
Hybrid Constrained Simulated Annealing and Genetic Algorithms for Nonlinear
Constrained Optimization

Benjamin W. Wah and Yixin Chen
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
E-mail:

�
wah, chen � @manip.crhc.uiuc.edu

URL: http://manip.crhc.uiuc.edu

Abstract- This paper presents a framework that uni-
fies various search mechanisms for solving constrained
nonlinear programming (NLP) problems. These prob-
lems are characterized by functions that are not nec-
essarily differentiable and continuous. Our proposed
framework is based on the first-order necessary and suffi-
cient condition for constrained local minimization in dis-
crete space that shows the equivalence between discrete-
neighborhood saddle points and constrained local min-
ima. To look for discrete-neighborhood saddle points, we
formulate a discrete constrained NLP in an augmented
Lagrangian function and study various mechanisms for
performing ascents of the augmented function in the
original-variable subspace and descents in the Lagrange-
multiplier subspace. Our results show that ��������� , a
combined constrained simulated annealing (���) and ge-
netic algorithm (���), performs well. Finally, we apply
iterative deepening to determine the optimal number of
generations in �����	��� and show that performance is ro-
bust with respect to changes in population size.

1 Introduction

A discrete constrained nonlinear programming problem
(NLP) is formulated as follows:1

���� ������� (1)

subject to � �������������! �#"%$'&(&'&)$*�,+.-0/ is a vector1 �����2�3� of bounded discrete variables.

Here, ������� is a lower-bounded objective function, � �����4� � "%�����)$'5(5'56$ �87 ���9�:- / is a vector of ; inequality constraints,1 �������< 1 " ���9�=$'5(5'5>$ 1,? �����:- / is a vector of @ equality con-
straints. Functions �����9� , � ����� , and

1 ����� are not necessarily
differentiable and can be either linear or nonlinear, continu-
ous or discrete, and analytic or procedural. Without loss of
generality, we consider only minimization problems.

Let A be the Cartesian product of the discrete domains of
all variables in � . We characterize solutions in discrete space
as follows:

1For two vectors B and C of the same number of elements, B	DEC means
that each element of B is not less than the corresponding element of C . B	FC can be defined similarly. G , when compared to a vector, stands for a null
vector.

Definition 1. HJI +9����� , the discrete neighborhood [1] of
point �LK A is a finite user-defined set of points

� �6MNK AO�
such that ��MPK H I + ������QSRT��K H I + ����MU� , and that for anyV " $ V 7 K A , it is possible to find a finite sequence of points inA , V " $'5(5'5#$ V 7 , such that VXWZY " K H I + � V[W � for \ �^]8$'5'5(5 ;�_] .
Definition 2. Point �JK A is called a constrained local min-
imum in discrete neighborhood (�a`cb I +) if it satisfies two
conditions: a) � is feasible, and b) �������	�d�����#MU� , for all fea-
sible ��M#K H I + ����� .
Definition 3. Point �!K A is called a constrained global
minimum in discrete neighborhood (�a�eb I +) iff a) � is fea-
sible, and b) for every feasible point �#MfK A , ������MU�hgi������� .
The set of all �a�eb I + is Akjml)n .

We have shown earlier [10] that the necessary and suf-
ficient condition for a point to be a �a`cb I + is that it
satisfies the discrete-neighborhood saddle-point condition
(Section 2.1). We have also extended simulated anneal-
ing (���) [9] and greedy search [10] to look for discrete-
neighborhood saddle points �fo�I + (Section 2.2). At the same
time, new problem-dependent constraint-handling heuristics
have been developed in the ��� community to handle nonlin-
ear constraints [7] (Section 2.3). Up to now, there is no clear
understanding on how to unify these algorithms into one that
can be applied to find �a�eb I + for a wide range of problems.

Based on our previous work, our goal in this paper is to
develop an effective framework that unifies ��� , ��� , and
greedy search for finding �a�eb I + . In particular, we pro-
pose constrained genetic algorithm (�a���) and combined
constrained ��� and ��� (���������) that look for �fo I + . We
also study algorithms with the optimal average completion
time for finding a �a�ebpI + .

