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Abstract

This paper improves constroined simulated ennealing
(CSA), a discrete global minimization algorithm with
asymptotic convergence to discrete constrained global
minima with probability one. The algorithm is based
on the necessery and sufficient conditions for discrete
constrained local minima in the theory of discrele Lao-
grange multipliers. We extend CSA to solve nonlinear
continuous constrained optimization problems whose
variables take continuous values. We evalucte many
heuristics, such as dynomic neighborhoods, gradual res-
olution of nenlinear equality constraints and reanneal-
ing, in order to greatly improve the efficiency of solving
continuous problems. We report much better solutions
than the best-known solutions in the literature on twe
sets of continuous aptimization benchmarks.

1. Problem Definition

A pencral constrained minimization problem is for-
mulated as follows:

minimize, flx) (1)
subject to h(z) =10
glz) <0
where z = (21,...,%,) is a vector of variables, f(z) is

a lower-bounded objective function, hiz) = [Ri(x), -,
hon(2)]7 18 & set of m equality constraints, and g(x) =
[g1(z), -+, ge(e)]T is a set of k inequality constraints.
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All f(z), h{z) and g(z&) can be either linear or non-
lincar, continuous or discrete (i.e. discontinuous), and
analytic in closed forms or procedural.

Without loss of generality, we discuss our results
with respect to minimization problems, knowing that
maximization problems can be converted to minimiza-
tion ones by negating their objectives. To characterize
the solutions sought, we define the following terms.

Definition 1. A(z), the neighborhood of point z in
space X, is a user-defined set of all points ' € X such
that z € M (z) and &' € N (z) <= = € A (2), and that
it is possible to reach every other z” starting from any
z in onc or more steps through neighboring points.

Definition 2. A point ¢ € X is a feasible point if
hiz) = 0 and g(z) < 0. The feasible space F consists
of all the feasible points in X.

Definition 3. Point z € X is called a constrained
local minimum iff a) = is a feasible point, and b) for
every feasible point 2’ € N (2), f(z') > f(x).

Note that point x may be a local minimum to one
definition of neighborhood but may not be for another.
The choice of neighborhood, however, does not affect
the validity of a search as long as one definition is used
consistently throughout.

Definition 4. Peint # ¢ X is called a constrained
global minimum iff a) x is a feasible point, and b) for
every feasible point ' € X, f(z") > f(z). The set of
all constrained global minima is denoted by X,y

Finding constrained global minima of (1) is chal-
lenging as well as difficult. First, f{z), h{z) and g(z)
may be highly nonlinear, making it difficult to even
find a feasible point or a feasible region. Moreover, it
is not useful to keep a search within a feasible region,



as feasible regions may be disjoint and the search may
need to visit multiple feasible regions before finding
the global minimum. Second, f(z), h{x) and g(x) may
be discontinuous or may not have closed-form deriva-
tives, rendering it impossible to apply existing theories
and methods in continuous space. Third, there may
be a large number of constrained local minima, trap-
ping trajectories that only utilize local information and
limiting their solution quality.

In this paper, we apply constraincd simuiated
annealing (CSA) [11] to solve nonlinear continuous con-
strained optimization problems. We first overview the
theory of discrete Lagrange multipliers [8, 12, 13] in
Section 2, summarize the major steps of CSA in Sec-
tion 3, develop heuristics to efficiently solve continuous
optimization problems and report improvements over
the best known solutions in solving some continuous
constrained benchmark problems in Section 4.

2 Previous Work

Direct methods solve (1} directly. Examples in-
clude reject /discard methods, repair methods, feasible-
direction methods, and interval methods. However,
these methods are very problem specific, or unable
to cope with nonlinear constraints, or computation-
ally expensive. Therefore, the majority of metheds to
sclve (1} first transform it into another form before
solving it.

