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Abstract - The design of filter banks in subband image coding is
critical for achieving high image quality. In this paper, we study the de-
sign from both the signal processing domain and the theory of wavelets.
We formulate the design of filter banks as a two-stage nonlinear con-
strained optimization problem, each of which is solved by sequential
quadratic programming (SQP). Using a wavelet image coding prototype,
we show improved quality of the designed filter banks in terms of image-
compression and peak signal-to-noise ratios (PSNRs).

INTRODUCTION

Subband image coding is a transform-based coding technique that uses a
subband transform to reduce or remove spatial redundancies. This transform
can be represented by a filter bank {Figure 1) with an analysis subsystem,
imcluding filters Ho(z), Hq(z), and two decimators, followed by a synthesis
subsystem, including filters Fy(z), F1(z), and two interpolators.
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Figure 1: The structure of a two-band filter bank.
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To achieve good quality in image coding, we need to select a proper filter-
bank type and find good filter parameters [7, 1]. We select the type of filters
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based on two criteria: perfect reconstruction (PR) and linear phase (LP). The
former prectudes any errors caused by the filter bank itself, whereas the latter
avoids introducing any phase errors into the transform coefficients, since phase
distortions around edges are very visible.

A biorthogonal filter bank achieves both of these requirements. The filter
bank requires only two filters Hg(z) and H(z) to be designed because its
synthesis filters Fp(z) and Fi(z) are related to its analysis filters Ho(z) and
H,(z} by the relations Fy(z) = 2H1(—z) and Fi(z) = —2Hy(—=z). In addition,
it is required [6] that the sum of filter lengths Ny and N; be a multiple of 4,
i.€., No+ Ny = 4m, and that the filters satisfy one of the following conditions:
a) both Hy(z) and Hy(z) are of even lengths, Hy(z) is symmetric, and Hq(z)
18 antisymmetric; or b) both filters are of odd lengths and are symmetric. In
this paper we use filters ol the second type.

FILTER DESIGN CRITERIA

Criteria for the Overall Filter Bank

Let hg(n),n =1,2,---, Ng be the coefficients of low-pass filter Hy(z), and
hi(n),n = 1,2,---, Ny be those of high-pass filer H,(z). Since both filters
are symmetric, LP is guaranteed. If the delay of the filter bank is &%ﬂk -1,
then PR can be enforced by a set of equations called the PR condition:
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fori=1,2,..., B0 " where 0(z) = 1 if « = 0, and 0 otherwise.

Criteria for Each Individual Filter

Using a filter bank, we split the original image into a set of subimages and
quantize finer seme subimages with lower frequencies than others with higher
frequencies. If the subimages are separated well by the analysis filters, we
will have good image coding quality; otherwise, some important information
may leak into unimportant subimages, in which coarse quantization there
may cause poor image coding quality.

To perfectly divide the frequency band into low and high frequencies, we
require ideal filters. Since it is impossible to achieve ideal fiitering using
finite-length filters, we want to maximize the proximity of the designed filters
to ideal filters. The degree of proximity can be simply measured by using
passband energy E, and stopband energy I for given passband and stopband
cut-off frequencies w,, and w,, respectively [4]. Let the Fourier transforms of
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For given w, and wy, E; and E, for filters iy and h; are as follows:
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Regularity Criteria

Derived from wavelet theory and also known as a smoothness constraint,
regularity requires the iterated filters to converge to continuous functions [7].
For low-pass filter hg, the regularity of order N requires at least N zeros in
its amplitude response Ho(w) at w = 7

Ho(w)|w=r =0 d" Ho(w)/dw"|u=r = 0 (4)

for n = 1,2,---, N — 1. Similar conditions can be defined for high-pass filter
Hi{w) except that it is evaluated at frequency w = 0.

Here we use 2-order regularity because it is sufficient for image coding [1].
The 2-order regularity can be enforced by having Ho(w = 7) = 0 for low-pass
filter ho and Hy(w = 0) = 0 for high-pass filter h;:
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Coding Gain

Coding gain measures energy compaction, and high coding gains corre-
late consistently with high objective values. By modeling a natural image
as a Markovian source with the nearest sample correlation p and by assum-
ing uncorrelated quantization errors, Katto and Yasuda [5] derived a filter-
dependent coding gain:
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where M 1s the number of subbands (M =2), Ay = 2, >, hus (1) b ()P 1
and By = 3, fu(i)2.