The algorithms studied in this paper are all stochastic
searches that probe a search space in a random order, where
a probe is a neighboring point examined by an algorithm, in-
dependent of whether it is accepted or not. Assuming q,r to
be the probability that an algorithm finds a �a�eb I + in its s n�t
probe and a simplistic assumption that all probes are indepen-
dent, the performance of one run of such an algorithm can
be characterized by u , the number of probes made (or CPU
time taken), and o�v � u � , the reachability probability that a

�
��� �
��� �
��� �
��� �
]�� �

�](�8� � � � � � � �8� � � �8� � � � � �

o v � u
	 o �

u 	 o
� � � �

�
�

� � � � � �

� �8� �
� �8� �
� �8� �
� �8� �
� �8� �

�] � �8� � � �8� � � � � � � �8� � � �8�

����������������

u 	 o

�

�
�
� � � � � � �

a) ��������� �"! approaches one asymptotically b) Existence of absolute minimum �$#&%(')� in * �(++ �-, * �.+0/
Figure 1: An example showing the application of 1�2�35463 with �87:9 to solve a discretized version of G1 [7] (�;#&%('<�>=@?BACABA).

�a�eb I + is hit in any of the u probes:

o v � u �2�!] _
D
rFE " �]

_�q r �=$ where u g��X& (2)

Reachability can be maintained by reporting the best solution
found by the algorithm when it stops.

As an example, Figure 1a plots o�v � u
	 o � when ���������
(see Section 3.2) was run under various number of genera-
tions uG	 and fixed population size o � �

(where u � uH	 o).
The graph shows that o�v � uG	 o � approaches one asymptoti-
cally as u
	 o is increased.

Although it is hard to estimate the exact value of ofv � u �
when an algorithm is applied to solve a test problem, we can
always improve the chance of finding a solution by running
the same algorithm multiple times, each with u probes, from
random starting points. Given o v � u � for one run of the al-
gorithm and that all runs are independent, the expected total
number of probes to find a �a�ebpI + is:

IJ
rFE "

o v � u �)�] _ o v � u � � rLK " uNMEs � u
o>v � u � & (3)

Figure 1b plots (3) based on o�v � uG	 o � in Figure 1a.
In general, there exists uSj:l)n that minimizes (3) becauseo>v � �8��� � , O ��
 �P�Q I o>v � uHR ���<] , �S���T5� is bounded be-

low by zero, and
�S�U��6�WVYX as u VYX . The curve in

Figure 1b illustrates this behavior.
Based on the existence of uSj:l)n , we present in Section 3.3

search strategies in �a��� and in �����	��� that minimize (3)
in finding a �a�eb I + . Finally, Section 4 compares the perfor-
mance of our algorithms.

2 Previous Work

We summarize the Lagrangian theory and associated algo-
rithms for solving (1) and related work in ��� .

2.1 Theory of Lagrange multipliers for solving discrete
constrained NLPs

Define a discrete equality-constrained NLP as follows:

S��� �����9� � is a vector of bounded (4)
Z\[�]_^a`BbLcdcFe 1 �����c�L� discrete variables,

A generalized discrete augmented Lagrangian function of
(4) is defined as follows [10]:

`cI ���>$�f��c�d�������hg>f,/ji � 1 ����� ��g]�lk�k 1 ����� k�k m $ (5)

where i is a non-negative continuous transformation func-
tion satisfying i � V � g � , i � V � � � iff V � � , and

f �! f " $(5'5'5#$(f ? - / is a vector of Lagrange multipliers.
Function i is easy to design; examples include

i � 1 ���9� � � k 1 "%����� k $'5(5'56$ k 1 ? ����� k - / and i � 1 �����*� �
onqp � 1 "%�����)$*� �=$'5(5'56$
onqp � 1 ? �����)$*�8�m- / .
Similar transformations can be used to transform inequal-

ity constraint � r ����� � � into equivalent equality constraint
rnsp � � r ���9�=$*� � �i� . Hence, we only consider problems with
equality constraints from here on.