Static penalty methods transform (1) into a single
unconstrained optimization problem [1, 6]. Due to the
use of large penalties, their major limitations are the
ruggedness of their search terrains and the depth of
uncenstrained local minima. Unless starting points are
close to one of the unconstrained global minima, it is
very unlikely for these methods to traverse large scarch
spaces and find global solutions.

Selecting a suitable penalty also proves to be dif-
ficult, If it is much larger than necessary, then the
terrain will become too rugged to be searched. If it
is too small, then the solution found may either be a
constrained local minimum or even not be a feasible
solution to (1).

Dynamic penalty methods address the difficulties of
static penalty methods by increasing penalties grad-
ually. They transform (1) into a sequence of uncon-
strained problems, and converge asymptotically when
every unconstrained problem is solved optimally [1, 6].
The last requirement, however, is difficult to achieve
in practice. If any one unconstrained problem is not
solved optimally, then the process is not guaranteed to
find a constrained global minimum.
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In addition to penalty formulations, many heuris-
tics have been developed to handle constraints. These
include constraint handling techniques in GA [7],
such as annealing penalties, adaptive penalties, pre-
serving feasibility with specialized genetic operators,
searching along boundary of feasible regions, death
penalty methods, behavioral memory with a linear or-
der of constraints, repair of infeasible solutions, co-
evolutionary methods, and strategic oscillation. How-
ever, most heuristics require domain-specific knowledge
or problem-dependent genetic operators, have difficul-
ties in finding feasible regions or in maintaining feasi-
bility for nonlinear constraints, and get stuck at local
minima easily.

2.1 Discrete Lagrangian Theory

Lagrangian methods augment the original variable
space X by a Lagrange-multiplier space A, and resolve
constraints gradually. Although they are similar to dy-
namic penalty methods, they are governed by strong
mathematical conditions on optimality. Here, we sum-
marize the theory of discrete Lugrange multipliers that
works in discrete space [8, 12, 13].

We first consider a discrete cquality-constrained
minimization problem, a special case of (1):

f(z)

subject to  h{z) =0

(2)

minimizey

where 2 = (x1,...,&5) 18 a vector of diserete variables.

Definition 5. The generalized discrete Lograngian
function of {2) is defined as follows:

La(m,A) = (&) + ATH (h(z), (3)

where H is a continuous transformation function.

Definition 6. A point (x*,A") is discrete saddle
point in discrete space if it satisfies

L!i(m*v’\) < Ld(ﬁf*,/\*) < Ld(:[:a)‘*) (4)
for all z € A(z*) and all possible \. Note that the
first inequality only holds when all constraints are
satisfied and must be true for all A.

Theorem 1. First-order necessary und sufficient
conditions for discrete constrained local minima  [12,
13]. In discrete space, if function H in (3) is a
non-negative (or non-positive] continucus function
satisfying H(z) = 0 iff x = 0, then the set of con-
strained local minima is the same as the set of discrete
saddle points.




Requiring A to be non-negative (or non-positive) in
Theorem 1 is easy to achieve. Two examples of H are
the absolute function H (h{z)) = |h({z)| and the square
function H(h(z)} = h3{x).

In a similar way, we transform inequality constraint
gj(z) < 0 into equivalent equality constraint §;(z) =
max{0, g;(x}) = 0. As (1) can always be transformed
into {2) with equality constraints, we only consider
constrained problem (2) in this paper. The discrete
Lagrangian function for (2), after using the absolute
function as H, is

L{z, 2) = f(z) + X" |h(z)|. (5)

The condition in Theorem 1 is stronger than its con-
tinuous counterpart. In continuous space, points that
satisfy the first-order necessary and second-order suffi-
cient conditions [6] are a subset of all the constrained lo-
cal minima. Hence, the global minima of points satisfy-
ing these conditions are not necessarily the constrained
global minima of the original problem. Further, these
conditions require the existence of derivatives of the ob-
jective and constraint functions and are not applicable
when any one of these functions is discontinuous. In
contrast, finding a saddle point in discrete space always
leads to a constrained local minimum. Further, if one
can find the saddle point with the minimum objective
value, then it is the constrained global minimum.

