
SPECULATIVE SEARCH:
AN EFFICIENT SEARCH ALGORITHM FOR LIMITED MEMORY

Markian M. Gooley and Benjamin W. Wah
Center for Reliable and High-performance Computing

University of Illinois at Urbana-Champaign
1101 W. Springfield Avenue

Urbana, Illinois 61801

Abstract - Solving a problem optimally using an A •
search minimizes the number of nodes expanded. In the worst
case, however, it uses an amount of memory exponential in the
size of the problem. More general forms of best-first search have
the same problem. Depth-first search uses a linear amount of
storage. but expands more nodes on the average than best-first.
Furthennore, it leaves most of a computer's primary memory
idle. rather than making it help in the search. We propose a
search method, speculative branch·and-bound, or SB&B, which
combines elements of best-first and depth-first searches in an
attempt to put this extra memory to work. We describe the
search, and a variant, SID A •, that is analogous to A •. We show
how they are related to such searches as IDA • and MA •, show
how to add pruning to S/DA •, and give performance results.
S/DA • is superior to IDA • and competitive with MA • in the
number of nodes it expands, and its overhead lies between theirs.

1. INTRODUCTION
Suppose that we want to find an optimal solution to a prob­

lem by branch-and-bound search, or by a specialization such as
A • [4]. In the worst case, we must expand a number of nodes
exponential in the size of the problem [5]. Best-first expansion
reduces the number of nodes we expand; with an admissible func­
tion (in this paper we assume one), it :minim.izes the number, and
guarantees that the first solution found is optimal. But best-first
searches must store exponentially many nodes in memory [5].
Unless our problems are of small size, or have very tight lower­
bound and upper-bound functions, this soon exhausts even the
secondary memory of any computer.

Instead we can expand nodes depth-first, using a stack and
therefore a linear amount of memory. Typically it expands more
nodes than a best-first search. Also, if the bonnding function is
loose, it might seek far deeper than where the optimal solution(s)
will lie, doing futile work. Moreover, it uses only a fraction of
the primary memory of a computer. Can we use the extra
memory to reduce the number of nodes expanded in a search?

Various researchers have proposed search methods that
combine aspects of depth-first and best-first searches. Pearl [5]
descnbes such methods in his book. Our method is related more
closely to those we describe next.

Iterative-deepening A •, or IDA • [2] simulates an A •
search using a series of depth-first searches. Like A •, it requires

Research supported by a National Aetonautics and Space Administration
Graduate Fellowship Program and Contract NCC 2-481, and National Science
Fonndation grant MIPSS-10584.

IEEE International Workshop on Tools for Artificial Intelligence, 1990.

an admissible lower-bound function. It is a variant of depth-first
iterative deepening (DFID): a series of distinct depth-first
searches to progressively greater depths to mimic a breadth-first
search. As originally described, IDA • initially sets an incumbent
to the (lower-bound) value of the root node s, and searches
depth-first from s, backtracking when it reaches nodes whose
values exceed the incumbent. Such a depth-first search is a stage
or iteration. If a stage (not counting its leaves) finds a solution,
that solution is optimal; if not, IDA • sets the incumbent to the
smallest value borne by a leaf of the stage (its periphery). Then it
does the next stage: a new depth-first search from the root. dis­
carding all results of the previous stage apart from the new
incumbent

The first solution found by A • or IDA • is optimal. Nodes
first seen in a given stage of IDA • all have the same value, apart
from the leaves~ thus the search examines new nodes in nonde­
creasing order of cost- just as does A •. Asymptotically IDA •
expands the same number of nodes as A • [2]; in practice it is
clearly discarding information and wasting effort. Nor can it
make use of more than the linear memory used by its stack.

MA • [I] uses any additional memory available, and pnmes
nodes when memory is exhausted. It resembles IDA • performed
using an informed depth-first search.

Consider the tree that IDA • examines during a stage i
given an incumbent inc1• Call it tree1: it has all nodes of value
inc1 or less, with some children of larger value. Given inch MA •
also examines the nodes of treei before it proceeds to others, but
in another way. At stage i. MA • has saved on a priority-queue
(its open list) the nodes of a subtree rooted at s; this is a subset of
tree,_1 Gusts itself, initially). Each node of this subtree bears the
value of the smallest leaf of tree1_1 that is its descendant: this is
inci or greater. It also contains this ''best-descendant'" informa­
tion for each Of its children.

Suppose that MA • is at an early stage of a search, so that it
is not yet pruning. Remove from the front of open a node n of
value inc1; generate n's best untried child m. (If there is nom, n
goes onto another priority-queue, the closed list.) Expand m's
children, back up their values to m, and expand next m's best
child. Expand thereby the nodes of a path from m to the parent of
a leaf of treei• and all of their children. However. save only the
nodes on the path itself. (Note: before the back-up of values, the
saved nodes of the path all had value inci.) Expand all such paths
until tre~· has been examined completely.

