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LEARNING PROCESS MAPPING HEURISTICS
UNDER STOCHASTIC SAMPLING OVERHEADS

Arthur Ieurnwananonthachai and Benjamin W. Wah

ABSTRACT

The problem of optimal process mapping is NP-hard
and involves the optimal placement of processes on the
distributed system and the optimal routing of messages
from one computer to another. The heuristics for solving
this problem are often ad hoc, and are guided by intuition
and experience of the designers. We have developed pre-
viously a statistical method for improving process map-
ping heuristics. The method explores systematically the
space of possible heuristics under a specified time con-
straint, Its goal is to get the best possible heuristics while
trading between the solution quality of the process map-
ping heuristics and their execution time. In this paper, we
extend this statistical selection method to take into con-
sideration the variations in the amount of time used o
evaluate heuristics on a problem instance. We present the
improvement in performance using this more realistic
assumption along with some methods that alleviate the
additional complexity.

KEYWORDS AND PHRASES. Distributed compulting
system, generate-and-test, heuristics, loosely coupled
computers, process mapping, sequential selection, time
constraint.

1. INTRODUCTION

Process mapping is important in resources scheduling
in a distributed computing environment. However, its
exponential complexity forbids the search of optimal
solutions in many practical cases. As a result, most solu-
tions to the process mapping problem are based on heuris-
tic methods. An example is the post-game analysis sys-
tem developed by Yan and Lundstrom [5,6]. These
heunstics are developed in an ad hoc fashion and are
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based on the experience of the designers. Since the space
of possible heuristics is very large, it is likely that there
are heuristics that perform better than the ones selected by

“the designer.

We have developed previously TEACHER 4.1 (TEch-
niques for Automatic Creation of HEuRistics) (3], a sys-
tem that extends the post-game analysis system through
systematic and automatic exploration of its space of pos-
sible heuristics. The system attempts to find the best
heuristics while trading between the quality of the solu-
tion found and its execution time. The results show
improvement in performance over the original heuristics
used.

As there is little knowledge available for generating
good mapping heuristics, TEACHER 4.1 focuses on
efficient scheduling of time in evaluating alternative
heuristics. The scheduling algorithm is based on a statist-
ical model we developed earlier in TEACHER 4.0 for
trading off between the number of new heuristics to be
generated and the amount of tests to be performed on
each. This statistical method has been applied to find
good parameters for depth perception in stereo vision [4].

The statistical methed we developed earlier assumes
that the sampling overhead, i.e., the amount of ime to test
a candidate heuristics on a test case, is the same for all
candidates. This is a crude approximation in in many
problem domains, including the process mapping prob-
lem. Moreover, the performance value of the candidaie
may also depend on its sampling overhead. We present in
this paper an enhanced model that addresses this problem.

2. AUTOMATED SYSTEM FOR SELECTING
HEURISTICS

In this section, we present an overview of TEACHER
4.1 [31, a system for automating the selection of process
mapping heuristics under resource constraints. The goal
of the system is to explore systematically the space of
possible heuristics and find the heuristics that provide the
best tradeoff between the quality of the solution and the
execution time. First, we discuss an overview of the
post-game analysis system, which we have chosen as the
heuristic method for solving the process mapping prob-
Jlem. We then present the objective of our sclection prob-




lem, i.e., the type of heuristics we are seeking. Next, we
present the generate-and-test paradigm in TEACHER.
Last, we present the statistical selection method for
scheduling resources.

2.1. Post-Game Analysis

The objective of the process mapping problem is to
find a mapping of 2 set of communicating processes on a
distributed computing system so that the completion time
of the processes is minimized, Post-game analysis system
is an efficient heuristic method for solving this problem.
The system iteratively refines the mapping of the
processes based on information collected during the exe-
cution using the previous mapping. The system starts off
by executing (or simulating) the processes using an initial
random mapping. Based on information gathered during
the execution, heuristics are applied to propose changes to
this mapping, with the goal of reducing the completion
time. The set of processes are then executed using the
new mapping. These steps are repeated until no further
change to the mapping can be found.

