A COMPARATIVE STUDY OF IDA*-STYLE SEARCHES *

Benjamin W. Wah and Yi Shang
Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, IL 61801

{wah,shang}@manip.crhc.uiuc.edu

Abstract

In this paper, we study the performance of various
IDA*-siyle searches and investigate methods to im-
prove their performance by predicting in each stage the
threshold to use for pruning. We first present three
models to approzimate the distribution of number of
search nodes by lower bounds: exponential, geomeiric,
and linear, and illustrate these disiributions based on
some well-known combinaiorial search problems. We
then show the performance of an ideal IDAY algorith-
m ond identify reasons why ezisiing IDA*-style algo-
rithms perfoerm well. In practice, we will be cble to
know from previous ezperience the distribuiion for a
given problem instance but will not be able to deter-
mine the parameters of the distribuiion. Hence, we
develop RIDA*, a method that estimates dynamically
the parameters of the distribuiion, and predicts the best
threshold to use. Finally, we compare the performance
of several IDA *-style algorithms — Korf's IDA¥, RI-
DA* IDA*_CR aend DFS* — on several application
problems, and identify conditions under which each of
these algorithms will perform well.

1 Introduction

Many search problems for finding optimal solutions
in combinatorially large solution spaces are NP-hard
and are solved by search algorithms that may require
exponential time and space. The search algorithm
that expands the minimum number of nodes before
finding the optimal solution is the best-first search

*Research was supported partially by National Science Foun-
dation Grant MIP 92-18715 and by National Acronautics and
Space Administration NAG 1-613.

Proceedings of 6th IEEE International Conference on Tools
with Artificiel Intelligence, November, 1994

290
1063-6730/94 $4.00 © 1994 IEEE

(BFS). However, it requires an exponential amount of
space. A guided depth-first search (GDF5 or depth-
first branch-and-bound search), on the other hand,
requires memory space linear in the size of the prob-
lem. However, with a lack of a good pruning function,
GDFS is prone to search far deeper than where the
optimal solution lies.

In his seminal paper, Korf presented iterative deep-
ening A* or IDA* [1}, a search method that operates
in a memory space linear in the size of the problem and
that can approach asymptotically the behavior of A*
(a best-first search with an admissible heuristic func-
tion). Like A* it requires an admissible lower-bound
function. It is a variant of depth-first ifferative deep-
ening (DFID): a series of distinct depth-first searches
to progressively greater depths to mimic a breadth-
first search. As was originally described, IDA¥ ini-
tially sets its threshold to the (lower-bound) value of
the root node s, searches depth-first from s, and back-
tracks when it reaches a node whose value exceeds the
threshold. Such a depth-first search is called a stage
or an iteration. If a solution is found in a stage, then
this solution is optimal; if not, IDA* sets the thresh-
old to the smallest value borne by any of the leaves
of the stage. Then it starts the next stage — a new
depth-first search that searches from the root.

Korf originally demonstrated the performance of I
DA* using the 15-puzzle problem [1]. By noting that
there is an exponential growth in the number of search
nodes from one stage to another, it is gnaranteed that
the last depth-first search has an overhead that over-
whelms the total overhead of all depth-first searches in
previous stages. Korf further noted that the original
IDA* does not perform well on the traveling-salesman
problem, and suggesied improvement by using thresh-
olds sufficiently exceeding the value of the minimam
leaf of the previous stage [2].




@  optimal solution

O cxpanded node initial expansion 10 generale

m active nodes

m nodes evaluated

initially
nodes expatded in
the first iteration
poundary of nodes
expanded ina

Best-first search

nodes expanded in
the last iteration

overshoot in the
{est iteration

Thresheld of the
last iteration

Figure 1: An illustration of MREC. (Nodes in the tree
are by their lower-bound values; thresholds indicate
lower-bound values of nodes ezpanded.}

A number of search algorithms were developed sub-
sequently to improve the performance of the original
IDA*. These algorithms were developed for applica-
tion problems with characteristics that are different
from the 15-puzzle problem. In this context, we define
an ideal IDA* algorithm as one that sets the threshold
in each stage so that the number of nodes searched in
the next stage always grows by a constant ratio. Ex-
amples of the various IDA*-style algorithms proposed
include MREC [3], DFS* [4], and IDA*.CR [5].

