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pages
es for Abstract. In this paper, we present constrained simulated ennealing
(CSA), a global minimization algorithm that converges to constrained
azine global minima with probability one, for solving nonlinear discrete non-
’ convex constrained minimization problems. The algorithm is based on
sence the necessary and sufficient condition for constrained local minima in the
’ ’ theory of discrete Lagrange multipliers we developed earlier. The condi-
\arch tion states that the set of discrete saddle points is the same as the set of
i ' constrained local minima when all constraint functions are non-negative.
s of L To find the discrete saddle point with the minimum objective value, we
& model the search by a finite inhomogeneous Markov chain that carries
. out (in an annealing fashion) both probabilistic descents of the discrete
wetion ‘ Lagrangian function in the original-variable space and probabilistic as-
lisfi cents in the Lagrange-multiplier space. We then prove the asymptotic
HHstl- convergence of the algorithm to constrained global minima with proba-
| bility one. Finally, we extend CSA to solve nonlinear constrained prob-
gzrge i lems with continuous variables and those with mixed (both discrete and
; : continuous) variables. Our results on a set of nonlinear benchmarks are
Img { much better than those reported by others. By achieving asymptotic con-
Lined % vergence, CSA is one of the major developments in nonlinear constrained
Ane i global optimization today.
rided ‘
o - ..
& i 1 Problem Definition
:thod m
rages : A general discrete constrained minimization problem is formulated as follows:
H minimize; f(x)
)f subject to g(x) <05 x={(T1,..-,Tn) (1) |
i h{z) =0 |
; * Research supported by National Science Foundation Grant NSF MIP 96-32316.
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where f(z) is a lower-bounded objective function, g(z) = [g1(x), -, gn(@)T
is a set of k inequality constraints, k(z) = [hi (), -, hm(2)]T is a set of m
equality constraints, and all the discrete variables z; are finite. The functions
f(z), g{z), and h{x) can be either convex or non-convex, linear or nonlinear,
continuous or discontinuous, and analytic (i.e. in closed-form formulae) or pro-
cedural. The search space X is the finite Cartesian product of discrete variables
T t=1,---,M.

Without loss of generality, we discuss our results with respect to minimization
problems, knowing that maximization problems can be converted to minimiza-
tion ones by negating their objectives. We first define the following basic terms.

Definition 1. N (z), the neighborhood of point x in space X, is a user-defined
set of points {x' € X} such that = ¢ N(x) and that ' € N(z) ¢<= z € N(z').
Neighborhoods must be defined such that any point in the finite search space is
reachable from any other point through traversals of neighboring poinls.

Definition 2. A point x € X is a feasible point if h(x) =0 and g(z) <0.

Given N(z) to be the neighborhood of point z € X in search space X, we
define local and global minima for (1) as follows:

Definition 3. Point x € X is called a constrained local minimum iff a) risa
feasible point, and b) for every feasible point z' € N(z), f(&') = f(z)-

Note that point z may be a local minimum to one definition of N{z) but may
not be for another definition of N7 (z). The choice of neighborhood, however, does
not affect the validity of a search as long as one definition is used consistently
throughout. Normally, one may choose N(z) to include the nearest discrete
points to x so that neighborhood carries its original meaning. The search will
still be correct even if the neighborhood is chosen to include “far away” points.

Definition 4. Point ¢ € X is called a constrained global minimum iff a} = is
o feasible point, and b) for every feasible point ¥’ € X, f(z") > f(z). The set of
all constrained global minima is Xopt.

Finding constrained global minima of (1) is challenging as well as difficult.
First, f(z), g(z), and h(z) may be non-convex and highly nonlinear, making
it difficult to even find a feasible point or a feasible region. Moreover, it is not
useful to keep a search within a feasible region, as feasible regions may be disjoint
and the search may need to visit multiple feasible regions before finding the
global minimum. Second, f(z), g(z), and h(x) may be discontinuous or may not
have derivatives, rendering it impossible to apply existing theories and methods
in continuous space. Third, there may be a large number of constrained local
minima, trapping trajectories that only utilize local information.

As nonlinear constrained problems do not have closed-form solutions and
cannot be solved analytically except in some trivial cases, they are generally
solved by some iterative procedure 1. In general, let {2 be a search space. Given
starting point w(k = 0) € {2, ¥ generates iteratively a sequence of points, w(k =
), w(k =2), -, w(k), - in {2, until some stopping conditions hold. Here we are
interested in global optimization, and let 25 be the set of all global minima.




Lgr{)]T
set of m
unctions
onlinear,
) Or pro-
variables

imization
ninimiza-
:iic terms.
2r-defined
e NMz').

