
Synthesizing Optimal Lower Dimensional Processor Arrays y

Kumar N. Ganapathy and Benjamin W. Wah

Coordinated Science Laboratory,

1101, West Spring�eld Avenue,

Urbana, IL 61801.

e-mail: kumar@aquinas.csl.uiuc.edu

Abstract. Most existing methods for synthesizing sys-
tolic architectures can only map n-dimensional recurrences
to n � 1-dimensional arrays. In this paper, we generalize
the parameter-based approach of Li and Wah [1] to map
n-dimensional uniform recurrences to any k-dimensional
processor arrays, where k < n. In our approach, opera-
tions of the target array are captured by a set of param-
eters, and constraints are derived to avoid computation-
al conicts and data collisions. We show that the opti-
mal array for any objective function expressed in terms
of these parameters can be found by a systematic enu-
meration over a polynomial search space. In contrast,
previous attempts [2, 3] do not guarantee the optimality
of the resulting designs. We illustrate our method with
optimal single-pass linear arrays for re-indexed Warshall-
Floyd path-�nding algorithm. Finally, we show the ap-
plication of GPM to practical situations characterized by
restriction on resources, such as processors or completion
time, rather than a well-de�ned objective.

1 Introduction
Advances in VLSI technology in the last decade have

led to development of application-speci�c high perfor-
mance systems, called systolic arrays. A lot of research
has been devoted to systematically synthesize systolic ar-
rays from an algorithm description [4]. However, most of
the techniques are restricted to mapping n-dimensional u-
niform recurrences to (n�1)-dimensional processor arrays.
This paper proposes an e�cient solution to the problem
of synthesizing k-dimensional arrays for n-dimensional u-
niform recurrences (k < n).

The notation used in this paper is as follows: matrices
are denoted by boldface capital letters; vectors with an
overbar; recurrences variables by calligraphic letters; and
scalars by normal lower and upper case letters. Subscript-
access functions for matrices, are represented as lower-
case letters with a hat. The rank of matrix M is denoted
by rank(M), and the transpose of a vector or matrix is
written with a superscript letter t.

In mapping algorithms to processor arrays, the repre-
sentation of the algorithm often is in the form of a recur-
rence equation. Mathematically, a recurrence over domain
D is given as,

Z(~p) = � [Z(~q1);Z(~q2); . . . ;Z(~qk); (~p)] (1)

where ~p; ~qi 2 D, � is a single-valued function strictly de-
pendent on each of its arguments, and represents the in-

put. A recurrence equation is called uniform if ~qi = ~p+ ~di,

yResearch Supported by National Science Foundation grant

MIP 88-10584, and Joint Services Electronics Program contrac-

t N00014-90-J-1270, and an IBM fellowship grant. Proceed-

ings of International Conference on Parallel Processing, August

1992.

for i = 1 . . .m, where ~di's are constant n-dimensional vec-
tors independent of ~p and ~qi. Matrix multiplication of two
matrices, X and Y, is an example of uniform recurrence
and is represented as

Z(i; j; k) = Z(i; j; k � 1) +X(i; k) �Y(k; j)

Z(i; j; 0) = Z(i; j)

In this paper, we are concerned only with algorithms rep-
resented as uniform recurrence equations.

One of the earliest attempts to systematically generate
systolic arrays was the dependency method of Moldovan
and Fortes [5]. Most existing design methods are pat-
terned after the dependency method. In the dependency
method (denoted as DM), a feasible design is obtained by
a linear transformation of the index space, represented as
an n� n matrix T. The matrix T is composed of a time
vector ~� and a processor-allocation matrix S. The design
of a systolic array is then equivalent to determining the n2

parameters of T. This is an integer programming problem
and could be of exponential complexity in the worst case.

An alternative and more e�cient approach to array
synthesis, called the parameter method, was proposed by
Li and Wah [1] for a special class of uniform recurrences.
Instead of the transformational approach (like the DM),
they took an operational view of the systolic array. The
systolic array, that executes the uniform recurrence has
to be regular and, therefore, was characterized by a set of
parameters. The design of an array is then reduced to an
appropriate choice of the parameters. Using the param-
eter method (denoted as OPM), they presented optimal
2-D (resp. 1-D) systolic arrays for a speci�c class of 3-D
(resp. 2-D) recurrences.

In this paper, we present a generalization of the param-
eter method, called the general parameter method (GP-
M), to synthesize systolic structures for uniform recur-
rences. In the GPM, we consider general n-dimensional
uniform recurrences instead of speci�c 3-D ones. The GP-
M can be used to synthesize optimal arrays of any lower-
dimension m (where m < n), instead of the usual n � 1
dimensional array. The objective could be a function de-
scribed in terms of the parameters, and a polynomial-time
search is used to �nd the optimal array.

There have been several earlier attempts to map algo-
rithms onto lower dimensional arrays [2, 6, 3, 7]. Lee and
Kedem [2, 6] gave a set of necessary and su�cient condi-
tions for the feasibility of a design and conditions to avoid
data-link collisions (when two data tokens contend for the
same link simultaneously). However, detection of compu-
tational conicts (when two computations are scheduled
to execute simultaneously in the same processor) is by
analysis of all the computations in the domain of the re-
currence. In addition, no systematic procedure to �nd
the optimal designs were presented. Shang and Fortes [3]

Methods
Solution

Methods
Solution

DM-I [5]

DM-II [8]

OPM [1]

DM-II*

GPM

DM-I*

m < n

[2,3,7]

Parameters

matrix T

Representations

m-dimn (n-1)-dimn

Recurrence
Uniform

Figure 1: Approaches to the general array synthesis
of uniform recurrences

developed a set of closed-form conditions for a design to
be feasible (i.e., free of computational conicts). Howev-
er, they consider data-link collisions only between active
data1 and not between active and passive data or among
passive data. Although they present a procedure to deter-
mine the optimal schedule vector, the allocation matrix S
is chosen heuristically. The number of choices for matrix
S could be very large, making it di�cult to enumerate
over them.

