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Abstract

In this paper we present an improved search pro-
cedure for the General Parameter Method (GPM) (1].
Our procedure maps uniform dependence algorithms
to application-specific processor arrays {PAs). It can
optimize general design objectives with certain non-
monotonicity properties, i.e., those that do not in-
crease monotonically with the parameters. An ex-
ample of such an objective is the minimization of
the total completion time, including load and drain
times. In contrast, earlier design methods can on-
ly deal with monotonic objectives. We present results
for the matrix-product problem using this search tech-
nique; application of the technigue on the transitive-
closure problem is presented elsewhere [2]. We also
show that the parameters in GPM can be expressed
in terms of the schedule vector I and allocation ma-
trix § in the popular dependence-based method (DM),
thereby allowing GPM to be used in DM for finding
optimal designs for uniform dependence algorithms.

1 Introduction

Many applications of digital signal processing, med-
ical imaging, digital communications and control are
characterized by repeated execution of a small number
of computationally intensive operations. To meet per-
formance requirements of these applications, it is often
necessary to dedicate hardware with parallel process-
ing capabilities to these specialized operations. Pro-
cessor arrays, due their structural regularity and con-
sequent suitability for VLSI implementation, are fre-
quently used for this purpose.

*Research Supported by Jaint Services Electronics Program
contract N0O0014-90-J.1270, National Science Foundation grent
MIP 92.18716, and an IBM graduate fellowship grant.

Proc. IEEE International Parallel Processing Symposium,
April 1984.

0-8186-5602-6/94 © 1994 IEEE

This paper presents new results for the system-
atic mapping of uniform dependence algorithms into
application-specific processor arrays {PAs). It extend-
s our previous approach, called the General Parame-
ter Method (GPM), for synthesizing PAs {3, 1]. Our
main contribution here is an improved search method
for optimizing general objectives that may vary non-
monotonically with the parameters. In contrast, ear-
lier search methods can only deal with objective func-
tions that increase monotonically with the parame-
ters. Hence, our proposed framework degenerates to
our earlier search method [1] in case of monotonic
objectives, but can also optimize more general non-
monotonic design objectives. We present new designs
in Section 5 that optimize computation time as well
as completion times (the latter include load and drain
times). These designs have not been found before.

There has been a lot of research in developing a de-
sign method to map uniform dependence algorithms
to PAs. Most of these methods are based on the de-
pendence method (DM) [4]. In DM, the mapping of an
algorithm to a PA is characterized by a linear mep-
ping matric T = %, where II is the schedule vector
and S is the allocation matrix. The design of the PA
is then equivalent to determining the elements of T.
This general representation of a feasible design as a
particular mapping matrix allows DM to be applied
to uniform as well as non-uniform recurrences. How-
ever, in DM, the generality in representation leads to
large search spaces for optimal designs, as the opti-
mization problem is posed as an integer programming
problem [4, 5]. To overcome this complexity, feasible
designs in DM are generally heuristic and are found by
first specifying a “good” allocation matrix, and then
determining the schedule vector that minimizes the
computation time. In contrast, GPM is restricted to
uniform recurrences, but is able to find optimal design-
s for general user-specified (possibly non-monotonic)
objectives using efficient search techniques.
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Figure 1: Using GPM to find optimal designs in DM.

GPM can be used as an intermediate step or as a
black box to find optimal designs in DMs. Designers
of PAs familiar with DM can utilize GPM to obtain
better designs in terms of IT and § as depicted in Fig-
ure 1. After defining the objective (possibly non-linear
and non-monotonic) in terms of I and 8, the designer
converts the objective in terms of the GPM parame-
ters using (6} and (8). GPM is then used to generate
optimal PAs efficiently for the given objective. The
solutions obtained by GPM are then converted to I
and 8 in DM using (6) and (8) again. This step in-
volves solving two sets of simultaneous equations for
1 and S from the periods and displacements in GPM.