The goal of the post-game system is more complex
than simply minimizing the completion time of processes.
It trades between the amount of time (or cost) it uses to
find the mapping and the quality of the mapping found
(i.e., the completion time of the processes based on this
mapping). This is true because the cases that one set of
heuristics takes unlimited time to find the optimal map-
ping and one that takes zero time to find a trivial mapping
cannot be considered as satisfactory, Unfortunately, there
is no concrete way of defining the optimal level of trade-
off between the overhead and the solution quality. In the
next section we define a parametrized objective function
that encompasses all possible levels of tradeoff.

2.2. Objective of L.earning Process

The objective of the learning process is 1o improve the
performance of the target problem solver, which is the
post-game system in this case. However, as discussed in
the previous section, the objective of the post-game sys-
tem is not well defined. Consequently, the objective of
the leaming process is ill-defined as well. Instead of
coming up with a single objective function for the leam-
ing process, we define a family of objectives that
represent various desirable levels of tradeoff between the
execution time (or cost) and the quality of the mapping
found. The learning system will find the heuristics that
perform the. best for each objective drawn from this fam-
ily. The users can then sclect the objective and the asso-
ciated heuristics that suit their application requirements
the best.
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In order 1o create a parametrized objective function,
we define the objective as a function of ¢,,,,, a parameter
that represents the maximum time that a set of heuristics
are allowed to execute before a penalty is imposed.

We first define ¢ {h,v,!,,) as a piecewise continuous
function with a discontinuity at ¢,,,,, where 4 is the candi-
date heuristics, v is the process mapping problem, and
e (h,v,1,,) is the cost of the mapping for given h and v.
Let 1 (h,v) be the time to find the mapping.

1 1AV S 1y

C(hVitmn) = {c,, ) =t d+1 th) > 1, &1
where ¢, is a constant that defines the relationship -
between cost and overhead when ¢, is exceeded. The
reason for choosing ¢,,, is t0 avoid the degenerate case in
which ¢ (h,v,15,,) and £ (h,v) are both zeroes. The values
of both ¢ (h,v,t,,,) and ¢ {h,v) are averaged over a set of

initial random mappings.

We define g (h,v), the quality of & for problem v, as
the reciprocal of the completion time of the processes
mapped on the distributed system averaged over a set of
initial random mappings using candidate heuristics A.
That is, the quality is higher when the processes mapped
complete sooner.

The objective of the learning process, Q (£ paax )y 15 tO
find a candidate heuristics that maximizes the average
quality-cost ratio for a given ¢ ,,,; that is,

Q(fmsx) = mfx Z _____g__(_'ft_v_‘:)“m

e Tt @2)

2.3. Generate-and-Test Framework

For a given objective drawn from the parametrized
objective function, the generate-and-test system finds the
heuristics that maximize this objective. As there is little
domain knowledge in the process mapping problem to
guide the generation of good heuristics, and the space of
good heuristics is very large, an efficient resource
scheduling algorithm that focuses on finding good heuris-
tics in a limited amount of time is very imponant, -

There are three main components in the generate-
and-test framework as depicted in Figure 2.1: the candi-
date generator generaies new candidates to be con-
sidered, the candidate evaluator applies the selected can-
didate to the target problem and records its performance,
and the scheduler decides on the best way to use the
reSOUrces.

A candidate is a point within the search space, which
in this case is a set of heuristics for the post-game analysis
system. In order for the leaming system to explore the
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Figure 2.1. Generate-and-Test Framework.

space of possible post-game heuristics, the rules used in
post-game analysis must be modifiable. To simplify the
modification, the post-game system is changed so that the
rules are represented as frames. Each- candidate for the
generate-and-test framework is then represented by a set
of frames,

The evaluation process is divided into small tests
called quanta. This is needed in order to avoid spending
a large amount of time on a poor candidate. Additional
tests are performed only on candidates that demonstrate
some merits during the previous quanta. During a quan-
tum of time, the candidate evaluator perform tests on the
candidate selected using test cases randomly generated or
supplied by the users.

In our implementation, the performance of each can-
didate is found by applying it to selected problem
instances from the training database. A probiem instance
(or test case) is represented by the specification of the set
of communicating processes 10 be mapped, the hardware
on which the processes are mapped, and the input values
to the distributed processes. The results from each
evaluation of a candidate heuristics for a problem instance
with an initial mapping are recorded and are used to com-
pute its performance.