In summary, Figure 1 shows two broad approach-
es for designing systolic arrays: Dependency Method
(DM) and Parameter Method (PM). The area to the
left of the dashed line represents methods that map n-
dimensional recurrences to (n � 1)-dimensional arrays.
The dependence-based methods denote the mapping by
a matrix T, while OPM employs a parametric represen-
tation. The e�ciency of OPM [1] stems from constrain-
ing the parameters, thereby limiting the search space to
polynomial in the size of the problem. In the dependen-
cy framework, two ways of �nding T exist: (i) DM-I,
which chooses the processor-allocation matrix S heuris-
tically and �nds vector ~� [5], (ii) DM-II, which uses a
search procedure similar to that in OPM based on the re-
lationships between OPM and DM [8]. The DM with an
identity dependency matrix was shown to be equivalent
to OPM. The main di�erence is that DM-II enumerates
over a sequence of time vectors ~� and solves for S, rather
than assuming a given S and �nding a feasible ~�.

The area to the right of the dashed line shows three
methods of mapping n-dimensional recurrences to lower-
dimensional arrays: The �rst, DM-I* extends DM-I with
conditions on T ; S is still chosen heuristically, and ~�
is found by enumeration [2, 3, 6]. The second, GPM,
generalizes OPM to map general recurrences into lower-
dimensional arrays; it retains OPM's search technique to
�nd optimal solutions e�ciently. A possible third, DM-
II* could extend the equivalence between OPM and DM,
by using a search-based technique similar to GPM.

1The lifetime of a data token in the array can be viewed as

consisting of an active phase, when the token goes through its

chain of computations, and a passive phase, when the token

moves from the input peripheral processor to become active or

to an output peripheral processor after its active phase.

2 Generalized Parameter Method
The n-dimensional recurrences considered in this work

are represented as

Z(~I) = f
�
Z(~I � ~d1);Z(~I � ~d2); . . . ;Z(~I � ~dq);

X1(x̂1(~I)); . . . ;Xr(x̂r(~I))
�

(2)

where ~I denotes a point (n-dimensional vector) in the do-
main of the recurrence; f() is a single-valued function (to

be executed in each PE); ~di; 1 � i � q, is the i-th depen-
dence vector associated with any point in the domain (for

uniform recurrences); and Xj(x̂j(~I)); 1 � j � r, is the j-
th distinct input that is needed in the computation of the
function Z. x̂j(~I) is the linear subscript-access function
for the array indices of input Xj . Without loss of general-

ity, the dependence vectors ~di can be taken to be distinct.

Let D =
�
~d1 ~d2 � � � ~dq+r

�
denote an n� (q+ r) matrix of

dependence vectors. Let g be the rank of matrix D.

Pipelining. Let the linear subscript-access function of

input Xj be represented as x̂j(~I) = Pj � ~I + ~Qj. If the

matrix Pj is not full rank, then each token Xj(Pj � ~I) is

also used at other index points, ~I1 6= ~I (where Pj � ~I1 =

Pj � ~I). We assume that broadcasting of an input token
is not permissible and input tokens are not replicated.
Therefore, each token of the input has to be pipelined
through all the points it is used. A dependence vector
is associated with each input such that each token moves
along the dependence direction, and is sequenced through
all the points. This pipeline vector can be automatically

deduced from matrix Pj [9]. Let ~dq+j be the dependence
associated with input Xj , Eq. 2 can be written as

Z(~I) = f
�
Z(~I � ~d1);Z(~I � ~d2); . . . ;Z(~I � ~dq);

X1(~I � ~dq+1); . . . ;Xr(~I � ~dq+r)
�

(3)

where Xj is the recurrence variable associated with input
matrix Xj ; j = 1; . . . ; r. Thus, a total r dependencies
may have to be introduced to pipeline the r inputs. For
points at (or close to) the boundary of the domain D, the
value of recurrence variable is given by the external input,
as the dependence points are not present in the domain.
Hence,

Xj(~I) = Xj(x̂j(I)); if (~I � ~dq+j) =2 D

Example 1. Consider a 3-dimensional recurrence with
n = 3; q = 3; r = 2.

Z(k; i; j) = � [Z(k; i; j � 1);Z(k; i� 1; j);Z(k� 1;

i+ 1; j + 1);X1(j; k+ i� 1);X2(k + j � 1; i)] (4)

The domain of the recurrence is a 3-dimensional cube of
size N �N �N .

The subscript-access functions for the inputs represent-
ed as matrices are

P1 =

�
0 0 1
1 1 0

�
P2 =

�
1 0 1
0 1 0

�
:

where x̂1(~I) = P1 �~I+(0;�1)t and ŷ(~I) = P2 �~I+(�1; 0)t.
The pipeline vectors for inputs X1 and X2 are (1;�1; 0)

t

and (1; 0;�1)t, respectively. They are found as basis vec-
tors of the Null Space of matrices P1 and P2. (Eq. 4)
becomes

Z(k; i; j) = � [Z(k; i; j � 1);Z(k; i� 1; j);Z(k� 1;

i+ 1; j + 1);X1(k � 1; i+ 1; j);X2(k � 1; i; j + 1)] :

For points at the boundary of the domain, Z(0; i+ 1; j +
1) = Z(i; j);Z(k;0; j) = Z(k; i; 0) = 0;X1(0; i + 1; j) =
X1(j; i);X1(k�1; N+1; j) = X1(j;N+k�1);X2(0; i; j+
1) = X2(j; i);X2(k � 1; i; N + 1) = X2(N + k � 1; i), for
all k; i; j such that 1 � k; i; j � N .

