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ABSTRACT

In this paper, we present a new global-search method for designing QMF (quadrature-mirror-�lter) �lter banks. We

formulate the design problem as a nonlinear constrained optimization problem, using the reconstruction error as

the objective, and the other performance metrics as constraints. This formulation allows us to search for designs

that improve over the best existing designs. Due to the nonlinear nature of the performance metrics, the design

problem is a nonlinear constrained optimization problem with many local minima. We propose to solve this design

problem use global-search methods based on Lagrangian formulations. After transforming the original constrained

optimization problem into an unconstrained form using Lagrange multipliers, we apply a new global-search method

to �nd good solutions. The method consists of a coarse-level global-search phase, a �ne-level global-search phase, and

a local search phase, and is suitable for parallel computation due to the minimal dependency between various key

components. In our experiments, we show that our method �nds better designs than existing global-search methods,

including simulated annealing and genetic algorithms.

Keywords: Filter bank, global search, nonlinear constrained optimization, quadrature-mirror-�ltering (QMF),

parallel processing, signal processing.

1. INTRODUCTION

The design of digital �lter banks is important because �lter banks have been used in many applications, including

modems, data transmission, digital audio broadcasting, speech and audio coding, and image and video coding.26,22,5

In this paper, we study the design of quadrature-mirror-�ltering (QMF) �lter banks because they are amongst the

simplest �lter banks with de�ned benchmarks. Our design method is general enough to be applicable to the design

of other types of �lter banks, such as multirate �lter banks.

Algorithms for designing �lter banks can be classi�ed into non-optimization-based and optimization-based. Non-

optimization-based algorithms generally do not continue to �nd better designs once a suboptimal design has been

found.23 In contrast, in an optimization-based approach, a design problem is formulated as a multi-objective

nonlinear optimization problem21 whose formmay be application- and �lter-dependent. This multi-objective problem

can then be solved by various existing methods, such as penalty methods9 and genetic algorithms. An alternative

way is to reformulate the multi-objective problem into a single-objective optimization problem, using one of the

original objectives as the new objective, and the remaining objectives as constraints with respect to an existing

design. The advantage of this single-objective formulation is that its solution allows designs that are better than an

existing design to be found with respect to all the design objectives. For this reason, we have chosen to formulate

the design problem as a single-objective constrained optimization problem.

Mostly, the single-objective formulation in �lter bank design cannot be solved in closed form with nonlinear ob-

jective and constraints, but can be solved numerically by many existing methods, such as gradient-descent, Lagrange-

multiplier, quasi-Newton, simulated-annealing, and genetics-based methods.8,7 Among them, only the Lagrangian

method can guarantee constraint satisfaction.

In this paper, we focus on two issues in �nding constrained local minima. First, we study the convergence of

Lagrangian methods in designing �lter banks and develop methods to improve the convergence speed. Second, we

� Research supported in part by National Science Foundation Grant MIP 96-32316 and Research Board Grant of University of

Missouri System.

Other author information:

Y. Shang: E-mail: yshang@cecs.missouri.edu; URL: http://www.cecs.missouri.edu/~yshang

B. B. Wah: E-mail: wah@manip.crhc.uiuc.edu; URL: http://www.manip.crhc.uiuc.edu



2 2 

Synthesis StageAnalysis Stage

2 2 

2 2 

H1(z)

�0(n)

�1(n)

x(n)

v0(n)

v1(n)

f0(n)

f1(n)

y0(n)

y1(n)

x̂(n)

H0(z) G0(z)

G1(z)

Figure 1. A two-channel �lter bank.

apply global-search methods to �nd high-quality solutions. We propose a new global-search method that uses a

prede�ned traveling trace to pull the search trajectory from one constrained local minimum to another, without

having to restart the search. This avoids missing good local minima if the search were already in their vicinity.

Furthermore, the global-search method can be implemented on parallel computers e�ciently because of the minimal

dependency between its various components and the parallel execution of the most time-consuming parts.

This paper is organized as follows. In Section 2, we introduce QMF �lter banks, identify their performance

metrics, and present our constraint-based formulation. Section 3 introduces Lagrangian methods, studies the issue

on convergence speed, and presents our dynamic weight-adaption method. In Section 4, we present our new trace-

based global-search method, and a prototype (Novel) that implements it. In Section 5, we apply Novel to design

some QMF �lter banks, and show improved designs over existing ones.