Theorem 1 can be understood intuitively as follows.
When z* is a constrained local minimum in discrete
space, it is always possible to enumerate all the neigh-
bering points of #* (since they are finite) and choose
A* to be large enough so that conditions (4) for z* to
be a saddle point are satisfied. In addition, a saddle
point must be a local minimum. These two facts lead
to Theorem 1.

3 Constrained Simulated Annealing

Constrained simulated annealing (CSA) in Figure 1
was developed [11] based on Theorem 1. It does prob-
abilistic ascents in the Lagrange multiplier space A ag
well as probabilistic descents in the original variable
space X, with probabilities of acceptance governed by
temperature T. Its goal is to rcach a saddle point
that, according to (4), is at a local maximum in the
Lagrange-multiplier space and at a local minimum in
the original-variable space.

Line 2 initializes A to be zeroes and sets a starting
point x = (z, A), where x can be cither user provided
or randomly generated (e.g. based on a fixed seed 123
in our experiments).

Line 3 chooses an initial control parameter, called
temperature, to be large enough such that almost all
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procedure CSA

sot, starting point x = (x,A);

set starting temperature 7' = Ty and cooling rate o;

set Ny (number of trials per temperature);

while stopping condition is not satisfied do

for & + 1 to Ny do
generate a trial point x' from N(x) using G(x, x');

. accept X' with probability Ap(x,x’)
9. end_for
10. reduce temperature by T «— a x T;
11.  end._while
12. end_procedure

1.
2
3
4.
B,
6
7
8

Figure 1. The constrained simulated annealing algo-
rithm (see text for the initial values of parameters).

trial points x’ are accepted. Here, we generate the
initial temperature by first randomly gencrating 100
peints of z and their corresponding neighboring points
#', where each component |z} ~ z;] < 0.001, then by
setting Ty = maz, i {|L(z', 1) — L{z, 1), |h:(2)|}. The
rationale for this temperature is based on the amount
of initial violations observed in a problem. We also
set c, the cooling rate of T, to be 0.8 or 0.9 in our
experiments.

Line 4 sets Ny, the number of trials at one tem-
perature. In our implementation, we select Ny =
¢(20n+m) with the maximal value of { being 10(n+m),
where n is the number of variables, and m is the num-
ber of constraints. This setting is based on the heuristic
rule in [2], and uses n + m instead of n because of the
constraints.

Line 5 terminates CSA if the current point x is not
changed within some precision for a couple of successive
temperatures, or the current temperature T is small
enough (e.g. T < 1075),

Line 7 generates a random trial point x' in A'(x) of
current point x = (z,A) in scarch space S = X x A
according to generation probability G(x,x'), where

N(x) = {(2',A) € § where =’ € Mi(z)}

U {{z, ) € S where A € Ma(\)} (6)
and N3(A) at (z, A) is the neighborhood of A that sat-
isfies the following property:

No(N)={p e A|p<Xand g = A if By(z) =0}
U{peAlp> Aand puy = Ay if hy(x) =0} (7)

Neighborhood N3(X) prevents \; from being changed
when the corresponding constraint is satisfied, i.e.,
hi(z) = 0. As an example, M3{)\} can be a function
in which p differs from A in one variable (e.g. p; # A,
and p; = A; for 7 # 1), and {y;} i1s a set of values,
some of which are larger than A; and some are smaller,



G(x,x'}, the generation probability from x to x' €
N(x) satisfies:
and (8)

G(x,x') >0 3y Gxx)=1

x'EN(x)

The chotce of G(x%,x'} can be arbitrary as long as it
satisfies (8). We use a nonuniform distribution with
higher probability of generating (z', A) than (z,A") in
our experiments,

After generating trial point x', Line 8 accepts x/
with acceptance probability Ar(x,x') that consists
of two components, depending on whether x or A is
changed in x'.