The recurrence in Eq. 2 is rewritten in the following
equivalent form to distinguish the data moving in di�erent
dependence directions.

Z(~I) = f
�
Z(~I � ~d1);A2(~I � ~d2); . . . ;Aq(~I � ~dq);

X1(~I); . . . ;Xr(~I)
�

(5)

Ai(~I) = Z(~I); i = 2; . . . ; q; (6)

where variable Ai indicates the movement of Z along di-

rection ~di. With this form, each dependency is associated
with exactly one variable.

2.1 Parameters
The crux of the parameter method is the characteriza-

tion of the behavior, correctness and performance of the
systolic array by a set of vector and scalar parameters.

Parameter 1: Periods. When a uniform recurrence
is executed in a systolic array the computations are peri-
odic along each dependence direction. Suppose the time
at which a computation is performed is de�ned by func-

tion �c; the period of computation along dependence ~dj is
de�ned as,

tj = �c(~I + ~dj)� �c(~I):

Since there are q + r dependencies, there are a total of
q + r periods.

Parameter 2: Velocity. Since computations are
equally-spaced along each dependence direction, a data
token moves the same distance between consecutive com-
putations. Hence, velocity of the data remains constant
and is chosen as a parameter. Velocity of a datum mov-

ing along direction ~dj is de�ned as the directional distance

passed during a clock cycle and is denoted by ~Vj . Since
PEs are at unit distance from its neighbors, and bu�ers (if
present) must be equally spaced between PEs, the mag-
nitude of the velocity must be a rational number of the
form i=j where i; j are integers such that i � j (to pre-
vent broadcasting). The number of velocity parameters is
q + r, as there are q + r dependencies (and variables) in
the recurrence.

Parameter 3: Spacing or Data distribution. If
the velocity of all tokens of an input is constant, the rel-
ative distance between two tokens of the variable remains
unchanged throughout the entire computation.

Consider the data tokens Xi(~I � ~di), Xi(~I � ~dj) mov-

ing through the points (~I � k ~di) and (~I � k ~dj), k =
0;�1;�2; � � � ; respectively. The directional distance from

token Xi(~I � ~dj) to Xi(~I � ~di) is de�ned as spacing pa-

rameter ~Si;j . The notation ~Si;j denotes that it is the j-th
spacing parameter of the i-th variable. Since there are
q + r dependencies (and variables), there are q + r � 1

spacing parameters for each variable (~Si;i = 0).

Example 2. The rewritten form of the 3-D recurrence
in Eq. 4 is

Z(k; i; j) = [Z(k; i; j � 1);A2(k; i� 1; j);A3(k � 1;

i+ 1; j + 1);X1(k � 1; i+ 1; j);X2(k � 1; i; j + 1)]

A2(k; i; j) = Z(k; i; j)

A3(k; i; j) = Z(k; i; j)

There are �ve periods : t1; t2; t3; t4; t5, �ve velocities :
~V1; ~V2; ~V3; ~V4; ~V5, and 20 spacing parameters (4 for each

variable). For instance, the spacings ~S3;1 and ~S3;2 are
given as

~S3;1 : ~P(Zi;j+1jt)� ~P(Zi;j jt);

~S3;2 : ~P(Zi+1;j jt)� ~P(Zi;j jt);

where ~P(xjt) is a function that gives the location of data

token x at time t. Note that even though ~P(xjt) is a
function of time, the spacings are independent of time.

The design of the systolic array is now reduced to an
appropriate choice of the parameters. The following the-
orem shows the relationships that must hold among the
parameters for correct execution of the recurrence. All
theorems are presented without proofs due to space limi-
tations.

Theorem 1. The parameters velocities, spacings, and
periods must satisfy the following constraint equations for
correct systolic processing of the general recurrence:

~Vi ti = ~Vj ti + ~Sj;i; i; j = 1; 2; � � � ; q + r (7)

Let ~T = ft1; t2; � � � ; tq+rg be a vector the periods,

and K =
�
~k1;~k2; � � � ;~kq+r

�
be a matrix of displacements,

where ~ki = ~Vi ti is the (vector) distance traversed by vari-

able i in a single period. The displacement ~ki is synony-

mous with velocity ~Vi, because choosing one immediately
determines the other. Hence, in searching for parameter

values, we consider ~ki and not ~Vi.

Let S =
�
~Si;j

�
; i; j = 1; 2; � � � ; q + r, be a (q + r) �

(q + r) matrix of these spacings such that the (i; j)-th

element of the matrix is ~Si;j . Note by de�nition ~Si;i = 0.
If g is the rank of matrix D, the dimension of the Null
Space of D is q + r � g (as D has q + r columns). Let
N = [~�1 ~�2 � � � ~�q+r�g] be a (q+ r)� (q+ r� g) matrix,
where ~�i are basis vectors of the Null Space of D. Hence,

D � ~�i = 0; 1 � i � (q + r� g) (8)

The following theorem gives constraints on the periods
and displacements that depend on the dependence struc-
ture of the recurrence.

Theorem 2. The periods ti and the displacements ~ki
are related as follows:

1. ~T �N = 0;

2. KN = 0,

where N is the matrix consisting of the basis vector of Null
Space of D.

The following corollary shows the constraints on spac-
ings that follow from Theorem 1. In fact, it can be shown
that the constraints in Theorem 1 and Corollary 1 are
equivalent, i.e., they can be derived from each other.