2. QMF FILTER BANKS AND DESIGN FORMULATION

Figure 1 shows a two-band �lter bank that �rst decomposes an input signal x(n) in time domain into two frequency

subbands, and then combines them into a single output signal x̂(n). The �lter bank consists of an analysis stage

and a synthesis stage. In the analysis stage, the input signal is divided into two equal subbands using the analysis

�lters H0(z) and H1(z). According to Nyquist Theorem, each subband signal is then down-sampled by 2 to form

the outputs of the analysis stage. These signals can then be analyzed or processed in various ways depending on the

application. In the synthesis stage, each subband signal is up-sampled by 2 to form f0(n) and f1(n), processed by

the synthesis �lters G0(z) and G1(z), and summed at the output to form the reconstructed signal x̂(n).

The Z-transform of the reconstructed signal, which is a function of x(n) and the �lters, is14,1

X̂(z) =
[G0(z)H0(z) + G1(z)H1(z)]X(z) + [G0(z)H0(�z) + G1(z)H1(�z)]X(�z)

2
= T (z)X(z) + S(z)X(�z) (1)

where T (z) = T (ejw) = jT (ejw)jej�(w) and S(z) = S(ejw) = jS(ejw)jej (w) .

There are three types of undesirable distortions of x(n) in a �lter bank. Aliasing distortions include aliasing

caused by sub-sampling and images caused by up-sampling. The aliasing term S(z)X(�z) in (1) represents the

aliasing distortion. Amplitude distortions represent deviations of jT (z)j in (1) from unity. Phase distortions represent

deviations of �(w) from the desired phase property, such as linear phase.

Extensive research has been conducted to remove undesirable distortions of �lter banks. Aliasing distortions can

be removed by selecting synthesis �lters based on analysis �lters. In�nite-impulse-response (IIR) all-pass �lters can

be used to eliminate magnitude distortions, whereas a linear-phase �nite-impulse-response (FIR) �lter removes phase

distortions. Perfect reconstruction of the original signal by a �lter bank requires S(z) = 0 for all z, and T (z) = cz�n0,

where c and n0 are constants. Therefore, to perfectly reconstruct a signal, the transfer function is a pure delay with

no aliasing, no amplitude change, and linear phase.



Table 1. Possible design objectives of �lter banks. Refer to (1) for explanation.

Design Objectives Metrics

Overall Minimize amplitude distortion Er Er =
R �
0
(jT (!)j2 � 1)2d!

Filter Minimize aliasing distortion �a �a =
R �
0
jS(!)j2d!

Bank Minimize phase distortion �p �p =
R �
0
j�(!)� �0(!)jd!

Minimize stopband ripple (�s) �s = max(jH(!)j; ! 2 [!s; �])

Single Minimize passband ripple (�p) �p = max(jH(!)� 1j; ! 2 [0; !p])

Low-pass Minimize transition bandwidth (Tt) Tt = !s � !p
Filter Minimize stopband energy (Es) Es =

R �
!s
jH(!)j2d!

Maximize passband 
atness (Ep) Ep =
R !p
0

(jH(!)j � 1)2d!

[0; !p] | pass band; [!s; �] | stop band; [!p; !s] | transition band;

�0(!) | desired linear phase.

In QMF �lter banks, the �lters are chosen in the following manner.

G0(w) = H0(�w); G1(w) = H1(�w); H1(w) = ejwH0(� �w): (2)

Hence, X̂(w) in (1) becomes

X̂(w) =
[H0(�w)H0(w) +H0(� � w)H0(� + w)]X(w)

2
= T (w)X(w)

Note that the aliasing term S(w) is zero, independent of H0(w). Filter H0(w) = H(w) is called the prototype �lter

of the QMF �lter bank. The design problem is now reduced to �nding a �lter with Fourier transform H(w) such

that T (w) is a pure delay.

H(w) has linear phase (so does T (w)) when the �lter is a symmetric low-pass FIR �lter. In order to have perfect

reconstruction, the amplitude response needs to be a constant, such as 1.

jT (w)j = jH(w)j2 + jH(w + �)j2 = 1 (3)

It can be shown that once the �lters are chosen as in (2), it is not possible to obtain perfect reconstruction of the

signal (i.e., jT (w)j 6= 1) except for trivial, two-tap FIR �lters. However, by numericallyminimizing the reconstruction

error, �lter banks with longer FIR �lters can be designed to achieve extremely high quality.9

Due to the particular way of selecting �lter pairs, the design of a two-band QMF �lter bank becomes the design

of one symmetric low-pass prototype �lter. This design problem is a multi-objective nonlinear optimization problem,

whose objectives consist of performance metrics of both the overall �lter bank and the single prototype low-pass

�lter. Table 1 summarizes the various design objectives.

The design objectives of �lter banks have the following features:

� They are not unique and may be con
icting, leading to designs with di�erent tradeo�s.

� Some objectives and their derivatives are not in closed forms and need to be evaluated numerically.

� The design objectives are nonlinear.

