. DC; has a b-bit register R; and b up-down
binary counters C; o, C; 5, ..., Cip-1. R; is used for holding inputs from PE; or DCy;_1ymoan, which are connected in
the form of a wired-OR. The following operations are performed in DC; in a major cycle, which can be carried out
concurrently with operations in PE;.

(1) Reset the b counters in DC;.
(2) Repeat Steps 3 and 4 synchronously with other DCs for m+1 minor cycles.

(3} Inminor cycle j, 0<j <m, wait until the output of PE; is ready and send it sequentially through the registers 10
Ri.y, the register in DC;,;, for 0<i<n-1. This requires j shifts of the data through the registers.

(4) Using the value stored in register R;, accumulate bit R;x, 0<x<b, of R; into counter x in the following way.
If R;, is 1, then decrement C;,, otherwise increment Cix

(3) The b sign bits of counters Cib-1, s Cj, ¢ form the recovered output of PE;.
The above steps correctly identify a majority of the m+1 redundant codes according 1o the following lemma.

IT - 642

W e 1. e e e

Lemma 2.1. Given m+1 codes generated redundantly, m being even, and assuming m /2 or less incorrect codes, the
steps carried out in DC; correctly identify a majority of the m+1 codes.

Proof. Since there are m/2 or less incorrect codes, m/2+1 codes must be identical and forms a majority. This
implies that bit position j of the majority code can be computed by finding the majority of the m-+1 bits in bit posi-
tion j of the m+1 codes. The up/down counters shown in Figure 2.3 achieve this purpose. At the end of a major
cycle, the sign bit of C; ; correctly identifies the majority of bits seen by this counter. T

The design of RC; is efficient, since finding the majority of m+1 (m even) bits requires a counter with a
minimum | log,(m+3)| positions. b counters are needed, one for each bit position. In our design in Figure 2.3, we

assume that counters with [log2(2m+3)] bits are used. Although an additional flip/flop may be required for each
counter, the combinatorial logic controlling the counter is simpler than a design with [log,(m +3)] bits.

The proposed design of decision cell requires the output of PE; to be shifted by a variable number of posi-
tions, depending on the number of minor cycles that has already been carried out in a major cycle. This varying
number of shifts is necessary in order to bring the redundant output generated for PE; at a distance Jjaway to be
available at DC;, where j is the number of minor cycles that have already been carried out. These shifts do not
become a bottleneck because the complexity of operations in a PE is generally much more complex than the opera-
tions implemented in a decision cell.

Note that the b bits recovered in each DC includes the SECDED code. This means that the PE receiving the
recovered output can correct errors due to the failure of a single counter and detects errors due to the failures of two
counters in a DC,

An example Hlustrating the operations in DC; is shown in Section 4,

3. MODEL OF NEURAL NETWORKS

A meural network is characterized by a set N of N neurons, N weight vectors W, and the interconnection pat-
tern. Neuron [is associated with weight vector W;. The interconnection pattern defines the data dependence of
neural-network operations. According to the interconnection pattern, neuron { is associated with a set of predeces-
sor neurons and a set of successor neurons. A predecessor of neuron / sends its output to neuron i in the production
phase. A successor of neuron { receives the output of neuron i. Let A; and B; be the sets of predeces..r and succes-
sor neurons of neuron i. Note that W; has cardinality | A; 1.

Neurons i and j are isomorphic if and only if both A;=A; and B;=B;. A setof mutually isomorphic neurons is
called an isomorphic set. An isomorphic set for a neuron is maximal if it is the largest of all possible isomorphic
sets including this neuron. A multi-layer neural network can be characterized by isomorphic sets. For example, for
a 3-layer neural network with full interconnection between adjacent layers, there are three maximal isomorphic sets
since each layer corresponds to a maximal isomorphic set. It is assumed that only maximal isomorphic sets are used
in the following discussion. :

The representation of a neural network can be simplified using isomorphic sets. Note that if two isomorphic
sets are connected, then every neuron in one set is connected to all neurons in the second set. A predecessor iso-
morphic set of isomorphic set I sends the outputs of its neurons to all nearons in I. Likewise, a successor iso-
morphic set of I receives the outputs of all neurons in I. The predecessor and successor isomorphic sets of I are
denoted by Ay and By, respectively. Let @ be the set of all isomorphic sets in the neural network.

