Polynomial Programming Using Groebner Bases

*

Yao-Jen Chang and Benjamin W. Wah
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801
{chang,wah}@manip.crhc.uiuc. edu

Abstract

Finding the global optimal solufion for a general
nonlinear program is o difficull task ezcept for very s-
mall problemas. In this paper we identify e class of non-
linear programming problems called polynomial pro-
gramming problems (PP). A polynomial program is
an epiimization problem with a scalar polynomial ob-
Jective function and o set of polynomial constraints.
By using Groebner Bases, we can deiermine the glob-
al minimum of a polynomial program in o reasonable
amount of time and memory.

1 Introduction

In almost every engineering discipline, the need for
optimizing a particular application at hand arises con-
stantly., In engineering applications, global solutions
mean the most efficient use of resources under practi-
cal constraints.

Optimization techniques have been a fruitful do-
main in engineering research. For linear and quadratic
programming problems, efficient algorithms have been
developed to guarantee global solutions with convexi-
ty. For general nonlinear programs, various optimiza-
tion procedures have been designed; however, most of
these procedures aim at finding local solutions while
exploiting differential information (such as gradient)
in one form eor anecther.

A general nonlinear program is often too complex
for us to find its global solution. In this paper, we
propose a class of nonlinear programming problem-
s called polynomial programming problems. A poly-
nomial program is a mathematical program with a

*Reacarch supported by National Science Foundation Grant
MIP 92.18715 and Joint Services Electronic Program Contract
JSEP No0014-90-J-1270,

Proc. Computer Software and Applications Conference, Nov.
1884.

0730-3157/94 $04.00 © 1994 IEEE

Nondinear Programmin
ial Programming

Quatkatic Progralpming

r Progfamming

Figure 1: Mathematical Programming Hierarchy

polynoemial scalar objective function constrained by a
polynomial system of equations. Polynomial programs
specialize to linear programs if both the objective and
constraint set are linear, and specialize to guadratic
progreams if the objective is a second-degree polyno-
mial and the constraint set is linear. The relation
between polynomial programming problems and oth-
er mathematical programming problems is shown in
Figure 1.

A polynomial program consists of a polynomial ob-
jective function and a set of polynomial constraint e-
quations. In general, it is not a convex problem due
to the nonlinear terms that may arise in the objec-
tive and/or constraints. In this paper, we assume that
a polynomial programming {PP) problem is expressed
in the following form.

minimize f(z)

subjectto: P(z)=0

where z is an n-dimensional vector, f(.) is a scalar
function, and P(z) is a system of m polynomial equa-

£ tjons.
In this paper, we propose a systematic procedure

for determining global optimal solutions for polyno-
mial programs. Without loss of generality, we assume
hat minimal solutions are to be found. We first trans-
' form a polynomial program into a Lagrangian prob-
' jem. Based on the notion of Groebner basis, we then
- reduce the Lagrangian problem to a canonical form
by symbolic substitution and simplification. Finally,
- we use numerical back substitution to locate all ex-
treme solutions in the reduced Lagrangian problem.
" Phe idea in this algorithm is to preserve all the ex-
* trema by maintaining the algebraic structure of these
extrema while performing symbolic reduction. To en-
~ gure that a global solution can be cbtained, the nu-
" merical isolation of global optimal solution is delayed
" until the mathematical form becomes robust enough
to tolerate numerical errors.

2 Modeling Power of Polynomial Pro-
gramming

Polynomial programs have a wide spectrum of ap-
plications. Many examples can be found in [1, 2]. A
typical chemical equilibrium system can be modeled
by ten to twenty equations in ten to twenty unknowns.
In robotics, a six-joint robot can involve a polynomial
program with eighteen equations in twelve unkrown-
5. Multi-start optimization methods have been used
extensively to obtain beiter solutions among possibly
many local minima.