We define a discrete-neighborhood saddle point��o I + ���Ut $�fUt(� with the following property:

` I ��� t $�f���� ` I ��� t $(f t ��� ` I ��� $(f t � (6)

for all �OK H I + ��� t � and all f $�f,MfKvu
?

. Note that although
we use similar terminologies as in continuous space, ��o I +
is different from ��odw + (saddle point in continuous space) be-
cause they are defined using different neighborhoods.

Theorem 1. First-order necessary and sufficient condition
on �a`cb I + . [10] A point in the discrete search space of (4) is
a �a`�b I + iff it satisfies (6) for any f gxf t .

Theorem 1 is stronger than its continuous counterparts.
The first-order necessary conditions in continuous Lagrange-
multiplier theory [5] require �a`�b w + to be regular points and
functions to be differentiable. In contrast, there are no such
requirements for �a`cb I + . Further, the first-order conditions

1. procedure CSA (���a���)
2. set initial ��� � 	�
 �������� 	�� ���
 ���������������

with random
	

, ��� A ;
3. while stopping condition is not satisfied do
4. generate �����! #" � �$�-! using 4;�$�%�&��� ! ;
5. accept � � with probability 3 � �$�%�&� � !
6. reduce temperature by '(�)��' ;
7. end while
8. end procedure

a) 1�2�3 called with cooling schedule � � and rate �
1. procedure 1�2�3+*�,
2. set initial cooling rate �-�)�%. and ���#� ���0/ ;
3. set 12� number of 1�2�3 runs at fixed � ;
4. repeat
5. for 34�65 to 1 do call 1�2�3$�$���a�7��! ; end for;
6. increase cooling schedule � � �98 � � ;
7. until feasible solution has been found and no

better solution in two successive increases of � � ;
8. end procedure

b) 1�2�3 *�, : 1�2�3 with iterative deepening

Figure 2: 1�2�3 and its iterative-deepening extension

in continuous theory [5] are only necessary, and second-order
sufficient condition must be checked in order to ensure that a
point is actually a �a`cb>w + (�a`cb in continuous space). In
contrast, the condition in Theorem 1 is necessary as well as
sufficient.

2.2 Existing algorithms for finding �fo I +
Since there is a one-to-one correspondence between �a�eb I +
and ��o I + , it implies that a strategy looking for ��o I + with the
minimum objective value will result in �a�eb I + . We review
two methods to look for �fo I + .

The first algorithm is the discrete Lagrangian method
(DLM) [11]. It is an iterative local search that looks for ��o I +
by updating the variables in � in order to perform descents of`cI in the � subspace, while occasionally updating the f vari-
ables of unsatisfied constraints in order to perform ascents in
the f subspace and to force the violated constraints into satis-
faction. When no new probes can be generated in both the �
and f subspaces, the algorithm has additional mechanisms to
escape from such local traps. It can be shown that the point
where :k`cb stops is a �a`cb I + when the number of neigh-
borhood points is small enough to be enumerated in each de-
scent in the � subspace [10]. However, when the number of
neighborhood points is very large and hill-climbing is used to
find the first point with an improved ` I in each descent, then
the point where :k`�b stops may be a feasible point but not
necessarily a ��o�I + .

The second algorithm is the constrained simulated an-
nealing (CSA) [9] algorithm shown in Figure 2a. It looks
for �fo�I + by probabilistic descents in the � subspace and by
probabilistic ascents in the f subspace, with an acceptance
probability governed by the Metropolis probability. Similar
to DLM, if the neighborhood of every point is very large and

fail

fail

fail

fail

success

;%<>=@?

Total time for iterative
deepening = ABDC
Optimal time = BFE&CG�HJI�K�L�MONQP

RTSU�VXW RTS�Y Z\[

C E&C^]�C`_FCaBFbFC
Figure 3: An application of iterative deepening in 1�2�3 *�, .

cannot be enumerated, then the point where ����� stops may
only be a feasible point but not necessarily a ��o I + .

Theorem 2. Asymptotic convergence of CSA. [9] The
Markov chain modeling ���f� converges to a �a�eb I + with
probability one.

