Statistical Generalization Of Performance-Related Heuristics
for Knowledge-Lean Applications *

Arthur leumwananonthachai and Benjamin W. Wah

Center for Reliable and High Performance Computing
Coordinated Science Laboratory

University of illinois, Urbana-Champaign
1308 West Main Street, Urbana, IL 61801, USA
{arthuri, wah}@manip.crhe.uiuc.edn

Abstract

I this paper, we present new results on the au-
tomated genervalization of performance-related heuris-
fies learned for knowledge-lean applications. We
study methods to stalistically generalize new heuris-
tics learned for some small subsets of a problem space
(using methods such as genetics-based learning) to un-
learned problem subdomains.
stalistical metric called probability of win, By assessing
the performance of heuristics in a range-ndependent
and distribution-independent manner, we can compare

Yur method uses o new

heuristics arross problem subdomains in a consisteni
manner. 1o illustrate our approuch, we show esperi-
mental results on generalizing heuristics learned for se-
quential civcutt testing, VLST cell placement and roul-
ing, and branch-und-bound search. We show thai gen-
eralization can lead to new and robust heurisiics that
perform beiler than the original keuristics across prob-

fern instances of different characteristics.

1 Introduction

Heuristics or heuristic methods (HMs), in general
terrns, are “Strategies using readily accessible though
loosely applicable information to control problem-
solving processes in human being and machines” [1].
They exist as problem sclving procedures in problem
solvers to find (usually) suboptimal solutions for many
engineering applications. Since their design depends
on user experience and is rather ad hoc, it is desirable
to acquire themn automatically by machine iearning.

In this paper, we focus on applications that are
Enowledge-fean, implying that dommain knowledge for
credit assigniment is missing. In this class of ap-

*Reszearch supported by National Science Foundation Grant
MIP 92-18715 and Naiional Azronautics and Space Administra-
ton Grant NAG 1-613.

1EEE International Conference on Tools with Artificial Intel-
ligence, November 1995,

1062-3409/45 $04.0¢ D 1595 [EEE

174

plications, we are interested to learn and generalize
performance-related Hils whose goal is to find solu-
tions with the best numerical performance. Examples
of targeted HMs and applications include svimbolic for-
mula for gniding decisien making process it branch-
and-bound search and a set of numerical carameters
used in a simmulated annealing package for VLSI circuit
placement and routing. (see Section 4).
Genetics-based learning is one of the methods de-
veloped for learning and generalization for the appli-
cations studied in this paper 2 5], This is a form of
genetic al-
There are

learning by induciion that involves applying
gorithms [4] to machine learning problems.
two steps involved in this learning method:

(a) generation and selection of HMs that can better
solve test cases used in learring, as curapared to
the best existing (baseline) HMs;

(b) generalization of the selected IMs tc test cases- .
not seen in learning with the same high level of .
performance as compared to that of the baseline

HMs.

As illustrated in Figure 1, these two steps are generally .
separated in genetics-based learning. p

In this paper, we study statistical generalization of
HMs across test cases of an applicalion with different
performance distributions. When the performance of ;
a HM across different test cases is of different distri- '_
butions, statistical metrics like average cannot be ap-“:‘
plied. Our approach in this paper is to () pa.rtitiOﬁ:l
the domain of test cases into subdomains in such a way
that performance values in a subdomain are indepzfi- .
dent and identically disiribuied (i3.4,), and (b} develop”
conditions under when a M cau be considered to per- -
form well across multiple subdomains. Note that we d® ‘
not modify a HM in order to generalize it across subdo-
raains (as studied in aviificial intelligence {5]) but rather

il

. . ; Database Generalization:

Generation, CEM of Hevristic HM Tenting and
. o R
Testing and | Mabods Evatuation
Selection H [— S vatn
T e R
HM
Pecformance Feedback: .

Heuristic
Method J

Problem Solver

Figure 1: Learning and generalization n knowledge-
Jean applications is based on evaluating a heuristic
method on a test case and on observing its performance
feedback.

define conditions to see whether a HM is generalizable.