Polynomial programming generalizes linear and
quadratic programming and can model engineering
applications that are expressed by polynomial equa-
tions. For problems with transcendental terms such
as sin, log, and radicals, Taylor series expansion can
be used to reformulate the problem into a polynomial
program.
iFrom a theoretical aspect, PP can be shown to
" model Integer Linear Programming problems (ILP).

Consider a binary integer linear program (BILP):

minimize ciz

subject to: Az = b

where z is a binary number, 4 is an m-by-n ma-
frix, b is an m vector, and c is an n-vector. The
equivalent PP formulation of the BILP is as follows.

CTﬁb

Az = b
Diag[z) Diag|z]

minimize
subject to:

Diaglz],

237

where Diag[z] is the diagonal matrix with the value
of z in the leading diagonal, and 0 elsewhere.

As alast example, we show the representation of a
3-SATISFIABILITY (3-SAT) problem by a system of
polynomial equations. Although a polynomial system
at most amounts to the constraint set in a polynomial
progtam, it is still as difficult as its optimization ver-
gion with a polynomial objective function. We illus-
trate the following problem conversion by considering
a 3-SAT example in conjunctive normal form (CNF).

(FivezzVey) Alzy VI3 Vay)

The problem is to either find a satisfying assignment
for the above logical expression if it is satisfiable or
disprove its satisfiability. There are various ways to
transform the problem; an example of an equivalent
polynomial system is as follows.

= 0
= 0

21(22 - 1)(2!4 -_ 1)
(31 il 1)23(24 - 1)

In this transformation, we rewrite each clause in the
Boolean expression into a third-degree polynomial e-
quation by the following rules:

e a positive literal [is replaced by (I — 1};
» a negated literal [is replaced by {; and
e V is replaced by *.

The 3-SAT problem is satisfiable if and only if the
polynomial system is consistent.

3 Global Optimization of Polynomial
Programs

Numerical optimization algorithms existed to date
mainlty rely on differential information such as gradi-
ents, Hessian, or their tailored modifications, to make
progress iteratively, Unfortunately, differential infor-
mation, no matter what form it takes, only provides
local geometric information in the vicinity of the cur-
rent position, Lacking a view of the entire solution
space, almost all such algorithms are designed to find
only local solutions.

In this paper, we introduce the notion of Groebner
basis as a useful method for finding optimal solutions
in polynomial programming. To apply Groebner basis
theory, we need to consider the Lagrangian problem
associated with the original polynomial program. The

Lagrangian for a polynomial program is defined as fol-
lows.

L(z,) = f(z) + ATP(2)

where) is the vector of Lagrange multipliers. Dif-
ferentiating this expression with respect to = and A,
we obtain the corresponding Lagrangian Problem that
finds z and A such that

L(z,A)=0.

The Lagrangian problem gives the first-order neces-
sary condition for optimality. All the global and local
extrema for the original optimization problems are so-
Iutions to the Lagrangian problem. Hence, if one can
solve the Lagrangian problem and obtain all its solu-
tions, then obtaining the global minimum becomes a
more manageable task.

The Lagrangian problem associated with a poly-
nomial program consists of a system of polynomial
equations. More often than not, the polynomial sys-
tem is strongly coupled in the sense that any solution
to the entire system cannot start with a single equa-
tion followed by back substitution to the others. We
need a systematic procedure to simplify the polyno-
mial system so that after simplification we can ob-
tain the roots without much difficulty. We know that
Gaussian elimination serves this purpose for a linear
gystem. Buchberger carried this procedure one step
further to extend Gaussian elimination to polynomial
systems [3].

Groebner Basis. A Groebner basis for a polyno-
mial system is a canonical form that represents the
original system. It can be shown that a Groebner ba-
sis contains the same information as the original set of
polynomials, although it may contain more polynomi-
als than the original set. However, through decoupling
procedures, Groebner basis reduces the original prob-
lem to a form that allows us to solve the reduced set
of equations by back substitution, which is extremely
difficult to do in the original problem. The following
properties shows the usefulness of Groebner Bases.