Within each quantum, the candidate evaluator evalu-
ates the performance of the selected candidate on a single
problem instance randomly drawn from a training data-
base. As the performance of each candidate heuristics
evaluated on the same problem with different initial map-
pings can vary widely, it is necessary to test each problem

instance enough in order to get a good confidence on the
value of its average performance. In our case, the candi-
datc evaluator tests each test case until the 95%
confidence interval (based on Student’s t-distribution) .
the average performance across the different initial map-
pings are within 5% of the average value.

At the end of a quantum, the scheduler decides on one
of three following actions: (1) select the next candidate to
evaluate from the candidate pool, (2) generate a new can-
didate to be placed in the candidate pool and possibly
remove an existing one from the pool, and (3) select a set
of best candidates and stop learning when time is
expended. The decision are made based on the resource
scheduling algorithm and the performance of existing
candidates in the pool. In our case the scheduling algo-
rithm is based on a statistical model to be presented in the
next section.

If choice (2) is selected, then the candidate generator
is used to generate a new candidate. Our current candi-
date generator is relatively primitive: a new candidate is
gencrated by applying a sequence of operators that
transform an existing candidate into a different candidate.

The strategy used in our current candidate generator is
divided into 3 stages. In the first stage, the generator
locates an existing candidate that performs the best in a
region of heuristics space. In the second stage, it finds 5
sequence of operators that cause the greatest improve-
ment in performance within that region of the heuristics
space. In the last stage, a new candidate is generated
from the candidate selected in the first stage using the
sequence of operators found in the second stage. Our
current implementation is based on a rule-based system,
so additional domain knowledge, operators, and rules can
be added easily. : :

2.4. Statistical Candidate-Selection Strategy under
Time Constraints ‘ :

‘The goal of the scheduler in the generate-and-test is to
choose the best candidate: from a pool of candidates, each
of which has an associated set of performance values. In

- statistical term this can be restated as, given a set of popu-

lations consisting of nommally distributed random
numbers (with unknown means and variances), the prob-
lem is to select the one with the highest population mean
by testing a certain number of samples from these popula-
tions.! In our case, the populations are candidate heuris-

tics, and the numbers comprising the elements of the

1. Population mean and variance are properties of a population, They
can be estimated by the sample mean and variance if limited samples are
drawn from the pepulation when the population is infinite in size.



populations are the performance values associated with
applying the heuristics on the given problem instances.
Making one pick from a population is analogous to testing
the candidate on one problem instance. The goal is to
choose the candidate with the highest mean within a given
amount of tests (or picks). Since resources are limited
and there are too many candidates to be tested in the
available time, the selection strategy must make a suc-
cinct choice in trading between the number of candidate
to be tested and the accuracy of the sample-mean values.

Existing methods can be classified into static and
dynamic. Static strategies, such as a round-robin strategy,
have a selection sequence that is fixed ahead of time
independent of the values of the picks observed during
the selection process. Dynamic strategies, on the other
hand, select the candidate for testing based on previous
sample values. A greedy method that selects ihe candi-
date with the highest sample mean for further testing is
such an example. Dynamic strategies have an advantage
over static ones because they less likely spend time on
candidates that are obviously inferior after some initial
tests. However, finding good dynamic strategies is usu-
ally harder.

Early and current work in this area was pioneered by
Bechhofer [1], However, the solutions found are not
applicable directly because research in statistics -deals
with a finite number of populations and unlimited time.

2.4.1, Multistage Selection Strategy

Our general selection strategy, G (7)), is formulated as
a series of stages, G,(g;,%,n;), where i ranges from 1 to
the number of stages (see Figure 2.2). Each stage is char-
terized by a triplet consisting of (a) g;, the guidance stra-
tegy used in the stage, (b) 1, the duration of the stage, and
() n;, the number of candidates to be considered for test-
ing in this stage. Our multistage selection strategy can
accommodate both static and dynamic guidance stra-
tegies. In the multistage procedure, the first stage
corresponds to coarse initial testing to weed out unworthy
candidates followed by a more careful evaluation of the
better candidates. Only the candidates that have the top
n;41 sample mean values at the end of stage { are used in
stage i + | for further testing.

The performance of the multistage selection method
depends on the number of stages used, the guidance stra-
tegy used in each stage, and the number of populations
tested in each stage. Factors that affect the performance
include the size and distribution of each population, the
total amount of testing time, and the number of possible
candidates and their distributions.
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Figure 2.2, Multistage SelecTion Procedure.