Seneralization is important because Jearning time
s often limited. and only a small set of test cases can
be evaluated during learning. Generalization in many
existing genetics-based learning systems [3, 4, 6], 1s a
post-learning verification phase that simply verifies the
generalizability of the Jearned HMs by evaluating them
on a new set of test cases. This approach is suitable
when the test ¢ nsed in learning are representatives
of all the test cases targeted by that problem solver.
When test cases used in generalization have different
‘e H\Ms learned cannot be generalized.

characteristics.

For example. in testing two heuristic methods H M,
and H M, on two sets of test cases TC, and T'Cy, we
find the average performance for My to be {10, 100}
and for M-, to be {150, 5} Tt will be difficult to
say whether H 1/, 1s better than H Mo and which HM
should be used as a general HM for other test cases.

To compare HMs bearing different performance dis-
tributions across different subsets of test cases In an
application, we need to develop a performance metric
that is independent of the actual distributions. We
propose in this paper a new metric called probability
of win that measures the probability that a particular
HM is better than another randomly chosen HM from
a set of learned HMs for a given subset of test cases.
Since probabilities are between 0 and 1, we eliminate
the dependence of HMs on actual performance distri-
butions.

~ This paper is divided into five sections. Section 2
defines problemn space and its partitioning into subdo-
mains. We propose in Section 3 a new metric called
‘I_)r(ﬂ:):‘xlt)i]it,y of win and a new gencralization strategy.
Section 4 reports our experimental results on three real-
world applications. Conclusions are drawn in Section 5.

2 Problem Domain and Subdomain

Giiven an application problem consisting of a collec-
tion of test cases, the first task in learning and gener-
alization is to classify the test cases into domains such
that a unique HM can be designed for each [7]. This
classification step is domain specific and should be car-
ried out by experts in the area.

For instance, consider the problem of generating
test patterns to test VLSI circuits. Previous experi-
ence shows that sequential circuits require tests that
are different from those of combinatorial circuits. Con-
sequently, we can consider combinatorial circuits and
sequential circuits as two different problem domains.

In comparing the performance of HMs in a prob-
lem domain, it is necessary to aggregate their perfor-
mance values into a small number of performance met-
rics (such as average or maximum). Computing these
aggregate metrics is not meaningful when performance
values are of different ranges and distributions across
different subsets of test cases in the domain. In this
case, we need to decompose the domain into smaller
partitions so that quantitative comparison of perfor-
mance of HMs in a partition is possible. We define a
problem subdomain as a partitioning of the domain of
test cases such that performance values of a HM i a
subdomain are i.i.d. Under this condition, it is mean-
ingful to compute the average performance across test
cases in a subdomain. It is important to point out that
performance values may need to be normalized with

respect to those of the basehne HM before aggregated.

We need to know the attributes of an application
in order to classify its test cases, and a set of deci-
sion rules to identify the subdomain to which a test
case belongs. For example, in learning new decompo-
sition HMs in a branch-and-bound search for solving
a traveling-salesman problem (Section 4), we can treat
graph connectivity as an attribute to classify graphs
into subdomains.

In some applications, it may be difficult to deter-
mine the subdomain to which a test case belongs. This
is true because the available attributes may not be well
defined or may be too large to be useful. When we do
not know the attributes to classify test cases into sub-
domains, we can treat each test case as a subdomain by
itself. This works well when the HM to be learned has a
random component: by using different random seeds in
the 1IM, we can obtain statistically valid performance
values of the HM on a test case. We have used this ap-
proach in the two circuit-related applications discussed
in Section 4 and have chosen each circuit as an inde-
pendent subdomain for learning. ‘ ‘

After applying learning to find good HMs for each
to compare their performance

subdomain, we need
This comparison may be diffi-

across subdomains.

: .'-Tablé _I:.-.'M'aximum ~nd average fault coverages of two

. “HMs used in a test-pattern generator with different

randorm seeds.

[Circnit [BM][Maximum FC Average FC
- I L 28.5
5444 gaE 863 848
101 94.9 54.2
S1196 g3 il T 93.6 931

cult because test cases in different subdomains of a
domain may have different performance distributions,
even though they can be evaluated by a common HM.
As a result, the performance of test cases cannot be
compared statistically.

As an example, Table 1 shows the average and maxi-
mum fault coverages of two HMs used in a test-pattern
generator to test sequential circuits. The data indicate
that we cannot average their fault coverages across the
two circuits as the performance distribution of H M1
across the two circuits is not the same as that of
H Msss.