© space is

‘a) x is a

) but may
over, does
nsistently
t discrete
sarch will
v points.

ffa)xis
The set of

. difficult.
., making
. it is not

o disjoint .

nding the
r may noﬁif--

. method8:

ned local

rions al
gener B

463

Definition 5. Procedure 1@ is said to have asymptotic convergence to global
minimum, or simply asymptotic convergence (2], if ¢ converges with probability
ome to an element in (2,; that is, limg 0o P(w(k) € §25) = 1, independent of
starting point w(k = 0).

Definition 6. Procedure 1 is said to have reachability of global minimum /2]
if probability limg_,eo P(w(l) € §2,, 31, 0<1 < k) =1.

Reachability is much weaker than asymptotic convergence as it only requires
w(k) to hit a global solution sometime during the search. In practice, reachability
can be achieved by keeping track of the best solution in the course of ¢, as done
in a pure random search. Hence, reachability is also called convergence in the best
solution to the global minimum. In contrast, asymptotic convergence requires t
to converge to a global solution in f2; with probability one. Consequently, the
probability of hitting a global solution increases as the search progresses, making
it more likely to find the global solution than an algorithm with reachability alone
if the search were stopped before it converges.

In this paper, we present a new global minimization algorithm, called con-
strained simulated annealing (CSA), for finding constrained global minima with
asymptotic convergence. To achieve asymptotic convergence, we have built CSA
based on simulated annealing (SA) because SA is the general algorithm that can
guarantee asymptotic convergence in unconstrained optimization.

The paper has six sections. Section 2.2 reviews the theory of discrete La-
grange multipliers [8, 11, 12], that states that finding a discrete saddle point with
the minimum objective value is necessary and sufficient for global minimization.
Hence, CSA described in Section 3 aims to find such a saddle point by performing
probabilistic descents of the Lagrangian function in the original-variable space
and probabilistic ascents in the Lagrange-multiplier space. To prove its asymp-

. totic convergence, we model the search by a strongly ergodic Markov chain, and

show that CSA minimizes an implicit virtual energy at any constrained global

E minimum with probability one [10]. Section 4 sketches the proof and illustrates
the search behavior. Finally, Section 5 shows improvements in applying CSA to
i solve some discrete, continuous, and mixed nonlinear optimization problems.

Previous Work

There are two approaches to solve (1): direct solution or transformation into
an unconstrained problem before solving it. Examples of direct methods include
ject /discard methods, repair methods, feasible-direction methods, and interval
ethods. These methods may be unable to cope with nonlinear constraints,
very problem-specific, or computationally expensive. Hence, the majority of
ethods are based on transformations and are discussed in this section.

Penalty Formulations

8 approach first transforms (1) into an unconstrained optimization problem
I a sequence of unconstrained problems, and then solves it by using existing




unconstrained minimization methods. Many heuristics developed to handle con-
straints [7] are normally problem-dependent, have difficulties in finding feasible
regions or in maintaining feasibility, and get stuck easily in local minima.

Static-penalty formulations [3,6] transform (1) into an unconstrained problem,
m k
min Lp(ZIJ,’}’) = f(z) + Z ')’ithi(mﬂp + Z ')’m%—jmamp(oa gi (z)) (2)
X i=1 jzl

where p > 0, and penalty ¥ = {v1,7v2," " ,Ym+#} i8 fized and chosen to be large
enough so that

Ly(z*,7) < Ly(z,v) Vz € X — Xopt and z* € Xopt- (3)

Based on (3), an unconstrained global minimum of (2) over z is a constrained
global minimum to (1), and thus it is sufficient to minimize {2). Because both
f(z) and |h;i(z)| are lower bounded and because z takes finite discrete values,
~ always exists and is finite. This ensures the correctness of the approach. Note
that other forms of penalty formulations are also available in the literature.
The major problem of static-penalty methods is the ruggedness of L,(z,7)
and the depth of its unconstrained local minima due to the large v used. Unless
starting points are close to one of the unconstrained global minima, it becomes
very unlikely to traverse the search space X and find the global solution. Select-
ing a suitable v also proves to be difficult. If it is much larger than necessary,
the terrain will become too rugged to be searched. If it is too small, the solution
to (2) may be a constrained local minimum or even not be a feasible solution.

Dynamic-penalty formulations address these difficulties by increasing penalties
gradually. They transform (1) into a sequence of unconstrained problems:

m kE
ming L,(z,A(k)) = f(x) + Z Ai(w)hi(@)|P + _Z Ama i (k)maz? (0, g;(z)) (4)

for an increasing sequence A(k), & = 1,2, -+, K, where 0 < A(k) < A{s+1), and
AKC) = . Here A > N iff A; 2 M. for every i = 1,2,---,m, and A > XN iff A >N
and there exists at least one 4 such that A; > Aj.