In general, the optimal solutions of a multi-objective problem form a Pareto optimal frontier such that one solution

on this frontier is not dominated by another. One approach to �nd a point on the Pareto frontier is to optimize

a weighted sum of all the objectives.9,4,21,2,13 This approach has di�culty when Pareto frontier points of certain

characteristics are desired, such as those with certain transition bandwidth. Di�erent combinations of weights must

be tested by trial and error until a desired �lter bank is found. When the desired characteristics are di�cult to

satisfy, trial and error is not e�ective in �nding feasible designs.

Another approach to solve a multi-objective problem is to turn all except one objectives into constraints and solve

the problem as a constrained optimization problem. In this formulation, the constraints are de�ned with respect to



a reference design. The speci�c measures constrained may be application- and �lter-dependent.21 Constraint-based

methods have been applied to design QMF �lter banks in both the frequency9,2,3,10,17,19 and the time domains.12,18

In the frequency domain, the most often considered objectives are the reconstruction error, Er, and the stopband

attenuation.

In this paper, we formulate the design of a QMF �lter bank in the most general form as a nonlinear constrained

optimization problem as follows:

minimize Er(X)=�Er
(4)

subject to Ep(X)=�Ep
� 1 Es(X)=�Es

� 1 �p(X)=��p � 1

�s(X)=��s � 1 Tt(X)=�Tt � 1

where X is a vector of variables (�lter coe�cients), and �Er
, �Ep

, �Es
, ��p , ��s , and �Tt are performance values

of the baseline design. Reconstruction error Er(X) is the objective to be minimized, and all other metrics of the

prototype �lter are used as constraints. This formulation allows us to improve over the best existing design (such as

those reported by Johnston9) with respect to all performance metrics. Our formulation is more general than existing

formulations because we include metrics that are not in closed forms (stopband and passband ripples and transition

bandwidth).

3. LAGRANGIAN METHOD WITH ADAPTIVE CONTROL

A general nonlinear constrained optimization problem has the following form.

minimize f(X)

subject to g(X) � 0 X = (x1; x2; : : : ; xn) (5)

h(X) = 0

where X is a vector of real numbers, f(X) is the objective function, g(X) = [g1(X); � � � ; gk(X)]T is a set of k

inequality constraints, and h(X) = [h1(X); � � � ; hm(X)]T is a set of m equality constraints.

There are two distinct strategies to handle constraints. One way is to absorb all the constraints into the objective

and weigh them by penalty terms. This is not e�ective because it is hard to choose appropriate penalty terms when

constraints are violated. Another way is to absorb the constraints into a Lagrangian function, which is the sum

of the objective and the constraints weighted by Lagrange multipliers. Lagrange-multiplier methods solve (5) by

introducing Lagrange multipliers to gradually resolve constraints iteratively. It is an exact method that optimizes

the objective f(X) to meet the Kuhn-Tucker conditions.11

The augmented Lagrangian function corresponding to (5) is11

Lz(X;�; �) = f(X) + �Th(X) + jjh(X)jj
2

2
+

kX
i=1

�
max2(0; �i + gi(X)) � �2i

�
(6)

where � = [�1; � � � ; �m]
T and � = [�1; � � � ; �k]

T are two sets of Lagrange multipliers for the equality and inequality

constraints respectively. We use the augmented Lagrangian function in this paper since it provides better numerical

stability than the simple Lagrangian function.

According to classical optimization theory,11 all the extrema of (6), whether local or global, are roots of the

following set of �rst-order necessary conditions when these extrema are regular points.

5XLz(X;�; �) = 0 5�Lz(X;�; �) = 0 5�Lz(X;�; �) = 0 (7)

The gradients of the Lagrangian function Lz(X;�; �) become 0 at the extrema.

The set of points satisfying the necessary conditions can be found by a �rst-order search method that is expressed

in a dynamic system of di�erential equations:

d

dt
X(t) = �5XLz(X(t); �(t); �(t))

d

dt
�(t) = 5�Lz(X(t); �(t); �(t)) (8)

d

dt
�(t) =5�Lz(X(t); �(t); �(t))
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Figure 2. Comparison of search pro�les with static weight w = 10�4 (left two graphs) and dynamic w (right two
graphs) in designing a 48e QMF �lter bank. The convergence time to the equilibrium point with the static weight is
much longer than that with the dynamic weight.

which perform gradient descents in the original-variable space of X and ascents in the Lagrange-multiplier space of �

and �. The dynamic system evolves over time t, and reaches a feasible local minimumwhen it reaches an equilibrium

point where all gradients become zero. In this sense, �rst-order methods can be considered as local-search methods.