2 Algorithm Model

Affine dependence algorithms can be used to model
a large number of applications in digital signal /image
processing and other scientific applications. Affine de-
pendence algorithms can be represented by the follow-
ing Fortran-like nested loops, which are equivalent to
systems of affine recurrence equations (AREs).

DO (1 =l 1415 j2 = lguz ; - “i Jn = in, i)
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The column vector J = 71, 72, - -,jn]T is the index
vector (or index point). S,-(J"), i=1,.-,¢, are t as-
signment statements in iteration J having the form

ZWN) = ¢ [N, 260N, )

where 1 < i < ». In (1), all loop bounds I and wuy
are affine functions of loop variables JtyeooyJio1, and
indexing functions y(} and 2x{),k=1,---,r, are affine
functions of tﬂhe form AJ + d. H iteration J depends
on iteration J', then this dependence can be described
by a dependence vector d = J — J'. The dependencies
in the algorithm can be shown by a dependence graph
(DG) over an n-dimensional polyhedral domain, where
nodes are labeled by index vectors that correspond
to the operations inside the nested loops, and arcs
correspond to the loop-carried dependencies.

Uniform dependence algorithms or uniform recur-
rence equations (URE) form a sub-class of AREs,
where the indexing functions y() and zx() are of the
form J'— d (matrix A is the identity matrix now), and
dis a constant vector of n elements,

There exist many techniques to transform AREs
to UREs where the affine dependencies are “uni-
formized.” The basic idea is to select a few basic
uniform dependence vectors such that all affine depen-
dencies of the ARE can be expressed as non-negative
integer linear combinations of the basis vectors.

In this paper, we focus on algorithms that can be
modeled as UREs as well as AREs that can be uni-
formized. Hence, the starting point of our mapping
assumes a convex polyhedral domain and a set of con-
stant dependence vectors collected into a matrix called
the dependence matrix D.

Example 1. The following are the uniformized re-
currences for the product of two N x N matrices A
and B to yield C. In this example, n = r = 3,

Clhi k) = C(i,i k= 1)+ A(S, 5, k)xB(5, 5, k) (2)
A(i 7, k) = A(4,5 —1,k) (3)
B(ij,k) = B(i-1,jk) (4)

The boundary conditions are A(3,0,k) = Afi k],
B(9,j, k) = B[4, k), C(4,4,0) = C[i, j). The three de-
pendencies are (0,0,1)%, (0, 1,0)*, and (1,0,0)*.

3 General Parameter Method
In GPM, the characterization of the behavior, cor-

rectness, and performance of a PA is defined in terms
of a set of scalar and vector parameters. The crux of




GPM is the characterization of the behavior, correct-
ness, and performance of a PA by a set of vector and
scalar parameters. The details of GPM can be found
in the references {3, 1]. We summarize the parameters
and constraints in GPM below.

Parameter 1: Periods., The periods capture the
time between execution of the source and sink index
points of a dependence vector. Suppose the time at
which an index point I (defined for the uniform recur-
rence equation) is executed is given by function e(D).
The pericd of computation t; along dependence direc-

tion dy is defined as

t; = re(F+d;) ~ (D), §=1,2,---,r (5)

The number of periods defined is equal to =, the
number of dependencies in the algorithm. In terms of
DM, t; satisfies the following equation.

ti:ﬁdj ) (6)

where 1T is the‘. schedule vector in DM.

Parameter 2: Velocities. V;, the velocity of a
datum, is defined as the directional distance passed
during a clock cycle. Since processing elements (PEs)
are at unit distance from their neighbors, and buffer-
(if present) must be equally spaced between PEs,
the magnitude of velocity must be a rational number
of the form i/j where 1,7 are integers and 1 < j (to
prevent broadcasting). This implies that in j clock
cycles, = propagates through i PEs and j — i buffers.
All tokens of the same variable have the same velocity
(both speed and direction) which is constant during
the execution in the PA. The total number of velocity
parameters is » (one for each variable), and each veloc-
ity is an m-element vector, where m is the dimension
of the PA. Hence, V; is given by

(7}

where k; is the (vector) distance between the execu-
tion locations of the source and sink index points of
dependence vector d:-. In the notation of DM, S, the
allocation matrix, is related to k; and d; as follows.