Corollary 1. The spacing parameters ~Si;j are con-
strained by the vector equations SN = 0.

Example 3. For the recurrence in Eq. 4, the matrix N
comprising of vectors in Null Space of D is

N =

2
6664

�1 0
0 �1
�1 �1
1 0
0 1

3
7775 =)

t4 = t1 + t3; ~k4 = ~k1 + ~k3

t5 = t2 + t3; ~k5 = ~k2 + ~k3

Consider the 4 spacings of 3-rd variable A3. From Corol-

lary 1, ~S3;4 = ~S3;1 , and ~S3;5 = ~S3;2 (~S3;3 = 0). Hence,
only 2 of the 4 spacings are independent.

2.2 Lower dimensional arrays
The previous section presents the constraints that must

be obeyed by the parameters of any feasible solution. An
important observation is that these constraints are vec-
tor equations, and are independent of the dimensions of
the target systolic array. Hence, the constraint equations
can be solved in m-dimensions for anm-dimensional array
(m < n) as the parameters are m-dimensional.

Theorem 1 provides (q + r)(q + r � 1) constraints and
Theorem 2 imposes 2(q + r � g) constraints, giving a to-
tal of (q + r)(q + r + 1) � 2g constraints. The number
of parameters is (q + r)(q + r + 1). Therefore, 2g of the
parameters have to be chosen. The performance of the
design is usually only a function of its periods and dis-
placements. Hence, we can choose g of the periods and
g of the displacements to optimize a given performance
criterion, and determine the spacings from the constraint
equations.

From the view of dependence-based methods, a map-
ping is feasible if and only if there are no computational
conicts or data-link collisions. Computational conict-
s can be between two computations that have at least
one input in common, or between two computations that
have no inputs in common. Conicts between two com-
putations with common data tokens can be avoided by
choosing the periods to be strictly positive (ti � 1). If a
conicts occurs between two computations with no com-
mon data tokens, then two distinct tokens of each variable
is present in the same processor. The colliding tokens of
each variable must have been sent into a peripheral pro-
cessor simultaneously, since all tokens of a variable move
with the same velocity in our array model. These collid-
ing tokens also contend for the same data links as they
travel through the array. The condition of co-existing or
colliding data tokens is termed data conict. The pres-
ence of data conicts imply the existence of computation-
al conicts, that in turn imply the presence of data-link

collisions. Hence, a feasible design can only be obtained
by avoiding data conicts. Data conicts also require the
presence of extra control information in the processors to
disambiguate between the conicting tokens.

The trivial case of data conicts is when a spacing pa-
rameter ~Si;j = 0 for some j 6= i. However, data con-
icts can occur even if all spacings are non-zero in lower-
dimensional array synthesis. For non-zero spacings, the
conditions under which data conicts can occur is ex-
pressed mathematically in Theorem 3.

Consider the spacing parameters of variable i. Let

S
0

=
�
~Si;1; ~Si;2; . . . ; ~Si;g�1

�t
, where ~Si;1; . . . ; ~Si;g�1 be the

g � 1 non-zero independent spacings. Let Lk; Uk; k =
1; 2; � � � ; g � 1, be de�ned such that the position of all
the tokens of the input matrix can be represented byP

g�1

k=1
�k ~Si;k ; Lk � �k � Uk.

Theorem 3. Data conicts occur in the input matrix if

and only if ~� �S
0

= ~0; ~� 6= ~0, where ~� = [�1; �2; . . . ; �g�1]
and �i 2 [(Li � Ui); . . . ; (Li + Ui)] ;8i such that 1 � i �
g � 1.

Example 4. For the recurrence in Eq. 4, let ~S3;1 ; ~S3;2
be the two independent spacings for variable A3. Data
conicts occur if and only if there exist �1; �2 6= 0 and
�(N�1) � �1; �2 � (N�1) such that �1 ~S3;1+�2~S3;2 = 0.

For instance, if N = 4, then ~S3;1 = 4, ~S3;2 = 2, �1 = 1,
and �2 = �2 lead to data conicts between tokens Z(2; 1),
Z(1; 3) and Z(3; 1), Z(2; 3).

2.3 Design Method
The design of the systolic array is equivalent to an ap-

propriate choice of the parameters that satisfy the con-
straints imposed by Theorems 1, 2 and 3. Since the target

array is systolic, the displacements
��~ki�� should not exceed

the periods ti in order to prevent data broadcasting. In
addition, the constraints ti � 1; i = 1; 2; � � � q+ r are nec-
essary to enforce the dependencies in the recurrence.

The target systolic array could be designed in two pos-
sible ways. In the �rst way, the target array could be
generated for a speci�c well-de�ned objective expressed
in terms of the parameters and problem size. These ob-
jectives may be chosen to increase monotonically with the
parameters. This choice orders the search space and re-
sults in the �rst feasible solution found being the optimal
solution, thereby limiting the complexity of the search pro-
cess. Typical monotonic objective functions of interest to
array designers are the completion time, Tc, or the number
of processors #PE. However, for other speci�c objectives,
such as #PE�Tc or #PE�T

2

c , the search space can still
be limited by bounding the parameters from above. This
is illustrated in Section 3 for the example on designing a
array for solving the transitive closure.

Second, the designer might not be aware of the speci�c
function to be optimized. He might be only able to im-
pose additional constraints that bound the number of PEs
or completion time from above. In these cases, the GP-
M can still be employed, as the method can incorporate
additional constraints easily into the search procedure.