Basically, Lagrangian methods rely on two counteracting forces to resolve constraints and �nd high-quality so-

lutions. When constraints are satis�ed, Lagrangian methods rely on gradient descents in the objective space to

�nd high-quality solutions. On the other hand, when constraints are not satis�ed, they rely on gradient ascents in

the Lagrange-multiplier space to increase the penalties on unsatis�ed constraints and to force the constraints into

satisfaction. The balance between gradient descents and gradient ascents depends on the relative magnitudes of

the Lagrange multipliers. At an equilibrium point, the forces due to descent and ascent reach a balance through

appropriate Lagrange-multiplier values.

To solve the QMF �lter bank design problem (4) using the Lagrangian method, we need to evaluate the perfor-

mance metrics and their derivatives. We derive closed-form formulas for the reconstruction error, stopband energy,

and passband energy. Metrics that do not have closed-form formulas, such as stopband ripple, passband ripple, and

transition bandwidth, are evaluated using Newton's method to �nd their values and use �nite-di�erence methods to

approximate their derivatives. We solve the dynamic system (8) using either Euler's method or LSODEy.6

Due to errors introduced by numerical methods in function and gradient evaluations, LSODE was forced to choose

very small step sizes, such as 10�5, in order to keep the results within certain error tolerance. This leads to larger

variations in the convergence time of using a Lagrangian method to design QMF �lter banks, which range from

minutes to hours, even days.

The convergence time and/or solution quality further depends on the relative weights between the objective and

the constraints. We show this phenomenon by adding a weight w in the objective part of the Lagrangian function

as follows:

Lo(X;�; �) = w f(X) + �Th(X) + jjh(X)jj
2

2
+

kX
i=1

�
max2(0; �i + gi(X)) � �2i

�
(9)

where w > 0 is a static weight on the objective. When w = 1, Lo(X;�; �) = Lz(X;�; �), which is the original

Lagrangian function in (6).

The convergence speed of Lagrangian methods using static weights is illustrated by the 48e QMF �lter-bank design

problem.9 We use Johnston's solution as our starting point, which is a feasible solution whose performance measures

are used as bounds in our formulation. However, it is not a local minimum of the objective function. Experimentally,

using static w of 10�4; 10�5, and 10�6 represents three convergence behaviors: over-weighted objective, balanced

objective and constraints, and over-weighted constraints. Due to the space limit, we only show the search pro�le for

w = 10�4.

In Figure 2, the left two graphs show the dynamic changes of the objective, the Lagrangian-function value, and

the maximum constraint violation as the search progresses for static weight w = 10�4. Note that the trajectories

of the objective and the Lagrangian-function values are overlapped because constraint violations are small. As the

yLSODE is a solver for �rst-order ordinary di�erential equations, a public-domain package available from http://www.netlib.org. It

implements both Adams' method and the method based on backward di�erentiation formulas. It solves the system of ODEs to within a

prescribed degree of accuracy using adaptive step-size adjustment.



1. Select control parameters:
time unit 4t
initial weight w(t = 0)
maximum number of iterations imax

2. Set window size Nw, e.g. 10
3. j := 1 /* j is the iteration number */
4. while j � imax and stopping condition is not satis�ed do

5. advance search trajectory by 4t time unit to get to (Xj; �j ; �j)
6. if trajectory diverges then

reduce w; restart the algorithm by going to Step 2
end if

7. if (mod(j;Nw) == 0) then
8. change w according to search process behavior

end if

11. end while

Figure 3. Framework of dynamic weight-adaptation algorithm

starting point is not a local minimum of the objective, the search descends in the original-variable X space as the

objective value decreases. In the meantime, the constraints are getting violated. As constraint violations become

large, the Lagrangian part slowly gains ground and pushes the search back towards the feasible region, leading to

increases in the objective value and decreases in the constraint violation. Eventually, the constraint violation becomes

0 (within error tolerance), and the objective value stabilizes. The overall convergence speed to the equilibrium point

is slow (949:0 CPU minutes on a Pentium Pro running Linux at t = 2:819). Note that 
uctuations of the maximum

constraint violation and the objective are due to inaccuracy in numerical estimation of the function values and

gradients.

For static weight w = 10�5, the objective and the constraints are more balanced and the convergence time to

the equilibrium point is shorter (125:7 CPU minutes at t = 1:577 time units). For static weight w = 10�6, the

constraints are over-weighted, and constraint satisfaction dominates the search process. The trajectory is kept inside

or very close to the feasible region. However, due to the small weight on the objective, improvements of the objective

is slow, causing slow convergence to the equilibrium point (293:8 CPU minutes at t = 7:608).