L{x"Y—L() /T if x' = (:U’,A)

e |
Ar(x,x') = (9)
e~ [LOO=LEOITT if %7 = (2, A"}
where ¢ = a if a > 0, and e™ = 0 otherwise.

The acceptance probabilitics Ay (x,x'}) differ from
those used in conventional SA that only has the first
part of (9). The goal in conventional SA is to look for
global minima in the = space. Without the A space,
only probabilistic descents in the a space are needed.

In our case, our goal is to look for saddle points in
the joint space of z and A, which exist at local minima
in the z space and at local maxima in the A space. To
this end, the first part of (9} carries out probabilistic
descents of L{x, A) with respect to z for fixed A, That
is, when we generate a new point 2’ while A is fixed,
we accept the new point with probability one when
8z = L(x',A) — L(z, A} is negative; otherwise we accept
it with probability e~%/7. This is performing exactly
descents while allowing an occasional ascents in the z
space as done in conventional SA.

However, descents in the x space alone only lead to
local/global minima of the Lagrangian function with-
out satisfying the constraints. Hence, the sccond part
of (9) carries out probabilistic ascents of L(x, \) with
respect to A for fixed @ in order to increase the penal-
ties of violated constraints and to force them inte
satisfaction. Hence, when we generate new A while
x is fixed, we accept it with probability one when
8y = L{z, \') — L{z, ) is positive; otherwise we accept
it with probability e™®/T, This is performing ascents
in the A space while allowing occasional descents (to
reduce the ruggedness of the terrain and the depth of
local minima) as in conventional SA. Note that when a
constraint in satisfied, its Lagrange multiplier will not
change aceording to (7).

Finally, Line 10 reduces T' after looping Ny times
of generating trial points x' and accepting them with
probabilities Ar(x,x') at a given T". Theoretically, if T
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is reduced slow enough, for example, using a logarith-
mic cooling schedule, then CSA has been shown [11] to
converge to a constrained global minimum of (1) with
probability one as T approaches 0.

In practice, we reduce T using the following geomet-
ric cooling schedule,

Te—axT (10)

where o is a constant smaller than 1 (typically between
0.8 and 0.99). At high temperature T, any trial point is
accepted with high probabilities, allowing the search to
traverse a large space and overcome infeasible regions.
As T is gradually reduced, the acceptance probability
decreases, and at very low temperatures the algorithm
behaves like a local search and looks for saddle points.
Note that CSA does not minimize Lz, A) due to its
probabilistic descents in the 2 space and probabilistic
ascents in the X space. This is quite different from
SA for unconstrained problems, whose explicit objec-
tive Is to minimize a single objective by performing
probabilistic descents. In fact, CSA [11] minimizes an
implicit virtual encrgy according to the framework of
GSA [10], and asymptotically converges to the con-
strained global minimum with probability one.

4 Experimental Results on Continuous
Constrained Problems

In this section, we cvaluate CSA’s performance
on solving some continuous benchmark problems and
compare it with evolutionary algorithms, sequential
gquadratic programming and interval methods. We first
discuss the extension of CSA to continuous problems
and show the cvaluation results in Section 4.2.

4.1 Extensions to Continuous Constrained Opti-
mization Problems

As numerical evaluations of continuous problems us-
ing digital computers can be considered as discrete ap-
proximations of the original problems up to the preci-
sion of computers, there should be little changes when
CSA is applied to solve continuous constrained prob-
lems. In the following, we discuss various issues in-
volved in designing an efficient CSA.

Characteristics of neighborhood. In our imple-
mentation, we choose a simple neighborhood N (z) as
the set of points 2’ that differ from x in one variable x;.
Likewise, A' € AMa(A} differs from A in one variable. In
general, both " and A" can differ from x and X in more
than one variables, as long as the conditions in (7) and
Definition 1 are satisfied.