Dynamic-penalty methods are asymptotically convergent if, for every A(xk},
(4) is solved optimally [3,6]. The requirement of obtaining an unconstrained
global minimum of (4) in every stage is, however, difficult to achieve in practice,
given only finite amount of time in each stage. If the result in one stage is not
a global minimum, then the process cannot be guaranteed to find a constrained
global minimum. Approximations to the process that sacrifice global optimality

of solutions have been developed, such as two-phase evolutionary programming
and two-phase neural networks.
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2.2 Lagrangian Formulations

Lagrangian methods are based on the theory of Lagrange multipliers that aug-
ment the original search space X by a Lagrange-multiplier space A, and gradually
resolve constraints through iterative updates. We summarize our extensions and
relevant theory of Lagrangian formulations that work in discrete space 8,11,
12}. Let us first consider a discrete equality-constrained minimization problem,
minimize, f(x)
subject to h(z) = 0; = (x1,...,%n) (5)

where z is a vector of finite discrete variables. A generalized discrete Lagrangian
Junction [8] of (5) is defined to be: ‘

La(z,2) = f(x) + ATH(h(x)). (6)
where H is a continuous function, and A = {A1, -, A}, is a set of Lagrange
multipliers. Based on (6), we define point (z*, A*) to be a saddle point if:

Ld(ﬂl*,/\) S Ld(ﬂb‘*,/\*) S Ld(l‘,/\*), (7)

for all z € M(z”) and all possible A. The first inequality in (7) only holds when
all the constraints are satisfied, which implies that it must be true for all . The
following theorem [11, 12] states the first-oder necessary and sufficient conditions
for all constrained local minima.

Theorem 1 {Necessary & Sufficient Condition for Discrete Constrained
Local Minima). In discrete space, if function H is a non-negative (or non-
positive) continuous function satisfying H(z) = 0 iff x = 0, then the set of
constrained local minima is the same as the set of discrete saddle points.

The condition in Theorem 1 is stronger than its continuous counterpart. In
continuous space, points that satisfy the first-order necessary and second-order
sufficient conditions [6] are a subset of all the constrained local minima. Hence,
the global minima of points satisfying these conditions are not necessarily the
constrained global minima of the original problem. Further, these conditions re-
quire the existence of derivatives of the objective and constraint functions, and
are not applicable when any one of these functions is discontinuous. In contrast,
finding saddle points in discrete space always leads to a constrained local mini-
mum. Further, if one can find the saddle point with the minimum objective value,
then it is the constrained global minimum (according to Theorem 1}. This ob-
servation provides the basis for the global minimization procedure studied here.

Theorem 1 also provides a way to handle inequality constraints. We first
transform inequality constraint g;(z) < 0 into an equivalent equality constraint
gj(z) = max(0, g;(z)}) = 0, resulting in an optimization problem with equality
constraints only. We then use the absolute function H and define the Lagrangian
function of (1) as:

m k
L{z,A) = f(2) + >_ Ailhs(@)| + Y AmejG(z) where X = {A1, -+, Amis]-(8)

i=1 j=1
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l. procedure CSA

2 set starting point x = (z, A);

3 set starting temperature T = T° and cooling rate 0 < o < 1;
4. set Ny (number of trials per temperature};

5. while stopping condition is not satisfied do

6 for k+ 1 to Nt do

7 generate a trial point x’ from A/(x) using G(x, x’);
8. accept X’ with probability Ar(x, x’)

9. end_for

10. reduce temperature by 7' +— a x T,

11. end._while

12. end _procedure

Fig. 1. CSA: the constrained simulated annealing algorithm (see text for the initial
values of parameters).

3 Constrained Simulated Annealing (CSA)

Figure 1 presents our global minimization algorithm called CSA for solving (1)
using Lagrangian function (8). The algorithm is based on SA that normally does
probabilistic descents in one space, with probabilities of acceptance governed by
a temperature that is reduced in an exponentially decreasing fashion. CSA, in
contrast, does probabilistic ascents in the Lagrange-multiplier space and prob-
abilistic descents in the original-variable space. Due to space limitation, we do
not present the basic steps of SA, but only discuss the steps of CSA here.

Line 2 sets a starting point x = (z, A), where z can be either user-provided
or randomly generated (e.g. based on a fixed seed 123 in our experiments), and
A is initialized to be zero.

Line 3 initializes control parameter T, called temperature, to be large enough
in order to allow almost all trial points x’ to be accepted. In our experiments,
we generate the initial temperature by first randomly generating 100 points of z
and their corresponding neighboring points 2’ where each component |z} —zi] <
0.001, and then setting T' = maz,,. i {|L(z', 1) — L(x, 1)}, |hs(z)]}. Our rationale
is based on the initial amount of violations observed in a problem. We also set
@ (to be discussed later) to be 0.8 in our experiments.