Currendy we are only interested in single-stage and
two-stage strategies. The strategies we have studied
include single-stage round-robin, two-stage round-robin,
two-stage round-robin/greedy, and two-stage round-
robin/minimum-risk. The Minimum-risk strategy [3]
selects the candidate that will minimize the risk of error in
the estimation of the best mean value after the next pick.
It takes uncertainty in the sample mean value into con-
sideration and performs slightly better than the greedy
method.

3. PERFORMANCE EVALUATION OF MULTIS-
TAGE SELECTION

In order for the muitistage selection strategies to be
successful, we must develop some systematic methods for
determining the values of their parameters that are most
suitable for the give problem. To accomplish this, we
need to analyze the performance of the sciection stra-
tegies. Previously, we have analyzed the case in which
all sampling overheads (i.e. the time for testing a candi-
date} are unity [4), Section 3.1 summarizes the resuit of
this analysis. We extend the problem in Section 3.2 to
include the case in which the sampling overhead is sto-
chastic. The analysis of the new upper bounds on the per-
formance of selection strategies is presented next. This is
followed by a description of the effect of the new assump-
tions on the performance of the multistage strategies.
Finally, we present an updated method for applying the
multistage selection strategy at run-time,

3.1. Previous Work

In our previous analysis [4], we have derived the
upper bound on the performance of multistage strategies,
analyzed the performance for single-stage round-robin
and a few two-stage selection methods, and developed the
method for controlling the multistage selection at run
time. We summarize these results in this section.

There are four sets of assumptions that we made in the
analysis. The first set of assumptions are that each popu-
lation {ie., candidate performance) is normally distri-



buted, that the variances of all populations are equal, and
that each sample within a population is independent and
identically distributed (i.i.d.). The second set of assump-
lions are that the distribution of the population means is
known, and that the values of population means are 1i.d.
For statistical analysis, the population variance is also
assumed to be known. The final assumption is that the
sampling overhead is the same for all populations and is
equal to unity.

3.1.1. Upper-bound on Selection Performance

The best that any selection strategy can do is o be
able to determine after one pick from each candidate the
one with the best population mean. From the assumptions
stated, the maximum number of candidates that can be
tested in 7" time units is 7. The distribution of the perfor-
mance for the best candidate among T populations is the
T order suatistic of the population-mean distribution.
Let F(x) and f,(x) be the cumulative distribution func-
tion (c.d.f.} and probability density function (p.d.f.} of the
population mean of a random candidate, then the p.d.f. of
the best of T random candidates is {2]

Fren@) = T IFuGNT £x) 3.1

3.1.2. Analysis of Selected Multistage Strategies

We have developed a general procedure for analyzing
the multistage guidance strategies that can be adapted o
any given guidance strategy. The key to the analysis is
the ability to determine the joint probability distribution
(fjoinc} between the population mean, the sample mean,
the number of samples per population, and any other vari-
ables used by the given guidance strategies to determine
the next selection that can vary during the selection pro-
cess. For static strategies, only the population mean, the
sample mean and the number of samples have to be con-
sidered. For dynamic strategies, since the candidate is
usually selected based on some values within the joint
distnbution, each pick must be treated as an individual
stage, and the joint distribution must be updated after
each pick.

There are four steps in the analysis of each stage using
information available from the analysis of previous
stages. The first step is to determine the joint probability
distribution (f,;.) of a random candidate at the end of the
current stage. Then the probability distribution of the
sample means of the candidates at the end of the current
stage is determined. In the third step, the sample mean
distribution of the candidate that will be selected for
further evaluation in the following stages (i.e. candidate
in one of the top k among n sample means, where 7 is the
number of candidates evaluated in this stage, and & is the
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number of candidaies that will be selected for further
evaluation in the following stages, if any) is determined,
Finally, the results from the first three steps are used to
determine fj,., the joint probability distribution for the
selected candidate. fj, is the only information that
needs to be carried over 10 the next stage.