To overcome the di�culty in selecting the appropriate static weights a priori for a given problem instance, we

have developed a strategy to adapt weight w based on the search pro�le in order to obtain high-quality solutions

with short convergence times.25 Figure 3 outlines the algorithm. Its basic idea is to monitor the behavior of the

search trajectory (X(t); �(t); �(t)) periodically, keep track of the objective value and the constraint violation, and

adapt the weight w accordingly to improve convergence time or solution quality. The total search time is divided

into small units of 4t and the search trajectory is divided into non-overlapping windows of size Nw �4t. In each

window, we measure the progress of the search relative to that of previous windows. Generally speaking, the weight

w is increased when the search is within a feasible region and the objective is not improving fast enough in successive

windows. On the other hand, w is decreased when the trajectory moves slowly back to the feasible region. Divergence

of the search trajectory happens when the constraint violation is extremely large. When this happens, we reduce w

by a large amount.

In Figure 2, the right two graphs show the search pro�le of our Lagrangian method with adaptive weight control

in solving the 48e QMF �lter bank problem. We use time unit 4t = 10�4 and window size Nw = 10. The

weight-adaption method converges at t = 0:142 (35:1 CPU minutes), much faster than the static-weight method.

4. GLOBAL SEARCH FOR EQUILIBRIUM POINTS

The Lagrangian method presented in the last section only looks for a single equilibrium point, behaving like a local

search algorithm. To �nd multiple equilibrium points, global-search methods are needed to bring the search out

of local equilibrium points. In this section, we present our global-search strategy, followed by a description of our

trace-based search method.
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Figure 4. Proposed hybrid global-search strategy.

4.1. Global-Search Strategy

There are two classes of global-search methods: deterministic and probabilistic. Deterministic methods, such as

covering methods and generalized descent methods, do not work well when the search space is large. Probabilistic

methods, on the other hand, are weak in either their local or their global search. For instance, gradient information

is not used well in simulated annealing and evolutionary algorithms. In contrast, gradient descent algorithms with

multistarts and random probing are weak in their global-search strategy.

We present in this section a hybrid search strategy that combines coarse-level and �ne-level global search, as

well as local search.15 Figure 4 shows the framework of the global-search strategy. Constrained problems are

�rst transformed into unconstrained problems using a Lagrangian formulation. Global and local searches are then

performed on the unconstrained functions to �nd high-quality solutions.

The search space of a continuous optimization problem is usually large. Identifying promising search regions and

concentrating the search in smaller sub-spaces can e�ectively reduce the computation time in �nding good solutions.

Promising regions can be identi�ed in three ways: domain knowledge, heuristic methods, and coarse-level global

search, depending on the amount of problem-speci�c information available. In designing QMF �lter banks, very

little domain knowledge is available to de�ne good starting points. A coarse-level global search is not very useful

either because the solution is highly infeasible once the starting point is far from a feasible point. Existing coarse-level

global-search methods, such as simulated annealing, genetic algorithms, and multi-start of local descents, are not

able to generate good starting points. For this reason, we just use the best existing solution as our starting point for

the �ne-level global search.

Given a starting point, we apply a �ne-level global search to look for equilibrium points in the surrounding search

region. Existing global-search methods do not work well for this purpose. Algorithms based on random restarts,

simulated annealing, genetic algorithms, and clustering do not work well when the problem size is large. Moreover,

they may have di�culty in satisfying the constraints when the search stops. Trajectory-based methods that rely on

internal forces to move the trajectory do not work well because they have di�culty to adapt to the rugged terrain in

a Lagrangian search. To overcome this problem, we use a trace-based �ne-level global search presented in the next

subsection. The method relies on two counteracting forces: the local gradient force that drives the search to a local

equilibrium point, and a deterministic problem-independent trace to leads the search out of local equilibrium points.

The search trajectories formed in the �ne-level global search are used to provide good starting points in the local-

search stage. We have used two heuristics to select the initial points: the best solutions in periodic time intervals,

or the local minima along each trajectory.

4.2. Trace-Based Fine-Level Global Search

According to the dynamic system (8) for �nding equilibrium points of (9), the Lagrangian method performs descents

in the original-variable space to locate local minima of the objective function when the constraints are satis�ed,

and performs ascents in the Lagrange-multiplier space when the constraints are not satis�ed. Eventually, the search

converges to an equilibrium point. To �nd globally optimal solutions, we are interested to move the search trajectory

from one equilibrium point to another, without having to restart the search. To do so, we add an external force

to pull the search out of a local equilibrium point in the original-variable space continuously and escapes from it

without restarts.24,16
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Figure 5 illustrates the process of the trace-based global search. The search process uncovers promising local

optimal regions in the search space without going deep into each one. The global-search trajectory is formed by the

combination of two vectors: the problem-independent force provided by the trace, and the problem-dependent force

provided by the local gradient. These two counteracting forces form a composite vector that represents the route

taken by the trajectory.