MA • usually reaches its fixed limit of MAX nodes (the
number that fit in main memory, say). When more than MAX
nodes are in memory. MA • starts to pnme, though some nodes
being pnmed may yet lead to optimal solutions. It prunes the

nodes of largest values, and these must have no saved descen­
dants; their ancestors may have to have their backed-up values
altered. Pruning continues until all nodes with backed-up values
greater than that of the root are deleted.

Note a detail not stated explicitly in the principal paper on
MA • [1]: we must know the heuristic values of all of a node's
children before we enqueue it, since an informed depth-first
search is carried out. The children might not have to be expanded
completely, or the effort may be small, as with the Fifteen Puzzle.
For other problems, expanding a child "far enough" to evaluate
it may be almost as hard as expanding it entirely.

MREC [7] is essentially an IDA • that saves, in the
"extra" memory, nodes near the root. So long as memory
remains, it extends the stored search tree (or graph) with a series
of depth-first stages from the root to nodes whose values just
exceed an incumbent. The only differences from IDA • are that it
doesn't re-expand (just scans) nodes already in storage. and that it
stores new nodes. When memory is exhauste~ it searches as
before, but stops storing new nodes. With IDA •, once a node is
expanded in any stage but the last. it is re-expanded in every stage
thereafter. MREC prevents this re-expansion for some nodes near
the root. It has the pleasing property of not re-expanding any
nodes until it runs out of memory [7].

Section 2 describes SB&B, first informally, then formally.
Section 3 examines its behavior, given a simple model of search,
and compares it with that of IDA • and MA •; also it presents in
detail the problems that must be sbared by IDA·. MA ', SB&B,
their variants, and any future methods of similar type. Section 4
shows how to add a pruning mechanism to SB&B, describes the
extended method formally, and compares it with MA • (which is a
specialization). Section 5 gives preliminary results, and Section 6
concludes the paper.

2. SPECULATIVE SEARCH ALGORITHM
In doing a best-first search, we begin by putting an initial

node on a priority queue. Then, until we find a solution, we
repeat a series of steps: remove the ''best'' node (that of lowest
lower-bound) from the front of the priority queue, expand all of
its children, discard those whose values exceed the best known
upper bouncl. insert the rest in the queue, an~ if we have just
found a tighter upper bound on the solution, prune the queue of
any nodes with values exceeding this upper bound.

With our technique, speculative branch-and-bound
(SB &B), we still use a priority queue, and still remove and
expand the node at its front. This node, or one of its children
(depending on circumstances we describe presently), is the
rootlet. Instead of expanding the selected node, we use the
rootlet as the root of a depth-first search to some given depth or
value of node: a speculation.