Applying these steps on single-stage round-robin and
two-stage round-robin strategies results in equations that
accurately predict the performance of these sirategies
based on their parameters values and the population dis-
tribution. If we assume that there is only one set of
parameters that provide the maximum performance level
for a given population distribution, then this set of optimal
parameters can be found by searching through the sets of
possible parameters using the values predicted analyti-
cally. For a two-stage round-robin strategy, the result
indicates that the available time should be divided so that
75% of the time is allocated to the first stage and 25% to
the second stage.,

For dynamic strategies, the results derived from the
above technique are far too complex and do not provide
insight into the method for selecting appropriate values
for their parameters. Monte Carlo simulation resuits for
two-stage round-robin/greedy strategy with a variety of
parameters values indicate that the parameter set that is
the best for a two-stage round-robin strategy performs
well here.

3.1.3. Application strategy

The analysis presented in the previous section pro-
vides a miethod for determining the parameters for mults-
tage selection for a given population distribution. In prac-
tice, the distributions of the population means and vari-
ances are unknown. Hence, it is necessary to estimate
them by statistical tests before analysis can be performed.
We assume that the initial 10 percent of the allotted time
is used to estimate these parameters. Four samples per
candidate are tested with as many candidates as can be
tested during this initial period. The parameters of the
selection process aré then determined analytically. In
case of dynamic strategies (two-stage round-robin/greedy
and two-stage round-robin/minimum-risk), we use the
same parameters as those of the two-stage round-robin
strategy.

3.2. Revised Problem Model

The analysis in the last section is based on some sim-
ptifying assumptions, In the rest of this section we extend
the model and present improved performance results.

The assumption that we relax is on the equality of
sampling overheads of candidate heuristics. In this paper




we assume that each candidate can have an independent
and identically distributed sampling overhead drawn from
a given distribution. We further assume that this distribu-
tion is known. Moreover, there is a lower bound on the
sampling overhead; in this case we assume that this lower
bound is 1.

As defined in Eq’s (2.1) and (2.2), the objective of the
generate-and-test process is a function of sampling cost,
c(hv,tmny) and sample quality g(h,v). Note that the
sampling cost is a function of the sampling overhead
1(h,v). In general, the sampling cost should be a mono-
tonically nondecreasing function of sampling overhead.
In our analysis, we assume that the joint distribution of
the population mean, the population variance, and the
sampling overhead is known.

3.3. Performance Upper Bound

Since the sampling overhead of all populations are
greater than or equal to 1 under the new assumption, the
maximum number of candidates that can be tested within
T time units must be less than or equal to T. Therefore,
the naive upper bound derived in Eq. (3.1) is still valid.
However, since the average sampling overhead is greater
than 1, the average number of candidates that can be
tested within T' time units, with one sample for each can-
didate, would be less than T. Using g.(x) and G,(x), the
p.d.f. and c.d.f. of the sampling overhead of a random
candidate, we can derive a better upper bound based on
the distribution of ¥, the number of candidates, that can
be sampled within T time units. '

. |
Frea®)= 31 [Fu()™ fux) PN =n) 32)
n=]
T .
. n—
PN=nl= j PI¥ ¢;=x](1-G.(T—x)) dx (3.3)
=0 i=1

where ¢; is the sampling overhead of candidate i, and
F,(x} and £, (x) represent the c.d.f. and p.d.f. of the popu-
lation mean of a random candidate. Unfortunately, the

n—1
distribution of ( >.c;| is an (n—1)"* convolution of the
i=1
sampling-overhead distribution, g.(x). This makes it very
difficult to derive the result from this equation for any
reasonable value of T. However, this upper-bound can be
found easily using Monte Carlo simulation,

An approximation to the above equation can be found
by using F=E[c], the average sampling overhead,
instead of the distribution of sampling overheads in Eq.
~ (3.2). This gives an estimate of the number of candidates
that can-be sampled in T time units. The corresponding
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distribution is shown in Eg. (3.4).

—--1
[+

Fre(®) = % Fu®  fu() (3.4)

An aliernative method for finding the upper bound is
by the oracle argument. In this approach, we assume that
best candidate is known ahead of time. The problem is to
find the order the samples should be drawn so that the
probability that the candidate with the highest population
mean will have the highest sample mean when testing is
completed.