Generation of trial points. We characterize M (z)
{resp. N2(A)) by a step vector 8 (resp. ¢), where 8;
(resp. ¢;) denotes the maximum possible perturbation
along z; (resp. ;). We generate a trial point x' =
{(z',A) from x = (z, M) as follows:

!L“ =z+ro 91' €; (11)
where 7p is a random variable uniformly distributed in
[-1,+1], e; is a vector with its i component being 1
and the other components being 0, and ¢ is randomly
generated from {1,2,.--,n}. Similarly, we generate a
trial point x' = (z, A') from x = (x, A) as follows:

N=X+n ¢'j €, (12)
where r; is randomly distributed in [—1, +1], and j is
uniformly distributed in {1,2,---,m}.

After generating trial point x' = (¢, ) or X' =
(z, A"}, ¥’ is accepted according to {9). We set the ratio
of generating (2', A} and (2, X') from (2, ) to be 20n
to m, t.e., every variable x; is tried 20 times more often
than each Lagrange multiplier variable X;. Hence, z is
updated more frequently than A.

Adaptive neighborhoods. The neighborhoods are
dynamically adjusted in CSA to achieve high precision.
This is done by dynamically modifying step vector 8
for & according to the so-called 1:1 rate rule [2] that
maintains equal ratio between accepted and rejected
configurations. When the ratio is low, & should be re-
duced because too many trials of (z', A) arc rejected. In
contrast, when the ratio is high, @ should be increased
because trial points (z', A) are too close to (x, A).

We adjust ¢ according to the degree of constiraint
violations. Here, we decompose ¢ as:

¢ =weh(z) = [wihz), -, wphy(c) (13)

where ® represents vector product. When h;(z)} is sat-
isfied, there is no need to update the corresponding A;,
and thus ¢; = 0. On the other hand, when a constraint
is not satisfied, we adjust ¢; by modifying w; according
to how fast h;(x) is changing:

. — Tlo w; if hl(fl;') > T
wi= { new; if hy(e) < T {14)
where o = 1'5: 771:091 To = 10, and Ty = 0.01

are all chosen experimentally. When h;(z) is reduced
too quickly {ie., hi(z} < nT), hi(z) may be over-
weighted, leading to possibly poor objective values or
difficulty in satisfying under-weighted constraints. In
this case, we reduce the neighborhood size of A;. In
contrast, if k;(x) is reduced too slowly (i.e., hi{z) >
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701"), we cnlarge the neighborhood size of A; in order
to improve its possibility of satisfaction. Note that w;
is adjusted using T' as a refercnce because constraint
violations arc expected to decrease when T drops.

Handling nonlinear equalities and reannealing.
When the number of nonlinear equalities is large, the
ratio of feasible space F to the whole search space X
is almost 0. At this time, randomly generated trial
points may have difficulty to hit a feasible region even
if they are very close to it, because the search space is
continuous and random sampling is discrete.

To overcome this problem, we propose to first relax
some or all linear /nonlinear equalities into inequalities,
and to gradually restrict the degree of relaxation until
the original problem {2} is solved. Let the set of relaxed
equalities be Ir and the remaining set of non-relaxed
equalities be Ip. Then the relaxed problem becomes:

minimize, f{z) T = (z1,...,2,) (15)
subject to hi(z) =0 1€ Ip
hi(x)| <0 i€lg

where § controls the degree of relaxation. When & = 0,
the relaxed problem (153) becomes the original prob-
lom (2). Transforming inequalities [f;(z)] < 4 into
equivalent equalities hi{z) = max(0, |h:(z)| ~ §) as be-
fore, we define the corresponding Lagrangian function:

Lix, A) = f@) + Y Al + Y Aifule). (16)

i€{o icin

We solve this relaxed problem nsing CSA in Figure 1
with the following modifications:

a) When the current point x = {z, A) satisfies all the
constraints of (15), we set § +— 095 x § if 6 >
1079, and redo the loop in Line 6 of Figure 1, i.e.
prevent loop index x from increment by one, This
step allows cqualities to be gradually resolved.