Line 4 sets the number of iterations at each temperature. In our experiments,
we set Nt = ((20n +m) where { = 10(n+m), n is the number of variables, and
m is the number of equality constraints. This setting is based on the heuristic
rule in [4] using n + m instead of n.

Line 5 stops CSA when the current point x is not changed, i.e., no other
new point x’ is accepted, for a couple of successive temperatures, or the current
temperature T is small enough (e.g. T < 10-9).

Line 7 generates a random trial point x' in neighborhood N (x) of current
point X = (x, A) in search space § = X x A using generation probability G (x, x'),
where N(x) and AL()), neighborhood of A at x, are defined as follows:

N(x) = {(2',2) € S where 2’ € N, ()} U {(z,N') € S where X' € Na()\)}(9)




Nz()\):{ueAlp«(/\andm:)\iifhi(x):0}
U{,ueA[p>)\andui:)\iifhi(a:):0} (10)

where relation “<” on two vectors has been defined earlier. Neighborhood Na(A)
prevents A; from being changed when the corresponding constraint is satisfied,
ie., hi(z) = 0. An example of N2(A) is that w differs from X in one variable
(e.g. pi # Ai, and pj = A; for § # i), and {j;| i # 7} is a set of values, some of
which are larger than A; and some are smaller. In short, a trial point (z',\) is
a neighboring point to (z,2) if ' is 2 neighboring point to & in variable space
X, and (z,X') is a neighboring point to (z,A) if X' is a neighboring point to A
in Lagrange multiplier space A and hiz) # 0. '
G(x,x'), the generation probability from X 0 x' € N(x) satisfies:

P

ial
G(x,x') >0 and S Gxx)=1 (11)
o xeN(x)

The choice of G(x,x') is arbitrary as long as it satisfies (11). In our illustrative
example, we use a uniform probability over N (x), independent of T.

(1)
0es G(x,x") = 1/IN(x)| (12)
by

in Line 8 accepts X' with acceptance probability Ar(x, x') that consists of two
ob- components, depending on whether z or X is changed in x'.

do '

) exp | — Lﬂ’—‘—tflig’—‘lﬁ if x' = (a',A)
led Ar(x,x') = (Le)-LED* £ 5 (13)
ae exp | — 7 if x'=(z,X)
and
where (a)* = a if a >0, and (a)* = 0 otherwise for alla € R.

ugh The acceptance probabilities in (13) differ from the acceptance probabilities

used in conventional SA, which only has the first part of (13) and whose goal is
to look for global minima in the z space. Without the \ space, only probabilistic
descents in the = space need to be done.

Qur goal here is to look for saddle points in the joint space X X Aof rand A,
which exist at local minima in z space and at local maxima in A space. To this
end, the first part of (13) carries out probabilistic descents of L(x, \) with respect
“to z for fixed A. That is, when we generate a new point =’ while A is fixed, we
accept it with probability one when 5, = L{z',\)— L(z, ) is negative; otherwise
we accept it with probability € =/T . This is performing exactly descents while
allowing occasional ascents in z space as done in conventional SA.

However, descents in z space alone only lead to local/ global minima of the
Lagrangian function without satisfying the constraints. To this end, the second
part of (13) carries out probabilistic ascents of L(z,\) with respect to A for fixed
order to increase the penalties of violated constraints and to force them into
t:isfa.ction. Hence, when we generate a new point A’ while & is fixed, we accept
'with probability one when &, = L(z,X) — L{x,\) is positive; otherwise we

ept it with probability e—9*/T_ This is performing exactly ascents in A space
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while allowing occasional descents {and reducing the ruggedness of the terrains
and deepening the local minima) as done in conventional SA. Note that when a
constraint is satisfied, the corresponding Lagrange multiplier will not be changed
according to (10).

Although our algorithm only changes one variable in x or A at a time, it
is possible to derive Ar(x,x’) that allows multiple variables in £ and A to be
changed together. In that case, we can decompose the aggregate change into a
sequence of one-variable changes.

Finally, Line 10 reduces T using the following cooling schedule after looping
Ny times at a given T

T—axT (14)

where a is a constant smaller than 1 (typically between 0.8 and 0.99). Theo-
retically, if T is reduced slow enough, then CSA will converge to a constrained
global minimum of (1) with probability one as T approaches 0.

Note that (13) enables any trial point to be accepted with high probabilities
at high T, allowing the search to traverse a large space and overcome infeasible
regions. As T is gradually reduced, the acceptance probability decreases, and at
very low temperatures the algorithm behaves like a local search.