There are two ways to maximize coding gain [2]. First, it can be optimized
in the first stage of subband decomposition with p = 0.8 and employed in
other stages. Second, it can be optimized in every stage of subband transform
with p = 0.95. Here we use the first strategy, because its computation is
independent of subband divisicn, leading to a filter bank that is applicable
for any subband decomposition structures.

TWO-STAGE CONSTRAINED OPTIMIZATION

To design analysis filters hg and h;, we have identified four sets of perfor-
mance metrics formulated as a multi-objective problem as follows:

obji: Satisfy PR condition (1);
objg: Minimize E;(hg), E<(h1), Ey(ho), and E,(h1) (3);

objs: Satisfy 2-order regularity (5);
objs: Maximize coding gain (6).

Since there is no multi-objeciive optimization method to solve this prob-
lem, we transform it into a constrained optimization problem using obj; and
objs4 as constraints. Note that it is hard to find the relative weights between
objs and objy because they take values of different ranges.

Our solution strategy consists of two stages. First, we ignore objs in our
formulation and define the following constrained optimization problem:

ming, p, Es(ho) + Ep(ho) + Es(hy) + Ep(hy) (7)
subject to PR condition (1)
2 — order regularity (5)

This is a nonlinear constrained optimization problem with a quadratic ob-
jective, two linear equality constraints, and ﬂ%ﬁl quadratic equality con-
straints. 5 i ~ R _

After obtaining a solution ko and h; to (7), we compute F.o, Epo, Es1, and

Ep;. Using them as performance bounds, we define the second optimization
problem as follows:

maxn, n, G(p) (8)
subject to PR condition (1)

2 — order regularity (5)

Ey(ho) < BEs0,  Ep(ho) < BEpo,

Ee(hy) < BEa.  Ep(ha) < BEp.



where 3 is a control parameter indicating how much stopband and passband
energies can be relaxed for the coding gain. Here, we set # = 1.1. The reasons
for this small 3 are as follows: a) The strong assumptions in deriving (6) may
not be valid for some images. b) The optimization of coding gain in the first
stage of subband decomposition is not very accurate.

IMPLEMENTATION AND CODING QUALITY

To solve the two-stage optimization problem, we utilize an SQP (sequential
quadratic programming) package called FSQP (Feasible SQP) [8]. We set
the maximum iterations of FSQP to be 1,000, and the convergence precision
for equality constraints to be 107!%. Since the objective and constraints
are nonlinear, (7) and (8) may have lots of local minima. To get better
designs, we randomly generate 100 starting points within the search space,
—1 < hg(n), h1(n) < 41. For each starting point, we do local search using
FSQP, and pick the best solution with the smallest objective value.

Three filter banks of different lengths (Ng, V1) were designed: a) (9,7), b)
{13,7), and ¢} (13,11). The cut-off frequencies w, and w, control how close
the designed filters are to the ideal filters. For the (9,7) filter bank, we set
ws = 0.77 and w, = 0.37. For the other two filter banks, we set w; = 0.67
and w, = 0.47.

For each filter bank designed, we compare its performance with that of
Antonini’s {9,7) filter bank that was reported to perform the best [7]. We
implemented both schemes using a wavelet image coding package [3] with
the same quantizers and entropy coders. We tested two images of different
styles: a smooth image (Lena), and a more detailed one with some textures
(Barbara). For each image, we tried the following compression ratios: 4:1,
8:1, 16:1 and 32:1, and calculated their peak signal-to-noise ratios (PSNRs).

Figure 2 compares the coding qualities in terms of PSNRs and compression
ratios, where the (9,7), (13,7} and (13,11) filters were designed by our method.
For Lena, our filter banks have similar performance as Antonini’s filter bank,
with a maximum improvement of 0.2 dB at low compression ratio 4:1. For
Barbara, our filter banks perform much better: {9,7) improves by up to 0.65
dB, (13,7) by up te 0.75 dB, and (13,11) by up to 0.75 dB.
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Figure 2: Comparison of our designed filter banks and Antonini’s filter bank.
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