The condition that the systolic array has to be faster
than a single processor bounds the periods ti between 1
and tmax

i for some �nite tmax
i . Since the magnitudes of

periods and displacements (velocities) are chosen from a

�nite set, the optimization problem has �nite complexity
O(
Q

q+r

i=1
(tmax
i)2).

Next, we present the enumeration procedure to min-
imize the completion time of the array. This procedure
can be modi�ed easily if the objective is to minimize Tc
for a given bound the number of PEs in the array. The
constraint on #PE would be included in step 8 of the
enumeration procedure given below by checking to see
whether the bound has been exceeded when any one of
the displacements is increased.

1. Choose g periods and g displacements to be uncon-
strained parameters.

2. Compute the upper bounds tmax
i ; 1 � i � g.

3. Find values of g independent periods that minimize
the completion time Tc.

4. Compute the values of the dependent periods and
displacements using the conditions of Theorem 2.

5. If ti > tmax
i for some i = 1; 2 � � � ; q + r, exit (since it

is faster to execute the recurrence on a single proces-
sor).

6. Choose the magnitude of displacements
��~ki�� as unity

and solve for the spacing parameters from the equa-
tions of Theorem 1.

7. Check for data conicts in the inputs using Theo-
rem 3 on the spacing parameters.

8. If the solution is not feasible, then increment one of��~ki�� and repeat steps 6 and 7 until all
��~ki�� equal ti,

else exit (the optimal design has been found).

9. If there is no feasible solution still, �nd another set
of periods that increase the completion time by the
lowest possible value. Go to step 4.

The procedure to minimize #PE or minimize #PE
for a given bound on Tc would be similar to one presented
above.

3 Example: Path-Finding Problems
Path-�nding problems are an important class of prob-

lems that occur in optimization. Typical examples in-
clude the computing the transitive closure and the short-
est paths of a graph. Two-dimensional arrays for transi-
tive closure have been presented before [10, 11, 12]. In
this section we synthesize a one-pass linear systolic ar-
ray for the Warshall-Floyd path-�nding algorithm. The
discussion below is with respect to the transitive closure
problem.

The transitive closure problem is de�ned as follows.
Compute the transitive closure C+[i; j] of an n-node di-
rected graph with an n � n Boolean adjacency matrix
C[i; j], where C[i; j] = 1 if there is an edge from vertex
i to vertex j or i = j, and C[i; j] = 0 otherwise. Since
the dependence structure is irregular and di�cult to map,
S.Y. Kung et al., have converted the transitive closure al-
gorithm into a reindexed form and mapped it to 2-D spiral
and orthogonal arrays [10]. After pipelining the variables,
we obtain the following �ve dependence vectors.

1. ~d1 = (0; 0; 1)t for (k; i; j)t (k; i; j � 1)t; 2 � j �
N .

2. ~d2 = (0; 1; 0)t for (k; i; j)t (k; i�1; j)t; 2 � i � N

3. ~d3 = (1;�1;�1)t for (k; i; j)t (k � 1; i + 1; j +
1)t; 2 � k � N; 1 � i; j � N � 1.

4. ~d4 = (1;�1; 0)t for (k; i; n)t (k� 1; i+1; n)t; 2 �
k � N; 1 � i � N � 1.

5. ~d5 = (1; 0;�1)t for (k; n; j)t (k�1; n; j+1)t; 2 �
k � N; 1 � j � N � 1,

where ~I1 ~I2 means that the data at point ~I2 is used at

point ~I1. For nodes on the boundary of the dependence

graph (G) where i = N (resp. j = N), dependence ~d4

(resp. ~d5) is present instead of dependence ~d3. For other

interior points, only 3 dependencies ~d1; ~d2; ~d3 exist.
The running example used in the discussion of the

GPM is a recurrence with the 5 dependencies as listed
above. The dependence graph of the recurrence used in
the example (Eq. 4) is regular and homogeneous with 5 de-
pendencies at each point. However, for transitive closure
the dependence graph is not completely regular. Hence,
control bits are used to modify the ow (or velocity) of
the tokens in order to execute the dependence graph on
the processor array correctly.

The key observation is as follows. Matrix C (whose
transitive closure is to be found) is input along depen-

dence direction ~d3. The inputs along other dependence

directions ~d1, ~d2, ~d4, ~d5 are non-existent, i.e., they are
never sent into the array from the external host. Hence,
there are no data conicts along these dependency direc-
tions as the generated outputs are sent at most once on
each link in every cycle of the array. Therefore, we need to

consider only data conicts along dependence ~d3. Since,

dependencies ~d3, ~d4 and ~d5 never co-exist, there are only

two spacings for data along direction ~d3, namely, ~S3;1 and
~S3;2 .

Thus, a total of 8 parameters are de�ned for the tran-
sitive closure problem: 3 periods t1; t2; t3, 3 displacements
~k1;~k2;~k3, and 2 spacings ~S3;1, ~S3;2 . For a linear array all
the parameters are scalars. Applying Theorem 2, the peri-

ods along dependencies, ~d4 and ~d5, are given as t4 = t1+t3
and t5 = t2 + t3. Similarly, displacements ~k4 = ~k1 + ~k3

and ~k5 = ~k2 + ~k3. From Theorem 1 we get,

~S3;1 =
t3~k1 � t1~k3

t3
; ~S3;2 =

t3~k2 � t2~k3
t3

:

The performance objectives of the target design are
related to the parameters as follows.

Lemma 1. The completion time Tc for an N�N tran-
sitive closure is given by

Tc = (N � 1)(2 t1 + 2 t2 + t3) + 1

Proof. The critical path in the execution is as follows:

(1;1;1)
(N�1)t1
�! (1;1;N)

(N�1)t2
�! (1;N;N)

(N�1)t3
�!

