
Dynamic Control of Genetic Algorithms in a Noisy Environment

Akiko N. Aizawa
National Center for

Science Information Systems
3-29-1 Otsuka, Bunkyo-ku

Tokyo 112, Japan
akiko@nacsis.ac.jp

Benjamin W. Wah
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 W. Main Street

Urbana, IL 61801, U.S.A.
wah@manip.crhc.uiuc.edu

Abstract

In this paper, we present e�cient algorithms
for adjusting con�guration parameters of ge-
netic algorithms that operate in a noisy envi-
ronment. Assuming that the population size
is given, we address two problems speci�cally
important in a noisy environment. First, we
study the duration-sizing problem that deter-
mines dynamically the duration of each gen-
eration. Next, we study the sample-allocation

(sizing) problem that determines adaptively
the number of evaluations taken from each
population in a generation. For these two
problems, we model the search process as
a statistical selection process and derive
equations useful for controlling the duration
and the sample sizes. Our result shows that
these adaptive procedures improve the per-
formance of genetic algorithms over those of
commonly used static ones.

1 INTRODUCTION

Genetic algorithms provide robust yet e�cient pro-
cedures for guiding searches even in the absence of
domain knowledge. In these knowledge-lean domain-
s, it is di�cult to express an application in a well-
de�ned model and analyze its behavior. A feasible way
for �nding a solution is to measure the performance
of candidate solutions through actual experimentation
or simulation. This is particularly di�cult when the
application environment is noisy.

In a noisy environment, at least a few evaluations are
needed to estimate the performance of a candidate so-
lution; better accuracy on the solution value can be
obtained when more tests are performed. On the other
hand, because the search is probabilistic, the more can-
didates we examine, the greater the probability of en-
countering better ones. Therefore, there is a trade-o�
between the accuracy of estimation and the number of
candidate solutions examined in a search. This trade-

o�, although important, is di�cult in knowledge-lean
application domains, where domain knowledge relat-
ing quality and cost is missing (Wah 1992).

In this paper, we focus on the problems of selecting
appropriate parameter values for genetic algorithms
operating in a noisy environment. The parameters
speci�cally important in a noisy environment include:

� M : population size in each generation;

� T : duration of each generation; and

� N : sample size of each candidate.

In the rest of this paper, we use the term candidate for
a candidate solution and sample for the observed per-
formance of a candidate in each simulation or experi-
mental run (sometimes called an episode). In common
genetic algorithm terminology, these are often referred
to as individual and �tness evaluation, respectively. 1

In our terminology, M is the number of candidates
maintained in one generation; T is the total number
of samples assigned to each generation; and N is the
number of samples taken from each candidate. The
problems we have addressed are on the appropriate
adjustment of these parameters for individual applica-
tions. We call these problems parameter sizing prob-

lems in genetic algorithms.

Assuming that unit time is needed to evaluate a candi-
date once, the relationship among these three param-
eters is:

T =M � N : (1)

In practice, it is implicitly assumed that these param-
eters are constant and do not change between/within
generations. The most common approach to adjust
these parameters is to assume that duration T is giv-
en, and that the goal is to determine the best popula-
tion size M based on schema analysis (Fitzpatrick &
Grefenstette 1988, Goldberg, Deb & Clark 1991).

1We use these terms mainly because we approach our
problem from statistical consideration of general heuristic
search problems.

In this paper, we assume that (i) M is given, and (ii) T
and N can vary between/within generations. Let tk be
the total sample size assigned to the k-th generation,
and ni;k be the sample size of the i-th candidate in
the k-th generation. The relationship corresponding
to Eq.(1) is:

tk =
MX
i=0

ni;k ; (k = 1; 2; � � �) : (2)

We study two important problems related to the
adjustment of these parameters. The �rst problem is
the duration-sizing problem that focuses on methods
for varying T and N in between generations. (These
parameters are kept constant in a generation; that is,
n1 ;k = n2 ;k = � � � = nM ;k .) The second problem is
the sample-allocation problem that focuses on the as-
signment of N within a generation; that is, N may
be di�erent for di�erent candidates in one generation
while T is kept constant (t1 = t2 = � � �.)

The rest of the paper is organized as follows. Section 2
presents the conventional static policy with constant T
and N and shows the advantage of using dynamic poli-

cies where T and N are dynamic. Section 3 presents a
statistical model of the generate-and-test process used
in genetic algorithms. We also show methods for col-
lecting statistics when a genetic algorithm is execut-
ed. In Section 4, we study the duration sizing problem
and derive in Section 5 decision equations for sample
allocation. Section 6 shows the improvement in per-
formance of our dynamic policies over that of the con-
ventional static ones. Finally, conclusions are drawn
in Section 7.