(8)
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Perameter 3: Spacings. Cona;ider variable §;
pipelined along dependence vector d;, 1 <1 <r. The
directional distance in the processor space from token
(I —d;) to (I —dy) is defined as spacing parameter
.S_';-,,'. Since there are v variables €;, 1 < ¢ < r, each as-
sociated with dependency cf}, 1<i1<r,therearer—1
non-trivial spacing parameters for each variable and
one trivial spacing parameter, 5'” = (. Each spacing
parameter S;; is an m-dimensional vector, where m
is the dimension of the PA. A total of #(r — 1) non-
trivial spacing parameters are defined. In the notation
of DM (based on (7), {8), and (12)),
S = Sci;'—EE:'Z-S 5. (2)
The total nurniber of parametHrddefined is rx(r+2},
of which r of them are periods (scalars); the remaining
72 + r are m-dimensional vectors, of which » of them
are velocities and r? are spacings (r of these spacings
are trivially zero). Assignment of values to these pa-

tameters defines a specific PA with a parficular num-
ber of processors, buffers, and data-input pattern.

Example 2. For (2), there are 3 periods t,, ¢z, t3
and 3 velocities Vi, V2, Va. There are 9 spacing pa-
rameters S;;,i,7 = 1,2,3, of which 5; = 0. For
instance, for variable C, §1,3, §1'3 define distances be-
tween (C(4,7) — C(4,3 + 1)), (C(,7) — €+ 1,7),
respectively.

4 Design Method

The design of a feasible PA is equivalent to choos-
ing an appropriate set of parameters that satisfy the
constraints imposed by dependency and application
requirements. The search for the “best” design can be
represented by the following optimization problem.

B(N b1, oo te ke kr)
1<t,i=1,....7,
0< ‘k,-' S )
constraints in (12}, (13), (14),
#PE < #PEY® and T. < T7 %,

(10)

Minimize
Subject To:

The constraints on the parameters for any feasible
lower-dimensional PA are listed below.

1. All data tokens used in computing the result at
an index point must arrive at a PE simultane-
ously.

Vite=Viti+ 854, 4,5=1,2,--,1.

(12)



2. Linearly dependent dependence vectors must
satisfy the following constraint:

T -N=0,and KN =0, (13)

where g is the rank of dependency matrix D,
and N is the Null Space of D.

3. Data-input conflicts (two tokens sent into a
boundary PE simultaneously) must be avoid-
ed. Let S| = [5",-,1,.:'?',-,2,...,.5”'.-,9_1] be a ma-
trix of g — 1 independent spacings. Further, let
Lg, Uk, k=1,2,---,9 — 1, be integers such that
the positions of all tokens of variable £1;, relative
to a common origin, are defined as Y971 §, . 3, ,
Ly € Bx < Up. To avaid data-input conflicts,
we need the following constraint.

8,8 # 0, where & # 0, and (14)
tx.'E[(L.’-U.'),---.(Li-f-U.')],lSt'__(_g——l.

The first constraint in (11) ensures that all prece-
dence constraints are satisfied. Since the target PA is

systolic, |k;] should not exceed ¢; in order to preven-

t data broadcasting. Hence, the second constraint in
(11) is introduced. The third constraint indicates that
the recurtence is evaluated correctly by the PA satisfy-
ing dependency requirements, and be free of data-link
and computational conflicts. The fourth constraint
indicates user-defined bounds on T. and #PF to be
observed.

The optimal design for the formulation given by
(10) and (11) is found by a search algorithm. Since,
in general, the objective function is nonlinear, involv-
ing functions such as ceiling, floor, and maximum or
minimum of a set of terms, it is difficult to describe a
comprehensive algorithm that covers all possible cases.
In the rest of this section, we first describe a pruning s-
trategy used in our search algorithm. This is followed
by a discussion on searches with objectives that are
functions of T, Teomps Tarpin, and #PE. We then
present the search algorithm and show its application
for special cases of optimizing T, and #PE.