It should now be clear that there can be many sub-
domains in an application, and learning can only be
performed on a small number of them. Consequently,
it is important to generalize HMs learned for a small
number of subdomains to other subdomains. In some
situations, multiple HMs may have to be identified and
applied together at a higher cost to find a solution of
higher quality.

3 QGeneralization of Heuristic Methods
Learned
Given the definition of a problem subdomaln, we
can now identify two issues in generalizing HMs across
test cases. First, we need to evaluate and generalize the
performance of a HM in a single subdomain in a range-
independent and distribution-independent way. Only
then can we address the issue on performance evalua-
tion and generalization across multiple subdomains.
3.1 Performance Evaluation within a Sub-
domain
There are many ways to address the first issue raised
above, and solutions to the second issue depend on the
solution to the first. For instance, scaling and normal-
ization of performance values is a possible way to com-
pare performance in a distribution-independent man-
ner; however, this may lead to new inconsistencies [2}.
- Another way is to rank HMs by their performance val-
ues and use the average ranks of HMs for comparison.
This does not work well because it does not account for
actual differences in performance values, and two HMs
With very close or.very different performance may dif-

fer only by one in their ranks. Further, the maximum
rank of HMs depends on the number of HMs evaluated,
thereby biasing the average ranks of individual HMs.
In this section, we propose a metric called probability
of win to select good HMs within a subdomain.

Puin(hi, dm), the probability-of-win of HM h; in sub-
domain dy,, is defined as the probability that the true
mean of h; (on one performance measure’) is better
than the true mean of HM h; randomly selected from
the pool. When h; is applied on test cases in dm, we
have

Pwin (hi, dm) (1)
_ Z:j;éiP [#:n > “;nlﬁ:na&:n7n:nsﬂ?&?}7n;n]
- |s| —1 ’

where |s|.is the number of HMs under consideration,
and n*, &7, 47", and pi* are, respectively, the numbez
of tests, sample standard deviation, samnple mean, and
true mean of A; in dp,.

Since we are using the average performance metric,
it is a good approximation to use the normal distri-
bution as a distribution of the sample average. The
prabability that h; is better than h; in do. can now be
computed as follows.

Pp > p o, 67 nl i o nl]

I e
w &]

~ 2 - -,_’j . m

\/c;i” /it + 0';? ALY

where ®{z) is the cumulative distribution function for
the N {0, 1) distribution. .

To illustrate the concept, we show in Table 2 the
probabilities of win of four HMs tested to vanous de-
grees. Note that Py is not only related to the sam-
ple mean but also depends on the sampie variance and
number of tests performed. Further, the probability
that h; is better than h; and the probability that h;
is better than h; are both counted in the evaluation.
Hence, the average of Puin over all HMs in a subdo-
main (= 3_; Puwin(hi, dm)/1s]) will be 0.5.

P,:n defined in Eq. (1) is range-independent and
distribution-independent because all performance val-
ues are transformed into probabilities between 0 and 1
independent of the number of HMs evaluated and the
distribution of performance values. It assumes that all
HMs are i.i.d. and takes into account uncertainty in
their sample averages (by using their variances); hence,
it is better than simple scaling that only compresses
performance averages into a range between 0 and 1.
It is also important to point out that the HMs used

)

1Due to space limitation, we do not consider issnes dealing
with multiple performance measures in this paper.

le 2: Probabilities of win of four HMs in dm.

“ g Pwin(hi: dm)

puting Puin 3r€ found by learning; hence, they
y perform well within a subdomain.