2 PROBLEM DESCRIPTION

2.1 ISSUES IN CONVENTIONAL
PARAMETER SIZING PROBLEMS

Fitzpatrick and Grefenstette have studied the best
selection of M and N assuming that T is given (Fitz-
patrick & Grefenstette 1988). Their analysis is based
on the schema (hyperplane) theory. Let r be the num-
ber of candidates with hyperplane H, where r / M .
Further, let �S2 be the variance of sample means of
r candidates, �H be the variance of the true perfor-
mance of r candidates, and �(ci)

2 be the variance of
samples from candidate ci. In their paper, they show
the following equation based on statistical analysis:

�S
2 =

1

r
�H

2 +
1

rN
< �(ci)

2
>
H
; (3)

where < �(ci)
2
>
H

is the average sample variance of
r candidates with hyperplane H. Since duration time
T is given, rN in Eq. (3) is constant according to Eq.
(1). Eq. (3), therefore, shows that when T is given

(and the cost of generating new candidates is negli-
gible), a genetic algorithm will perform better when
sample size N is 1. 2

There have also been other studies on genetic algo-
rithms operating in noisy environments (Grefenstette,
Ramsey & Schultz 1990, Goldberg & Rudnick 1991,
Goldberg, Deb & Clark 1991). Most analytical stud-
ies deal with static policies where T and N are cho-
sen beforehand and remain unchanged throughout the
process.

2.2 PROBLEMS WITH STATIC POLICIES

In this paper, we study the case in which the popu-
lation size M is given. This is often true in practice
where M is determined by the available computation-
al resources, the requirement on convergence, and the
characteristics of the search space. When only M is
given, Eq.(3) is not useful as it only indicates that
taking more samples within one generation is better.

50

100

200

0 5 10 15 20 25 30 35 40 45 50

p
e
rf

o
rm

a
n
c
e
 (

lo
g
 s

c
a
le

)

total number of samples (x 1,000)

sample size = 1
sample size = 2
sample size = 4
sample size = 8

sample size = 20

Figure 1: Behavior of static policies.

Fig.1 shows the e�ect of changing N (and accordingly
T) for M = 100 in a minimization problem. The
conditions for our experiments are the same as those
in Fitzpatrick and Grefenstette's study (Fitzpatrick &
Grefenstette 1988), except that we use larger sample
variance � = 17 instead of � = 2 in their study. Fig.1
shows (i) that there is no optimal static policy that
performs the best consistently even for the same prob-
lem, and (ii) that the best value of N depends on the
total execution time. In general, smaller sample sizes
are better in early generations, and larger ones are
better in later generations. For example, Fig.1 shows
that N = 1 performs the best in the beginning, but
performs the worst at the end.

2In order to make our analysis consistent, we have
modi�ed the symbols used in Fitzpatrick and Grefen-
stette's analysis. The original equation is �S

2 = 1

r
�2 +

1

rn
< �2(xi) >H

2.3 DEFINITION OF THE SIZING
PROBLEMS

Based on the above observation, we focus in this paper
on methods for determining N and/or T dynamically
during the execution of a genetic algorithm. As is
described in Section 1, we classify these problems into
two types as is shown in Fig.2.

� Duration-sizing problem. This entails methods for
determining when to stop the current generation.
Candidates in the same generation are assumed
to be sampled equally.

� Sample-allocation (sizing) problem. This involves
methods for allocating t0 samples among M can-
didates, where t0 is given.

Duration-sizing is applicable when there are plenty of
computation resources. It mainly concerns the con-
vergence of genetic algorithms when time is large.
In contrast, sample-allocation is applicable when
each evaluation (or sample drawn) is costly. Conse-
quently, it is essential to select tests carefully in order
to have the maximum bene�t on the sample-test re-
sults, and to keep the test results in order to adjust the
sample size dynamically. Note that these two problem-
s do not occur concurrently; hence, we do not attempt
to evaluate the e�ects of both of them in the same
genetic algorithm.

estimated
performanceb�1 � � � b�M

take M samples
from c1 � � � cMc1 � � � cM

population
new

generation?
current
terminate

...........
...............

..........................
..........................