4.1 Pruning Strategy

The search space defined by the constraints in (11)
results in a worst-case complexity of

o (Z‘ctro‘)’) =0 ((T58,)"),

i=1

(18)

where 7279 is the time needed to process the recur-
rence sequentially, and t™°* is the maximum value
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of period #; such that the computation time Teomp <

1oy Since Tiopyp is the sum of periods ¢; (to be
shown in (24)), t/e* < Tt (15) is true because

we iterate in the worst case all combinations of ¢; and

l,‘gil <%, % =1,...,r. Note that this search space

in polynomial in terms of the parameters in GPM and
the size of the URE to be evaluated.

To reduce this search space, we need to develop ef-
fective pruning strategies so that suboptimal designs
do not have to be evaluated. In this section, we present
one such strategy that prunes based on incumbent de-
signs obtained in the search. Our pruning strategy
takes the objective function & (assuming to be mini-
mized) and decomposes it as follows.

M(N, b,y By, B
C ke

=f(t|,...,tr,];1,.. ,S(tlg---|tr1511°~'l];"))(16)

where N is not represented explicitly since it is a
constant in the optimization. The decomposition
is done in such a way that () ! is a monotonic
function of its variables, which may be a subset of
t1,...,tr, k1, ..., kr. The intuition behind this decom-
position is as follows.

If the objective function b(ty, ..., ¢, &y,..., k) is a
monotonic function of its variables, then the optimal
value of the parameters can be found by enumerating
combinations of values of variables from their smallest
permissible values (given by (11)) until a feasible de-
sign that satisfies the constraints is found. Since ()
is monotonic, the first feasible design obtained is also
the optimal design.

The above idea of enumerating values of a mono-
tonic function can be extended to the general case of
non-monotonic objective functions. This is done by
first identifying e(), a monotonic component of the ob-
Jective that can be enumerated efficiently. The search
proceeds by enumerating designs so that values of e()
grow monotonically. (The combination of parameter
values used in ef) are substituted into (11), and the
constraint equations are solved to see if there exisis
a feasible design.) Whenever a feasible design is ob-
tained, an upper bound on €() is computed by setting
variables in b() that are not included in e{) to their ex-
tremum values. (This upper bound means that no op-
timal design will have an objective value whose mono-
tonic component () is larger than the upper bound.)
The search is then repeated, refining the upper bound
cach time a feasible design is found. It stops when the
upper bound on e() is smaller than or equal to e() of
the best feasible design.

'For notational case, we denote functions without their
arguments,




From the above description, it is clear that the
search strategy is an adaptation of a general branch-
and-bound search. The monotonic component e() cor-
responds to the variables searched in the branch-and-
bound process, and bounding is performed by evalu-
ating the lower bound every time a feasible solution is
found.

The above works well when the objective is rela-
tively simple. For problems with complex objectives,
the search may be inefficient because the lower bound
may be loose or may be difficult to find. For such
problems, rewriting the objective in terms of compos-
ite variables (expressed in terms of the primary vari-
ables tl,...,t..,]:;,...,i:.,) can simplify the choice of
the extremum values for variables other than those in
¢(). This is illustrated as follows.

Consider an objective expressed as a function of
composite variables Teomp, Tload; Terain, and #PE as
follows.

B= b(T:aﬂsy,I‘loud|T¢fm'n: #PE) . (17)
It is easy to see that Teomp = Toomp(ty, ..., %) is mono-
tonic- with respect to the g periods ¢;,...,t,. (An

exact characterization is shown in (24).) Hence, we
choose Teomp as the monotonic component of objec-
tive function b()} and enumerate the periods t,,...,t,
in an increasing order from their smallest permissible
values (unity).