b) Reannealing is needed when the scarch is trapped
in the relaxed problem and cannot proceed with
smaller 8. In this case, the search stops at a re-
glon where all the constraints of (18) for a given §
are satisfied, but the region does not contain any
points that satisfy these constraints with smaller
§. If T is already low, the chance of escaping from
this region is small, and reannealing is required.
Empirically, we do rcannealing by increasing the
current temperature to:

T = min(T}, 100 x &) (17)

In our experiments, if § < 10~°, we consider the
relaxed problem (15) to be equal to the original



Table 1. Comparison results of DONLP2 (SQP), GA, and CSA for 10 test problems. (8.T. stands for strategic oscil-
lation, H.M. for homomorphous mappings, and D.P. for dynamic penalgy. All times are seconds on a Sun SparcStation

Ultra 5 computer. Numbers in bold represent the best solutions.)

ItAs SQP: DONLP2 {100 runs) C'SA (100 runs)
Problem GIObEﬂ best, specific best average fract. of time best average fract. of time
ID Solution solution method | solution solution best sol. per run| solution solution best sol. per run
G1 (min} -15 -15  Genocop| -18 -12.65  12%  0.083 -15 -15 100%  3.45
G2 (max) unknown |[0.803553 S.T. |0.391153 0.234977 1.0% 0.429 [0.8036190.802829 91% 16.8
G3 {max) 1.0 0.999866 S5.T. 1.0 1.0 89%  0.309 1.0 1.0 100%  7.36
G4 (min) -30665.5 | -30664.5 H.M. |-30665.5 -30665.5 63% 0.0208 |-30665.5 -30665.5 106% 1.19
G5 (min) unknown | 5126.498 D.P. [4221.8564221.956 96.0% 0.0193 4221.956 4221.956 100% 7.39
G6 {min) -6961.81 |-6961.81 Genocop[-6961.81 6961.81 83% 0.0164 |-6961.81 -6961.81 100% 0.384
G7 (min) 24.3062 24.62 H.M. | 24,3062 24.3062 99% 0.0361 ] 24.3062 24,3062 100% 3.40
G8 (max) unknown [|0.095825 H.M. (0.095825 0.046660 30.0% 0.0157 |0.095825 (.095825 100% 0.248
G9 (min) 680.63 §80.64 Genocop| 680.63 680.63 100% 0.0293| 680.63 680.63 100% 0.956
G10 {min) 7045.33 7147.9 H.M. |7049.33 7049.33 70% 0.134 | 7049.33 7049.33 100% 4.08

problem (2), and report the results obtained by

solving (15).

Adaptive Ny. In order for CSA to converge asymp-
totically, enough trial points must be generated before
reducing T. This requires succinet choice of Nr, be-
cause small Ny leads to poor solutions, whereas large
Nr leads to wasted evaluations. In our experiments,
we choose N in an adaptive fashion as follows:

L. Start from small Np = ((20n +m) by setting { =

5.

2. Solve the problem by CSA using given Ny,

3. If the same solution is obtained for two consecutive
Ny, or if ¢ > (pae where Guae = 10{n + m),
then stop and output the solution; otherwise, set
¢ +— 2 x (, and go to Step 2.

In the worst case, this procedure has twice the com-
putational complexity of CSA with the maximal value
of {naz- In practice, the procedure can finish with
small Np in most of our experiments, and is much
faster than CSA with (... Note that this procedure
is not used to solve the relaxed problem (15), because
the relaxed problem requires a large Np in order to al-
low enough time for & to be reduced from a large value
of 1.0 to a small value of 1078,

4.2 Evaluation Results

In this section, we show experimental results of test-
ing CSA on 10 constrained optimization problems G1-
G10 [7, 5] and a collection of constrained optimization
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benchmarks [4]. These problems have objective func-
tions of various types (linear, quadratic, cubic, polyno-
mial, and nonlinear) and constraints of linear inequal-
ities, nonlinear equalities, and nonlinear inequalities.
The number of variables is up to about 50, and that
of constraints, including simple bounds, is up to about,
100. The ratio of feasible space with respect to the
whole search space varies from 0% to almest 100%, and
the topologies of feasible regions are quite different.