(N;1;1)
(N�1)t1
�! (N;1;N)

(N�1)t2
�! (N;N;N)

Thus, Tc is (N � 1)(2 t1 + 2 t2 + t3) + 1.

Lemma 2. The number of processor #PE needed for
an N �N transitive closure is given by

#PE = (N � 1)(
��~k1��+ ��~k2��+ ��~k1 + ~k2 + ~k3

��) + 1

Table 1: Transitive Closure: Optimal linear arrays for minimum completion time Tc. Run time is the CPU time
in seconds on a Sun/4 IPC workstation.

Size Optimal Time Design - GPM Run LK[2] SF[3]

(N) Periods Distances Min #PE Time Design Design

t1 t2 t3
~k1

~k2
~k3 T (Sun4) Tc #PE Tc #PE

3 1 1 2 0 -1 1 13 3 - 15 5 11
?

3

4 1 1 3 0 -1 1 22 4 - 28 7 19
?

4

8 1 2 3 0 -2 1 64 22 - 120 15 71 8

16 1 2 5 0 -2 3 166 46 - 496 31 271 16

32 1 3 6 0 -3 5 435 156 - 2,016 63 1,055 32

64 1 5 7 0 -5 6 1,198 379 - 8,128 127 4,159 64

100 1 5 11 0 -5 9 2,278 892 2 19,900 199 10,099 100

200 1 8 13 1 -8 12 6,170 2,787 14 79,800 399 40,199 200

300 1 9 18 0 -9 17 11,363 5,084 46 179,700 599 90,299 300

Proof. Let ~k
00

3 denote the displacement from the execu-
tion location of index (k; i; j) to index (k+1; i; j). There-

fore, the displacement ~k
00

3 equals ~k1 + ~k2 + ~k3 as depicted
below.

(k; i; j)
~k1! (k; i; j + 1)

~k2! (k; i+ 1; j + 1)
~k3! (k+ 1; i; j)

Consider the displacements ~k1, ~k2, and ~k
00

3 . Two of the
above 3 displacements should be in the same direction,

since the array is 1-dimensional. Assume that ~k1 and ~k2
are positive displacements, i.e., they correspond to veloc-
ities owing to the right (refer to Figure 2). Let A be
the PE where the computation indexed by (1; 1; 1) oc-
curs. Therefore, computation (1; 1; N) is executed at PE

B that is at a distance (N � 1)
��~k1�� from PE A. Simi-

larly, computation (1; N;N) is executed at PE C that is

(N � 1)
��~k2�� PEs to the right of B. Computation (N;1; 1)

is executed at PE D that is at a distance of (N � 1)
���~k003

���
to the left of PE A (since ~k3 corresponds to the left mov-
ing variable). All other computations in the domain are
executed by PEs between C and D. Therefore, the total

number of PEs required is (N � 1)(
��~k1��+ ��~k2��+

���~k003
���) + 1

= (N � 1)(
��~k1��+ ��~k2��+ ��~k1 + ~k2 + ~k3��) + 1.

(1,1,1) (1,N,N)(1,1,N)(N,1,1)

AD B C

~k2~k1~k
00

3

~k
00

3 = ~k1 + ~k2 + ~k3

Figure 2: PE allocation with ~k1; ~k2 � 0 and ~k
00

3
� 0.

For linear array synthesis, since the spacings are s-

calars, let s3;1 =
��~S3;1�� and s3;2 =

��~S3;2��. In addition,

the condition for data conict (Theorem 3) can be re�ned
as follows.

Theorem 4. Data conicts occur in input matrix C if
and only if,

s3;1

m
< N; and

s3;2

m
< N (9)

where m = GCD(s3;1; s3;2) and GCD(a; b) is the greatest
common divisor of a and b.

Table 1 shows the optimal linear designs found by the
enumeration procedure of GPM when the objective is to
minimize completion time. The column LK in the table
gives the completion time Tc and #PE, for the linear ar-
ray designed by the heuristic procedure of Lee and Kedem
[2]. The schedule vector for their mapping is (2N�1; 1; 1),
and the PE allocation matrix (vector in the case of a linear
array) is (0; 1; 1) forN�N matrices. Table 1 also shows Tc
and #PE for the Shang and Fortes (SF) design[3]. This
design uses (N; 1; 1) as the schedule vector (0; 0;�1) for
PE allocation matrix.

Table 1 shows that for a problem of size around 200,
the minimum Tc array is roughly 13 times faster than the
LK design and 7 times faster than SF design. However,
LK and SF designs use fewer #PE than the minimum Tc
design found by GPM.

If the objective is to minimize the PE count, #PE, in
the linear array, then Theorem 5 below characterizes the
optimal design.

Theorem 5. The parameters (t1; t2; t3) = (1; 1;N � 1)

and (~k1;~k2;~k3) = (0;�1;�1) or (�1; 0;�1) result in a
linear array with a primary objective of minimizing the
number of PEs, and a secondary objective minimizing the
completion time.

Theorem 5 shows that the SF and LK designs are
processor-optimal with #PE equal to N . The SF de-
sign has periods (t1; t2; t3) = (1; 1;N � 2) and displace-
ments (k1; k2; k3) = (1; 0;�1). Hence, the SF design has
a completion time Tc = (N � 1)(N + 2) + 1. This com-
pletion time is lower than that of the minimum-processor
design characterized by Theorem 5 (e.g., N = 3,4 in Ta-
ble 1). The above periods and velocities lead to spacings
~S3;1 =

N�1
N�2 and ~S3;2 =

1

N�2 . These values of spacings re-

sult in data conicts between the tokens (C1;j ;CN�1;j�1)
and (C2;j ;CN;j�1), j = 2; 3; � � � ;N , of the input matrix
C (Theorem 4). Note that these conicts occur between
passive data as mentioned in Section 1. Hence, the above
solution is not an acceptable solution in the GPM, al-
though it was found by the search procedure in GPM.