Properties of Groebner Basis
1. Every polynomial system has a Groebner basis.

2. Two polynomial systems are equivalent if and on-
ly if they have the same Groebner basis.

3. A polynomial system is inconsistent if and only if
its Groebner basis contains a non-zero constant.

238

4, Groebner bases are finite,

These results have been stated more precisely by
MacCallum and Wright (1991) [4] and Buchberger
(1983) [3]. These results show that Groebner bases
always exist, are canonical and finite, and are able to
derive inconsistencies if the original set of equations
are inconsistent.

The algorithm for constructing Groebner bases is
due to Buchberger (1965) [5]. We do not intend to
state it in a rigorous and formal fashion. Instead, we
give the following pseudo code.

Groebner Basis Construction Algorithm
Given P: a polynomial system consisting of pi,ps,
Py G = {P}
While (Not Completely Reduced)
Select p;, pj €EG
hij = LCM(PT(p:), PT(p;))

FiDi — mﬁ""ﬁ P

Pi

If (s;; # 0) Then G = GU {3;,;}

Sij =

where PT(p;) stands for the Principal Term of poly-
nomial equation p;, and LCM stands for least common
multiple,

The Groebner basis G is obtained and the poly-
nomial system completely reduced if and only if a;;
reduces to zero for every pair of polynomials p; and
p; in G. If any s;; does not reduce to zero, then it
is included in G, and the test is repeated. This is the
essence of the algorithm used to construct a Groebner
basis. Principal terms are defined with respect to an
ordering that is lexicographic or inverse lexicograph-
ic. Lagard (1983) [6] has shown that lexicographic
orderings lead to better bounds on the degree of the
Groebner basis obtained. We see in this algorithm
that s; ; is defined such that principal terms p; and p;
ate cancelled in s; ;.

The algorithm always terminates and gives the
Groebner basis for the original polynomial system.
However, its computational complexity is still an open
research problem.

Global Optimization of Polynomial Program-
s. Based on Groebner bases, a global optimization
algorithm can be readily constructed as follows.

1. Generate L(z, A).

2. Generate 7L(z, A) = 0 using symbolic differenti-
ation to obtain the Lagrangian formulation.

3. Apply Buchberger’s Algorithm to 7L{z,A) = 0.

4. Back-substitute by using a numerical root finder.
5, Compute f(z) for each set of roots.

6. Sort the values of f(z) obtained in increasing or-
der.

7. Check the second-order necessary condition until
the firat minimum is found.

The first three steps need to be carried out by sym-
bolic computation so that the algebraic structure of
the optimization problem is maintained in spite of
the transformations and reductions made. The re-
sulting Groebner basis is much easier to solve than
vL(z,A) = 0 because of the minimal degree of cou-
pling achieved. In essence, Groebner basis reduction
produces a triangular form of the system in which the
last equation can be “trivially” solved, and the re-
mainder of the triangular system, iteratively processed
by “back-substitution.” Since the optimality of La-
grangian problems is based on first-order differential
equations, the resulting solution may contain a mix of
minima and maxima, and the second-order differen-
tial of the Lagrangian condition has to be checked to
- ensure that the final extremum obtained is indeed a
minimum.

4 Tlustrative Examples

In this section, we demonstrate the ability of the
optimization algorithm presented in the last section
to find global optima for general polynomial program-
s. The first two problems are adapted from Nering and
Tucker (1993} [7] and Barbeau (1989) [8], respective-
ly. The third problem is a famous problem in control
theory, namely, the trust-region problem. In the last
problem, we show how a general nonlinear program
can be approximated by a polynomial program via
Taylor series expansion and then solved by our algo-
rithm.