MREC [3!is essentially IDA* that uses extra mem-
ory to save active nodes near the root and to avoid
expanding these nodes in every stage. The operations
of MREC is illustrated in Figure 1. IDA* is a special
case of MREC with m = 1. DFS* [4] is a hybrid of
IDA* and GDFS. IDA*.CR [5] is a‘variant of IDA*
that collects some statistics in the search process to
help determine the threshold in the next stage. Table
1 summarizes the information used in these algorithms
and the corresponding strategies. It also lists RIDA%,
an algorithm discussed in Section 3.

Previous IDA*-style algorithms use different infor-
mation and heuristics to predict the best threshold to
use in a stage. Since the information and the heuris-
tics used is generally problem dependent, it is possible
to use other run-time information for this prediction.
We propose in this paper to use the cumulative dis-
tribution of number of search nodes by lower-bound
values,
 Our results presented in this paper are summarized
as follows. 7

® Different problem instances of an application
problem generally have the same cumulative dis-
tribution of number of search nodes by lower-

291

bound values and used during a search. These
disizibutions can be modeled a priori (Section 2).

» Based on these models, we study the behavior of
an ideal IDA* algorithm and explains why exist-
ing IDA*-style algorithms perform well on some
application problems (Section 2).

o We present RIDA*, a new algorithm that uses re-
gression to predict thresholds so that the number
of nodes searched in successive stages grows in a
geometric fashion (Section 3).

e Based on various application problems evaluat-
ed (Section 4), we show conditions under whick
a specific IDA*-style algorithm should be used
{Section 5).

The performance of an IDA*-style algorithm eval-
uated in this paper is compared with that of A*. Let
n4. (resp., nipa«) be the number of nodes expanded
by A* (resp., IDA*-style algorithms). The objective
of designing a good IDA* strategy is to
NIDAx

T4«

minimize

(1)

2 Modeling of an Ideal IDA¥*

In this section, we first present the performance of
an ideal IDA* algorithm. We then study the selection
of thresholds when the distribution of search nodes by
lower bounds is exponential, geometric, or linear.

2.1 Performance of Ideal IDA* Searches

We present in this section the performance of an
ideal IDA* algorithm based on a general statistical
distribution of lower-bound values in a search tree.
Let A(n) be the lower-bound value of node n, Wwhere
k is an admissible function (h{n) < A{m) if mis a
successor of n). Let f(z) be the distribution of the
number of nodes whose lower bounds are less than or
equal to 2, Further, let 63, 82, -, 041 be a sequence
of thresholds in successive stages of an ideal IDA* al-
gorithm, where 8, is the initial threshold and 8,41 the
last.

Let r be the growth ratio maintained by the ideal
IDA* algorithm in successive stages, and

f(8a) = "1 f(61) - 2

When the optimal solution vop: is found in the last
stage, Bn < Uopt < Ony1. The number of nodes ex-
panded by A*is ng. = f(vopt). The number of nodes



Table 1: Information and thresholding strategies used in various IDA*-style algorithms.

. Tnformuafion used in each stage in
Algorithm setting thresholds Strategy
WMinimum lower-bound value of
IDA* active nodes exceeding the cur- | Set the next threshold to this value
rent threshold
MREC Same as IDA* Same as IDA¥
1T 2 Teasible solution has been found, then switch
DFs* Current threshold value to GDFS and continue until the optimal solution
is found; otherwise, double the threshold.
. Choose the next threshold so that the total num-
Lower-bound values of active n- b . s .
* . er of nodes in the buckets within this threshold
IDA*_CR || odes that are pruned as classified | . .
. . is larger than a predefined number b;, where bis a
into discrete ranges of buckets o
user-defined factor and ¢ is stage number.
. e s . Choose the next threshold so thai the estimated
* Cumaulative distribution of lower- .
RIDA number of nodes expanded in the next stage grows
bound values of nodes expanded
by a constant factor

searched by the ideal IDA* algorithm is,

nIpA* = E £{8:) + F'(Bns1)

f=1

(3)

where f/(6y,11) is the number of nodes searched in the
last stage, and F(fn) < f(vopt) < f'(Bn+1) < f(fns1):
If GDFS is used in each stage of the IDA* algorith-
m, then f/{fn41) depends on how many nodes within
fn.41 get pruned in the last stage.