Using this strategy, the testing time 7 is divided into
two periods. During the first period of length r 7, a sam-
ple is drawn from each candidate. In the second period,
the oracle strategy uses the knowledge on the actual
population means and variances in order to make selec-
tion that will optimize P,,,,.,. the probability that the can-
didate with highest population mean will have the highest
sample mean at the end of the testing time. To determine
the optimal set of picks, all possible combinations of
picks must be enumerated and probabilitics computed for
each. The upper-bound performance is the set of selec-
tions with the maximum P,,,,., among all possible value
of r. This upper bound is better than the naive upper
bound because it takes into account the variance within
each population,

Assuming that the performance values of each candi-
date are nommally distributed, the probability can be com-
puted for all combinations of »;, where »; is the number
of additional picks for candidate .

oo
_ x—ubal'*'(x_vi)/nbu:]
Psel-zcl ‘_IJ_-¢[ O'bg‘"/ ’___nﬂbg, J (35)
X+ (x—x)/n;
(b —_—
BYs [ il }

where ¢(s) and ®(e) represent the p.d.f. and c.d.f. of
N(0,1), respectively, L;, x;, and o; represent the popula-
tion mean, the sample mean, and the population standard
deviation of candidate i, respectively, and best represent
the candidate with the highest population mean.

F(n,p), the number of possible combinations for
evaluaung Eq. (3.5) for p picks and n populations, can be
stated in the following recurrence,

Fln,p)=Fn-1,p)+F(n.p~1) (3.6)

with F(1,p)=F(n,0)=1. The complexity of this
recurrence grows in the order of 2°*7, For even small
values of n and p, the number of combinations is too large



to be evaluated. This means that the optimal selection set
cannot be determined by exhaustive search for any rea-
sonable time limit.

A comparison of ail these upper bounds is shown in
Table 3.1. For this case we assume that the sampling
overhead x is exponentally distributed with a minimum

value of 2 and o of 0.4; that is
047 04G=D  x52
JFx =19 <2 3.7

We further assume that the performance measure is a
ratio of quality and the sampling overhead (0 =g/¢), and
the quality measure, 4, has a normal distribution N (0,1).
The time allowed is 100 time units, By comparing the
Monte Carlo simulation results against the upper bound
obtained by the oracle argument, we found that the latter
is much tighter. We also show the performance of simu-
lations for the 2-stage round-robin/greedy strategy for
comparison. We use in the rest of this paper Eq. (3.2) as
the upper-bound estimate.

3.4. Performance of Selection Strategies

This section presents the performance of multistage
selection strategies assuming random sampling overhead.

For dynamic strategies, such as greedy and minimum
risk, they look ahead one unit of time in the future to
make the current selection; hence, the variation in sam-
pling overhead has no effect on their performance. More
complex dynamic strategies may look further into the
future to find a sequence of good selections that can
optimize some performance criteria when time run out.
In this case, the sampling cost must be taken into con-
sideration when finding the optimal sequence of picks.

As shown in the previous section, the amount of com-
putation time to find the optimal sequence increases
exponentially with the length of the sequence and the
number of candidates considered. In addition, the optimi-
zation criteria are usually based on estimated values of
candidate parameters, which are likely to be inaccurate.
The further into the future the procedure atlempts to
examine, the more complex the evaluation becomes and
the less likely that the results will be useful.

The assumption on stochastic sampling overhead
strongly affects static strategies such as round-robin. As
shown in our previous work [3, 4], the performance of the
round-robin swategy depends on the number of popula-
tions under consideration and the number of samples
drawn from each population. With a constant sampling
overhead, the performance of the single-stage round-robin
strategy when the population means have distribution
N (p.;,,c.%) is shown as follows.

354

Table 3.1. Upper bounds on Performance of Selection

Strategies.
Strat Original | Var. Cost | App. Cost | Oracle 2-Stage
B Eq. 3.1 | Eq. 32) | Eq. (3.4) | Strategy | RR/Greedy

Perf. 0.856 0.596 0.603 0.482 0.460

+oo 2

2 --i:.'_ O a—-1
E[llu:m] =g + Foxn’ [ (X)] dx (3-8)

-\ﬁﬂ:‘a /S+0'0;

where @(x) is the c.d.f. for an N (0,1) distribution, M.,
is the population mean of the selected population, o is
the population variance, n is the number of populations,
and s is the number of samples drawn from each popula-
Hon.

X =+—os

When the sampling overhead is stochastic, the number
of samples drawn from a fixed number of populations, 7,
and a given duration, T, is not constant in a round-robin
strategy. Assuming that the population means have distri-
bution N (j,03), the following equation can be derived.

E muhcr] (3.9)

+o= =
gizxne 2[B!