A neural network is well-trained if all its weight vectors are fixed and do not change during neural-network
operations. Itis assumed that all neural networks discussed in this paper are well-trained.

4. FAULT TOLERANT NEURAL NETWORK

A mechanism for constructing a reliable neural network using the hybrid redundancy model is described in
this section. This design is based on the homogeneity of neurons in an isomorphic set. The steps for construction
are described as follows.

(1) Determine all maximal isomorphic sets in the neural network. Denote the set of all maximal isomorphic sets
as ©. For isomorphic set I € ©, label all neurons uniquely by a number between O and 11 [-1.

(2) Select a set of isomorphic sets to be implemented using the hybrid redundancy model. This set, denoted by
B¢, is called the critical kernel. An example of a critical isomorphic set is an isomorphic set of output

I - 643

neurons. All isomorphic sets not selected are implemented without redundancy.

(3} Associate isomorphic set I in &¢ with a redundancy model HRy=<Py,B1,DAy,my> such that ny, the number
of PEs in Py, is equal to the number of neurons-in I, i.e. ny = 111, Define a bijection (one-to-one) mapping my
between the neurons in X and the PEs in Py such that for PE; € Py, n;(i) represents the corresponding neuron
(i mod ny) in isomorphic set I. That is, PE; emulates neuron my(i). For every PE; & Py, store W, in storage
bank §B; o and Wy, ;.4 in storage bank SB;, for £=1,...,my. Note that W, ., is the weight vector of neuron
labeled 1y (i) in the same isomorphic set. Define the external hosts of HR;y as all PEs corresponding 1o the
predecessor isomorphic sets of 1.

(4) Associate every isomorphic set I not in &¢ with a non-redundant model NRy=<P;,B;>. For each PE,, store

W) in the single storage bank. The external hosts are defined in the same way as those in the previous step.

The resulting architecture is a network of hybrid redundancy models HRs and non-redundant models NRs.
The following example illustrates the construction method.

Example 4.1, Consider a 3-layer, fully-connected neural network shown in Figure 4.1a. Layers 1, 2, and 3 have
100, 200, and 14 neurons, respectively. To simplify the discussion and without loss of generality, all output values
are assumed binary. Figure 4.1b shows the set @ of isomorphic sets. For the neural network in Figure 4.1a with
three layers, there are three maximal isomorphic sets I;, I, and I;. Neurons in each isomorphic set are labeled
accordingly.

The second step is to select the critical kernel @¢. Ag an illustration, assume G¢ = { I5 }; that is, only the out-
put layer (isomorphic set Iy) is implemented using the hybrid redundancy model.

The third step is to asscociate every isomorphic set in the critical kernel &¢ with the hybrid redundancy model.
Assuming a redundancy degree of 6,

HR;y, = < Py, = {PEy, * -~ ,PEj3}, By, DAL, = {DC, -+, DCpa}, mpy =6 > 4.1)

PE; € Py, emulates neuron { € 1. By definition, ny, (i) = { mod 14. For PE; €Py,, §B; o stores W;, and 8B, ; stores

WG+ 157 £6, where Wy, 3G+ is the weight vectors of neuron ny, (i +j) in Is. These weights are shown in Table
4.1a. The external hosts are those PEs in NRy,.

The fourth step is to associate the isomorphic sets not in &¢, namely, I; and I, with NRy, and NRy,. Since

these are not interesting for our discussion, they will not be presented here. Note that the speed of NRy, and NRy,
may have to be slowed down to match the speed of HRy, .