Given Eq. (3), the objective of designing an ideal
IDA* algorithm is to choose r such that

FB(Z=2) + £/ (Bngr)
f('”ozﬂ)
(4)

When 7 > f(vopt)/ F(61), there will only be one stage
in the IDA* algorithm (n = 1) and will be the same
as GDFS. On the other hand, when r — 1, we have
n —» oo. It is obvious that a suitably chosen value of
r will minimize Eq. {4).

In the extreme case in which the optimal solution is
slightly larger than the threshold used in the n'th stage
(f(vopt) = f(8n)+1) and all nodes defined by 6,1 are
searched in the n + P'st stage (f(fns1) = FlBns1));
then nzpa./na. is approximately r?/(r ~ 1), and the
optimal = is 2. (A similar result has been reported by
Korf before.) This is the value of r that minimizes
the overhead of the ideal IDA* algorithm in the worst
case. In the average case, the optimal » depends on the
performance of GDFS and is difficult to characterize
analytically.

For a specific value of r, we need to choose the
6's properly, which are directly related to distribution

NIpA* .
min -—-—— = min
re(l,o0) Tea* re{l,o0)

292

f. In the next three subsections, we model f using
an exponential function, a geometric function, and a
linear function.

2.2 Exponential Model

In this model, the distribution profile of a search
problem is approximated by the following continuous
exponential function.

f(z) = cu™ (5)

where, ¢, a and u are positive real constants, and u is
the branching factor. Eq. (2) becomes

= F(8:)/F(Bi1) = utlBim8-1).,
To achieve the given r, 6; is set as

log r

6; =01+ (6)

alog u

;1—?5;—“, 1DA* keeps
f(8;) increasing in a geometric fashion by ratio 7.
Traveling salesman problems (TSP), production
planning problems (PP), and integer programming
problems (IP) are examples whose distribution of
number of nodes by lower bounds follows an expo-
nential model. As an illustration, we show in Fig-
ure 2 the cumulative distribution for a 16-city fully-
connected symmetric TSP, To verify that the distri-
bution is exponential, we regress a linear function on
the log plot, and show a coefficieni of determination
R? (0 < R® < 1) very close to 1, which indicates a
good fit. In Table 2, we show the mean and standard

By increasing #; by a constant




10000 T T

1000

s00 | o 4

1k L) A TSP example #+ 4

Cumulative Distribution Function

1 1 I
340 380
Lower-Bound Value

1)

Figure 2: Cumulative distribution of nodes in the
search tree by lower-bound values for a 16-city sym-
metric TSP problem instance.

Table 2: Average Coefficient of determination &2 of
50 random instances of TSP, PP, IP and MAZE prob-
lems. (f for the first three problems is exponential,
whereas f for the maze problem is piecewise linear.)

Problem | Mean of R% | Std. Dev. of R?
TSP 0.977 0.021
PP 0.977 0.027
IP 0.972 0.032
MAZE 0.947 0.032

deviation of R? for 50 random instances of each of the
16-city fully connected symmetric TSP, 18-plant PP,
and 30-variable IP problems. Note that the means of
R? for these problems are all very close to 1 and the
standard deviations are very small.

2.3 Geometric Model

In this case, the lower bounds are drawn from a dis-
crete distribution, and the distribution function and r
are defined as follows.

fz) = cul®=] ()
and
£(6:) — o lai]—[afi-1]
F(f:i_1)

Here, u is the average ratio of the number of nodes
with lower bounds at one discrete value to the num-
ber of nodes at the next discrete lower-bound value.
We call r in the discrete case the heuristic branching
factor. Note that r is restricted to 1, u, u?, ... , u*, ....

=

293

The objective of IDA* as defined in Eq. (4) becomes

(8)

. NIDAx
min —
fe(“’l"z:ovllz!"') Thhx

In the following, we assume that the optimal-solution
value is L (that is, f(vop) = f(61)u?), and compute
the optimal s in the worst and average cases.

(1) Optimal s in the worst case. In the worst case,
the optimal solution is not found in the n’th stage be-
cause it is pruned, and IDA* expands all nodes within
threshold 8,1 in the n + 1'st stage before finding the
optimal solution. Hence,

F(Bnt1) = f(Bna) = f(1)ul?
The approximate total number of nodes expanded is

f(gl)uL+a—1(l+u—a _'_u-—z.s + ___)
uL+2'—1

01

NIDAx

Hence, s == k is better than s = & + 1 when (u*+1 —
u—1)(u — 1) > 0. Since u > 1, by this inequality,
s = 11is better than 5 = 2 when » > 1.618; and so on.
Figure 3 shows the optimal # as a function of w.