Problems G1-G10 [7, 5] were originally invented for
evolutionary algorithms {EAs) in which various con-
straint handling techniques were developed and well
tuned for each problem in order to get good results. Ex-
amples of these techniques include keeping the search
within feagible regions with some specific genetic op-
erators, and dynamic and adaptive penalty methods.
The sccond set of benchmarks [4] were collected by
Floudas and Pardalos and were derived from practical
applications.

We also solved the problems using DONLP2 [9],
a popular sequential-quadratic-programming (SQP)
package. SQP is an efficient local-search method widely
used for solving constrained optimization problems. Its
quality depends heavily on its starting points since it
is a local search.

Table 1 shows the comparison results on G1-G10.
The first. two columns show the problem IDs and the
constrained global minima (or maxima), if known. The
third and fourth columns show the best solutions ob-
tained by EAs and the specific constraint handling
techniques used to generate the solutions. The fifth
thru eighth columns show the best and average solu-
tions of DONLP2, the fraction of runs reaching the best
solutions, and the average CIPU time per run. The last
four columns give the results of CSA.



Table 2. Comparisen results of Epperly’s method [3](an interval method), DONLP2 {SQP), and CSA on a collection
of constrained optimization benchmarks [4]. All times are CPU seconds on a Sun SparcStation Ultra § computer.

Numbers in bold represent the best solution.

Epperly SQP:; DONLP2 (100 runs CSA (100 runs
Problem  Global best best  average fr(act. of zm best avera(ge fract“)of {ime
1D No. Solution solution | solution solution hest sol. per runj solution solution best sol. per run
2.1 (min) -17 =17 =17 -10.53 4% 0.0156 -17 -16.84 74% 2.09
2.2 {min) -213 -213 -213 -213 100% 0,0203 -213 -213 100% 0.712
2.3 (min) -15 -15 -16 -12.656 12% 0.0835 ~-156 -15 100% 3.48
2.4 (min) -1 -11 -11 -10.05  33%  0.0815| -11 -11 100%  0.921
2.5 {min) -268 -268 -268 -268 100% 0.053 -268 -268 100%  3.89
2.6 (min) -39 -39 -39 -20.75 11%  0.0619 -39 -39 100%  3.55
2.7.1 {min) -394.75 -394.75 | «-394.75 -259.86 19% 0.414 | -394.75 -390.39 95% 17.2
2.7.2 (min)  -884.75 -884.75 | -884.76 -757.41  25% 0.416 | -884.75 -881.86 96% 16.59
2.7.3 (min)  -8695.0 -86956.0 | -8696.0 -5700.3 17% 0.34 | -8695.0 -8695.0 100% 13.8
2.7.4 {min) -754.75 -754.76 | -784.76 -622.37 16% 0.415 | -784.76 -719.34 69% 13.3
2.75 (min}  -4150.4 ~4150.4 | -4150.4 -3456.3 1% 0.436 | -4150.4 -4116.9 B81% 67.6
2.8 (min) 15990.0 15990.0 | 15639.0 24321.3 15% 1.29 | 15639.0 15639.0 100% 27.9
3.1 {min) 7049.33 - 7049.33 704933 0% 0.134 [ 7049.33 7049.33 100% 4.08
3.2 (min)  -30665.5 |[-30665.5(-30665.5 -30665.,5 63% 0.020 8 |-30665.5 -30665.5 100%  1.19
3.3 (min) -310.0 -310.0 ; -310.0 -215.3 11% 0.0318 | -310.0 -310.0 100% 0.886
3.4 (min) -4.0 -4.0 -4.0 -3.06 24%  0.0216 | -4.0 -4.0 100%  0.279
4.3 {min) -4.51 -4.51 -4.51 -4.47 44% 1.12 -4,51 -4.51 100% 2.71
4.4 (min) -2.247 -2.217 | -2.217 -2.20 12% 1.49 -2.217 2217 100% 4.03
4.5 {min) -11.96 -13.40 -13.40 -13.40 3% 1.94 -13.40 -13.40 100% 7.95
4.6 {min) -5.51 -5.51 -5.51 ~4.42 34% 0.0126 | -58.51 -5.561 100% 0.146
4.7 (min} -16.74 -16,74 | -16.74 -16.74 100% 0.0131 | -16.74 -16.714 100% 0.228
5.2 {min) 1.567 - 1.576 1.725 1% 12.2 1.567 1.593 31%  3950.0
5.4 (min) 1.86 - 1.86 1.95 69% 4,28 1.86 1.88 93%  705.8
6.2 (max) 400.0 400.0 400.0 399.5 89%  0.0417 | 400.0 398.5 93% 10.5
6.3 (max) 600.0 600.0 600.0 574.8 87%  0.0468 | 600.0 591.8 89% 25.3
6.4 (max) 750.0 760.0 | 750.0 6483  73% 0.0464 | 750.0 7500 100% 113