Polynomial Program 1

f{51,$2,$3)= m1=f=22:f33
—6+z itz bz’ =0
Ty 4+ 29— 23 = 0

minimize

subject to:

Since there ate two equality constraints, two Lagrange
multipliers, A; and Az, are introduced to formulate the
Lagrangian problem. To locate all the extrema, the re-
sulting Lagrangian problem will involve solving a sys-
tem of polynomial equations, 7 L{zy, =2, 23, A1, Ag) =

239

0 or explicitly expressed as

Az +2A1 @y + 22% 23
Az+2h 2+ 271223
“da+z12® +22 22
—6+ 2,7 + 3 + z3°

Ty + 22— T3

[
oo o o o

Buchberger’s algorithm is then applied to perform as
much decoupling as possible. One step of Buchberg-
er's algorithm is carried out here to illustrate the
algorithm. Consider the first two equations in It-
eration one. Their principal terms are z;?z3 and
2y ¢ £z, respectively. hy gz, the LCM of this pair
of principal terms, is 2 ©1 32 3. Hence, 81,3, the new
polynomial to be added into the basis, is 2z1 (A2 +
22y + 222 23) — 22(Az + 22123 + 22133 23), or
2z A2 + 42, 312 —Zady — 22 322 after simpliﬁca,~
tion. Through such iterative reductions, the Lagra-
gian problem can then be simplified to the following
set of equations.

1225 — 1122 +22,° = 0
2z (—6+ 42,%) 23 = z2 (-3 +2 z2?)
— (mz 23} + za? 3 — my®
21 = —¥2+ 23
3N = wzz (-—3 + 322)
3y = 22 (--6 + 2522)

We see that these equations bear a triangular form
that can readily be solved by back substitution. Af-
ter a sequence of numerical computations as speci-
fied in the global optimization procedure, we obtain
six solutions to the Lagrangian problem that evaluate
f to {—4.0, —4.0, 0, 0, 2.25, 2.25, 2.25, 2.25}. The
minimum of f is simply —4 with (21, 23, z3) equal to
(-1,2,1) or (1,—-2,—1).

Polynomial Program 2

mazimize f{z1,22) = 21+ z3°
. -9z
subject to: N 2= 0
9 g
312'— ——-—*“‘2’51332-}-'&24: 0

8

Applying the global optimization procedure, f can
take values from {0., 1.25, 1.5, 2.39062}, giving
2.39062 as the maximum when 2, = zz = 1.125. We
have observed that the number of solutions to the La-
grangian problem is ten if complex roots are also taken
into account. Since complex roots are not relevant in
optimization problems, they are simply ignored.

Polynomial Program 8 . Given an n-by-n sym-
metric matrix A, an n-vector b, and a scalar e, the
following polynomial program

minimize zTAz+bz

"
subject to: ||m|§g =Z:c? =a?
(3]

is the Trust-Region Problem studied by Forsythe and
Golub (1965) [9], Spjoetvoll (1972) [10], and Lyle and
Szularz {1994) [11]). It is equivalent to minimizing a
second-degree polynomial equation in the unit sphere.
Historically, eigensystems are analyzed to solve this
problem numerically. Since this problem can be con-
veniently parameterized, it serves as a good tool to
study the complexity of sclving general polynomial
programs.

Using the global optimization procedure, we con-
ducted a series of experiments to evaluate the per-
formance of our algorithm for this class of nonlinear
programs with larger sizes. The CPU time required
to obtain the Groebner bases is collected for random-
ly generated problems using Mathematica running on
a Sun Sparc 10/30 workstation.

r

Trust Region Problem i

size | Groebner root
L.D. (n) | reduction | finding
trp9 g 15.6 s 19.8 s
trpll 11 44.Ts 18.8 s
trpl3 13 i81.9s 50.1s
trplb 15 101.2s | 735.9s
trpl? 17 331.7s | 20533 s

We see the algebraic reduction only takes a limited
amount of time and is reasonable when one needs to
find the global optimal solution. The actual run time
for solving these problems will be longer if we take
into account numerical steps following symbolic sim-
plification.