4 Asymptotic Convergence of CSA

In this section, we prove the asymptotic convergence of CSA to constrained
global minima by modeling the process by an inhomogeneous Markov chain,
showing that the Markov chain is strongly ergodic, proving that the Markov
chain minimizes an implicit virtual energy based on the framework of generalized
SA (GSA) [10], and showing that the virtual energy is at its minimum at any
constrained global minimum. Due to space limitations, we only sketch the proofs
and illustrate the results by an example.

CSA can be modeled by an inhomogeneous Markov chain consisting of a
sequence of homogeneous Markov chains of finite length, each at a specific tem-
perature in a given temperature schedule. According to the generation and ac-
ceptance probabilities, G(x,x') and Ar(x,x’), the one-step transition probability
of the Markov chain is:

G(x,x")Ar(x,x) if x' € N(x)
Prix,x') =< 1 =3 v Prixy) ifx' =x (15)
0 otherwise

and the corresponding transition matriz is Pr = [Pr(x,x")].

Ezample 1. The following simple example illustrates the Markov chain for a
problem that minimizes a quadratic objective with one quadratic constraint.

minimize f(z) = —22 (16)
subject to h(z) = |(z —0.6)(z —1.0)| =0
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Fig. 2. The Markov chain modeling the Lagrangian space of (16) and the corresponding
Lagrangian function value. The four saddle points are shaded in (a).

where z € X = {0.5,0.6,---,1.2} and A € A = {2,3,4,5,6} are both discrete,

and <y, the maximum Lagrange multiplier, is 6. The state space is, therefore,

S = {(z,\)| = € X, X € A}, and the total number of states is |S] =8 x 5 = 40.
In the Markov chain, we define the neighborhoods for = and X\ as follows:

Nl(:v)={:c—1,x+1|0.6§x_<_1.1}U{a:+1|:1:=0.5}u{m—1]:1::1.2}
No(z) ={A -1, 2+113<A<L5,2#06, and z #1.0}U{A -1 A=6,
z # 0.6, and z #1.0}U{A+1 A =2,z #06, and z # 1.0} (17)

Given N (z) and Na(A), N(x) is defined as in (9). ‘
Figure 2 shows the Markov chain constructed. In the chain, a node x = (z, A)
represents a point in §, and an arrow from X to X' € N(x) (where x' = (2, A) or
(z,\')) means that there is a one-step transition from x to x' with Pr(x,x'} > 0.
For z — 0.6 and z = 1.0, there is no transition among the X’s because the
constraints are satisfied at these points (according to (10)).
~ There are two saddle points in this Markov chain at (0.6,5) and (0.6,6),
corresponding to the local minima z = 0.6, and two saddle points at (1.0,5) and
(1.0, 6), corresponding to the local minima z = 1.0. Since h(z) is non-negative,
each saddle point has an associated constrained local minimum (according to
“Theorem 1). Hence, the solution space is the set of four saddle points or the set
f two local minima. CSA is designed to locate the saddle points corresponding

: the constrained global minimum z* = 1.0 and A = v at (1.0,6). [

oo Let Xop = {(2%,7)| 2" € Xopt}, and Ny, be the maximum of the minimum
humber of transitions required to reach X,p¢ from all x € S. By properly con-
ructing A(x), we state without proof that Pr is irreducible, and that Ny can
ways be found. This property is illustrated in Figure 2 in which any two nodes
reach each other.
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Consider the sequence of temperatures {T},k = 0,1,2, - - -}, where Ty, > Ty q
and limg_,o, T} = 0, and set Ny, the number of trials per temperature, to be
Ni,. The following theorem proves the strong ergodicity of the Markov chain.

Theorem 2. The inhomogeneous Markov chain is strongly ergodic if the se-
quence of temperatures {Ty} satisfies:

NipAy
T > L2
* = loge(k + 1)

where Ay = 2maxy {|L(x') - L(x)],x’ € N(x)}.

This theorem can be proved by following the steps used to show weak er-
godicity of SA [1} and by using the strong ergodicity conclusions [2]. Strongly
ergodicity implies that the Markov chain has a unique stationary distribution
77, where 7(x) is the probability of hitting point x during the search of CSA.
The Markov chain in Figure 2 is strongly ergodic.

Our Markov chain also fits into the framework of generalized simulated an-
nealing (GSA) [10] if we define an irreducible Markov kernel Pr(x,x’) and its
associated communication cost V(x,x'):

n = { (LX) = L)t if x' = (2/, ))
Vi) = { (L) — L) if x' = (2, ¥) (19)

Obviously V(x,x’) > 0 and function V: § x S — [0, +00].