We speculate from the rootlet using the usual last-in-first­
out stack of depth-first search. We keep the minimum leaf (or
minimum for short) of the search, and a corresponding minimum
path from the rootlet to this leaf. At the start of a speculation
there is no minimum. The first leaf of the speculation becomes
the initial one; the state of the stack at that point, the minimum
path. Thereafter the minimum becomes the leaf of smallest value
yet seen in the speculation (if there are duplicates we keep the
first to avoid effort), and the minimum path the corresponding
state of the stack. When the speculation is done, the minimum
path leads to the minimum leaf of the entire speculation.

~~~~~~~~~~~~~~ 
<U =20 

~----­

~-----
= 22 (by backup) 

= 21 (by backup) 

= 23 (by backup) 

= 20 (own value) 
saved path 

= 23 (by backup) 

= 24 (by backup) 

= 23 (own value) 

,.--------------
' L--------------

first speculation 

~
-------

c --------

~-----

~-----

Figure 2.1: Speculative branch-and-bound (d =3) 

During the speculation, we propagate back to the 
minimum path the values of the leaves. By the end of a specula­
tion. each node of the path has been labeled with the value of the 
best leaf (apart from the minimum itself) descending from it; thus 
the nodes of the path bear the best values that we can expect of 
their descendants sbould were-expand them later. (As withMA •, 
we back up to a node the best leaf-values reachable via each 
child.) We enqueue the nodes of the incumbent path, omitting 
those of cost greater than the upper bound on the solution. We 
prune the queue as necessary, remove the best node, and perform 
another speculation. Figure 2.1 shows a few operations of SB &B. 

2.1. Detalls of Algorltbm 

First note that for SB&B we store some extra information 
in each node that we enqueue. Namely. a node has a flag that is 
set if it is a virgin; i.e .• none of its children has been expanded. 
The starting node and all minima are initially virgins. A node 
also has a flag for each child. telling whether or not the child may 
be expanded as a rootlet when the node is selected from the 
queue. Finally, for each child eligible for expansion., the node has 
the backed-up value of its best descendant leaf. 

If the node removed from the queue is a virgin., we use it 
as the actual rootlet of a speculatioiL Otherwise, we generate its 
most-promising eligible child, and speculate from that, reruming 
the parent to the queue. its flag for the chosen child set to 



ineligibility and the value of the parent suitably altered. 

We can back up leaf-values during the depth-first search 
without much difficulty. We alter the stack used for speculation, 
adding extra slots to its frames; these hold values backed up from 
each child of the node. We must also keep track of how large a 
section of the current nrlnimum path and the stack is identical, 
using a counter called common. 

When a speculation reaches its first minimum, we copy the 
entire state of the stack at that point to the .minimwn path. Stack 
and path are therefore identical at this point: we set common to 
the depth of the leaf. Now, when we backtrack a level, we both 
pop the stack and decrement common; common remains unaltered 
when we generate new nodes on the same level or deeper. 

When do we propagate the values of leaves upwards to 
their ancestors? The rule of thumb is simple: propagate the 
value of a node upwards only when you have searched all the 
node's descendants in the speculation. Suppose that we speculate 
to a fixed depth d. We immediately propagate the value of leaves 
ho. lll, and so on to their parent Pi at depth d-1; however, we 
needn't propagate the value of Pi to the grandparent g at depth 
d-2 until we've generated all the children 11,1 of p 1• Only when 
we know for certain the best value of the children of Pi• and hence 
the final value p1 takes in this speculation, should we propagate it 
up to g. The same principle holds for the upper levels of the 
speculation. Values trickle up from the leaves, each node of the 
path acquiring the value of its least-costly child (not including 
children on the path). 

Often we will not generate an entire speculation-tree: 
some nodes may have values exceeding the upper bound, or we 
may find a solution (not necessarily optimal) shallower than the 
depth of speculation. In such cases we can simply propagate an 
••infinite'' value back to the parent of the node, showing that this 
child is not available for further expansion and therefore has no 
value to propagate upwBTds. If all leaves or their ancestors have 
values exceeding the upper bound, the speculation fails. 

Note also that propagation can potentially alter all 
backed-up values in the stack. but it alters only those of the 
incumbent path that are in conunon with the stack. In this way 

Procedure s_b&b: 

(1) [Initialize) 
Queue contains the root nodes. 
Set global upper bound u =~; best_sol =nil. 

(2) [Termination test) 
If Queue is empty. stop; best_sol is the solution. 

(3) [Selection) 
Dequeue the node n of lowest cost. 

( 4) [Speculation) 
u = minimum of u and upper-bound value of n. 
Set solution= specolate(n, Queue, u). 