.. Performance Evaluation across Subdo-
mains

of the major difficulties in handling multiple
“bdomains is that it may be difficult to aggregate
srmance values statistically from different subdo-
s, and to define the notion that one HM performs
er than another across multiple suhdomains. For
tance, it is not meaningful to find an average of ran-
dom numbers from two different distributions. We ad-
dress this problem using Puin defined in the last sub-
section. '

“First, we assume that when HM h is applied over
rultiple subdomains in partition I1, of subdomains, ail
subdomain are equally kikely. Therefore, we compute
Pyin of h over subdomains in [1, as the average Puin
of h over all subdomains in fl,.

where 11, is the p'th partitien of subdomains in the
“problem domain. The HM picked is the one that maxi-
. mizes Eq. (3). When subdomains are not equally likely
but with known relative weights, we can compute Puin
‘as a weighted average ‘nstead of Eq. (3). HMs picked
. using Eg. 3 generally wins with a high probability
“across most of the subdomains in I, but occasionally
‘may not perform wellin 2 few subdomains. |
.. Second, we consider the problern of finding a good
HM across raultiple subdomains in I, as a multi-
objective optirmization problem. In this case, evaluai-
ing HMs based on & combined objective function (such
as the average Puwin 0 BQ. (3) may lead to inconsis-
tent. conclusions. To alleviate such inconsistencies, we
should treat each subdomain independently and find
a-common HM across all subdomains in [, satislying
some common constraints. Yor example, let d be the
aliowable deviation of Fuin of any chosen HM from
'qﬁ,-n, the maximum Pyin i subdomain m. General-
ization, therefore, amounts o finding i that satisfies
the followiny constraints for every subdomain m € ;.

Puin (h: Tn} > (q::}iﬂ - 6)

Ym e 1, {4)

Propability of Win

3708 s4D0 s526 sB32 s1238
Circutt 1D

Figure 20 Puin of six HMs across five subdomalns in
the test-pattern generation problem.

Here, § may need to refined if there are toc many or)
too few HMs satisfying the constraints. '
To illustrate the generalization procedure, consider
the test-pattern generation problern discussed in Sec- -
tion 2. Assume that learning had been performed on
five circuits (subdomains}, and that the six best HMs
from each subdomain were reported. After fuli evalu-
ation of the 30 HMs (initialized by ten random seeds)
across all five subdomains, we computed Puin of each
HM iu every subdemain. Figure 2 shows the probabil-
ities of win of six of these HMs. If we generalize HMs
based on Eq. {3), then H Ms will be picked since it has
the highest average Puin- Likewise, if we generalize us-
ing Eq. (4}, we will also select H M5, Note that in this
example, no one HM is the best across all subdomains.

4 Experimental Results

To illustrase the generalization procedure described
in Section 3, we present in this section results on gen-
cralization for iwo applications in VLSI design and
branch-and-bound search. These results were obtained
using TEACHER 2, a genetics-based learning system
that implements our proposed generalization strategy.
4.1 HM for Sequential Circuit Testing

The first application is baged on CRIS (8], a genetic-
algorithm software package for generating patterns to
est sequential VLSI circaits. CRIS mutates an input
test sequence continuously and analyzes the mutated
vectors in selecting a test seb. Since many copies of a
circuit may be manufactured, it is desirable to obtain
as high a fault coverage &8 possible, and computational
cost is of secondary importance.

In our experiments, we used sequential circuits fromi
the ISCAS89 benchrnarks [07 plus several other larger
circuits, We treat each circuit as an individual subdo-
main. Since we want one common HAI for all circuits,

Table'3: Parameters in CRIS treated as a HM in learn-
ing and in generalization. {The type, range, and step
of each parameter were given to us by the designer of
CRIS. The default parameters were not given to us as
they are circuit-dependent.)

New

Par.|| Range iStep Definition Valuel

related to the number of stages

- . . 1
P 1-10 1 in a flip flop
. —— <
P, 140 1 scj,nsn;nnty of state change of a 12
fip flop .
P, 140 1 survival rate of a test sequence; .o

in next generation

t . .
Py llo.3-10.0] 0.1 number of test vec. concat. to 706
form a new vec.

. | 50-800 | 10 mimber of useless trials before 623

quitting
Ps il 1-20 1 [number of generations 1
P; [[0.1-1.0 | 0.1 jhow genes are spliced in GA 0.1
Ps || Integer| 1 seed for random = number|
generator

we assume that all circuits are from one dornain.

CRIS in our experiments is treated as a black-box
problem solver, as we have minimal knowledge in its de-
sign. A HM targeted for improvement is a set of eight
parameters used in CR1S (Table 3). Note that parame-
ter Py is a random seed, implying that CRIS can be run
multiple times using different random seeds in order to
obtain better fault coverages. {In our experiments, we
used a fixed sequence of ten randorn seeds.)