Note that CSA does not minimize L(z, A) due to its probabilistic descents
in z space and probabilistic ascents in A space. This property is illustrated in
Figure 2b in which the four saddle points are not at the global minimum in
the Lagrangian space. It is quite different from SA for unconstrained problems,
whose explicit objective is to minimize a single objective by performing proba-
bilistic descents. In fact, CSA aims at minimizing an implicit virtual energy W (x)
according to GSA [10], and converges to the global minimum of W(x) with prob-
ability one. Here, the virtual energy W (x) is the cost of the minimum spanning
tree rooted at point x of the digraph governed by A/ (x). Hence, to prove that
our Markov chain converges asymptotically to the constrained global minimum
of the original problem (1), we need to show that W (x) is minimized at (z*,7)
for z* € X1, and for all z € X — Xopt and A € A, W((z*,7)) < W{((z, \)).
This is stated in the following theorem.

(18)

Theorem 3. The Markov chain modeling CSA converges to the constrained
global minimum z* € Xopt with probability one.

We sketch the proof of the theorem that consists of two steps. First, we
show that for a given z, the virtual energy satisfies W ((z, ")) < W((z, \)) for
any A" > A Hence, W((0.6,4)) < W((0.6,3)) and W((0.8,6)) < W((0.8,2))
in Figure 2. Second, we show that W((z*,v)) < W((z,7)), where z* ¢ Xopt
and z € X — X,,; at the maximum value v of the Lagrange multipliers. Hence,
W((1.0,6)) < W((0.6,6)) and W((1.0,6)) < W((0.8,6)) in Figure 2. Finally, we
show that W(x) of x = (z,A) is minimized at (z*,v), and the Markov chain
converges to the constrained global minimum z* € Xopt With probability one.
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Fig. 3. Example showing the convergence probabilities of two states and the number
of iterations to arrive at convergence. Part (a) also shows the reachability probability
of reaching the global solution if the search were stopped.

Example 1 (cont’d). Since multiple runs of CSA do not illustrate the asymptotic
convergence to the global minimum, we evaluate the stationary probabilities 7
numerically at a given T by first computing acceptance probability Ar(x,x")
using (13) and the one-step transition probability Pr(x,x’) using (15). The
stationary distribution 7 of the Markov chain with transition matrix Pr is:

plk + 1) = p(k)Pr for any given initial vector p(k = 0) (20)

until |[p(k+1)—p(k)|| < e. Here we select ¢ = 1016 ag the convergence precision,
and denote the number of iterations by Kr. As np = limg_, o p(k), independent
of starting vector p(k = 0), we set pi(k=0)=1/|S|foralli=1,2,..., IS].

In this simple example, the virtual energy W(x) is minimal at x* = (1.0, 86).
Figure 3a shows the stationary probability 7y (x*) at this point, which increases
monotonically as T is reduced, and approaches one as T is small (T = 0.01). Thus
the Markov chain converges asymptotically to the constrained global solution.
The figure also shows the reachability probability at each temperature, which is
the probability of hitting the constrained global minimum in any of the previous
iterations. The stationary probabilities w1 (x) for other states x # x* decrease
monotonically to zero as T is reduced. Figure 3b illustrates this property at
X = (1.2,2). Note that the process does not minimize L(x, A\), whose minimum
exists at X; instead, it minimizes virtual energy W(x) implicitly defined over
communication cost V(x,x’) in (19). Finally, Figure 3c shows K required to
reach stationary distribution 7 with precision . The process arrives at mp
quickly at high T, but needs a large number of iterations at low 7". The reason
is that at low T, the probability of escaping from a local minimum is small, and
hence it takes a long time to arrive at the global solution.

5 Experimental Results on Constrained Problems

In this section, we apply CSA to solve general discrete, continuous, and mixed
nonlinear constrained problems. Due to a lack of discrete/mixed benchmarks,
we derive them from some existing continuous benchmarks [7, 5] as follows. In
generating a mixed problem, we assume that variables with odd indices are
continuous and those with even indices are discrete. In discretizing continuous
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variable z; in the range [ai, :], if b; —a; < 1, we force the variable to take values
from the set A; = {a; + —'——LJ} § =0,1,---,s; otherwise, we force it to take
values from the set A; = {a, + 2514 =0,1,---,(b;i — a;)s. Here, s = 10% if the
number of variables n is less than 5,and s = 105 otherwise. The dlscrete/ mixed
search space produced is, therefore, very huge. We also shift every discretized
variable z; by a very small constant value in such a way that the set A; contains
the value of the best solution.

5.1 Implementation Details

In theory, any neighborhood ANi(z) and N3()A) that satisfy Condition (10) and
Definition 1 will guarantee asymptotic convergence. In practice, however, it is
important to choose appropriate neighborhoods and generate proper trial points
in z and A in order to solve constrained problems efficiently.