Theorem 2 extends a similar theorem for ��� that proves
its asymptotic convergence to unconstrained global minima
of unconstrained optimization problems. By looking for��o I + in the Lagrangian-function space, Theorem 2 shows the
asymptotic convergence of ����� to �a�ebpI + in constrained
optimization problems.

Theorem 2 implies that ����� is not a practical algorithm
when used to find �a�eb I + in one run with certainty because����� will take infinite time.

In practice, when ����� is run once using a a finite cooling
schedule u R , it finds a �a�eb I + with reachability probabilityo>v � uHR �dc!] . To increase its success probability, ���f� with
a finite u R can be run multiple times from random starting
points. Assuming that all the runs are independent, a �a�eb I +
can be found in finite average time defined by (3).

We have verified experimentally that the expected time de-
fined in (3) has an absolute minimum at u jml)n . (Figure 1b il-
lustrates the existence of u j:l)n for �����	��� .) It follows that,
in order to minimize (3), ����� should be run multiple times
from random starting points using schedule u jml)n .

To find u�jml)n at run time without using problem-dependent
information, we have proposed to use iterative deepening [3]
by starting ����� with a short schedule and by doubling the
schedule each time the current run fails to find a �a�eb I + [8].
Since the total overhead in iterative deepening is dominated
by that of the last run, �����!ef (CSA with iterative deepening
in Figure 2b) has a completion time of the same order of mag-
nitude as that using uSjml=n when the last schedule that ����� is
run is close to u jml=n and that this run succeeds. Figure 3 illus-
trates that the total time incurred by ����� ef is of the same
order as the expected overhead at u jml)n .

Note that o v � u j:l)n �gc] for one run of ����� at u jml)n .
When ����� is run with a schedule close to u jml)n and fails to
find a solution, its cooling schedule will be doubled and over-
shoots beyond u�jml)n . To reduce the chance of overshooting
into exceedingly long cooling schedules and to increase the
success probability before its schedule reaches ukj:l)n , we have

start

stop

N

N

Y

Y

Insert candidate(s) into list
based on sorting criterion

(annealing or deterministic)

Search in Generate new candidate(s)

(probabilistic or greedy)

Update Lagrangian values
of all candidates in list

(annealing or determinisic)

Generate new candidates Stopping
conditions

met?

initial candidate in the � subsubace

in the � subspace (genetic,

with initial � � subspace?

�
loop

Generate random

� loop

probabilistic, or greedy)

Figure 4: An iterative stochastic procedural framework to look for 2�� " � .

proposed to run ���f� multiple times from random starting
points at each schedule in ����� ef . Figure 2b shows �����
that is run � � �

times at each schedule before the schedule
is doubled. Our results show that such a strategy generally re-
quires twice the average completion time with respect to mul-
tiple runs of ����� using u jml)n before it finds a �a�eb I + [8].

2.3 Genetic algorithms for solving constrained NLPs

Genetic algorithm (���) is a general stochastic optimization
algorithm that was originally developed for solving uncon-
strained problems. Recently, many variants of ��� have been
developed for solving constrained NLPs. Most of these meth-
ods were based on penalty formulations that transform (4)
into an unconstrained function � ����� , consisting of the sum
of an objective and a set of constraints weighted by penalties,
and use ��� to minimize � ���9� . Penalties used can be static,
dynamic, adaptive, or modified by annealing rules [7].

In general, unless suitable penalties are used, a local mini-
mum of an unconstrained penalty function is only a necessary
but not a sufficient condition for the point to be a �a`�b�I + of
the original constrained NLP. Without a good method to se-
lect penalties, ��� resorts to ad hoc tuning and has difficulty
in achieving convergence [6].

Besides penalty methods, methods for handling nonlinear
constraints directly have been studied. These include meth-
ods based on preserving feasibility with specialized genetic
operators, methods searching along boundaries of feasible re-
gions, methods based on decoders, repair of infeasible so-
lutions, co-evolutionary methods, and strategic oscillation.
These strategies cannot be generalized easily because they re-
quire domain-specific knowledge or are problem-dependent.

3 A General Framework to look for ���
	��
Although there are many methods for solving constrained
NLPs, our survey in the last section shows a lack of a gen-
eral framework that unifies these mechanisms. Without such
a framework, it is difficult to know whether different algo-
rithms are actually variations of each other. In this section

we present a framework for solving constrained NLPs that
unifies �f� , ��� , and greedy searches.