Polynomial Program 4
min 2z% + 222 — cos(z; + z2) — cos(zy — =) + 2

The problem has a global minimum 0 at
(z1, £2)=(0, 0) and an infinite number of local minima.
It would be very difficult to obtain the global optimum
using common namerical optimization methods uniess
the starting point is very close to the origin. Our glob-
al optimization method does not rely on good starting
points. To apply our algorithm, transcendental terms

240

have to be approximated by their Taylor series expap.
gions so that a polynomial program can be formulated,
Expanding the power series to the 7-th order term, we
have

I Th z"® 2 oz lw,?
3z, — -+ 3+ 32 — B4

rminimaize ;

z2°%

malza® ozp’ | mlsgl
24 360

74 i3
With little difficulty, we are able to find a good ap-
proximate global solution. It takes only 0.88 seconds
to obtain the Groebner basis followed by 0.7 second-
s in finding the minimum. The approximatie solution
found is (z;,23) = (0.088185,0.088185), which gives
0.0469053 for the objective value. In general, postpro-
cessing by numerical-descent methods can be used to
obtain the true optimal solution from the approximate
global solution. Note that the latter step depends
on the accuracy in representing the original nonlin-
ear function by Taylor series expansion. The accuracy
required is likely to be problem-dependent.

5 Conclusions

In this paper, we have identified a class of nonlinear
constrained optimization problems called polynomial
programming problems. This class of problems can
be used to model many real-world applications as well
as theoretically interesting problems. Based on La-
grange formulations, we propose a deterministic global
optimization procedure for finding optimal solution-
s of a polynomial program. Our algorithm employs
both symbolic and numeric computations; the sym-
bolic part concerns the generation of Groebner bases
as a canonical form for Lagrange formulations. We
find that Groebner Bases can remove as much coupling
as possible in the Lagrange formulations, resuliing a
triangular system of equations that can be solved by
numerical back substitution. Finally, we illustrate cur
algorithm on some interesting example problems.

References

[1] C. A. Floudas and P. M. Pardalos, “A collec-
tion of test problems for constrained global op-
timization algorithms,” in Lecture Notes in Com-
puter Science (G. Goos and J. Hartmanis, eds.),
Springer-Verlag, 19580.

A. Morgan, Solving Polynomial Systems Us-
ing Continuation for Engineering and Scientific
Problems. Prentice-Hall, 1987,

(2]

(3]

[4]

[6]

(10}

1)

B. Buchberger, “A note on the complexity of
construction groebner-bases,” in Lecture Notes in
Computer Science, pp. 137145, Springer-Verlag,
1983.

M. MacCallum and F. Wright, Algebraic Comput-
ing with Reduce, Oxford University Press, 1991.

B. Buchberger, An algorithm for finding a basis
for the residue class ring of a zero-dimensional
polynomial ideal. PhD thesis, Univ. of Innsbruck,
Austria: Math, Inst., 1965.

D. Larard, “Groebner bases, gaussian elimination
and resolution of systems of algebraic equations,”
in Lecture Notes in Compuler Science, pp. 146-
156, Springer-Verlag, 1983.

E. D. Nering and A. W, Tucker, Linear Programs
and Related Problems. Academic Press, 1993.

E. 1. Barbeau, Polynomials. Springer-Verlag,
1989.

G. E. Forsythe and G. H. Golub, “On the station-
ary values of a second degree polynomial on the
unit sphere,” SIAM J. on Applied Mathematics,
vol. 13, pp. 1050-1068, 1965,

E. Spjoetvoll, “A note on a theorem of forsythe
and golub,” SIAM J. on Applied Muathematics,
vol. 23, no. 3, pp. 307-311, 1972,

S. Lyle and M. Szularz, “Local minima of the
trust region problem,” Journal of Optimizalion
Theory and Applications, vol. 80, January 1994.

241