In our experiments on CRIS, we chose five circuits
as our learning subdomains. In each of these subde-
mains, we used TEACHER [2], a genetics-based learn-
ing system, to test CRIS 1000 times (divided into 10
generations) with different HMs. A HM in learning is
represented as a tuple of the first seven parameters in
Table 3. At the end of learning, we picked the top
twenty HMs in each subdomain and evaluated them
fully by initializing CRIS using ten different randont
seeds (Pg in Table 3). We then selecied the top five
HMs from each subdomain, tesulting in a total of 25
HMs supplied to the generalization phase. We evalu-
ated the 25 HMs fully (each with 10 randorm seeds) on
the five subdomains used in learning and five new sub-
domains, We then selected one generalized HM to be
used across all the ten circuits (based on Eq. (3)). The
HM found is shown in the last column in Table 3.

Table 4 sumimarizes the improvements of our learned
and generalized HMs as compared to the published re-
sults of CRIS [8] and HITEC [10]. Each entry of the
table shows the number of times our HM wins and ties
in terms of fault coverage with respect to the method(s)

178

Table 4: Summary of results comparing th
mance of our generalized HMs with respects
of HITEC and CRIS. (The first number in eac
shows the number of wins out of 21 cireuit
second, the number of ties.) '

Our HM wins/ties
with respect to
the following

8

HITEC 6,1
CRIS 16, 1
Both HITEC and CRIS 5,2

in the first column. Note that the maximum fault
erages reported in Table 4 were based on ten’ rupg
the underlying problem solver, implying-that the's
putational cost is ten times of the average cost. -
that we like to obtain the maximum coverage of ag
cuit, and that computational cost is a secondary i
in circuit testing. =
Our results show that our generahzation procedi
can discover new HMs that are better than the orlgm
HMs in 16 out of 21 circuits in terms of the maxXirmuj
fault coverage, and in 11 out of 21 circults in terms of
the average fault coverage. Our results are signiﬁcaﬁ;’f"
in the following aspects: E

(a) new faults detected by our generalized HMs were;
not discovered by previous methods; &

(b} only one HM (rather than many circuit-dependet
HMs in the original CRIS) was found for all ci
cuits.

Table 4 also indicates that HITEC iz still betk

than our new generalized HM for CRIS in most of thé.;,::y

circuits. This happens because our generalized HM
is bounded by the limitations in CRIS and our HM
generator for CRIS. Such limitations cannot be over-
come without generating more powerful HMs in our
HM generator or using better test-pattern generators
like HITEC as cur baseline problem solver.

4.2 HM for VLSI Placement and Routing:
In our second application, we use TimberWolf [11}as

our problem solver. This is a software package basec
on simulated annealing {SA) [12} to place and route
various components on a piece of silicon. Its goal 18
to minimize the chip area needed while satisfying cor
straints such as the number of layers of poly-silico
for routing and the maximum signal delay through am
path. :
Although in theory SA converges asymptotically ¥
the global optimum with probability one, the result
generated in finite time are usually suboptimal. A :

5: Parameters in TimberWolf (Version 6) used
$#IM for learning and for generalization.

Range [Step] Meaning [[Orig.] New
R vertical path weight
2 2.5 [0.1 {for estimating the cost|] 1.0 |0.953
o function
T vertical wire weight
0.1-2.5 |0.1 [for estimating the cost|l 1.0 }0.232
L function ’
3-10 1 torientation ratio 6 10
L range limiter window
0_3:3 -2.0j0.1 change ratio 1.0 | L.30
10.0 - 35.0| 1.0 |igh temperature finish-i o, 5115 o
ing pomt
. intermediate tempera-

- 99. 7
50.0 - 99.0) 1.9 ture finishing point 81.0163.70
71000 -, llow temperature finish-ly) 55 55
7150.0 ing pomnt
130.0 - 1.0 final iteration temperat- 156.01147.99