(2) Optimal s in the average case. The exact analy-
sis in the average case is intractable because it depends
on pruning in GDFS and where the incumbent lies. In
the following, we present a simplified analysis.

In the last stage, #,,,; can have one of the following
values: L, L+1,---, L+ s — 1. Assume that 8, ., can
have any of these values with equal probability 1/s.
(This probability is assumed to be independent of the
number of nodes in each level in the search tree. A
similar analysis can be carried out if we assume Bng
to have a probability that depends on the number of
nodes in a level.)

Next, we find n;ps. for each of these possible
threshold values. Two distinct situations are identi-
fied:

(2) 8ay1 = L+ s — 1. Since the optimal solution is
L, the search in the last stage can be terminated im-
mediately once the optimal solution is found. Assume
on the average that half of the nodes in stage n+1 are
expanded, then (8,11} = 17(6:)u“+*~1. The total
number of nodes expanded is, therefore,

1 1
mpans = 00t (T4 2] @

(b) L < 8py3 < L+ 35— 2. The search in stage
n + 1 cannot be terminated once a feasible solution
is found because this solution cannot be determined
to be optimal unless all nodes with lower bounds less




Worst 107 < 7 1.5 - 2.0 5
C [y *— - ~— U
asc =t a=3 8=l =1
= e = 2
Average | g 2 :l‘l.s 3 20 2.5
1
Case W —-0—i Y & ) - &-=u
=4 =3 = =

Figure 3: Optimal s to minimize nyp 4. /rea..

than this value have been expanded. Assume on the
average that half of the nodes between L and 6,41 are
expanded. The average number of nodes expanded in
the last stage is

F(bny1) = %f(gl)(uLH +ub?)

where 1 = 0,1,-++, 8 — 2. The total number of nodes
expanded by IDA¥ is

e 1 ul-t
L1
- 10
* (2+u‘—1)+ 2j| (10)
Using Eq’s (9) and (10), the average overhead of

IDA*, assuming that 4 can have one of the values of
0,1,:-+,8 — 1 with equal probability, is

F(61)

i
NrpAs«

1 §—1 .
Elnrpas] = 3 Zn}pm
i=0
ub(u* —1) (1 1 s~1 1 1
- f(gl)[a(u—l) (§+u‘—1)+ 25 ]

By this equation, s = k is better than s = k4 1 when

Rubt? — (B + Dubtl —1
ku(k + 1)(u — 1)

where ©w > 1 and & > 0. Thus, s = 1 is better than
5 = 2 when © > 2.206; and so on. Figure 3 shows the
optimal s values for the average case. Further, when u
is less than 2.206, the optimal s is larger in the average
case than that in the worst case.

Vertex-cover (VC) and 15-puzsle problems are ex-
amples whose distribution of number of nodes by lower
bounds can be modeled by a geometric distribution.
We collected the average value of u for 50 random in-
stances of the 30-vertex VC problem, and found the
average 1 to be 9.23 and standard deviation to be 5.22.
For the first 50 15-puzzle problems studied by Korf, [1]
the average u is 10.22, and standard deviation is 8.24.
For these problems, s = 1 is the optimal choice. (Our
analysis is approximate since in any search problem,
u is not constant.) This choice coincides with Kor-
f’s original IDA¥ algorithm in solving the 15-puzzle
problem.

>0

2.4 Linear Model

The distribution of the number of nodes by lower
bounds is modeled by the following linear function:

flzg)=ax+b (11)

where a and b are constants and a > 0. Eq. (2)
becomes

o= f(ﬂ.) _ ab; + b
f(8i1)  abi_1+b

Since r = 2 is the optimal value in the worst case,
doubling 8 in each stage is near optimal. DFS* im-
plements this strategy and doubles the threshold in
consecutive stages. As a result, DFS* performs very
well for problems in this class.

The maze problem is an example whose lower-
bound values follow a continuous linear distribution.
We show in Table 2 the average coefficient of determi-
nation R? of linear regression and the corresponding
standard deviation for 50 random instances of the 40-
by-40 maze problem. As the average R? is very close
to 1, the fit is close.

=> 0 = r6i1 + 5’—(";—1)

3 Dynamic Determination of Thresh-
olds in RIDA¥*

We have shown in the last section that there ex-
ists an optimal r that can minimize the number of
nodes expanded for a problem instance. In this sec-
tion, we propose RIDA*, a method that uses run-time
distribution on lower bounds and applies regression to
determine the best threshold to use in each stage. Our
goal is to allow the overheads in successive stages to
grow in a geometric fashion with a constant ratio.