TZB  can be refined if b() is monotonically increas-
ing witﬁ Teomps Noads Tarain and #PE. In this case,
TYE, can be obtained by setting Tloag = Tirain = 0,
Teomp = Trin  and #PE = #PE™" and by solving

comnp
(18}
(19)

where B¢ is the objective value of the current in-
cumbent design. Hence,

B b (Toomp: Tioas s Thrintn, #PE™™)

b(Teomp 0,0, #PE™™) |

(20)

where b-1() is the inverse function of b(} that rear-

UB -1 . , N
T:m’ =h (B“m1 la:ngd?;?n:

#PEms'n) ,

ranges (19) to compute Tc‘f,,ﬁp in terms of known con-
stanta.
Tomp can further be refined if #PE can be ex-

Er|. In this case,

—

ks

and the rest of the ll:_,-[s, J # i, are 0. (An exact

characterisation is shown in (25).)
For instance, let the objective function be

B = (Tcm? + Tioas + Tdrcin)z x #PE

pressed as a function of IE;I RN

#PFE is minimum when exactly one of the 5is 1,

(21)
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According to (19), we have

Bine (Teomp + 0 + 0)* x #PE
= THE, = +/Binc/#PEmin (22)

Similarly, if the objective function to minimize com-
pletion time T,

B = T. = Tcomp + Tioad + Tdrain
= Timp = B™ ~(T5H +THon
Bl'tu: _ (0 + 0) = Bl'ne — T:'nc (23)
TcUaflp is refined continuously as new incumbent de-

signs are found in the search. The search stops when
there is no combination of ¢, ¢ = 1, ..., r, that sat-
isfies Teomp < Tgﬂp.

A special case of the optimization is to find a de-
sign with the minimum computation time Teomp (not
including load and drain times). This was done in
our earlier work (1, 3]. Here, T,5, = B'"c = T3t |
and the first feasible design is the optimal design that
minimizes Toomyp.

4.2 Search Procedure

In this section, we present our search procedure
for minimizing (#PE, T;) = b( Teomp, Ttoad: Tdrain,
#PE) where Toomp is a function of ¢y, ..., tr; Tioad

coup by Pclls re k.
and #PF is a function of ’El|, e e |

and Tyrgip are functions of £y,

.
1

1. Choose g periods and g displacements to be un-
constrained parameters. Without loss of gener-
ality, let these periods and displacements be t;
and E", 1 € i < g, respectively.

2. Initialize TcUoﬁp to be T'24 ., the computation
time required to evaluate the recurrence sequen-

tially.

3. Set the values of all the g unconstrained periods
ti,t=1,..., 9, to be unity.

4. Choose the magnitude of the ¢ unconstrained

displacements ‘I-e',»’, i=1,...,¢, to be zero.

5. Compute the values of the other dependent r —g
periods and r — g displacements using the con-
ditions in (13).

using the periods and displace-

6. Compute TS0,
ments found, where T;7 is the computation

time (without load and drain times) required



for processing the recurrence. Tiomp 18 found
by substituting the current values of t;, i =
l,...,r, in (10). (Note that the design may
not be feasible at this time.) If T3, > TY8,
then exit with the incumbent design.

7. Solve for the spacing parameters from (12).

8. Check for data-input conflicts using (12) and
(14) on the spacing parameters; also, check
whether the constraints on 7. and #PZE are vi-
clated (Constraint 4 in (11)).

9. If the solution is not feasible, then increment one
of the ]E,-,s and repeat Steps 5, 6, 7 and 8 uniil

all IE;': equal t;, 1 = 1, ..., r. [fall Li?.-’s equal
t; and no feasible design is found, then go to

Step 10. If a feasible design is found, then go to
Step 11.

10. Increment one of the periods such that Teomp
increases by the lowest possible value. Go to

Step 4.

11. Compute B*", the objective value achieved by
the current design found. If B*" < B"¢, then
set B¢ = B™", and compute T2 for the

current design using (20). Increment one of the
E.v‘s and go to Step 5.

For a design that minimizes #PF alone, the search
procedure described above needs to be changed. In

this case, () should be defined as a function of IE,_|,
vy Ii,.l, and the search should start iterating with

the smallest combinations of [fc‘l’, . Igg].