N EIGHTETT)) '

where P {s] is the probability for s (equal to T/n) samples
1o be drawn from the assumed population. Note that this
distribution is the n* convolution of the sampling-
overhead distribution and is very difficult o compute.

An approximation to the performance of single-stage
round-robin strategies can be obtained by using the aver-
age of the number of samples drawn, ¥ = T/(n*Z) in Eq.
(3.9), instead of weighting by P [s]. The same method
can be used to approximate the performance of two-stage
round-robin strategies. Therefore, a heuristic method for
determining the parameters for single-stage and two-stage
round-robin strategies with stochastic sampling overheads
is to derive the results based on fixed sampling overheads
and T /¢ picks from each population.

‘When the objective function is a function of the sam-
pling overhead, the sampling-overhead distribution of the
candidates selected for the next stage is not the same as
the sampling-overhead distribution in the current stage.
This will mainly affect the performance of the two-stage
round-robin  strategy. Since the change in sampling-
overhead distribution is dependent on the relationship
between the obiective function and the sampling over-



head, we will ignore this ¢ffect in this paper.

3.5. Revised Application strategy

In our original strategy, the parameters of the selec-
tion strategy were determined by spending the initial 10
percent of the allotted time to estimate their distributions;
a binary search was then used to find the appropriate
parameters for single-stage round-robin and two-stage

round-robin strategies. The two-stage dynamic stralegies
used the same parameters as the ones found by the static
counterpart.

This method must be updated to take into account the
variable sampling costs. In the original method, T unit of
time were assumed; hence, a total of T samples could be
drawn. If the sampling overhead is not unity, then the
actual number of samples drawn will be lessthan 7. Asa
result, the parameters for controlling the original stra-
tegies were estimated incorrectly, which leads to poor
performance,

One alternative is to estimate the average sampling
overhead during the initial presampling period and to use
it in subsequent control. The control parameters used
after the presampling period are found by the original
method using the average sampling overhead instead of
unity,

Both the original and the new methods are applied to
three problems in which the sampling overhead is defined
based on Eq. (3.7) with different minimum values of 2, 3,
and 4. It is'assumed that performance is measured by the
ratio of quality to sampling overhead, and the quality
measure has a normal distribution ¥ (0,1). The perfor-
mance for a two-stage round-robin strategy is plotted in
Figure 3.2,

There are a couple of reasons why the performance of
the original method is very close to the new one. Firstly,
the performance degrades slowly when the values of the
parameters deviate from the optimal. Since the old
method overestimate the number of bags that can tested,
the strategy end up with one sample drawn from each
population. For the problem with population mean drawn
from a normal distribution, the optimal number of sam-
ples drawn from each population is usually close to 1, so
the performance of the old method did not degrade too
badly. Secondly, candidates in the second stage is likely
to have lower average sampling overhead than the origi-
nal distribution due to the dependency of the objective
value on the sampling overhead. This reduces the differ-
ences in performance between the original and the new
methods further.

Figure 3.3. shows the performance for a two-stage
round-robin/greedy strategy for the problems used in Fig-
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Figure 3.2, Performance of Run-Time Parameter Selection
for 2-Stage Round-Robin,
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Figure 3.2. Performance of Run-Time Parameter Selection
for 2-Stage Round-Robin/Greedy,

urc 3.2, The differences in performance here is less than
in two-stage round-robin since the parameters selected for
two-stage round-robin/greedy strategy is heuristic and not
necessarily optimal,

Figure 3.4, shows the performance of different stra-
tegies for this problem (with minimum value = 2) when
using the new method for determining the control param-
cters. From this figure, the best strategy for this problem
is the two-stage round-robin/minimum-risk method,



E [“-(nkcud)]

Table 4.1. Result of leaming using different strategies

1.2 under different ¢_,.. Time allowed for
N leamning is 200 quanta. The time for the initial
- T lesting period is 20 quanta.
rivial .t
. Performance
:ml
(secs) || Orig. | 1-stage | 2-stage | 2-stage 2-stage
Heur, RR RR RR/GR | RR/MR
....... 20 | 0.1425 1 0.6965 | 0.6965 | 0.6965 | 0.6965
| P Cox- rﬁﬁg&m risk 40 104291 | 0.7722 | 0.7722 | 0.7722 | 0.7722
0.4 I T ] 70 1 0.6039 | 0.7822 | 0.7916 | 0.7801 | 0.7916
500 1000 2000 120 || 0.7356 | 0.8082 | 0.8082 | 0.8036 | 0.7990
T (total testing time) 300 [t 0.8086 | 0.8070 | 0.8063 | 0.8164 | 0.8164
) . ) 600 | 0.8167 | 0.8219 | 0.8189 | 0.8132 | 0.8189
Figure 3.4. Performance of Multistage Swratcgies. 900 [[0.8182 | 0.8222 | 0.8171 | 0.8171 | 08171
~ ||0.8182 | 0.8236 | 0.8186 | 0.8082 | 0.8186