0713

(a} ®)

Figure 4.1. A 3-layer, fully-connected neural network represented as (a) neurons and (b} isomorphic sets.

I - 644

Table 4.1a. Contents of Storage Banks in all PEs,

PE; Storage Banks PE; Storage Banks

0 1 2 3 4 5 6 0 1 2 3 4 5 6
PEqIWo W, Wy, W3 W, W5 W IIPE, [W; W, W, W, W,, W, Wis
PE, Wy Wy W3 W, Ws W, W, |[PE; | Wz W, Wy, W, W, Wiz W,
PE2 | W, W3 W, Ws Wg W; W;||PEy | Wy Wio Wy, Wy, Wi, W, W,
PE;|Ws W, Ws Wy W, Wy Wy [PE | W,o Wy, Wy, W, W, W, W,
PE(| Wy W5 We W; Wy Wy WyollPE, W), W, Wy W, W, W, W,
PEs|Ws We W7 Wy Wy Wiy W, |PE;, [W), W3 Wy, W, W, W, W,
PE¢[We Wy W3 Wy Wio Wy Wp|PEL (W, W, W, W, W, W, Ws

Table 4.1b. Outputs produced by ail PEs,

Minor Outputs of PEs
Cyclek | 0o 01 03 03 04 05 0g 07 03 09 o010 011 012 033
0 0 1 0 0 1 1 1 1 1 0 1 1 0 1
1 i 1 0 1 1 0 1 1 0 1 1 0 1 0
2 1 0 0 1 0 1 1 0 1 1 0 1 0 1
3 0 1 0 0 1 1 1 1 1 0 1 0 1 1
4 1 1 0 1 1 0 1 1 0 1 0 1 1 0
5 1 0 0 1 0 1 1 0 1 0 1 1 0 1
9] 0 1 0 0 1 1 1 1 0 1 1 0 1 1
Table 4.1c. Signals fed into the counters in all DCs.
Minor Outputs Oy, i—t) fed into the Up/Down Counter of DC;
Cyclek O 1 2° 3 4 5 6 7 8 9 10 1I 12 13
0 0 1 0 0 1 1 1 1 1 0 1 1 0 1
1 0 1 1 0 1 1 0 1 1 o 1 1 0 1
2 0 1 1 O 0 1 0 1 1 0 1 1 0 |
3 0O 1 1 0O 1 0 0 1 1 1 1 1 0 1
4 o0 1 1 0O 1 1 ¢ 1 1 0 1 1 0 1
5 0 1 1 o 1 1 0 0O 1 0 1 1 0 1
6 0 1 1 O 1 1 0 1 1 0 1 1 0 1
Sign Bit
of Counter | O 1 1 0 1 1 0 1 1 0 1 1 0 1
Error
Status ¢ o 1 0O 0 0 1 0 0 ¢ O 0 0 0
Recovered
Ouiput 0 1 1 0 1 1 0 1 1 0 1 i 0 1

To simplify the discussion, only the operations in HRy, are described. Here, only one production phase is
illustrated, since all production phases are similar. Assume the correct ouiput is

00 *- 014 =01101101101101 @4.2)

Without loss of generality, assume that PE; and PEg are faulty and that their outputs are stuck at 0 and 1, r -
tively. Table 4.1b shows all mp+1 outputs produced. No error-correcting codes are shown in the table. Note that

03 and Og represent stuck-at faults, Table 4.1c shows all signals fed into the up/down counter in DC;. Note that if
the entry e, ; in Table 4.2¢ is inconsistent with the majority of the column, then PEq,,) is faulty. '

II - 645

S5. FAULT TOLERANCE ANALYSIS

In this section, we present the conditicns on the redundancy degree necessary for reliable operations. Con-
sider an isomorphic set I and its comresponding HR; = <P, B;,DA;,my>. The cutputs of neuron i is computed at
different PEs at different times. Let N,(7) be the number of outputs of neuron i computed correctly in various PEs,
and NAi) be the number of incorrect outputs computed. Define N, (i) as the majority difference between N, (i) and
Ng(i) of neuron i; that is,