5 Applications: 8-Dimensional Cube
Graph Algorithms

3-dimensional Cube graph algorithms form an im-
portant fundamental class of problems in signal and
image processing. In fact, most commercially available
DSP microprocessors are evaluated on the number of
multiply-and-accumulate operations they can perform
per second. In this section we synthesize a linear PA
for computing the product of two N x N matrices.

The recurrences describing the matrix product and
parameter definitions are indicated in Examples 1 and
2. A total of 8 relevant parameters are defined: 3 pe-
riods i3 (C), t2 (A), ta (B), 3 displacements ky, kg, k3,
and 6 spacings. For a linear PA all the parameters are
scalarg,
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We illustrate in this section five formulations of
the optimization of PAs: a) Tiomp-optimal designs
without bound on #PE, b) T,-optimal designs with-
out bound on #PE, c) # P E-optimal designs without
bound on T; or Teomp, d) optimal designs with specif-
ic bounds on Tiomp of #PE, and e) optimal designs
with specific bounds on 7. or #PE.

5.1 Performance Attributes

The attributes we are interested are Teomp (compu-
tation time), Tisaa (load time), Tirain (drain time),
#PE (processor count), and T, (completion time),
where T. = Tisaqa + Teomp + Tdrain. For the case of
computing the matrix product in a linear PA, Teomp,
#PE, Tiooa and Tyrain, are stated below without proof
due to space limitations.

Teomp (N~ D{t1 +ta +ta) + 1, (24)
#PE = (N-1) ([k]+[Fa+ |B]) +1, (25)
Ticaz = Tioad(A) + Tioaa(B), {26)
Térain = Tyrain(C) (27)

where Tioaa(A4) for non-stationary input A (i.e.,
k; # 0) is given by
(9822, =2) + 0 (Faa, -5 ))
72|
ts {9 (R, ka) + ¢ (Ko, ka) + 0 (s, k) }
[Fa]

Tload(A) =14 (-N - 1)

{28)

w1 [
where

9(2,7) = { &

if £, ¥ are in opposite directions
otherwise (29)
Tload(B) and T4, 4in(C) for non-stationary variables B
and C are similar to (29). If some ki = 0, for i =
1,2,3, then that input (or output) is stationary and
preloaded into (or post-drained from) the PA.

Tables 1 and 2 show the optimal linear designs
found by the search procedure of GPM. The objec-
tives used are to minimize T,omp and 7., respectively.
In finding these designs, {3 is incremented before ¢,
or £z in Step 10 of the search procedure presented in
Section 4 (refer to (24)). This is done as it increases
T:omp by the smallest amount. Note that the designs
were developed without bounds on #PEs. In these
tables, we list Tioaa, Teomp; Tdrain, # P Es needed, the
equivalent I and S in DM, and the CPU time used by
the search procedure running on a Sun Sparcstation
10/30. Thus, by establishing the equivalence between
DM and GPM, GPM serves as a powerful tool to find
optimal designs in DM (Figure 1).




Table 1: Teomp oF # P E optimal linear arrays for product of two N x N matrices (7. = (Tioad, Teomp; Tdrain))-

GPM: Tcomp-0Optimal Linear PA Designs GPM: #PE-optimal Designs)

N Periods | Distances [ Schedule | Allocation ] Min Teomp Designs [ $510/30
(ti.t3.%3) | (FpuBaiky) | O8] 5 { T, [ #PE | (sec.) T, | #PE
3 (11,2} (6,—1,1) {2,1,1} (1,-1,0) (5.9,4} 5 - (4,11,3) 3
4 (1,1,3) 0,~1,1) {3,1,1} (1,-1,0) (10,16,6) 7 (7,19,8) 4
8 1,3,3 0,—1,2 {2,3,1) (2,-1,0) {43,50,23) 22 (23,71,22) 8
16 1,3,4 0,—2,3 (4,3,1} 3,-2,0) (69,121,90) 76 (87,271,88) 16
32 1,5,5 0,—3,4) (55,1} 4,-3,0) (208,342,351) 218 - {343,1055,342) 32
64 1,6,7 (0,~5,6) 57‘5‘1) (6,-5,0) (455,863,1391) 694 1 (1367,4159,1366) 64
100 1,7,9; {0,-6,7) 9,7,1) (7,—6.0) {810,1684,3370) 1288 6 (3335,10099,3334) 100
200 1,11,11 (0,-9,10) {11,11,1) (16,-58,0) (2434,4578,13415} | 3782 a9 (13335,40199,13324) 200
300 il,u.ug (0,-11,13) | (34,12,1) | (13,-11,0) | {4242,8074,30132) | 7177 101 {30001,90299,30000) 300