Tables 2 reports the results on Floudas and Parda-
los’ benchmark collection [4]. The second column
shows the global or the best known solutions in [4].
The third column shows the best solutions cbtained
by one implementation of interval methods, called Ep-
perly’s method {3]. The other columns have the same
meanings as those in Table 1.

Based on our evaluation results, we have the follow-
ing observations.

First, EAs with various constraint handling tech-
niques do not work well, even for simple problems like
G7, where alocal search method like DONLP2 can cas-
ily find the optimal solution. The main reason is that
those constraint handling techniques do not guaran-
tee constraint satisfaction and have difficulty in finding
a global minimum while satisfying all the constraints.
Another reason may be due to sampling that may not
be able to find exact solutions to continuous problems.
EAs were only able to find the best solutions in three of
the ten problems in G1-G10 despite extensive tuning.

Second, CSA is the best in terms of both solution
quality and ratio of reaching the best solutions. As
DONLP2 is a local search algorithm, it worked well

for problems with a small number of local minima if
enough starting points were used. TFor these prob-
lems, DONLP2 was generally very fast and was able
to complete within one second in many runs. How-
ever, DONLP2 has difficulty in solving problems with
a huge number of local optima, such as G2. In 100 runs
of DONLP2 to solve G2, only one was able to find the
best solution of 0.391153, which is much worse than
those obtained by EAs (0.803553) and CSA (0.803619).
BEven with 10,000 runs, DONLP2 was only able to find
the best solution of 0.736554.

Another major disadvantage of DONLP2 is that it
needs derivatives of the Lagrangian function, making it
suitable only for continuous problems with derivatives.
This seriously limits its applicability to real engineering
optimization problems, whose derivatives may be hard
to calculate or unavailable (e.g. discrete problems and
combinatorial optimization problems).

To illustrate the trade-offs between solution time
and solution quality, Figure 2 shows typical quality-
time distributions for CSA and DONLP2 where time iy
in logarithmic scale. Obviously, SQP is very efficient in
solving some continuous problems from multiple start-
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Figure 2. Typical distributions of solution quality and evaluation time for CSA and SQP.

ing points, especially those with polynomial ohjective
and constraints such as G1 and 2.1

Third, interval methods, such as Epperly's
method [3), have difficulties in solving problems with
nonlinear equalities whose lower bounds are difficult to
determine. Examples include Problems 5.2 and 5.4 in
which feasible points werce not found.
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