RIDA* assumes that the distribution function of
lower bounds (exponential, geometric, or linear) for
an application problem is known. The parameters of
this function are estimated by regressing on the (par-
tial) distribution of lower bounds obtained at run time
using a polynomial fit {first-order or second-erder) or
an exponential fit. The threshold to be used in the
next stage is then estimated using the regression func-
tion to achieve the desired growth ratio r.

In many search problems (such as symmetric TSP-
5), feasible solutions can be found easily. The best of
these solutions is kept in an incumbent, which is used
in RIDA¥ to further reduce the search overhead. Re-
call that the overhead in the last stage of an IDA* al-
gorithm dominates the overhead of all previous stages.
Hence, in a stage where we have an incumbent value




.5t is slightly larger than the threshold of this stage,
¥ en instead of completing this stage and start the fi-
-“31 stage, we can reduce the overhead by combining
f.1.c 1ast two stages into one. .
i To summarize, RIDA* uses the following rules to
ompute the threshold in each stage.

Extend the threshold so that the number of n-
odes expanded in the next stage increases in a
geometrical fashion with constant r.

3 1.

9. If the threshold does not include at least one un-
expanded node, then the threshold is extended
to a lower-bound value that includes at least one
such node.

3. If f(¥inc), the predicted number of nodes to be
expanded when the threshold is set at the cur-
rent incumbent valie vinc, is less than twice the
number of nodes based on the predicted threshold
in the next stage (2F(fir1) = 2rf(6:)), then fiyy
for the next stage is set 10 Vine-

4 Experimental Results

The performance of various IDA*-style algorithms
are studied by simulations using 30-vertex VC, 16-city
" fully connected symmetric TSP, 18-plant PP, and 30-
variable IP problems.

We evaluated all the search algorithms using 50 ran-
domly generated instances of each application prob-
lem. RIDA* always expanded 100 initial nodes using
A* in order for us to apply regression for picking the
first threshold. The desired growth ratio r was set to
3 for both RIDA* and IDA* CR.
¢, Table 3 shows the normalized overheads of the vari-
i ous algorithms over A*, and Table 4 shows the average
ranks of the various algorithms. Being the best for a
problem instance gives the algorithm rank 1; whereas
being the worst gives it rank 4.

As is discussed in Section 2, the lower bounds of
VC are discrete and can be modeled by a geometric
distribution. For this problem, IDA* has the smallest
f. average overhead (as the heuristic branching degree
of the problem is large). RIDA* has slightly more
‘overhead than IDA*. IDA*_ CR performs worse than
‘IDA* and RIDA* on the average, and also has large
“variance in its behavior.

For TSP, PP, and IP, their lower bounds are con-

ions. Tables 3 and 4 show the experimental results
;of these problems. For all these problems, IDA¥ does

tinuous and can be modeled by exponential distribu--

not perform well. For TSP, RIDA* gives the best av-
erage normalized overhead; both GDFS and IDA* CR
have large variances, and GDFS has the best average
ranks. Since the number of nodes expanded by A* for
these problems ranges from 95 to 233,410, there are a
few instances in which GDFS and IDA*.CR get very
poor normalized overheads. For PP, GDFS is the best,
and RIDA* is second. For IP, RIDA* is the best, and
GDFS is second.

Our experiments show that RIDA* has the small-
est standard deviation in performance, and its average
performance is very close to that of BFS. GDFS usu-
ally has large standard deviation in performance as
compared to RIDA* and IDA*_CR. The performance
of GDFS depends largely on the quality of the guid-
ance and pruning functions.

We do not show separately the performance of DF-
S* in these tables. For all the problems studied,
DFS*'s strategy of doubling the threshold each time
makes it quickly become GDFS after a few stages. The
performance of DFS* is slightly worse than that of
GDFS for the problems studied,

5 Conclusions

In ihis paper, we have studied various methods for
selecting thresholds in an IDA*-style algorithm. Our
goal is to select thresholds so that the number of n-
odes searched in successive stages grows in a geometric
fashion with a constant ratio. We have modeled the
distribution of lower-bound values by exponential, ge-
ometric, and linear distributions, and have derived the
optimal thresholds in each case. ‘We have also shown
conditions under which Kotf’s original IDA* algorith-
m, Vempaty, Kumar, and Kori's DFS* algorithm, and
Sarkar, et al’s IDA* CR will perform the best. Fi-
nally, we have presented RIDA®, a method that uses
run-time distribution on lower bounds and applies re-
gression to determine the best threshold to use in each
stage.