In our implementation, we choose a simple neighborhood N (z) as the set of
points z’ that differ from z in one variable z;. We characterize N1 (z) by vector
g, where o; is the scale parameter in the Cauchy distribution along z;. Similarly,
we choose X' € N3()) to differ from ) in one variable and characterize N2(A) by
vector ¢, where ¢; is the maximum possible perturbation along A;. '

In generating trial point x' = (z', A) from x = (z, A), we consider two cases.
To generate a continuous trial point, we set:

' =z+7r06;i e (21)

where ry is a random variable uniformly generated in the range [—1,+1), e;
is a vector with its i** component being 1 and the other components being O,
8; is generated from Cauchy distribution of density fa(z) = %;ﬁ?, and < is
randomly generated from {1,2,---,n}. To generate a discrete trial point, we
obtain z’ by rounding the point generated by (21) to its closest discrete grid
point. If it happens that 2’ = z, then we set £’ = z + s x j, where j has equal
probability to take value +1 or —1.

In generating a trial point x' = (z, ') from x = (&, A), we apply the following:

MN=A+r Q5j €; (22)

where r; is randomly generated from [—1, +1], and j is uniformly generated from
{1,2,---,m}.

The trial point x' = (z’',A) or x’ = (z, \') generated is accepted according
to probability (13). We set the ratio of generating (', A) and (z, A’) from the
current point (z, A) to be 20n to m, meaning that z is updated more frequently
than A.

During the course of CSA, we dynamically adjust the neighborhood N (z)
by updating scale vector ¢ for r using a modified 1 : 1 rate rule [4] in order to
balance the ratio between accepted and rejected configurations.

) [1 + 60(p!7 - pu)/(l - pu)] if Pi > Pu
7= {a,-/ 1+ By ~ i)/ 0] if p; < Dy (23)
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where p; is the ratio of accepting 2’ in which z} differs from ;. We chose the
parameters experimentally: 8o = 7, 51 = 2, p, = 0.3, and Py = 0.2. If p; is low,
then too many trials of (2, A) are rejected, and o; is reduced. In contrast, if p;
is high, then trial points (z’, A) are too close to (z, ), and o, is increased.

We adjust ¢ according to the degree of constraint violations, where

¢ =w® h(r) = [wihi(z),w2ha(z), -, Wnhm (2)] (24)

and ® represents vector product. When h;(z) is satisfied, A; does not need to be
updated; hence, ¢; = 0. In contrast, when a constraint is not satisfied, we adjust
¢: by modifying w; according to how fast h;(z) is changing:

_fmow; if h,r(:c) > T
Wi = {m w; if hi(x) < nT (25)
where ng = 1.25, ;=0.8, o = 1.0, and 1 = 0.01 were chosen experimentally.
When h;(z) is reduced too quickly (i.e., hi(z) < nT), hi(x) is over-weighted,
leading to possibly poor objective values or difficulty in satisfying other under-
weighted constraints. Hence, we reduce A;’s neighborhood. In contrast, if k;(z) is
reduced too slowly (i.e., hi(z) > 19T"), we enlarge A;’s neighborhood in order to
improve its chance of satisfaction. Note that w; is adjusted using T as a reference
because constraint violations are expected to decrease when T decreases.

5.2 Ewvaluation Results

In this section, we show the results of applying CSA on 10 constrained optimiza-
tion problems G1-G10 [7,5] with objective functions of various types (linear,
quadratic, cubic, polynomial, and nonlinear) and constraints of linear inequali-
ties, nonlinear equalities, and nonlinear inequalities. The number of variables is
up to 20, and that of constraints, including simple bounds, is up to 42.

These problems were originally invented to be solved by evolutionary algo-
rithms (EAs) using well-tuned constraint handling techniques for each problem
in order to get good results. Examples of these techniques include keeping the
search within feasible regions with some specific genetic operators, and dynamic
and adaptive penalty methods.

We also solved the continuous problems using DONLP2 [9], a popular se-
quential quadratic programming (SQP) package that uses derivatives. SQP is
an efficient local-search method widely used for solving constrained optimiza-
tion problems, whose quality depends heavily on starting points. To be fair, we
ran DONLP2 from multiple starting points using the same amount of average
CPU time as one run of CSA for continuous problems.

Table 1 shows the comparison results for continuous problems. The first two
columns show the problem identifiers and the constrained global minima (or
maxima), if known. The third and fourth columns show the best solutions ob-
tained by EAs and the specific constraint handling techniques used to generate
the solutions. The fifth thru sixth columns show the best solutions of SQP, and
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Table 1. Comparison results of DONLP2, GA, and CSA for 10 continuous problems.
(S.T. stands for strategic oscillation, H.M. for homomorphous mappings, and D.P.
for dynamic penalty. All runs were done on a Sun SparcStation Ultra 60 computer.