........................
..

decision
maker

t = 0

t =MS

observed samples
x1;j � � �xM;j

t = t+M

(a) duration-sizing problem

c1 � � � cM
population
new

estimated
performanceb�1 � � � b�M

which candidate
should be

sampled next?

..........
................

..........................
..........................

........................
..

decision
maker

t = 0

t = T t = t+ 1

ci

observed sample xi;j

(b) sample-allocation problem

Figure 2: Two types of sizing problems discussed in
this paper.

3 STATISTICAL MODEL AND

ASSUMPTIONS

3.1 MODEL OF GENERATE-AND-TEST

A statistical model for the generate-and-test process
in genetic algorithms is shown in Fig.3. It consists of
two parts.

distribution
prior

xi,j

c i

c i

µι

.

distribution
sample

generate

test

true
performance

measurement

observed
sample

noise

Figure 3: Statistical model.

� Test process. We assume that the evaluation noise
is Gaussian as is in other studies. The variance
of the noise is denoted as �2. Also, we assume
that the noise distribution is common for all can-
didates and is invariant in time. Let �i(k) be the
`true' performance of candidate ci in the k-th gen-
eration. Denote the j-th sample from ci as xi;j(k),
where xi;j(k) is interpreted as a sample from sam-

ple distribution N (�i(k); �
2). In the rest of this

paper, we omit the su�x (k) when it is obvious.

� Generation process. Candidates in the same gen-
eration are created by applying randomized ge-
netic operators and should, therefore, have iden-
tical statistical properties with respect to their
`true' performance �i. The prior distribution is
the distribution of the `true' performance of can-
didates in the k-th generation (namely, the dis-
tribution of �1; � � � ; �M). It expresses the dis-
tribution of expected performance of an arbitrar-
ily chosen candidate in generation k. We assume
that the prior distribution is a normal distribution
N (�0(k); �0(k)

2).

In our model, we assume normal distributions for both
the sample and prior distributions. Such assumptions
are widely accepted, and transformation methods are
available when the distribution is not normal.

Using Bayes Theorem, we can calculate the posterior

distribution of �i, a conditional distribution of �i given
observed samples xi1; � � � ; xini, as follows. Assume
that ni samples are drawn from candidate ci, and that
the sample mean is xi. Let h(�) be the prior distribu-
tion and h�

i
(�jxi; ni) be the posterior distribution of ci.

Knowing that the distribution of the sample mean xi

is f(xj�i; ni) � N (�i;
�
2

ni
), the posterior distribution

is, therefore,

h�
i
(� jxi; ni) � N

�
ni xi + ��0

ni + �
;

�2

ni + �

�
; (4)

where � = �
2

�0
2 . We denote the mean and variance of

the above normal distribution as ��
i
and ��

i

2, respec-
tively. That is,

��
i
=

ni xi + ��0

ni + �
; ��

i

2 =
�2

ni + �
: (5)

��
i
gives the best (Bayes) estimation with respect to �i,

and ��
i

2 gives the expected estimation error (assuming
squared-error loss).

3.2 ESTIMATION OF STATISTICAL
PARAMETERS

Our model in 3.1 uses three parameters that can only
be estimated statistically:

� �2 : the variance of the noise;

� �0(k) : the mean of the �i's in the k-th generation;

� �0(k)
2 : the variance of the �i's in the k-th gener-

ation.

First, �2 is estimated using the common (or pooled)
variance (Davis, Crow & Max�eld 1960) as follows:

b�2 =

MX
i=1

�
(ni � 1)si

2
�

MX
i=1

ni

!
� M

;

where (ni � 1)si
2 =

niX
j=1

(xi;j � xi)
2
: (6)

The estimation of �0 and �0
2 is the same as is in the

case of two-factor analysis (Davis, Crow & Max�eld
1960). It is known that, when n1 = � � �= nM = n, the
distribution of the sample means xi's is normal with

mean �0 and variance
�
�0

2 + �
2

n

�
. Therefore, �0(k)

and �0(k)
2 are estimated as:

b�0(k) =

MX
i=1

xi

M
;

20

40

60

80
100

0 20 40 60 80 100 120 140 160 180 200

m
ea

n
of

 th
e

pr
io

r
(l

og
 s

ca
le

)

total number of samples (x 1,000)

sample size = 1
sample size = 2
sample size = 4
sample size = 8

(a) Transition of �0(k)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

de
vi

at
io

n
of

 th
e

pr
io

r

total number of samples (x 1,000)

sample size = 1
sample size = 2
sample size = 4
sample size = 8

(b) Transition of �0(k)

Figure 4: Transition of �0(k) and �0(k) between gener-
ations. Averaged over 100 simulation runs.

b�20(k) =

M

MX
i=0

xi
2 �

MX
i=0

xi

!2

M (M � 1)
�
b�2
N

: (7)

The initial values of these three parameters are ob-
tained through pre-sampling, where a negligible num-
ber of samples are taken (say 4 samples from each can-
didate in the �rst generation). These estimates are
then updated in each generation using Eq.(7). As ex-
isting samples are used for these estimations, no addi-
tional pre-sampling is needed after the �rst generation.