Table 2: T.-optimal linear PAs for product of two N x N matrices,

N Petriads Distances Schedule Allocation Min T. Designs 5510/30
(t1.ta.t3) | (k1. k2, k3) i S (Tioods Teamp: Tdrain) | #PE | (sec.)
i 1.3.2) (0,—1,1) (22,1} (1,-1,0) {7.16,6) 7 -
8 Ez.x.s) (0,-1,3) (5,1,1) (3,-1,0) (22,50,23) 29 1
18 {1,3,4) {0,~2,3) (4,3,1) (3,~2,0} (69,121,90) 76 18
az (1,4,7) (0,—3,4) (7,4,1) (4,—2,0) (167,373,351) 218 1161
64 {6,5,8) {5.:4,—7) (8,5,6) (=-7,4,5) (649,1198,531) 1009 176
100 (7,7,9) {6,5,—8) (8,7.7) (~8,5,8) {1249,2278,925) 1882 483
200 {(9,8,14) (8,7,—13) (14,8,9) {-13,7,8) (3216,6170,2912) 5573 3400
300 || (11,11,16) [ (10,9,~15) | {16,21,21) | (-15,9,10) (6061,11363,4935) 10167 10903

Note that the designs in Table 1 requires C to be
stationary {as k; = 0), and A and B moving. These
design are found by optimizing Teomp and are not af-
fected by the values of Ty4rgin. We further note that
the designs in Table 2 are based on optimizing T,. As
aresult, they have less total completion time and more
#P Es than the corresponding designs in Table 1.

Table 2 shows that for N up to 35, the optimal de-
signs for 7. have stationary output matrix C. For
N > 35, the optimal designs to minimize T, have
moving input and output matrices. To arrive at this
conclusion, we need to compute the lower and upper
bounds of Tyrain (Tikain and TEo..) when C is sta-
tionary. Given N? elements in the PA to be drained,
we assume that each PE in the PA has 3 input and 3

output ports (one each for A, B, C). Hence, 9 .
can be estimated as {NTz] To compute TEb . we de-

velop a heuristic drain schedule for elements of C when
computation in the PA is completed. (It is possible to
start draining elements of C even before computations
in the PA are completed; however, the resulting low-
er and upper bounds will be much mere complex and
will be case dependent.} For N < 35, we found that
designs with stationary C have smaller T, even when
Ty .. is used as compared to the best designs when
C is moving. On the other hand, for N > 35, designs
with moving C have smaller T, as compared to design-
8 with stationary C even when T% . is used. These
lead us to conclude that C should be stationary for
N < 35 and moving for N > 35.

It is important to point out that the objective used

301

(whether to minimize Tcomp o1 T) depends on the ap-
plication. If the linear PA is used to evaluate a single
matrix product, then minimizing T, will be importan-
t. On the other hand, if the PA is used for pipelined
evaluation of matrix products, then minimizing Teomp
may be important.

If the objective is to minimize #PF, then Theo-
rem 1 characterizes the # P E-optimal design.

Theorem 1. The parameters (iy,t2,t3) = (N, 1,1)
and (ky, k2, k3) = (0,0,1) result in a linear P4 with
o primary ebjective of minimizing the number of PEs,
and a secondary objective of minimizing lhe comple-
tion iime.

Note that in the optimal-# PFE designs, input A
and output C are stationary (preloaded) with each
PE containing one row of A and C. Examples of these
minimum-#PE designs are shown in Table 1. From
(6) and (8), the corresponding DM parameter for the
minimum-#PE designs are I = [1,1, N]* and 8§ =
[1,0,0]t.