Based on the necessary and sufficient condition in The-
orem 1, Figure 4 depicts a stochastic procedure to look for��o I + . The procedure consists of two loops: the � loop that
updates the variables in � in order to perform descents of ` I
in the � subspace, and the f loop that updates the f variables
of unsatisfied constraints for any candidate in the list in order
to perform ascents in the f subspace. The procedure quits
when no new probes can be generated in both the � and f
subspaces.

The procedure will not stop until it finds a feasible point
because it will generate new probes in the f subspace when
there are unsatisfied constraints. Further, if the procedure al-
ways finds a descent direction at � by enumerating all points
in H I +#����� , then the point where the procedure stops must be
a feasible local minimum in the � subspace of `NI ��� $�f�� , or
equivalently, a �a`cb I + .

Both :k`�b and ����� discussed in Section 2.2 fit into this
framework, each maintaining a list of one candidate at any
time. DLM entails greedy searches in the � and f subspaces,
deterministic insertions into the list of candidates, and de-
terministic acceptance of candidates until all constraints are
satisfied. On the other hand, ����� generates new probes ran-
domly in one of the � or f variables, accepts them based on
the Metropolis probability if ` I increases along the � dimen-
sion and decreases along the f dimension, and stops updating

f when all constraints are satisfied.
In this section, we use genetic operators to generate probes

and present in Section 3.1 �a��� and in Section 3.2 ��������� .
Finally, we propose in Section 3.3 iterative-deepening ver-
sions of these algorithms.

3.1 Constrained genetic algorithm (CGA)

�a��� in Figure 5a was developed based on the general frame-
work in Figure 4. Similar to traditional ��� , it organizes a
search into a number of generations, each involving a pop-
ulation of candidate points in a search space. However, it
searches in the ` I space using genetic operators to generate

1. procedure CGA(� , � �)
2. set generation number � � A and �-��� !%� A ;
3. initialize population � ���a! ;
4. repeat /* over multiple generations */
5. evaluate � "s� 	 �J�-���a! ! for all candidates in � ��� ! ;
6. repeat /* over probes in

	
subspace */

7. � � 463 �����
	��������� ���a! ! ! ;
8. evaluate � " ����&�_! and insert into � ��� !
9. until sufficient probes in

	
subspace;

10. �-���a! � �-��� !������o������� ���a! ! ; /* update � */
11. � �����g5 ;
12. until ����� � � !
13. end procedure

a) 1�463 called with population size �
and number of generations �"� .

1. procedure 1�463 *�,
2. set initial number of generations � � 7@�7. ;
3. set 1 = number of 1�463 runs at fixed �$� ;
3. repeat /* iterative deepening to find 1�4�� " � */
4. for 34�65 to 1 do call 1�463$��� � �"�B! end for
5. set � � �98 � � (typically 8;7@?);
6. until �"� exceeds maximum allowed or

(no better solution has been found in two
successive increases of � � and � � � 8����7.
and a feasible solution has been found);

7. end procedure
b) 1�463 *�, : 1�463 with iterative deepening

Figure 5: Constrained 463 and its iterative deepening version.

probes in the � subspace, either greedy or probabilistic mech-
anisms to generate probes in the f subspace, and determinis-
tic organization of candidates according to their ` I values.

Lines 4 and 12 terminate �a��� when the maximum num-
ber of allowed generations is exceeded.

Line 5 evaluates in generation � all candidates in � � � � us-
ing ` I ���>$�f>� � �*� as the fitness function.

Lines 6-9 explore the � subspace by selecting from � � � �
candidates to reproduce using genetic operators and by insert-
ing the new candidates generated into � � � � according to their
fitness values.