The values of �0(k) and �0(k)
2 will change as the ge-

netic algorithm is executed, as is illustrated in Fig.4.
In general, �0(k) gradually improves as �0(k) becomes
smaller.

4 DURATION-SIZING PROBLEM

4.1 OBJECTIVE

In executing a genetic algorithm, useful schemata are
identi�ed implicitly by selecting candidates with bet-
ter sample means. Statistically, the di�culty of selec-
tion in the k-th generation can be characterized by the
variance ratio (denoted as �(k)) de�ned as the ratio
of the sample variance and the variance of �i's; that

is, �(k) = �
2

�0(k)
2 (=

1
�
). When �(k) is small, the �i's

are distributed `sparsely,' and the selection of better
candidates is easy. On the other hand, when �(k) is
large, then the �i's are distributed close to each other,
and the selection is di�cult. Fig.5 illustrates the cases
with small and large �(k).

(a) Small �(k)

(a) Large �(k)

Figure 5: Selection problem with di�erent variance ra-
tios.

The above discussion explains why static policies do
not work well. Note that in Fig.4-(b) the distribution
of the �i's is `sparse' at �rst and gradually becomes
`dense as time progresses. Since the variance of the
�i's varies from one generation to another, no sam-
ple size N can be the best throughout all the genera-
tions. Hence, we can expect the overall performance to
improve if we use smaller sample sizes in early gener-
ations and larger ones in later generations.

4.2 EQUATIONS

The above observation leads us to use the following
strategy for determining the duration time.

tk = M �

n0 + d

k�1X
l=1

tl e

!
: (8)

In this case,
P

k�1
l=1 tl is the total number of samples

observed so far. Eq.(8) simply means that we increase
the duration time at �xed intervals of time. The ini-
tial sample size n0 is determined so that the following
condition is satis�ed:

�2=n0

�0
2
(k)

=
�(0)

n0
� � : (9)

Presently, is heuristically chosen as 5 � 10�3, and �
as 3:0. Under practical conditions, n0 = 1 for most of
the cases.

4.3 DURATION-SIZING PROCEDURE

To summarize, our adaptive procedure for determining
the duration of a generation consists of four steps.

(1) Determine the initial sample size n0 using Eq.(9).

(2) Take one sample from each of the candidates in
the current generation.

(3) If the current time t is less than tk as is de�ned
in Eq.(8), then go to Step (2)

(4) Else terminate the current generation; generate
new candidates for the next generation; and go to
Step (1)

5 SAMPLE-ALLOCATION

PROBLEM

5.1 OBJECTIVE

In this problem, we consider only one generation.
Our approach is based on decision theoretic methods.
The objective is to determine an e�cient allocation
(n1; � � � ; nM) so that the expected value of a pre-
de�ned loss function (or risk) is minimized. Here,P

M

i=1 ni = T , where T is the total number of samples
assigned to each generation. As a loss function, we use
the estimation error (��

i

2) of the candidate selected.

Our choice is motivated by the fact that candidates
with better performance have larger probability of be-
ing selected for reproduction in the next generation
and should, therefore, have greater inuence. Hence,
we can improve the performance of genetic algorithms
by sampling more from better candidates (i.e., by de-
creasing the estimation error of these candidates) and
by spending less time on inferior ones. (See Fig.6.)

5.2 EQUATIONS

Our approach tries to minimize the expected risk by
determining adaptively the candidate to be sampled
next. The expected risk is expressed as follows:

(a) Equal ni

(b) Unequal ni

Figure 6: Equal and unequal allocation of ni's.