Generally, there can be a number of bootstrapping stages in the trace-based global search, coupling one stage to

the next by feeding its output trajectory as the trace of the next stage. The problem-independent trace is fed into

the �rst stage. By cascading the stages, one stage is coupled to the next by feeding its output trajectory as the trace

of the next stage. Figure 5 shows three cascaded global-search stages in which the trace and local gradient generate

Trajectory 1. Trajectory 1 and local gradient then generate Trajectory 2, and so on.

Based on the dynamic system (8) for the Lagrangian function Lo in (9), the system of ODEs that characterize

each stage of the trace-based global search has the following form:

d

dt
X(t) = ��g5XLo(X(t); �(t); �(t)) � �t (X(t) � T (t)) (10)

d

dt
�(t) = 5�Lo(X(t); �(t); �(t));

d

dt
�(t) = 5�Lo(X(t); �(t); �(t)) (11)

where �g and �t are coe�cients specifying the weights for descents in local minimum regions and for exploration of

broader space, and T (t) is the trace function.

Trace functions traverse the search space in an aperiodic and uniform fashion. Empirically, we have designed an

n-dimensional trace function as follows.

Ti(t) = �i sin

2
42�

�
t

s

�1�a0�
(1�a0�d0)(i�1)

k

3
5 ; i = 1; � � � ; n (12)

where i represents the i'th dimension, a0, d0, s, � and k are parameters that control the speed and shape of the

function. The parameter values we used in our experiments are a0 = 0:05, d0 = 0:5, s = 2, � = 1 and k = n.

The global-search strategy containing the trace-based global-search method described here and the weight-

adaptation Lagrangian method described in the last section has been implemented in a prototype called Novel

(Nonlinear Optimization via External Lead).24,16

4.3. Potential for Parallel Processing

Parallel processing is essential in solving large nonlinear optimization problems. These problems are computationally

intensive because the number of local minima and the number of variables can be large; the objectives, constraints,

and derivatives can be expensive to evaluate; and many evaluations of the objectives, constraints, and derivatives

may be needed.



As shown in Figure 4, the proposed global-search strategy is suitable for parallel processing because many com-

ponents can be executed in parallel. Generally speaking, the parallelism exists at three levels: (1) parallel global

searches, (2) parallel local searches, and (3) parallel evaluation of objective function and constraints, and their

corresponding derivatives.

First, the coarse-level global search provides initial points for the �ne-level global search. Parallel search methods

can be used in the coarse-level global search, such as parallel genetic algorithms, parallel simulated annealing, and

parallel multi-starts of descents. Other heuristic methods for coarse-level global search can also be parallelized. For

instance, in the trajectory-based method, sample points are selected along a 1-dimensional trajectory function over

the search space. Then, descents from these sample points, which take much more time than selecting the sample

points, can be done in parallel.

Second, starting from di�erent initial points generated by the coarse-level search, multiple trace-based global

searches can be executed fully in parallel. All of them are independent to each other and have minimal communi-

cation and synchronization overhead. Within each trace-based global search, multiple stages can also be executed

concurrently in a pipelined fashion. However, since the number of stages is usually not large, the amount of parallelism

is limited in this case.

Third, starting from initial points generated by �ne-level global searches, the local searches are independent to

each other and can be executed in parallel. For some problems such as the QMF �lter bank design, the local descent

is time-consuming and constitutes a large portion of the total execution time. Performing multiple local descents in

parallel can speed up the search process signi�cantly.

Finally, the search for optimal solutions is based on the values and derivations of objective function and constraints

that can be expensive to evaluate. In the QMF �lter bank design problem, for the three performance metrics

that have closed-form formulas, their values and corresponding derivatives can be computed in very short time.

However, for the other three performance metrics that do not have closed-forms, computing their values numerically

is expensive. Furthermore, approximating their derivatives using �nite-di�erence methods requires a number of

function evaluations proportional to the number of variables. It makes the derivatives even more expensive to

evaluate. Thus, computing function values and derivatives in parallel can also greatly reduce the execution time.

5. EXPERIMENTAL RESULTS

We have applied our global-search method, Novel, to solve the 14 QMF �lter-bank design problems formulated by

Johnston.9 Our goal is to �nd designs that are better than Johnston's results across all the six performance measures.

Hence, we use (4) with the constraint bounds de�ned by those of Johnston's designs.