If solution is nil, go to (2). 

(5) [Comparison) 
If cost(solution) <cost( best _sol), best _sol =solution. 

(6) [Pruning] 
prune(Queue, u). 
Go to (2). 

Figure 2.2: Main procedure of SB &B algorithm. 

node Function speculate(n, Queue, u) 

(1) [Determine the rootlet) 
If n is a virgin, 

Set rootlet =n. 
else 

Set rootlet= best eligible child of n. 
Mark rootlet's record inn as ineligible. 
If n has eligible children, 

Given the value of its best eligible child; 
Return n to Queue. 

If rootlet is a solution. return rootlet. 

(2) [Further initialization) 
Set depth= common = 0; minimum = lb = oo; solution= nil. 
Translate rootlet into node and an initial frame frame. 
Push frame onto the stack. 

(3) [Make a new frame] 
Examine the frame atop the stack. 
Make frame frame for its 1st untried child; alter node. 
H no such frame can be made, go to (7). 
Push frame onto the stack. 
Increment depth; set lb = lower-bound value of node. 

(4) [Test for too-large node) 
Iflb>ugoto(6). 

(5) [Test for solution, leaves] 
If node is a solution. 

Set u =lb -1; setsolution=node. 
Propagate values up stack & min _path (using common). 

else If depth=d 
Propagate values up stack & m.i.n _path (using common). 
H lb < minimum 

Set minimwn = lb. 
Set u = min. of u and upper_bound(node). 
Copy stack to min _yath. 
Set common =d. 

Undo last frame & changes to node. 
Pop the stack. 
Decrement common and depth. 
Go to (3). 

(6) [New node too large) 
Propagate values up stack & min _yath (using common). 
Undo last frame and changes to node. 
Go to (3). 

(7) [Cannot make a chlld) 
Pop the stack. 
If the stack is not empty, go to (3). 

(8) [Cleaning up) 
Create nodes from node and min _yath. 
Put those of value ~ u on Queue. 
Return solution [usually nil]. 

Figure 2.3: Speculation procedure for SB &B algorithm 

the incumbent path always gets the correct backed-up values for 
its nodes. 

2.2. A More Formal Description 

Figures 2.2 and 2.3 present the algorithm for SB&B in a 
more-precise form. We have a priority-queue Queue, a global 
upper-bound u. and assorted procedures for pnming the queue, 
enqueuing and dequeuing nodes, and so forth. 



We do speculations by calling a function speculate (Figure 
2.3) that speculates from a node n or its child, putting the 
minimwn path onto Queue and altering u as- needed. It translates 
the rootlet into a single record node and an initial frame that it 
pushes onto a stack. It then uses the stack for a conventional 
depth-first search (the speculation), altering 1Wde with each 
change of frame. Whenever a new minimwn appears, it copies 
the stack to the minimum-path; it calls a procedure propagate to 
pass leaf-values up the stack and the portion of the saved 
minimum-path that coincides with iL At the end of the specula­
ti~ it constructs nodes by combining information from node and 
the saved minimum-path, and puts them on Queue. 

2.3. Variants 

SB &B speculating to a fixed depth d is analogous to 
depth-first iterative deepening. Instead, we can make specula­
tions mimic the iterations of IDA*. To speculate, We do a depth­
first search from the rootlet in the style of IDA •, using the initial 
value of the rootlet as the incumbent. We backtrack on reaching 
nodes of value higher than the incumbent - just as with IDA •. 
1h this way we get an analog to IDA • which we call Speculative 
IDA", or SIDA *. We show in Section 3 that SIDA • is optimal 
given an admissible heuristic, and typically expands fewer nodes 
than IDA • - as with MA •, the savings is linear in the size of the 
extra memory used. As with the other methods, SIDA * can use 
an incumbent larger than the smallest value borne by the previous 
stage, at the cost of not finding an optimal solution initially. 

We can also use a local A* speculation, expanding just 
enough new nodes each time to ensure that the number of new 
nodes is sufficiently large to limit repetition. 1hls requires that 
we keep track of how many descendants of each node we have 
already expanded. One problem: successive speculations may 
grow larger and larger, with more nodes each time, in order to 
ensure good progress; eventually they may grow too large to fit in 
a computer's memory. 

3. BEHAVIOR OF ALGORITHM 
How does SB&B behave? Namely, how many nodes can 

we expect it to expand, compared to a best-first search, or to 
IDA • or MA *. and how much memory can we expect it to use? 
What problems might SB &B have in common with the other 
searches? 

3.1. Node-Expansions 

Consider a simplified view of search, such as Korf used in 
analyzing the performance of IDA • [2). Suppose that our search 
tree has a uniform branching-factor b (each interior node has b 
children), and all speculations are to a fixed depth d. Evezy node 
seen in the initial speculation is new. But what of the specula­
tions starting from the nodes of the saved path? The worst case is 
for the b-1 speculations spawned when s is re-selected from the 
priority queue. With these, only the deepest level contains nodes 
not seen before. Figure 3.1 shows the situation: only the solid 
lines of the picture lead to new nodes; the dashed lines show 
repetitions. 

Consider the rootlet of a speculation as level 0. A specula­

