STREAMING VIDEO WITH OPTIMIZED RECONSTRUCTION-BASED DCT

Benjamin W. Wah and Xiao Su

Department of Electrical and Computer Engineering and the Coordinated Science Lab University of Illinois at Urbana-Champaign Urbana, IL61801, USA E-mail: b-wah@uiuc.edu http://manip.crhc.uiuc.edu

July 2000

Outline

• Motivations: dealing with information loss

- Internet loss behavior

- Performance of commercial players under loss
- Previous work
- Proposed optimized reconstruction-based DCT (ORB-DCT)
- Experimental results
- Conclusions and future work

Motivations

Three Major Challenges in Real-Time Internet Transmissions

- Limited bandwidth:
 - CIF (352x288) H.263 video at 30 f/s needs 80 Kbps-1.5 Mbps
 - Internet sustained bandwidth ranges from 30 800 Kbps
- Strict timing constraints:
 - Real-time streaming requires playback at prescribed time instances
 - Jitters make packets arrive too late for playback
- High playback quality:
 - High-quality real-time streaming needs robust delivery mechanisms
 - Poor quality due to information loss and limited bandwidth

Sources of Information Loss

- Compression loss: lossy quantization
- Bitstream loss (addressed in this talk)
 - Due to network over 50% (network and jitter losses)
 - Due to scaling dropped by sender in limited bandwidth (video)

Hong Kong -- Germany

Benjamin W. Wah and Xiao Su

- \bullet Probability of burst length > 1 is 2% for connections within US
- Probability of burst length > 3 is 5% for transcontinental connections

Evaluation of Commercial Video Streaming Systems

• Leading Internet video streaming players – RealPlayer, MediaPlayer

- Proprietary codecs
- Unknown error concealment schemes
- Initial buffering delay of several seconds
- Trace-based evaluations to compare quality under same traffic conditions and bit rate

Motivations

Motivations

Previous Work: Coder Independent

- Sender-based:
 - Intelligent packetization to prevent loss propagation among packets
 - Only handling error propagation
- Receiver-based:
 - Recovery in spatial, temporal, or frequency domains
 - No interaction with senders
- Sender receiver-based:
 - Forward error correction (FEC) not for bursty packet losses
 - Retransmission-based recovery increased bandwidth
 - Interleaving or scrambling
 - * Does not work well when pixel values change rapidly

Previous Work

Previous Work: Coder Dependent

- Source coding that exploits redundancy
 - Robust entropy coding
 - Restricting prediction domain
 - Layered coding
 - * Assume prioritized transmissions
 - Multiple-description coding
 - * Computationally expensive
 - * Mediocre reconstruction quality from a side description
- Source coding followed by channel coding
 - Protection is added according to the importance of a bit stream
- Joint source-channel coding
 - Need a generalizable channel error model

Proposed ORB-DCT

Proposed ORB-DCT

• Objective: assume T^{-1} is fixed, find quantized transformed coefficients $C'_{n \times n}$ to minimize reconstruction error \mathcal{E}_r , after inverse DCT transform T^{-1} and average interpolation.

$$\mathcal{E}_r = \| \underbrace{Interpolate(T^{-1}(IQ(Q(\mathbf{c}))))}_{decompression + reconstruction.} - \mathbf{x} \|^2$$

• Features:

- Standard-compliant decoder

Proposed ORB-DCT

Derivations of ORB-DCT (I)

 \bullet Derive Y after inverse DCT transform

$$Y = \sum_{i=1}^{n} \sum_{j=1}^{n} C'(i,j) b_{i} b_{j}^{T}$$

- b_i basis vector (8 × 1) of DCT transform, i = 1, 2, ..., n $b_i b_j^T$ - the $(i, j)_{th}$ basis image (8 × 8), i, j = 1, 2, ..., n
- \bullet Derive Z after average interpolation

$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} C'(i,j) b_i e_j^T$$

$$e_j = (b_{j1}, \frac{b_{j1} + b_{j2}}{2}, b_{j2}, \frac{b_{j2} + b_{j3}}{2}, b_{j3}, \dots, b_{jn}, b_{jn})^T$$

 e_j – extended basis vector (16 imes 1) of DCT transform, $j=1,2,\ldots,n$

Proposed ORB-DCT

Derivations of ORB-DCT (II)