If the objective is to minimize the processor-time prod-
uct #PE � T , the optimal design values are identical to
those that minimize #PE (Theorem 1) for problem sizes
listed in Table 1.

Table 2 presents the results for the objective of min-

Table 2: Transitive Closure: Optimal linear array de-
sign for minimizing #PE � T 2.

Size Optimal #PE � T
2
Design - GPM

(N) Periods Distances Tc #PE Run

t1 t2 t3
~k1

~k2
~k3 Time

3 1 1 2 0 -1 1 13 3 -

4 1 1 3 0 -1 1 22 4 -

8 1 1 7 0 -1 1 78 8 -

16 1 2 5 0 -2 3 166 46 -

32 1 3 7 0 -3 4 466 125 3

64 1 5 7 0 -5 6 1198 379 32

100 1 6 10 0 -6 7 2377 694 202

200 1 8 16 0 -8 9 6767 1792 2698

imizing #PE � T 2. It was found that the minimum-PE
design is the best for minimizing #PE �T 2, up to a prob-
lem size of 13. For sizes over 13, the minimum Tc design
or an intermediate design optimizes #PE �T 2. The search
strategy for minimizing #PE � T 2 is to �rst �nd a design
that minimizes the completion time. Let Tmin and P1 be
the completion time and #PE of the minimum-time de-
sign, respectively. The search then proceeds to �nd the
minimum #PE �T 2 design with with completion time be-

tween Tmin and Tup =
Tmin

p
P1

p
N

. For every feasible design

found in the search, the upper bound Tup is updated to

Tup = Min(T
0

p
P
0

p
N

; Tup), where T
0

and P
0

are the com-

pletion time and #PE of the feasible design.
The optimal linear array and its space-time diagram

for N = 3 is given in Figure 3. The parameters of the de-

sign are: (t1; t2; t3) = (1; 1; 2) and (~k1;~k2;~k3) = (0; 1;�1).
This design minimizes both Tc and #PE, and there-
fore, minimizes any objective of the form #PEm � Tn for
m;n � 1. Note that for correct execution of the Warshall-
Floyd algorithm, control signals are needed to govern the
index-dependent assignments performed by the PEs in the
array. These index-dependent assignments are given in
Tables I and II of the reference [6].

In the following discussion, let Tmin
c and #PEmax,

respectively, be the completion time and #PE of the
minimum-time design. Designs with #PE > #PEmax

would not be useful as their completion times has to be
at least Tmin

c . Let Tmax
c and #PEmin, respectively, be

the completion time and #PE of the minimum-processor
design (from Theorem 5 and Lemma 2, #PEmin = N).
Again, there is no bene�t in obtaining designs with Tc >
Tmax
c as the number of PEs cannot be reduced below

#PEmin.
So far, we have presented ways of �nding optimal ar-

rays when the objective function can be clearly established
ahead of time. However, in practical situations, the exact
tradeo� is not easily translated into an objective function
that can be minimized. A designer might be unwilling to
settle for either the high number of PEs required in the
minimum-time design or the long completion time of the
minimum-processor design. Hence, designs with comple-
tion time greater than Tmin

c and #PE less than #PEmin

would be of interest. In realistic design situations there
may be bounds on the number of processors or the com-
pletion time or both. Hence, possible objectives could be
to have as few processors as possible, so long as the time

C11 C12 C13 C21 C22 C23 C31 C32 C33

8

1

2

3

4

5

6

7

9

10

11

12

13

3 C33
1 C33
1 C33

2 C11
3 C12
3 C21

1 C11
1 C11
1 C11

1 C23
2 C21
3 C13

1 C32
3 C31
2 C12

1 C31
3 C31
1 C11

1 C21
2 C21
1 C11

1 C22
2 C21
2 C22

1 C12

1 C12
1 C11

1 C13

1 C13
1 C11

3 C31
1 C33
2 C31

3 C32
1 C33
3 C32

3 C13
2 C13
1 C33

3 C11
2 C13
2 C31

3 C12
2 C13
3 C32

3 C23
3 C23
1 C33

1 C21
3 C23
2 C31

3 C22

3 C32
3 C23

2 C23
1 C22

2 C32

2 C23
2 C32
1 C22

2 C21
1 C22
3 C21

2 C33
2 C32
2 C23

2 C31
2 C32
3 C21

2 C12
3 C12
1 C22

2 C13
3 C12
2 C23

1 C33
3 C31
3 C13

2 C22
1 C22
1 C22

Index (2,3,2) executes

with inputs C13, C12, C23

Input Matrix on Link 3
Time

1
2

5
4

3PE
2
1

3
4

5

~V3 = �1

PE1 PE2 PE3

Figure 3: Linear array to �nd the transitive clo-

sure of a 3�3 matrix. The array is optimal for

completion time,#PE, and#PEm�Tn, m;n � 1.

is within a preset upper limit, Tup
c , or to minimize Tc with

#PE less than a given upper bound #PEup. Plots sim-
ilar to those shown in Figure 4 would aid the designer to
make these choices easily and create realistic designs.