Na(f) = NL(0) — NLi) (5.1)
Note that N, (i} and N(i) satisfies the following relation, given that m; is the degree of redundancy,

N(DY+Nfiy = mp+ 1 {5.2)
Combining Eq’s (5.1) and (5.2) yields |

Nn(i) = my+ 1 -2 N4i). 5.3

Faults in the outputs of neuron i can be recovered if there is a majority in the correct outputs generated for neuron i.
This implies that the majority difference N, (i) should be greater than zero. We consider two cases below. Lemma
6.1 shows the necessary condition for recovering the correct ontput of neuron i when my; <ny. Lemma 6.2 shows
the sufficient condition when my=n;.

Lemma 6.1. Consider an jsomorphic set I with ny neurons and its HRy with n, faulty PEs. If my < ny, then the
necessary condition for recovering the outputs of all neurons in I is

20 £ my 5.4
Proof. Let § be a non-negative integer such that my = 2n--8. In the worst case, N{({) = n,. The majority difference
can be derived by using Eq. (5.3).

Np() = my+1-2n,= 2+ 8+1-2n,=08+1> 0 (5.5)
fi?ce E]he majority difference is greater than zero, the outputs of PE; can be recovered correctly. Hence, HRy is
e.

Lemma 6.2. Consider an isomorphic set I with ny neurons and its HRy with n, faulty PEs. If my 2 ny, then the
sufficient condition for HRy to detect all faulty PEs and recover the correct outputs is

3 Ry < ny (5.6)
Proof. Letd be a positive integer such that ny = 3 ne+8. There exist a positive integer p and a non-negauve integer

q < ny such that my =p ny + q. In the worst case, N{i)=p ns+ g , where g = min (g.ny). The majority difference
can be derived by using Eq. (5.3).

Np(i) = mp+1—~2Ngi) = (p(3nf+5)+q)+1—2(pnf+q’) 5.7

={(p-Dnp+p8+(g~q)+(n—q)+1> 1
Since the majority difference is greater than zero, the outputs of PE; can be recovered correctly. Note that the proof
is based on a worst-case analysis, hence the condition found is only a sufficient condition. O
Theorem 6.1 below shows the necessary and sufficient condition for recovering from incorrect outputs of a
neuren in an isomorphic set.

Theorem 6.1. For an isomorphic set I with ny neurons and its associated HRy with n, faulty PEs, the necessary and
sufficient condition for HRy to detect all these faulty PEs and recover the correct outputs is

2!1}' < my < ny (5-8)

Proof. The proof follows from Lemmas 6.1 and 6.2, It is not needed to include the condition for my2ny because it
results in a weaker sufficient condition. [J

The probability of safeness of HRy is quantitatively described below., HRy is said to be safe if incorrect out-
puts generated by PEs can be recovered in the decision cells, assuming that the decision cells are operating correct-
ing. Suppose mj < ny, the probability of safeness is

II - 646

Pr[HRyissafe) = Prn;Smy/2) = F(my/2), 3.9
where F is the cumulative distribution function of the number of faulty PEs in Py,
Given an arbitrary distribution of the number of faulty PEs in Py, the degree of redundancy m; can be deter-
mined by finding the minimal m; such that the probability of safe operation is greater than a threshold €. That is,

F(ny/2) 2 ¢ (5.11)

To illustrate the behavior of HR, we continue with Examplé 4.1 described in the previous section. Recall that
HR;, has 14 PEs. Assume that there are four faulty PEs, i.e., ng =4 (cf. ny= 2 in Example 4.1). HRy, has different
fault-tolerance behavior for different patterns of faulty PEs. Consider the following three cases: (a) all faulty PEs
are adjacent to each other, (b) adjacent faulty PEs are interleaved in between by one working PE, and (c) adjacent
faulty PEs are interleaved in between by two working PEs. By assuming that the correct outputs of all PEs are 1s,
and that faulty PEs are stuck at Os, Cases (a), (b), and (c) are respectively illustrated in Tables 5.1a, 5.1b, and 5.1c.