R =
MX
i=1

P �
i
��
i

2
; (10)

where P �
i
is the probability that candidate ci is the

best. We calculate P �
i
as:

P �
i
=

Z 1

�1

Y
j 6=i

H�
j
(�jxj ; nj)h

�
i
(�jxi; ni) d� ; (11)

where H�
j
(�jxj ; nj) =

R
�

�1
h�
j
(�jxj; nj)d� is the cu-

mulative density function of h�
i
. Note that P �

i
could

have been de�ned as the actual selection probability
fiP
M

i=1
fi

, where fi is the �tness of candidate i; howev-

er, we use Eq.(11) because it is less dependent on the
speci�c �tness function (especially the scaling factor)
used in individual genetic algorithms. 3 For ease of
calculation, we make the simplifying assumption that

P �
i
is independent of ��

i

2; therefore, @P
�

i

@ni
= 0 for all i.

Now let (n+1 ; � � � ; n+
M
) be the optimal (desired)

allocation for Eq.(11). By applying Lagrange multi-
plier �, we obtain the following M equations for each
i = 1 � � �M :

@

@ni

"
MX
i=1

P �
i
��
i

2
� �

MX
i=1

ni

#
= 0 : (12)

Since
@P

�

i

@ni
= 0, it immediately follows that:

3In our experiments described in Section 6, instead of
de�ning P �

i as is in Eq.(11), we use an approximate P �

i ,
where only the probability that candidate ci is better than
the current best candidate (or second best, in case that ci
is the best) is considered.

P �
i

@��
i

2

@ni
� � = 0 ; i = 1 � � �M : (13)

Therefore, using ��
i

as is de�ned in Eq.(5),
(n+1 ; � � � ; n

+
M
) should be chosen in such a way that

�P �1
�2

(n+1 + �)
2

= � � � = �P �
M

�2

(n+
M
+ �)

2
: (14)

Eq.(14) means that when the samples are optimally
allocated, each term of the equation should be equal.

Comparing the term �P �
i

�
2

(ni+�)
2 for the current and

the desired allocations, we obtain the feedback val-
ue for each i. Note that we can only increase ni for
samples drawn in the future; hence, the best sampling
strategy is to select candidate i with the largest feed-
back value:

max
1�j�M

"
P �
j

�2

(nj + �)2
� P �

j

�2

(n+
j
+ �)

2

#
: (15)

Because the second term of Eq.(15) is common for all
candidates, we can only use the �rst term of the equa-
tion in comparing the current and the desired alloca-
tions.

5.3 SAMPLE-ALLOCATION PROCEDURE

To summarize, our adaptive procedure for determining
sample allocation is as follows.

(1) Sample once each of the M candidates.

(2) Calculate ��
i
and P �

i
for each candidate.

(3) Select the candidate with the largest feedback val-
ue using Eq.(15).

(4) Sample the candidate selected in Step (3).

(5) Repeat Steps (2) through (4) until T samples have
been drawn.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL CONDITIONS

To illustrate the e�ectiveness of our dynamic para-
meter-sizing procedures, we compare the performance
of static policies with that of dynamic ones. Assuming
that candidate ci is represented by a binary code zi
(= zi;1zi;2 � � �), the `true' evaluation value �i is deter-
mined by zi using a test function f , where �i = f(zi).
In this example, we use two test functions. The �rst
function F1 is DeJong's uni-modal function (DeJong
1975):

f1(zi) =
30X

m=1

i zi;m
4 ; (16)

where zi;m has 8 bits, and �1:28 < zi;m � 1:28. The
second function F2 (M�uhlenbein, Schomisch & J.Born
1991) is a highly multi-modal function.

f2(zi) = 20 +
20X
m=1

�
zi;m

2 � cos(2�zi;m)
�
; (17)

where zi;m has 10 bits, and �5:12 < zi;m � 5:12.

The size of the solution space is 2240 for F1 and 2200

for F2. Both function have the global minima when all
zi;m = 0. Note that F2 has 720 local minima. When
the zi's are created randomly, the distribution of the
�i's is almost normal: (i) for F1, �0(0) = �225 and
�0(0) = 69; and (ii) for F2, �0(0) = �194 and �0(0) =
35. The evaluation noise is set to be � = 1:0� �0(0).
We use standard genetic algorithm parameters with
population size of 100, crossover rate of 0.6, mutation
rate of 0.001, and scaling-window size of 7.

6.2 PERFORMANCE COMPARISON:
DURATION-SIZING PROBLEMS

Fig.7 shows the e�ect of using static versus dynamic
duration sizes. The x-axis is the total test time, and
the y-axis is the performance of the current top can-
didate (`on-line' performance). The generation gap is
set to be 1:0. Since we assume relatively small sam-
pling cost, no samples drawn in previous generations
are carried over to future ones. The result shown in
Fig.7 is the average over 50 runs.