Numbers in bold represent the best solution.)

EAs SQP: DONLP2 CSA (average of 20 runs)
Problem GIOb?‘l best specific best O with best Th with time {sec.)
ID Solution sol'n method sol'n  best sol'n| sol'm  best sol’'n  per run
G1 (min) -15 -15 Genocop -15 14.8% -15 100% 17.04
G2 (max) unknown || 0.803553 S.T. 0.640329 0.4% 0.803619 100% 94.03
G3 (max) 1.0 0.999866 -  S.T. 1.0 93.1% 1.0 100% 69.62
G4 (min) | -30665.5 -30664.5 H.M. -30865.5 61.4% -30665.5 100% 2.70
G5 (min) unknown}| 5126.498 D.P. 4221.956 94.0% [4221.956 100% 3.81
Ge (min) -6961.81 || -6961.81 Genocop|-6961.81 RT.2% -8961.81 100% 0.978
G7T (min) 24.3062 24.62 H.M. 24.3082 99.3% 24.30682 100% 14.71
G8 (max) unknown {{0.095825 H.M, 0.095825 44.9% 0.095825 100% 1.22
G9 (min) 680.63 680.64 Genocop| 680.63 99.7% 6880.63 100% 5.61
G10 (min) 7049.33 T7147.9 H.M. T7049.33 29.1% T049.33 100% 10.81

Table 2. CSA results on 10 derived discrete and mixed problems with 20 runs per
problem. (All runs are done on a Sun SparcStation Ultra 60 computer.)

CSA for Discrete Problems CSA for Mixed Problems
Problem ID best % with time (sec.) best T with time (sec.)

sol'n best so’'n per run sol’'n best sol’'n per run
G1 {min) -is 106% 17.97 -15 100% 21.56
G2 (max) 0.803619 20% 99.03 0.8036190 100% 100.62
G3 (max) 1.0 . 100% 70.15 1.0 100% 74.78
G4 {min) -30865.5 100% 2.43 -30865.5 100% 3.04
G5 (min) 4221.956 20% 3.32 4221.956 100% 4.16
G6 (min) -6961.81 90% 0.962 -6961.81 100% 1.00
G7 (min) 24.3062 100% 17.48 24.3062 95% 17.39
G8 {max) 0.0958256 100% 1.37 0.095825 100% 1.33
G9 (min) 6880.63 100% 6.83 680.863 100% 6.76
(G110 (min) 7049.33 100% 13.31 7049.33 100% 12.57

the percentage of runs reaching these solutions. The last three columns give the
results of CSA and the average CPU time per run.

The results show that CSA is the best in terms of both solution quality and
chance of reaching the best solutions. For problems with known global optima,
CSA always found these optima, independent of starting points. For problems
with unknown global optima, CSA always found the best solutions in every run.
DONLP2, in contrast, worked well for problems with a small number of local
optima if enough starting points were used. For these problems, DONLP2 was
generally very fast and was able to complete within one second in many runs.
However, DONLP2 has difficulty with G2, a maximization problem with a huge
number of local maxima. In 243 runs of DONLP2, only one was able to find
the best solution of 0.640329, which is much worse than those obtained by EAs
(0.803553) and CSA (0.803619). Even with 10,000 runs, DONLP2 was only able
to find the best solution of 0.736554. Finally, EA was only able to find the best
solutions in three of the ten problems despite extensive tuning.

Table 2 shows the results of applying CSA to solve derived discrete and
mixed problems. It shows that CSA can find the best solutions with high success
ratios (larger than or equal to 90% for every problem). Overall, the experimental
results indicate the robustness and wide applicability of CSA to solve discrete,
continuous, and mixed nonlinear constrained problems.
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Conclusions

We have reported in this paper a new algorithm called constrained simulated
annealing that can achieve asymptotic convergence for solving nonlinear discrete
constrained optimization problems.

1 It is based on a strong mathematical foundation of the theory of discrete La-

grange multipliers. By looking for saddle points in the discrete Lagrangian
space, it can find the saddle point with the best objective value with asymp-
totic convergence. This amounts to finding the constrained global optimum.
It does not require derivatives of the objective and constraint functions,
and can be applied to solve discrete, continuous, and mixed problems. To
our knowledge, this is the first algorithm that can solve efficiently discrete,
mixed, and continuous constrained optimization problems.

Even though CSA requires exponential time to have asymptotic convergence,
it has higher reachability probability than algorithms using random restarts
because its probability of hitting the global optimum increases with time
rather than constant.
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