Table 5.1a. Four faulty PEs adjacent to each other.

Redundancy Recovered Outputs by HRy, Recovery

Degree my, [log 01 03 03 04 05 05 07 05 09 019 013 012 013| Index
0 00001111111 1 1 1 0.71
1 ? 0007?21 11111 1 1 1 0.64
2 10000111111 1 1 1 o
3 1?0007 11111 1 1 1 0.64
4 1100001 11 11 1 1 1 0.71
5 11?0002 1111 1 1 1 0.64
6 11100001111 1 1 1 0.71
7 111?777 ?7T 111 1 1 1 0.64
>8 1 1 1 3 i 1 1.1 1 1 1 1 1 1 1.00

Table 5.1b. Four faulty PEs with adjacent pair interleaved by one working PE in between.

Redundancy Recovered Outputs by HRy, Recovery

Degree my, |log 01 03 03 01 05 05 07 05 09 O1p O11 012 013] Index
0 01 001 01 01 & 1 1 1 1 1 0.71
1 7?7 T ? T 7?2 111 1 1 1 0.43
2 110101 01111 1 1 i Q.79
3 11 27?2 2 72 2 72 111 1 1 1 0.57
4 i 111061 01111 1 1 1 0.86
3 11 1172 727111 1 1 1 0.71
6 11111101111 1 1 1 0.93
7 1111117272111 1 1 1 0.86
28 1 1 1 1t 1 1 11 1 1 1 1 1 1 1.00

Table 5.1c. Four faulty PEs with adjacent pair interleaved by two working PE iln between,

Redundancy Recovered Outputs by HRy, Recovery
Degree my, llog 04 05 03 04 05 05 07 05 0y 019 01y 012 013] Index
0 611011 011 011 1 1 0.71
1 7?71?71 7717?27 1 1 1 0.43
2 11111111111 1 1 1 1.00
3 111?211 7?11?21 1 1 1 0.79
=4 i 1 1 1 31 1 1 1 1 1 1 1 1 1 1.00

IT - 647

An eatry of **?”’ in Table 5.1 indicates that my is odd (or my+1 is even), that the number of correct outputs is
(my+1)/2, and that the correct output cannot be recovered. The recovery index is the ratio of the number of correct
outputs recovered by HRy, with my, to the number of outputs. According to Theorem 6.1, the maximum degree of
redundancy needed is my, = 2n, = 8 in this example (cf. my, =6 in Example 4.1). In cases (a) and (b), the outputs
cannot be recovered until 1y, = 8. In case (c), my, = 4 is sufficient.

In general, errors due to adjacent faulty PEs are more difficult to recover and require a higher degree of
redundancy. In the worst case, the degree of redundancy must be 2ny, as proved in Theorem 6.1. In cases in which
faulty PEs are not adjacent to each other, the necessary degree of redundancy can be less than 2n Ly

6. OVERHEAD ANALYSIS

In this section, we analyze the hardware and time needed for implementing the proposed spatial and temporal
redundancies. '

The cost due to spatial redundancy R is defined as the ratio of the amount of additional hardware needed for
implementing hybrid redundancy to the amount of hardware without redundancy. The overhead due to temporal
redundancy Ry is defined as the ratio of the amount of extra time needed for performing operations using hybrid
redundancy 1o the amount of time nesded in the non-redundant case.