As a comparison, Table 3 shows the values of
Toads Teomp, Tdrain, and # P F for designs obtained by
Lee and Kedem (LK) [5] and Shang and Fortes (SF)
{4]. These designs are feasible ones that do not opti-
mize T;, Teomp, of #F E. The following table presents

the parameters of these designs as well as the corre-
sponding GPM parameters.

Method I -] (t1,t2,3) (‘1,k:,k;)
LK [1,2,N-1]* [1,1,-1} (N -1,2,1) {-1,1,1)
SF [1,. v -1,1)" [1,1,-1]* (1, N -1,1}) (-1,1,1)



Table 3: Feasible designs found by DM (7. =
(Tlaada Tcomp: le'a"ﬂ)) .

Designs by LK (5] Designs by 5F 14]

N T #FPE T #PE ||
3 711.9) T 17.5.5) 7
T {19,55,73) 19 (67,49,13) 19
15 (43,339,393) 43 (379,225,28) 43
31 (91,991,1801) 91 (1771,961,61) 91
83 (187,4031,7688) 187 (7637,3969,125) 187
101 301,10301,20001 30 (19901,10201,201 301
201 Esm.wem,soom 601 || (79801,40401,401 601
301 || (po1,90901,180001) | o1 || (179701,90605,601) | 901

Comparing the results in Tables 1 and 2, we found,
for instance, that for a problem of size 200, the T.-
optimal design is 5.44 times faster than the #PE-
optimal design in terms of completion time, and uses
27.87 times more PEs than the # P E-optimal design.
(The T;-optimal design for N = 200 requires 12,298
time units and 5573 PEs, whereas the # P E-optimal
design requires 66,868 time units and 200 PEs.) A
designer might be unwilling to settle for either the
large number of PEs required in the minimum-time
design or the long completion time of the minimum-
processor design. In practice, there may be bounds
on the number of processors or the completion time
or both. In the following, we present optimal designs
with bounds on T, and #PFE.

Figure 2 shows how #PE varies with T; for 2 d-
ifferent problem sizes: N = 50, and 100. The y-axis
#PE is normalised by #PE™* (processor count of
the minimum-7. design}), and the x-axis 7. is nor-
malised by 7% (completion time of the minimum-
processor design). This lets us compare different prob-
lem sizes uniformly on the same scale. It is also clear
from Figure 2 that there are better alternatives than
the time-optimal or #P E-optimal designs.

Given the bound T*® (resp. #PE™?) the designer
can use Figure 2 to find the minimum #PE (resp. T.)
required and decide (possibly from a cost perspective)
if it is acceptable. The designer can exploit the ini-
tial steep decline in the plots to choose an alternative
design that trades performance for cost. For instance,
the minimum # P E required for N = 50 drops by 43%
for only a 15% increase in completion time.

If both T, and #PE are bounded from above, then
we draw a horizontal line across the graph for the de-
sired bound on #PE. The intersection between this
line and the stepped curve represents the minimum Tt
needed for any feasible design. If this minimum 7T is
less than the desired T, then a feasible design can be
obtained that represents the best design under both
time and processor constraints.

1 1 T T T T T

T
N =50, T_comp —

L A
0.9 \_ N=30, - Te —
8 F Nw 100, T_comp ----- 4
o H N =100, Te —-
7 F
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o
i*.3
T

02 a3 0.4 Qa5 0.6 07 08 0.9 i
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Figure 2: Performance trade-offs: Variation in #PFE
with T or Teomp. The plots are given for two problem
sizes N = 50 and 100.

Figure 2 also shows the trade-offs when Teomp is
bounded instead of T;. These plots (denoted by Teomy
in Figure 2) are obtained by computing the comple-
tion times T. of designs that optimize T omp. Given a
bound T%?, we can see that the number of processors
obtained by minimizing T, is less than or equal to the
number of processors obtained by minimizing Teomp-
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