tion to depth d, given the uniform b, expands b:
1 

(b 4-1) nodes 

[9]. For the worst-case speculations mentioned above, the first 

d-1 levels, or _E_(b 4- 1-1) of these, are old, or almost exactly 
b-1 

1 b of the total. Hence. even for the worst-case speculations, at 

Figure 3.1: Worst-case repetition for b = 2. d = 6 

b-1 
least -b- of the nodes are new. 

A sintilar resuh holds for IDA • under such a model [2). 
This is umealistic for some real-life searches, and the result is 
therefore questionable, but we will see that IDA •, MA •, and lx>th 
SB&B and SIDA • encounter similar problems when the search 
tree is not so ''well-behaved.'' 

It should be obvious that in examining an entire stage, 
SIDA • never examines more nodes than does IDA •. Both 
methods look at the same number of nodes, but SIDA * already 
has the saved nodes stored in memory, and so it does not re­
expand them or their ancestors. Neither method typically exam­
ines the entire final stage, but SIDA • looks at it using many small 
speculations, performed best-rootlet-first, whereas IDA • uses a 
single search. Typically SIDA • will find a solution sooner, just as 
an informed depth-first search typically does better than a blind 
one. 

3.2. Space 

In the worst case, A • stores a number of nodes exponential 
in the size of the problem. SB &B generates at least 
_b_(b4-1)- _E_(b4- 1-1)=b4 new nodes with every specula-
b-1 b-1 
tion, but stores only d of them. Therefore. under this simplified 

model, SB &B stores :d of the nodes stored by A •. Hence the 

worst-case use of memory for SB &B is still exponential, but with 
a very small constant. A judicious choice of d (and b, if the 
nature of the problem makes that practical) can make an SB&B 
search fit in a primary memory that could not have held the nodes 
of an A • search. Table 3.1 shows the ratio for various values of b 
and d. If this does not control the use of memory tightly enough, 
we can add to SB&B a pruning mechanism sintilar to that of MA •. 
Such pruning keeps use of memory under a fixed amount, though 
at an increase in overhead. We describe this in Section 4. 

3.3. A Family of Search Methods 

We can consider IDA*, MA • and SB&B (SIDA • 
specifically, for the pmposes of the following discussion) as 
members of a family of search methods. MA • is essentially a 
generalization of IDA • [1], and SIDA • with pruning is a generali­
zation of MA •. The problem is that all of these methods depend 
for their effectiveness, to some degree, on this assumption: The 
number of nodes in the search tree increases exponentially with 
the depth of the search tree or the lower-bound value of the 
1Wdes. 

In other words, we can look at the tree generated in a 
search. even though the upper-bound function causes pruning and 
the representation of the problem lowers the branching-factor as 
~e .so deeper, and there is still some ''defacto•• brancl}.!ng-factor 
b. b > 1. such that level i+1 of the tree has at least b times as 



Table 3.1: Effects of band don saving of nodes. 

b d 
noaes ~anaea 

nodes stored 
2 2 

2 4 4 
8 32 

16 2048 
2 4.5 

3 4 20 
8 820 

16 2690420 
2 8 

4 4 64 
8 8192 

16 268435456 

many nodes as has level i, or such that about b times as many 
nodes have values in the range (h, h + 8] as in the range 
(h- 5, h], for some 5>0 (presumably 5c:h). If there is 1his 
dependence on depth, we can speClllate to a fixed depth with 
SB&B, or do DFID, and know that most nodes of a speculation or 
a stage will be new. Similarly, the dependence on value lets us 
do IDA •, MA •, or SIDA •. and know that most nodes of a stage, 
path. or speculation are new. 

For what problems does the number of nodes increase 
exponentially with depth or value? Note that the papers on IDA • 
[2, 3] and MA • [ 1] concentrate on the Fifteen Puzzle. The usual 
lower-bound heuristic based on Manhattan distance behaves very 
well: values of a parent and its child differ by either zero or two. 
Hence the search tree has ''slices,'' at least one level thick at their 
thinnest, containing nodes of equal value. Even a slice one level 
thick typically has as many nodes as all higher levels of the tree 
combined. because the average branching-factor for the Puzzle is 
2. An upper-bound ftmction would effectively reduce the branch­
ing factor, especially deeper in the tree. but apparently no such 
function exists. Thus the three methods all do well with the Fif­
teen Puzzle because the amount of work deep in search tree 
overwhelms even the oft-repeated work near its top. 

Knrf [3], notes that IDA • as presented originally [2] per­
forms poorly on the traveling-salesman problem (TSP), but 
claims that by using thresholds sufficiently exceeding the value of 
the minimum leaf of the previous stage, we can ensure that the 
next stage has overwhelmingly many new nodes. Analogous 
claims can be made for the other methods. For SB&B or DF/D 
we can increase d, for S/DA • or MA • we can increase the thres­
hold We are trying to avoid the following: If there are many 
discrete values of node. each borne by relatively few nodes, set­
ting the threshold to successive values means that only a small 