We have evaluated these IDA*-style algorithm-
s using random instances of the traveling-salesman,
integer-programming, vertex-cover, and production-
planning problems. We have found IDA* to be op-
timal when lower bounds are discrete and the heuris-
tic branching factor is large (as in vertex-cover and
15-puzzle problems). DFS* performs well when the
distribution of lower bounds is linear (as in mage prob-
lems). Further, DFS* is similar to GDFS and, there-
fore, performs well when GDFS performs well (as in
production-planning problems). We have found that

295



Table 3: Summary of normalized overheads of various IDA*-style algorithms over BFS for 50 instances of VC,

TSP, PP and IP.

Prob. | GDFS (DFS*) IDA* RIDA* IDA* CR
Avg. | S.D. | Avg. | S.D. Avg. | 8.D. | Avg. | S.D.

VG 13.68 | 30.48 1.41 0.49 1.43 | 0.49 | 2.37 | 3.92
TSP 2.80 5.90 0.49 2.57 1.76 | 0.20 | 2.33 | 4.32
PP 1.28 024 | 9431 | 36.80 | 1.41 | 0.26 | 1.82 0.50
1P 2.90 3.66 | large | lazge | 2.04 | 0.54 4,47 | 1.19

Table 4: Average rank and the times of being the first rank of various IDA*-style algorithms for 50 instances of

VC, TSP, PP and 1P.

Prob. | GDFS (DFS¥) IDA* RIDA* TDA* _CR
Avg. | # of 1st | Avg. | # of 1st | Avg. | #£ of 1st | Avg. | # of 1st
VvC 3.52 7 1.60 25 2.68 2 2.20 16
TSP 1.82 22 3.94 1] 2.18 15 2.08 13
PP 1.34 35 4.0 1] 1.92 13 2.74 2 -
P 1.68 25 4.0 0 1.54 24 2.78 1 _J
RIDA* performs well when the distribution of lower- References

bound values can be modeled a priori (as in traveling-
salesman and integer-programming problems). Our
experiments also show that RIDA* has the most con-
sistent performance (smallest standard deviation) in
terms of deviations from a best-first search. On the
other hand, IDA*_ CR uses a discrete approximation
of the distribution of lower bounds; its prediction is
usually imprecise and may lead to unpredictable per-
formance.

In summary, for a given problem instance, the best
choice of the IDA*-style algorithm to use is as follows.

1. Use Korf's original IDA* if the distribution of
lower bounds is discrete and geometric with a
large heuristic branching factor.

. Use DFS* if the distribution of lower bounds is
linear or when GDFS performs well.

3. Use RIDA* if the distribution of lower bounds is

{1] R. E. Korf, “Depth-first iterative deepening: An
optimal admissible tree search,” Artificial Intelli-
gence, vol. 27, pp. 97-108, 1985.

[2] R. E. Xorf, “Optimal path finding algorithm-

5, in Search in Artificial Intelligence (L. Kanal

and V. Kumar, eds.), pp. 223-267, New York:

Springer-Verlag, 1988.

A. K. Sen and A. Bagchi, “Fast recursive formula-
tions for best-fist search that allow controlled use
of memory,” Proc. Int’l Joint Conf. on Artificial
Intelligence, (Detroit, MI), pp. 297-302, IJCAIL
Inc, 1989,

N. R. Vempaty, V. Kumar, and R. E. Korf,
“Depth-first vs best-first search,” Proc. National
Conf. on Ariificial Inielligence, {Anaheim, CA),
AAAI, 1991.

exponential.
[5] U. K. Sarkar, P. P. Chakrabarti, S. Ghose,
4. Otherwise, use IDA*_CR. and S. C. D. Sarkar, “Reducing reexpansions in
iterative-deepening search by controlling cutof-
Acknowledgements

The authors would like to thank Dr. Lon-Chan Chu
for providing his software package that implements the
search procedures and application problems studied in
this paper.

296

{ bounds,” Artificiel Intelligence, vol. 50, pp. 207~
221, Elsevier Science Publishers, 1991.