Note that Johnston used sampling in computing energy values, whereas we use closed-form integration. As a

result, Johnston's designs may not be locally optimal in a continuous formulation. To demonstrate this, we applied

local search in a continuous formulation of the 24D design, starting from Johnston's design. We found a design with

a reconstruction error of 0.789 of Johnston's result. By applying global search, Novel can further improve the design

to result in a reconstruction error of 0.753 of Johnston's result.

Figure 6 compares the performance of our adaptive Lagrangian method with that of the static-weight Lagrangian

method. It shows the convergence times of the static method normalized with respect to that of the adaptive method

in solving the 24d and 48e design problems. We always start the search from Johnston's solutions as starting points.

For the static method, we have used, respectively, weight values of 10�4; 5� 10�5; 10�5; 5� 10�6, and 10�6 in our

experiments. In solving the 24d (resp. 48e) problem, our adaptive method takes 6.6 (resp. 35.1) minutes to converge

to an equilibrium point with an objective value of 0.789 (resp. 0.852), whereas the static method converges to the

same equilibrium point most of the time, but with vastly di�erent convergence times.

Next, we compare the performance of Novel, simulated annealing (SA), and evolutionary algorithms (EA). In

Novel, the trace-based global search consists of one global-search stage that starts from Johnston's solution and

searches in the range �0:01 in each dimension around Johnston's solution. The global-search stage is run for one

time unit, i.e., from t = 0 to t = 1. In every 0.1 time units, a starting point for local search is selected, resulting in a

total of at most 10 descents using the adaptive Lagrangian method. On a sequential computer, the global search and

the local search are implemented as interleaving each other, i.e., the �rst 0.1 time unit of global search is followed by

a complete local search, and then the second 0.1 time unit of global search, and so on. In case that the local search

is too expensive and the execution time is over the limit, e.g., 30 hours on the 200-MHz Pentium Pro, the search is
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Figure 6. Comparison of the convergence speeds of Lagrangian methods with and without adaptive weight control
for the 24d (left) and 48e (right) QMF �lter-bank design problems. The convergence times of the static method are
normalized with respect to the corresponding times of the adaptive method.

Table 2. Experimental results of Novel and simulated annealing (SA) in designing QMF �lter banks. Novel uses
trace-based global search and the adaptive Lagrangian method as local search. The cooling rates of SA for 16-, 24-,
32-, 48-, and 64-tap �lter banks are 0.98, 0.98, 0.95, 0.85, and 0.80, respectively. The total number of evaluations
for 16-, 24-, 32-, 48-, and 64-tap �lter banks are 20, 10, 10, 3, and 2 millions, respectively. �p, �s, and Es in all the
cases are equal to or slightly less than 1. All experiments were run on a 200-MHz Pentium Pro with Linux.

Filter-type Novel SA

Er Ep Tr CPU time (hrs) # Descents Er Ep Tr CPU time (hrs)

16a 0.986 0.858 1.000 35.7 10 0.986 0.862 1.000 12.4

16b 0.985 0.893 1.000 6.9 10 0.985 0.895 1.000 12.8

16c 0.822 0.919 1.000 6.2 10 0.419 0.423 1.015 12.0

24b 0.964 0.778 1.000 33.1 3 0.964 0.801 1.000 12.9

24c 0.910 0.768 1.000 10.9 10 0.853 0.551 1.003 13.4

24d 0.753 0.770 1.000 7.6 10 0.399 0.404 1.018 13.1

32c 0.959 0.738 1.000 40.2 4 0.959 0.748 1.000 16.5

32d 0.870 0.800 1.000 15.2 10 0.617 0.570 1.015 17.0

32e 0.716 0.889 1.000 14.1 10 0.501 0.583 1.013 16.3

48c 0.793 0.810 1.000 48.32 1 0.753 0.802 1.000 13.1

48d 0.947 0.756 1.000 63.6 2 0.943 0.757 1.001 14.4

48e 0.852 0.838 1.000 43.4 10 0.618 0.585 1.015 14.4

64d 0.784 0.787 1.000 52.39 1 0.867 0.794 1.000 30.1

64e 0.842 0.737 1.000 36.4 2 0.541 0.514 1.032 31.2

terminated after the current local search �nishes. We use LSODE to generate both the global- and the local-search

trajectories.

The SA we have used is SIMANN from netlib that works on the following weighted-sum formulation:

min
X

f(X) = w1

Er(X)

�Er

+w2max

�
Ep(X)

�Ep

� 1; 0

�
+ w3max

�
Es(X)

�Es

� 1; 0

�
(13)

+w4max

�
�p(X)

��p
� 1; 0

�
+ w5max

�
�s(X)

��s
� 1; 0

�
+ w6max

�
Tt(X)

�Tt
� 1; 0

�

In our experiments, we assign w1 = 1 for the reconstruction error and wi = 10, i = 2; � � � ; 6, for the other performance

measures. We tried various parameter settings and report the best solutions in Table 2. Like Novel, SA started from

Johnston's solutions as initial points and searched in the range �0:01 in each dimension around Johnston's solutions.