fraction of the nodes explored are new. (Note that all nodes of 
lower value are re-expanded at each stage.) Therefore the search 
covers the same ground repeatedly. New speculations of SB&B 
or DFID, or new paths of MA •, will be similarly repetitive. 

Sntith [8] has studied relaxation-guided branch-and-bound 
searches, particularly for the asymmetric TSP. (A relaxation of a 
problem is a version of it with some constraint removed; a solu­
tion to the original also solves the relaxation.) Frequently such 
methods give excellent lower bounds on the cost of an optimal 
solution. Smith, using random trees, found that for such searches, 
the size of a depth-first search tree is linear in the depth of the 
first leaf (the length of the path to the leftmost solution). This 

implies that when heuristics are strong, the number of nodes 
might not increase exponentially with depth or cost. The 
exponential increase that IDA • and related searches required 
would demand an exponential increase of the threshold. 

Korf [2] quotes results summarized by Pearl [5] to justify 
IDA • (and hence of related methods including SIDA •): if a 
heuristic used by A • exhibits constant relative error, the number 
of nodes generated by A • (and hence in the space that one of the 
methods must search) grows exponentially with depth. A hemis­
tic must have logarithmic relative error for the growth to be poly­
nomial, and assumes that the branching factor b is constant. The 
model applies well in the Fifteen Puzzle problem. No alternative 
methods have been developed when the above assumption is 
invalid. 

The IDA • family of search algorithms expand more nodes 
in cases in which either the bounding functions are tight or solu­
tions to a problem lie at a known level of the search tree. For 
example, if a hemistics for some problem in NP is not based on 
relaxation, solutions may be assembled one element at a time: a 
child has one more element of a partial solution than its parent, 
and solutions all have the same size. ht this case, an informed 
depth-first search to the right depth is obviously superior. ht 
problems in which the bounding functions are tight, an informed 
depth-first search generally searches approximately the same 
number of nodes as a best-first search [10]. 

What happens if the incumbent for IDA •, the d for SB&B, 
or the change in node-values for S/DA • is too large? Each stage 
or speculation expands overwhehningly many new nodes, but 
most of these might be superfluous: A • would not have expanded 
them. Say that an optimal solution has value 34: A • deq_ueues 
only nodes of value 34 or less, and expands (at worst) all of their 
children. IDA • (say), with an outsize incumbent of 38 on its final 
stage, might well expand almost all nodes of value 38 or less, and 
most of their children. 

A good upper-bound function for a problem also renders 
members of the IDA • family less useful. If speculations or stages 
go too deep, they are cut off not by their own limits (d or incum­
hent), but by the upper-bound ftmction. In that case, an informed 
depth-first search would search about the same space, but without 
repetitions, and therefore fare better. 

3.4. Optimality of smA• 
The argument of Lemma 6.3 of Korf's paper [2], that 

IDA • finds a solution of least cost if one exists, holds for S/DA • 
as well. S/DA • also expands all nodes of a given cost before 
proceeding to those of higher cost, given an admissible heuristic 
function. The ·optimality argument follows the one for IDA • 
(Korf's Theorem 6.4). 

4. ADDING PRUNING 
Although SB&B uses substantially less memory than does 

A •, it can still use an exponentially large amount. Sometimes we 
cannot adjust band d to ensure that the search fits in a machine's 
primary memory; e.g., some problems may be hard to recast to 
make b large; b tends to sbrink with depth. Too large a d, and the 
search degenerates into depth-first. Also, it may be hard to esti­
mate precisely the number of distinct nodes we will examine in a 
search; we may have to bound it loosely and choose a large d to 
ensure that the search fits in memory. 

S/DA • is the most important case: increasing the depth of 
speculation destroys optimality. Therefore we will present a 



version of SIDA * with pruning, and then discuss its behavior. 
Pruning is possible with other forms of SB &B, but it requires 
more bookkeeping (e.g., keeping count of descendants). 

4.1. Informal description 

The original SB &B simply enqueues the nodes generated 
by speculations. Now it must also keep track of saved paths, not 
just their nodes in another priority queue. This Path queue holds 
a header for each path; a header has information about its path, 
and the head of a doubly-linked list through the path's nodes. 
Nodes now point to their header and the neighbors in their path. 

A speculation generates a path: enqueue the nodes, as 
usual, but also put their headet on the Path queue. Initially a 
header bears the value of its speculation's minimum leaf, but that 
changes when child paths are pruned. The header keeps a count 
Children of child paths, a pointer Parent to the parent of the 
rootlet, a pointer Rootlet to the rootlet, and a pointer Minimum to 