4. EXPERIMENTAL RESULTS

To verify the result we show in the previous section,
we use TEACHER 4.1 to train the post-game System
using a benchmark problem implementing a divide-and-
conquer algorithm. There are 105 processes mapped to a
3-by-3 mesh architecture; 20 problem instances with CPU
times drawn from the same distribution are included in
the test set.

In the first experiment, the sampling overhead is
ignored (i.e., they are taken as unity). The time limit is
200 units, We apply four different strategies in this
experiment: single-stage round-robin, two-stage round-
robin, two-stage round-robin/greedy, and two-siage
round-robin/minimum-risk. The number of candidates
tested for the two-stage methods is 150, Table 4.1 shows
the performance of different multistage selection stra-
tegies for various ¢, .

In the second experiment, we consider the variation in
sampling cost for the post-game heuristics. The time Hmit
is 5000 minutes. The average time for one evaluation of a
candidate is about 27 minutes. We apply the same stra-
legies as in the first experiment using the our new method
for determining the sirategies parameters. The average
number of candidates tested is 144. Table 4.2 shows the
performance of different multistage selection strategies
for various f,,,,.

Comparing the result in Tables 4.1 and 4.2, we sce
that the level of performance is about the same in most
cases. QOur limited experiments show that the mulustage
selection strategies we develop are robust to handle the
variable sampling overhead and dependent objective
function.

Table 4.2. Result of learning using different strategies for
different ¢_,,. Time allowed for learning is
5000 minutes. The time for the inital testing

period is 500 minutes.
Performance
“ma

(sec;) Orig. | 1-stage | 2-stage | 2-stage 2-stage
Heur. RR RR RR/GR | RR/MR

20 | 0.1425 | 0.6965 | 0.6565 | 0.6965 | 0.6965
40 104291 | 07722 1 0.7722 | 0.7722 | 07722
70 i 0.6039 | 0.7787 | 0.7920 | 0.7914 | 0.7920
120 1 0.7356 | 0.8054 | 0.8054 | 0.7970 | 0.7965 _
300 |{ 0.8086 | 0.8078 | 0.8095 | 0.8154 | 0.8095
600 | 0.8167 | 0.8143 | 0.8200 | 0.8174 | 0.8290
900 ] 0.8182 | 0.8195 | 0.8200 | 0.8317 | 0.8183
oo 0.8182 | 0.8191 | 0.8156 | 0.8153 | 0.8156

Table 4.3. Number of selections for different Lnay for
two-stage round-robin/minimum-risk. Time
allowed for leaming is 5000 minutes.

foren 201740 70 ] 120 | 300 | 600 ] 900 | =

selection |1 281 | 223 {202 | 199 | 162 | 174 | 185 | 180




It is not always true that the results in the case with
variable sampling overhead is the same as those in the
case with fixed sampling overhead. As indicated carlier,
for objective functions that depend on the sampling over-
head, the sampling-overhead distribution of the candidate
selected is likely to be different from the original distribu-
tion. This is illustrated in Table 4.3 in which we show the
number of selections done for different t,, using two-
stage round-robin/minimum-risk method. With different
levels of dependency between the objective and the sam-
pling overhead, we secg that there is a variation in the
number of selections due to variations in sampling-cost
distribution in the second stage. This is a phenomenon
that our current strategies do not take into consideration.
We plan to develop a method that takes advantage of this
characteristic in the future.

5. FUTURE WORK

Our future work in this research includes (a) the appli-
cation of our leaming system to a variety of target process
mapping problems; (b) the improvement of the candidate
generator; {¢) further analysis on the dependence between
the variable sampling overhead and the objective func-
tion; and (e) the evaluation of parallel selection.
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