Table 2 compares the experimental results of Novel and SA in solving QMF �lter-bank design problems. The

values are normalized with respect to Johnston's design. A value less than 1 for a performance metric means that

the design is better on this metric as compared to Johnston's design. The column of \# Descents" shows the number

of applications of the adaptive Lagrangian method in Novel within the corresponding amount of CPU time. As



Table 3. Experimental results of the evolutionary algorithm in solving a constrained formulation (EA-Constr) and
a weighted-sum formulation (EA-Wt) of the QMF �lter-bank design problems. The population size of EA is 10n,
where n is the number of variables, and the number of generations for 16-, 24-, 32-, 48-, and 64-tap �lter banks are
2000, 2000, 2000, 1000, and 1000, respectively. �p, �s, and Es in all the cases are equal to or slightly less than 1. All
experiments were run on a Sun SparcStation 10/51.

Filter-type EA-Constr EA-Wt

Er Ep Tr CPU time (hrs) Er Ep Tr CPU time (hrs)

16a 937.0 0.479 1.604 2.7 1.520 0.622 1.322 4.1

16b 154.2 1.000 1.176 2.7 0.986 0.893 1.000 2.9

16c 1.056 0.854 1.000 2.7 0.418 0.422 1.015 2.8

24b 889.2 1.000 1.564 7.8 1.049 0.651 1.448 8.3

24c 421.9 1.000 1.287 7.5 0.825 0.511 1.011 8.8

24d 6.075 1.000 1.003 7.6 0.399 0.403 1.019 8.1

32c 2283.8 1.000 1.647 22.0 0.842 0.671 1.025 17.8

32d 4.914 1.000 1.011 17.9 0.560 0.504 1.026 20.9

32e 0.724 0.905 1.000 24.5 0.501 0.582 1.013 19.2

48c 1656.9 0.999 1.166 25.2 0.780 0.794 1.020 25.4

48d 1472.6 1.000 1.438 27.7 0.757 0.606 1.049 26.9

48e 2.350 1.000 1.001 29.2 0.566 0.530 1.023 28.1

64d 3862.7 0.987 0.974 62.9 0.803 0.816 1.000 58.7

64e 0.940 0.854 1.000 68.0 0.492 0.445 1.033 61.8

shown in Table 2, Novel always �nd designs that have better objective value, Er, and are also better in one or more

constraints and no worse in others. In contrast, SA improves Johnston's solutions on all six performance measures for

some problems, but obtains solutions with worse transition bands for some other problems. These happen because

the selected weights in the weighted-sum formulation cannot force all the objectives to be smaller than certain values.

The EA used in our experiments is Sprave's Lice (Linear Cellular Evolution)20 that solves both the constrained

formulation (EA-Constr) and the weighted-sum formulation (EA-Wt). In EA-Constr, the �tness value of each

individual is based on its feasibility and its objective value. Feasible individuals have higher �tness value than

infeasible ones. Among infeasible individuals, the one with a smaller constraint violation has a higher �tness value.

In EA-Wt, as in the experiments with SA, we assigned a weight of 1 for the reconstruction error and a weight of

10 for the other performance measures. As before, we set the search range to be �0:01 in each dimension around

Johnston's solutions, We have tried various population sizes and number of generations, and report the best solutions

we have obtained in Table 3.

Both EA-Constr and EA-Wt do not perform very well. EA-Constr has di�culty in �nding good feasible solutions.

This happens because the constraints based on Johnston's solutions form a tiny feasible region in the search space, and

randomly generated points have little chance of being feasible. EA-Wt is better than EA-Constr. However, except in

the \16b" and \64d" design problems, where EA-Wt improves Johnston's solutions in all six performance measures,

EA-Wt only �nds solutions with trade-o�s, often with larger transition bandwidths than those of Johnston's and

better in the remaining performance measures.

To summarize, the performance improvement in Novel comes from three sources. First, the closed-form formula-

tion used in Novel is more accurate than the sampling method used in Johnston's approach. Local optima found by

Novel are true local optima, whereas Johnston's solution are local optima in a discrete approximation of the design

problem. Second, Novel uses a constrained formulation which allows it to �nd designs that are guaranteed to be

better than or equal to Johnston's design with respect to all performance measures. Third, Novel employs e�ective

global-search strategies that allows it to explore a large part of the search space without �rst committing to many

expensive local searches. In addition, the small amount of dependency between various components of Novel makes

it suitable for parallel implementation.
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