the minimum leaf. Note that after a successful speculation from a 
node (i.e., do a speculation that reaches at least one leaf, and 
therefore returns a path), we increment Children in the header of 
its path. 

Disjoint paths keep the algoritlun tidy: we no longer treat 
the minimum leaf as part of the path leading to it. We enqueue it 
as usual; it generally becomes the rootlet of its own speculation, 
and hence the first node of another path. (The pointer from the 
associated header lets us find it if we must delete it before then.) 

When use of memory exceeds the threshold MAX, we 
delete paths. The headers on the Path queue are in order of suita­
bility for pruning: worst-first and newest.fust; the first path the 
Path queue has no child paths. (Because the lower·bound func­
tion is admissible, children of a path have values no less than that 
of the path itself, and they are newer- hence they appear earlier 
in the Path queue than their parent.) Dequeue the first headet, 
and, following the links down its path. delete its elements from 
the main queue. If that minimum leaf associated with a path has 
not become the rootlet of a later speculation, delete it as well. 

Before we delete a path. we alter the corresponding child­
value stored in its parent node, and. if necessary. the parent's own 
value. We decrement the count of active child paths, using the 
pointer from the parent node to the header of its path. If the path 
that we are deleting is the last child path, we update the value of 
the parent path, scamring through its nodes and copying the best 
value to the header. If this changes the value of the path, we 
remove it from the Path queue and re-insert it before all nodes of 
equal value: because it no longer has ch.J.1d paths, it is at least as 
eligible for deletion as any other path of its value. Any paths we 
later generate will be inserted near to the front of the Path queue, 
because they will be newer and have values no lower, and there­
fore be prone to deletion sooner. 

Figure 4.1 describes of SID A • with prwring more for­
mally. The speculate function is much like that in Figure 2.3. 
except that it creates a path header and sets the added pointem in 
the nodes to make the doubly-linked list representing the path. 

4.2. Behavior 

It should now be obvious that SID A* with pruning is a 
generalization of MA *. Instead of searching only one level deep, 
SIDA • goes all the way to the bottom of an IDA • -stage. 1n earlier 
stages, MA • may expand fewer nodes than would SIDA •, because 
MA * quickly fills the allotted memory with nodes, whereas 
SIDA * takes longer. Recall that the savings in searching a stage 

Procedure pruning_s_b&b(Min, Max): 

(1) [Initialize] 
Queue contains the root nodes. 
PathQueue is empty. 
Set global upper bound u :::::co; best _sol::::: nil. 

(2) rrermlnation test] 
If Queue is empty, stop; best _sol is the solution. 

(3) [Selection] 
Remove from Queue the node n of lowest cost. 

( 4) [Speculation] 
Set u::::: minimum of u and upper-bound value of n. 
Set solution= specnlate(n, Queue, u, header). 
If header is not nil, 

Increment count of Children in header of n 's path. 
Set header.Children =0. 
Enqueue header onPathQueue. 

If less than Max memory is in use, go to (8). 

(5) [Pruning to conserve memory] 
Get headet hat the head of PathQueue. 
Delete from Queue all nodes of h • s path. 
Propagate value of h to its parent p; adjust p as needed. 
Decrement Children in header of p 's path P. 
If P.Children >O,go to (7). 

(6) [Updating parent path] 
Start from P and scan its path for the smallest cost c. 
Ifc>P.cost 

P.cost=c. 
Remove P from PaJhQueue; restore with its new value. 

(7) [Test to stop pruning] 
If more than Min memory is in use, go to (5). 

(8) [Loop] 
If solution is nil, go to (2). 

(9) [Comparison] 
If cost(solution) < cost( best_ sol), set best _sol= solution. 

(10) [Pruning to elhninate costly nodes] 
Remove headets h, h. value;, u, and path [as in (5), (6)] 
For every node n of value ~ u: 

Remove n from Queue. 
Adjust pointers of neighbors of non path, to skip n. 

Go to (2). 

Figure 4.1: SIDA • with pruning. 

with SID A* or MA * instead of IDA* is proportional to the 
number of nodes in storage. On the other hand, SID A* saves the 
best path of a speculation, which gives it an element of an 
informed search. The comparison of the two methods will be 
shown in a future paper. 

S. RESULTS 

Our results are preliminary, but they show that if we use 
the same heuristic and the same amount of "overshoot, •• SIVA* 
expands fewer nodes that IDA •. IDA* sometimes solves a pro b. 
lem more quickly, however, because its overhead is lower. Table 
5.1 shows some results for sets of 100 randornly.generated prob· 
lems, with given overshoot in the value of the incumbent (written 
"o = 20," for example) or fixed depth of speculation ("d = 12"). 
We give average number of nodes and standard deviation for each 
set. Instances of the jobs hop scheduling problem are for 4 jobs, 



each having 4 tasks, scheduled on 4 machines (hence "4/4/4"); 
!hey were generated by edding tasks of random lenglh (in this 
case, nonzero but less than 64) to a job, checking to ensme that 