Figure 4 shows how #PE varies with Tc for 3 di�erent
problem sizes: N = 100; 200; and 300. In all plots, the
y-axis #PE is normalized by #PEmax and the x-axis
Tc is scaled by Tmax

c . This lets us combine the di�erent
problem sizes uniformly on the same scale. The stepped
curves (labeled as \time" plots) show the #PE required
for a given maximum completion time. A point (T,P)
in any of these \time" plot denotes that at least P PEs
are needed if the completion time must not exceed T . The
smooth curves (labeled as \#PE" plots in the �gure) show
the completion time required for a given maximum #PE.
Thus, a point (T,P) in the \#PE" plots denotes that at
least T time steps are needed if the #PE is to be less than
P processors. Hence, given the bound Tup

c (resp. #PEup)
the designer can read o� the minimum #PE (resp. Tc)
required and decide (possibly from a cost perspective) if
it is acceptable. Again, the designer could exploit the
initial steep decline in the plots to choose an alternative
design that trades o� performance for cost. For instance,
the minimum #PE drops by 43% for only a 19% increase
in completion time. In contrast, the SF and LK methods
can only obtain a single design (with minimum-#PE) and
cannot perform tradeo�s similar to those presented here.

If both Tc and #PE are bounded from above, then the
design with minimum #PE for the given time bound is de-
termined using the \time" plots in Figure 4. If this #PE
is within the given processor bound, then the minimum-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 #
P

E

Normalized Completion Time

N = 100, time
N = 100, #PE
N = 200, time
N = 200, #PE
N = 300, time
N = 300, #PE

Figure 4: Performance tradeo�s : Variation in #PE
with the time bound Tup

c
and variation in Tc with pro-

cessor bound #PEup. The plots are given for three
problem sizes N = 100; 200 and 300.

Tc for the above #PE is found from the \#PE" plots in
the �gure. This now represents the best design under the
time and processor constraints.

Another observation from Figure 4 is that the plots for
larger N decrease more rapidly than those for smaller N .
Hence, for larger values of N , there is a substantial re-
duction in #PE (resp. Tc) for a relatively small increase
of the completion time (resp. #PE) from the optimum.
Therefore, for large N , there are more attractive alterna-
tives than the optimal-time or optimal-#PE designs.

4 Concluding Remarks

This paper describes the generalized parameter
method, a systematic technique for synthesizing systolic
architectures from uniform recurrences (as well as algo-
rithms with nested loop structures). We characterize the
conditions for correct systolic processing of the recurrence,
and by bounding the parameters from above, �nd the opti-
mal solution in polynomial time. We illustrate the method
by deriving optimal linear arrays for transitive closure
problem with speci�c objectives such as completion time,
#PE, or #PE � T . The formulation of GPM as an opti-
mization allows additional constraints on the target array
to be incorporated easily. In realistic situations when the
objective cannot be established exactly, the GPM permit-
s the designer to trade performance for cost to best suit
the given constraints and needs. In the future, we will
extend and apply this parameter-based search technique
to e�ciently map algorithms to existing SIMD and vector
machines, such as the CM2, MasPar, and Cray-Y-MP.

Acknowledgement. We would like to thank Vijay
Karamcheti for a number of stimulating discussions and
providing useful input to this work.

References
[1] G.-J. Li and B. W. Wah, \The design of optimal

systolic arrays," IEEE Transactions on Computers,
vol. C-34, pp. 66{77, Jan. 1985.

[2] P.-Z. Lee and Z. M. Kedem, \Mapping nested loop
algorithms into multidimensional systolic arrays,"
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 1, pp. 64{76, Jan. 1990.

[3] W. Shang and J. A. B. Fortes, \Time-optimal and
conict-free mappings of uniform dependence algo-
rithms into lower dimensional processor arrays," In-
ternational Conference on Parallel Processing, vol. 1,
pp. 101{110, Pennsylvania State University Press,
Aug. 1990.

[4] J. A. B. Fortes, K.-S. Fu, and B. W. Wah, \System-
atic design approaches for algorithmically speci�ed
systolic arrays," in Computer Architecture : Concept-
s and Systems (V. M. Milutinovic, ed.), pp. 454{494,
North Holland, 1988.

[5] D. I. Moldovan, \On the analysis and synthesis of
VLSI algorithms," IEEE Transactions on Computer-
s, vol. C-31, pp. 1121{1126, Nov. 1982.

[6] P.-Z. Lee and Z. M. Kedem, \Synthesizing linear
array algorithms from nested For loop algorithm-
s," IEEE Transactions on Computers, vol. C-37, p-
p. 1578{1597, Dec. 1988.

[7] V. P. Roychowdhury and T. Kailath, \Subspace
scheduling and parallel implementation of non-
systolic regular iterative algorithms," Journal of VL-
SI Signal Processing, vol. 1, 89.

[8] M. T. O'Keefe and J. A. B. Fortes, \A compara-
tive study of two systematic design methodologies for
systolic arrays," International Conference on Parallel
Processing, pp. 672{675, Pennsylvania State Univer-
sity Press, Aug. 1986.

[9] S. V. Rajopadhye, \Synthesizing systolic arrays with
control signals from recurrence equations," Distribut-
ed Computing, vol. 3, pp. 88{105, Springer Verlag,
1989.

[10] S. Y. Kung, S. C. Lo, and P. S. Lewis, \Optimal
systolic design for transitive closure and shortest path
problems," IEEE Transactions on Computers, vol. C-
36, no. 5, pp. 603{614, 1987.

[11] L. J. Guibas, H. T. Kung, and C. D. Thompson,
\Direct VLSI implementation of combinatorial al-
gorithms," Proceedings of CALTECH Conference on
VLSI, pp. 509{525, Jan. 1979.

[12] G. Rote, \A systolic array for algebraic path prob-
lem," Computing, vol. 34, pp. 192{219, Springer Ver-
lag, 1985.