For spatial redundancy, additional storage banks for storing weight vectors are needed. Let 1)y be the ratio of
the hardware for one storage bank to the hardware for a non-redundant PE in HRy, and 5r be the amount of
hardware of a non-redundant PE in Ie s;. Note that 0 <1y < 1. The cost of spatial redundancy Ry is

Y, mpnypsgTy

Rg = —¢ , ©.1)

2, N1 St

fe®
where © is the set of all isomorphic sets. The spatial redundancy is approximately proportional to the total number
of neurons in the critical set and also to the average degree of redundancy for all isomorphic sets in the eritical set.
If the critical set is small as compared to the set of isomorphic sets, then the spatial redundancy is small.

The derivation of the overhead due to temporal redundancy is more complex, since multiple isomorphic sets
may be operating concurrently and their effects are not additive. Assuming that the operations in the decision cells
are overlapped with the operations in a PE, the overhead in time for an isomorphic set of neurons implemented
using hybrid redundancy can be considered as a series of my layers of neurons, each implemented without redun-
dancy. The effect on time can be analyzed by finding the critical path in both the non-redundant and redundant
cases. Let py and pug be the lengths of the critical paths in the redundant and non-redundant cases, respectively.
The overhead due to temporal redundancy is, therefore,

Ry = P24 6:2)
Pur

Consider Example 4.1: ©={ 1, 2, 3}, ©c = {3}, Ny =3, ny, =100, ny,=200, and ny,=14. For simplicity, let
s; be a constant 5. The cost due to spatial redundancy Ry Exar 18

mynygs
2 mynys g 6x14xsxTy,
R = X% = 5 = 027 x7 (6.3)
SEX4.1 Y nrst 100X5s+200x s+ 14 x5 ¥ Is)
I=6

The length of the critical path redundancy is proportional to 3, and the length with redundancy is proportional 10 9
(my; +3). The overhead due to temporal redundancy Rrpys, 18

Rrpxey = (9;3) =2 6.4

1T - 648

7. CONCLUSIONS

In this paper, a hybrid redundancy model based on temporal redundancy, spatial redundancy, and coding is

proposed. By recognizing that multiple neurons are receiving identical inputs in a multi-layer neural network, a
fault-tolerant neural-network architecture based on hybrid redundancy is studied. Our analysis indicates that the
reliability can be enhanced by increasing the degree of redundancy. We also prove the necessary and sufficient con-
dition on the range of the degree of redundancy. The overhead and cost of implementation are relatively small as
compared to other methods.

REFERENCES)

[11 W.T. Cheng and J. H. Patel, **Concuarrent Error Detection in [terative Logic Arrays,’” Proc. 14th Int'l Conf.
on Fault-Tolerant Computing, pp. 10-15, ACM/IEEE, 1984,

(2] DARPA, Executive Summary of DARPA Neural Network Study, MIT Lincoln Laboratory, Lexington, MA,
July 8, 1988.

(31 P. X, Lala, Fault Tolerant & Fault Testable Hardware Design, Prentice-Hall, Inc., Englewood Cliffs, NI,
1987. '

[4] R.P.Lippmann, ‘‘An Introduction to Computing with Neural Nets,”’ Accoustics, Speech and Signal Process-
ing Magazine, pp. 4-22, IEEE, April 1987.

(5} 1. L. McClelland and D. E. Rumelhart, Parailel Distributed Processing: Explorations in the Microstructure
of Cognition, Volume 1, Bradford Books (MIT Press), Cambridge, Massachusetts, 1985.

(6] W.R. Moore, ‘‘Conventional Fault-Tolerance and Neural Computers,”” private communication, Dept. of
Engineering Science, Oxford Univ., Oxford, England, 1988.

{71 J. H.Patel and L. Y, Fung, “‘Concurrent Error Detection in ALUs by Recomputing with Shifted Operands,”’
Tran. on Computers, vol. C-31, no. 7, pp. 589-595, IEEE, July 1982,

8] D. K. Pradhan, Fault Tolerant Computing: Theory and Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ,

1986.

IT - 649