180.0 ure
: critical ratic that deter-
0.29 - 0.58]0.01|mines acceptance prob-i| 0.44 10.333
: ability
0.01 - 0.1210.01 temperature for coutrol- .06 | 0.112
ler turn off
. seed for the random num-
integer 1) - -
jber generator

a result, there is a trade-off between the quality of a
result and the cost (or computational time) of obtain-
ing it. In Timber\Wolf version 6.0, the version we have
studied, there are two parameters to control the run-
ning time (which indirectly control the quality of the
result): fast-n and slow-n. The larger the fasi-n is, the
shorter time SA will Tun. In contrast, the larger the
slow-n i3, the longer time SA will run. Of course, only
one of these parameters can be used at any time.
TimberWolf has six major components: cost func-
tion, generate function, initial temperoiure, temper-
ature decrement, equilibrium condition, and stopping
-eriterion. In Table o, we list the parameters we have fo-
cused in this study. Cur goal is to illustrate the power
of our learning and generalization procedures and to
show improved quality and reduced cost for the place-
meunt and routing of large circuits, despite the fact that
-only small circuits were used in learning. '
. In our experiments, we used seven benchmark cir-
cuits [13] (s298, 5420, fract, primaryl, struct, primary2,
‘industriall). We studied only the standard-cell place-
‘ment problem, noting that other kinds of placement
can be studied in a similar fashion. We used fast-n
values of 1, b, and 10, respectively. ,
We first applied TEACHER to learn good HMs for

179

f T T T T~ T ¥

. b H eneralized - A
44
)
=
o
4 0.8 -
&
o
b default
v 0.6 F o
:
0.4 F 4
]
I AN
)
go.z - - ~ 4
g A "

P T— T O B =

1 Il I3 1 1 i 1
-0.5 o} ¢.5 i i.5 2 Z.=2 3 3.5

Normalized Symmetric Csosz

Figure 3: Comparison of normalized average perfor-
mance between the default and the generalized HMs.
The plots are normalized with respect to the perfor-
mance of applying the baseline HM on each circuit us-
ing fast-n = 10. (See Eq. {5}).

circuits s208 with fast-n of 1, 5420 with fust-n of b, and
primaryl with fast-n of 10, each of which was taken as -
a learning subdomain. We used a fixed sequence of ten
random seeds (Py; in Table) in each subdemain to
find the statistical performance of a HM. Each learning
experiment involved 1000 applications of TimberWolf
divided into ten generations. Based on the best 30
HMSs (10 from each subdomain}, we applied our gener-
alization procedure to obtain one generalized HM. This
generalized HM as well as the default HAM are shown
in Table 5.

Figure 3 plots the quality (higher quality in the y-
axis means reduced chip area averaged over 10 runs
using the defined randon: seeds) and cost {average ex-
ecution tirne of TimberWolf) between the generalized
HM and the default HM on all seven circuits with fast-n
of 1, 5, and 10, respectively. Note that all performance
values in Figure 3 are normalized with respect to those
of fast-n of 10, and that the positive {resp.. negative)
portion of the z-axes shows the fractional improvement
(vesp., degradation) in cornputational cost with respect
to the baseline HM using fast-n of 10 for the same cir-
cuit. Each arrow in this figure points from the average
performance of the default HM to the average perfor-
mance of the generalized HM.

The equaticn for computing the normalized sym-
metric cost is as follows. Let Chew, Crase and CI0T
be, respectively, the costs of the new HM, the cost of
the baseline HM, and the normalized symnmetric cost.

o .
Crgm = § G L H e 2 Cone
sym] — c—"‘i'i if Chew < Chace

=

‘The’ reason ,for" usmg fhe above equation is to avoid
nevén compressxon of the ratio Cpew/Chase- This ratio

Cis between 0 and 1 when Chew < Chase, but is between
" "1 and oo when Cnew > Chase- Eq. (5) allows increases
- jn cost to be normalized in the range between 0 and co,

and decreases to be normalized in the range between

o \] a.nd —oo.. The normalized symmetric quality in the
y-a.:us is computed in a similar way.

- Among the 21 test cases, the generalized HM has

. worse quality than that of the defanlt in only two in-

stances, and has worse cost in 4 out of 21 cases. We
see in Figure 3 that most of the arrows point in a left-
upward direction, implying improved quality and re-
duced cost. We expect to see more improvement as we
learn other functions and parameters in TimberWolf.
Further, improvements in TimberWolf are important

. as the system is actnally used in industry.