• Problem formulation:

$$\min \mathcal{E}_r(C') = \| \sum_{i=1}^n \sum_{j=1}^n C'(i,j) b_i e_j^T - X \|^2$$

• Constrained integer optimization problem

 $-C^{\prime}(i,j)$ are constrained to values in a subset of integers

• Approximate solution can be obtained by minimizing

$$\mathcal{E}_r = \| \underbrace{Interpolate(T^{-1}(\mathbf{c}))}_{decompression + reconstruction.} -\mathbf{x} \|^2.$$

 \bullet In the approximation, $C(i,j)=C^{\prime}(i,j)$ is assumed.

Proposed ORB-DCT

Optimized Reconstruction-Based DCT

• Intra-coded blocks:

$$\min \mathcal{E}_r(C) = \left\| \sum_{i=1}^n \sum_{j=1}^n C(i,j) b_i e_j^T - X \right\|^2$$
$$\implies \vec{C}_{64\times 1} = \vec{T'}_{64\times 128} \quad \vec{X}_{128\times 1}$$

• Inter-coded blocks:

$$\min \mathcal{E}_r(C) = \left\| \sum_{i=1}^n \sum_{j=1}^n C(i,j) b_i e_j^T - (X-P) \right\|^2$$
$$\implies \vec{C}_{64\times 1} = \vec{T'}_{64\times 128} \ (\vec{X}-\vec{P})_{128\times 1}$$

where P denotes its interpolated reference block

Benjamin W. Wah and Xiao Su

Experimental Results

One Description (out of 2) Consistently Lost

Video	Odd received			Even received			
Sequence	DCT	ORB-DCT	Gain	DCT	ORB-DCT	Gain	
	No quantization effects						
Missa	39.44	41.31	$(\underline{1.87})$	39.51	41.45	$(\underline{1.94})$	
Football	36.05	37.48	$\fbox{1.43}$	36.01	37.47	$\boxed{1.46}$	
	With quantization effects						
Missa	36.20	36.61	$\left[0.41 \right]$	36.14	36.59	(0.45)	
Football	29.43	29.82	0.39	29.40	29.83	0.43	

Experimental Results

Reconstruction Quality with 4 Descriptions

Video	Quant.	Case I		Case II			
Sequence	Effects	DCT	ORBDCT	gain	DCT	ORBDCT	gain
Missa	NI	35.84	37.27	$\boxed{1.43}$	39.35	39.88	0.53
football	INO	34.92	35.97	$\boxed{1.05}$	35.72	36.15	0.43)
Missa	V	33.58	33.93	0.35	34.01	34.23	0.22
Football	Yes	24.32	24.68	0.36	27.76	27.96	0.20
			Case III			Case IV	
Missa	Na	39.38	41.25	(1.87)	42.82	42.74	-0.08
Football		35.99	37.35	1.36	40.15	40.00	-0.15
Missa	V	34.47	34.89	$\boxed{0.42}$	35.07	35.16	0.09
Football	res	28.43	28.83	$\boxed{0.40}$	29.24	29.37	$\textcircled{\textbf{0.13}}$

I: three out of the four interleaved descriptions were lost;

II: two descriptions, both from the same horizontal group, were lost;

III: two descriptions, each from a different horizontal group, were lost;

IV: one out of the four interleaved descriptions was lost.

Experimental Results

All Descriptions Correctly Received

Video	Interleaving		DCT	ORB	ORB-DCT	Gain in
Sequence	Degree	DCT	& NN	-DCT	& NN	PSNR (dB)
Missa	2	36.74	37.06	36.70	37.05	0.31
Football	2	30.16	30.69	30.09	30.67	$(\underline{0.51})$
Missa	Л	35.53	36.09	35.43	36.02	0.49
Football	4	29.73	30.35	29.72	30.31	$\overline{0.58}$

Conclusions and Future Work

Conclusions:

- ORB-DCT is designed in joint sender-receiver fashion
- Improved over conventional DCT under loss scenarios

Future work:

- Fast implementations of ORB-DCT
- Bandwidth-restricted concealment schemes
- Extended to object-based coding schemes