no contiguous tasks demanded the same processor. They were 
solved using a naive heuristic, showing strengths and weaknesses 
peculiar to various methods. Using a weak heuristic makes the 
nwnber of nodes increase exponentially with value; however, all 
solutions are at the same depth. Conventional IDA • fares poorly 
because of the many different values that nodes can take. Adding 
an .. overshoot' • to the incumbent value reduces the number of 
nodes, but SIDA • still fares better under the same advantage. 
Note !hat SB&B with fixed d does poorly, because !he branching­
factor drops sharply (from 4 near 1he root of !he tree to 1 just 
before !he leaves). For this sort of problem, even a blind deplh­
first search fares better !han any method of 1he IDA • family, 
because it repeats no nodes and carmot search past the level 
where the solutions lie. 

Table 5.2 shows some results for instances of the Fifteen 
Puzzle presented by Korf [2] and also used as examples in !he 
paperonMA• [1]. UsuallySIDA• performsbetterlhaniDA• and 
not as well as MA • with·no additional memory; however, the 
MA • paper does not appear to co\Ult its examinations of child 
nodes as node-expansion. Also, because we do not at this writing 
have the pruning version of SIDA • working, to ensure that the 
search would fit in machine memory, we had to collect these data 
using SIDA • with an overshoot of 10 added to the threshold: 
speculations are expanding needless nodes deep in 1he tree. 
Furthermore, for the results to be comparable to those for MA •, 
SIDA • should use infortned deplh-first search in its speculations. 

6. CONCLUSIONS 
We have presented a new algorithm, speculative branch 

and bound (SB &B), for performing heuristic search in restricted 
memory, It is analogous to depth-first iterative deepening 

Table 5.1: Comparison of methods for 100 random problems. 

Problem Search 110tksavtl nodes$1/J...,, 

IDA• 148859139 296580397 
IDA·,o=20 23536998 34971060 
IDA·,o=30 20381512 29519058 

4/4/4 jobshop SIDA",o=20 20685240 30757773 
SIDA".o=30 20034856 30950953 
blindDFS 15932349 19437159 
SB&B,d=12 36242055 44740843 
SB&B, d= 13 40707373 44376572 

8-puzzle IDA 5864 9218 
SIDA• 4465 8812 

Table 5.2: Instances of 1he 15 Puzzle from Korf's paper. 

No. IDA MA (0) SIDA , overshoot - 10 
15 543598067 270016222 298196963 
30 2196593 898573 1682282 
40 63276188 34010298 54167881 
45 6158733 2396522 8309799 
50 63036422 17989651 62453094 
55 927212 454994 391449 
85 2725456 1426580 2154883 

100 67880056 19221994 70243385 

(DF/D). We have also presented a variant, speculative IDA • 
(SIDA •), analogous to IDA •. Both of fuese use substantially less 
memory than conventional branch-and-bound or A • methods. 
We have also devised a pruning mechanism, analogous to that of 
MA •, to restrict use of memory. 

All of lhese methods (DFID, IDA •, MA •, SB&B, SIDA •) 
perform best on search spaces for which the number of nodes 
increases exponentially wilh depth (DFID and SB &B) or heuristic 
value (the others). This requires a heuristic with constant relative 
error (which is usual), and a representation of the problem that 
ensures that the branching factor of the search tree is roughly con­
stant with depth. 

In the future we will compare SIDA • more thoroughly to 
competing methods, and try for some tighter theoretical bounds 
on its performance. Parallelizing our search methods is straight­
forward, and we have already run some tests that show near­
linear speedups to be possible, and perhaps competitive with 
olherparallel searches such as !he parallel IDA • ofRao et al. [6]. 

REFERENCES 
[1] P. P. Chakrabarti, S. Ghose, A Acharya. and S. C. de Sar­

kar, "Heuristic Search in Restricted Memory," Artificial 
Intelligence, no. 41, pp. 197-221, 1989. 

[2] R. E. Korf, "Depth-First Iterative Deepening; An Optimal 
Admissible Tree Search,' • Artificial Intelligence, vol. 
27, pp. 97-109, Norlh-Holland, 1985. 

[3] R. E. Korf, "Optimal Palh Finding Algorithms," pp. 
223-267 in Search in Artificial Intelligence, ed. V. KUIIUU', 
Springer-Verlag, New York, 1988. 

[4] N. J. Nilsson. Principles of Artificial Intelligence, Tioga. 
1980. 

[5] J. Pearl, Hewistics--Intelligent Search Strategies for Com­
puter Problem Solving, Addison-Wesley, Reading, MA 
1984. 

[6] V. N. Rao, V. Kumar, and K. Ramesh, "A Parallel Imple­
mentation of Iterative-Deepening-A*," Proc. 6th. 
National Conf. on Artificial Intelligence, pp. 178-182, 
Morgan Kaufman, Los Altos, CA, July 1989. 

[7] A. K. Sen and A. Bagchl, "Fast Recursive Formulations 
for Best-Fist Search That Allow Controlled Use of 
Memory," Proc. Int'l Joint Con[. on Artificial 
Intelligence, pp. 297-302, IJCAI, Inc., Detroi~ MI, Aug. 
1989. 

[8] D. R. Smith, "Random Trees and 1he Analysis of Branch­
and-Bound Procedures," J. of the ACM, vol. 31, no. 1, pp. 
163-188, 1984. 

[9] M. E. Stickel and W. M. Tyson. "An Analysis of Con­
secutively Bounded Depth-First Search with Applications 
in Automated Deduction," 9th IJCA!, pp. 1073-5, 1985. 

[10] B. W. Wah and C. F. Yu, "Stochastic Modeling of 
Branch-and-Bound Algorilhms wilh Best-First Search," 
Trans. on Software Engineering, vol. SE-11, no. 9, pp. 
922-934, IEEE, Sept. 1985. 