For both F1 and F2, the performance of our policy
using dynamic duration sizes is at least as good as
that of the best static policy at any point in time.

6.3 PERFORMANCE COMPARISON:
SAMPLE-ALLOCATION PROBLEMS

Fig.8 shows the performance results of policies based
on static and dynamic sample allocation. Again, the
x-axis is the total test time, and the y-axis is the per-
formance of the current top candidate. The generation
gap is set to be 0.6 in this case, and the best 40% can-
didates survive into the next generation. As we assume
that the sampling cost is high, samples drawn in pre-
vious generations are carried over to future ones. The
results plotted are the average over 200 runs. For stat-
ic allocation, we use a sample size of 2, which is the
best within the time range.

For both F1 and F2, our dynamic policy consistently
overperforms the static ones. Though only on-line per-
formance is shown here, similar improvements have
been found for o�-line performance.

20

40

60

80
100

0 20 40 60 80 100 120 140 160 180 200

p
er

fo
rm

an
ce

 (
lo

g
 s

ca
le

)

total number of samples (x 1,000)

duration size = 100
duration size = 200
duration size = 400
duration size = 800

variable duration size

(a) Test function F1

20

40

60

80
100

200

0 20 40 60 80 100 120 140 160 180 200

p
er

fo
rm

an
ce

 (
lo

g
 s

ca
le

)

total number of samples (x 1,000)

duration size = 100
duration size = 200
duration size = 400
duration size = 800

variable duration size

(b) Test function F2

Figure 7: E�ect of variation in duration sizes.

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

p
er

fo
rm

an
ce

total number of samples (x 10)

equal allocation
adaptive allocation

(a) Test function F1

40

50

60

70

80

90

100

110

120

130

0 50 100 150 200 250 300 350 400 450 500

p
er

fo
rm

an
ce

total number of samples (x 10)

equal allocation
adaptive allocation

(b) Test function F2

Figure 8: E�ect of sample allocation.

7 CONCLUSIONS

In this paper, we have studied two related parameter-
sizing problems for genetic algorithms operating in a
noisy environment: a) determining a suitable duration
of a generation, and b) �nding an appropriate number
of samples to be drawn from each population. We as-
sume a constant number of populations in each gener-
ation. Our results show that dynamic policies perform
better than existing static ones.

Although we have experimented with simple test func-
tions, the advantage of using dynamic policies is uni-
versal and is independent of the reproduction mecha-
nism of individual genetic algorithms. (In the extreme
case, dynamic policies can improve the performance of
random searches.) We are in the process of incorporat-
ing the policies presented here in a heuristics learning
system (Wah 1992). Future studies will report results
on evaluating these policies for realistic applications.

Acknowledgements

Research supported by National Aeronautics and S-
pace Administration Grant NAG 1-613 and Joint Ser-
vices Electronics ProgramContract N00014-90-J-1270.

References

Wah, B. W. (1992). Population-Based Learning: A
New Method for Learning from Examples under Re-
source Constraints. IEEE Trans.on Knowledge and
Data Engineering, 4(5):454-474.

Fitzpatrick, J. M. and J. J. Grefenstette (1988). Ge-
netic Algorithms in Noisy Environments. Machine
Learning, 3(2/3):101-120.

Goldberg, D. E., K. Deb and J. H. Clark (1991). Ge-
netic Algorithms, Noise, and the Sizing of Population-
s. IlliGAL Technical Report, 91010, Univ.of Illinois at
Urbana-Champaign, Urbana, IL.

Grefenstette, J. J., C. L. Ramsey and A. C. Schultz
(1990). Learning Sequential Decision Rules using Sim-
ulation Models and Competition. Machine Learning,
5:355-381.

Goldberg, D. E. and M. Rudnick (1991). Genetic Al-
gorithms and the Variance of Fitness. Complex Sys-
tems, 5:265-278.

Crow, E. L., F. A. Davis and M. W. Max�eld (1960).
Statistics Manual. Dover Publications.

DeJong, K. A. (1975). Analysis of the behavior of a

class of genetic adaptive systems. Ph.D. Thesis, Uni-
v.of Michigan, Ann Arbor, MI.

M�uhlenbein, H., M. Schomisch and J. Born (1991).
The Parallel Genetic Algorithm as Function Optimiz-
er. In Proc. of 4'th Int. Conf. on Genetic Algorithms:
271-278. Morgan Kaufmann, San Mateo, CA.