4.3 Branch-and-Bound Search

A branch-and-bound search algorithm is a system-
atic method for traversing a search tree or search graph
in order to find a solution that optimizes a given ob-
jective while satisfying the given constraints. It de-
composes a problem into smaller subproblems and re-
peatedly decomposes them until a solution is found or
infeasibility is proved. Each subproblem is represented
by a node in the search tree/graph. In this subsection,
we apply learning to find new decomposition HMs for
expanding a search node into descendants.

We illustrate our method on three applications:
traveling salesman problem (TSP) on incompletely
connected graphs mapped on a two-dimensional plane,
vertex-cover problem (VC), and knapsack problem
(KS). We assume that each problem constitutes one
domain.

We use well-known decomposition HMs developed
for these applications as our baseline ¥Ms (see Ta-
ble 6). The normalized cost of a candidate decompo-
sition HM is defined in terms of its average symmetric
speedup (see Eq. (5)), which is related to the number
of nodes expanded by a branch-and-bound search us-
img the baseline HM and that using the new HM. Note
that we do not need to measure quality as both the new
and existing HMs when applied in a branch-and-bound
search look for the optimal solution.

In our experiments, we selected six subdomains in
each application for learning. We performed learning in
each subdomain using 1,600 tests, selected the top five

HMs in each subdomain, fully verified them on all the

learned subdomains, and selected one final HM to be
used across all the subdomains (Eq. (3)). Table 7 sum-
marizes the generalization and validation results. Qur
results show that we have between 0-8% improvement

. in average symmetric speedups using the generalized

_"HMS Note that the baseline HM is the best HM for

Table 6: Qriginal and generalized decomposition HMs
uged in a branch-and-bound search {I: number of un-
covered edges or live degree of a vertex; n: average
live degree of all neighbors; Al: difference between [of
parent node and { of current node; ¢ length of current
partial tour; rn: minimum length to complete current
tour; p: profit of object: w: weight of object).

| Application] Ornginal HM i Generalized HM I
vC ! 10001 +n — Al
TSP ¢ me
KS pfw p/w

solving the knapsack problem.

The second part of Table 7 shows the average sym-
metric speedups when we validate the generalized HMs
on larger test cases. These test cases generally re-

- quire 10-50 times more nodes expanded than those used

earlier. Surprisingly, our results show hetter improve-
ment {9-23%). It is interesting to point out that six of
the twelve subdomains with high degree of connectiv-
ity in the vertex-cover problem have slowdowns. This
is & clear indication that these subdoermains sheuld be
grouped in a different domain and learned separately.

Table 6 shows the new decomposition HMs learned
for the three applications. An example is the HM
learned for the vertex cover problem. This formula
can be interpreted as using [as the primary key for de-
ciding which node to include in the covered set. If the
!I’s of two alternatives are different, then the remaining
terrns in the formula (n — Al} are insignificant. On
the other hand, when the ’s are the same, then we use
(n - Al) as a tie breaker.

5 Conclusions

In this paper, we have presented a method for
generalizing performance-related heuristics learned by
genetics-based learning for knowledge-lean applica-
tions. We have focused on a class of heuristic meth-
ods {HMs) whose performance is evaluated statistically
by applying them on multiple test cases. Due to a
lack of domain-knowledge for improving such heuris-
tics, we have used a genetics-based learning paradigm
(a generate-and-test method) to learn new HMs.

We have proposed in this paper a new metric called
probability of win to characterize the performance of
heuristics. This metric evaluates the probability that
the mean performance of a HM is better than the mean
performance of another randomly chosen HM in a set of
learned HMs on a cornmon set of test cases, The only
requirement on the choice of test cases in evaluating
probabilities of win is that each HM, when evaluated
on the test cases, produces a set of independent and
identically distributed performance resuits. We define

SO PUE ST ey S o A

s e, A

i gt e e 2 e e AT T

o

[

' ill'iii

P
i
|| H
' [
Sl
I
-\
P
noobo
1! 1

Yo

Zi'Ell!

St o,

core b
Con bearan
iiie
e Lo
i i
L
i .
e
[T
[' [
! Bk
[N
‘I
[

s ol
TEND 0T b
oyl ot e
- el
L FE |
[AT AR R
AT PRI VIR LR

[
Lo [ERYE
thoar e
TR I