After a number of descents in the � subspace (defined by
the number of probes in Line 9 and the decision box “search
in f subspace?” in Figure 4), the algorithm switches to
searching in the f subspace. Line 10 updates f according
to the vector of maximum violations � 1 ���9�)$ � � � �*� , where
the maximum violation of a constraint is evaluated over all
the candidates in � � � � . That is,

 W � 1 ���9�)$ � � � � �f�
rnsp�"!$# � n � i � 1 W ���9� �)$ \ �^] $'5(5'5#$ @ $ (7)

where
1 W ����� is the \ n�t constraint function, i is the non-

negative transformation defined in (5), and % is a step-wise
constant controlling how fast f changes.

Operator & in Figure 5a can be implemented in two ways
in order to generate a new f . A new f can be generated prob-
abilistically based a uniform distribution in � K w('m $ w('m - , or in a
greedy fashion based on a uniform distribution in � �X$ %� - . In

1. procedure 1�2�36463$��� �&� � !
2. set � � A , ' . , A*) ��) 5 , and � ���a! ;
3. repeat /* over multiple generations */
4. for 3��^5 to + do /* 2�3 in Lines 5-10 */
5. for ,d�65 to � do
6. generate ���- from #" � �$�$.(! using 4;�$�".��&���. ! ;
7. accept ���. with probability 3 � �$�$.��J���. !
8. end for
9. set ' �0/ ��' ; /* set ' for the 2�3 part */
10. end for
11. repeat /* by 463 over probes in

	
subspace */

12. �!� 463 �����
	������(�� ��� ! ! ! ;
13. evaluate �%"�����J�_! and insert � into � ��� ! ;
14. until sufficient number of probes in

	
subspace;

15. � �1���2+ ; /* update generation number */
16. until (��3 � �)
17. end procedure

Figure 6: 1�2�35463 : Combined 1�2�3 and 1�463 called with popu-
lation size � and number of generations �$� .

addition, we can accept new probes deterministically by re-
jecting negative ones, or probabilistically using an annealing
rule. In all cases, a Lagrange multiplier will not be changed
if its corresponding constraint is satisfied.

3.2 Combined Constrained ��� and ��� (�����	���)

Based on the general framework in Figure 4, we design�����	��� by integrating ����� in Figure 2a and �a��� in Fig-
ure 5a into a combined procedure. The new algorithm shown
in Figure 6 uses both ��� and ��� to generate new probes in
the � subspace.

Line 2 initializes � � �8� . Unlike �a��� , any candidate
4 � � " $(5'5(5#$ � + $�f " $'5(5'56$(f 7 - / in � � � � is defined in the joint

� and f subspaces. Initially, � can be user-provided or ran-
domly generated, and f is set to zero.

Lines 4-10 perform ����� using 5 probes on every candi-
date in the population. In each probe, we generate probabilis-
tically 4 M6 and accept it based on the Metropolis probability.

Experimentally, we set 5 to be
��
7 .

Lines 11-15 start a ��� search after the ��� part has been
completed. The algorithm searches in the � subspace by gen-
erating probes using ��� operators, sorting all candidates ac-
cording to their fitness values `PI after each probe is gener-
ated. In ordering candidates, since each candidate has its own
vector of Lagrange multipliers, the algorithm first computes
the average value of Lagrange multipliers for each constraint
over all candidates in � � � � and then calculates ` I for each
candidate using the average Lagrange multipliers.

3.3 �a��� and ���f�	��� with iterative deepening

In this section we present a method to determine the optimal
number of generations in one run of �a��� and �����	��� in
order to find a �a�eb I + . The method is based on the use of
iterative deepening [3] that determines an upper bound on ur	
in order to minimize the expected total overhead in (3), where

u
	 is the number of generations in one run of �a��� .
The number of probes expended in one run of �a��� or�����	��� is u � u 	 o , where o is the population size. For

a fixed o , let �o>v � u
	 �2� o>v � o�u
	 � be the reachability prob-
ability of finding �a�eb I + . From (3), the expected total num-
ber of probes using multiple runs of either �a��� or ���������
and fixed o is:

u
o v � u � �

u 	 o
o>v � u
	 o � � o

u 	
�o v � u 	 � (8)

In order to have an optimal number of generations ur	������
that minimizes (8),

�����������F� must have an absolute minimum

in (0, X). This condition is true since �o v � u
	 � of �a��� has
similar behavior as o�v � uG	 � of ���f� . It has been verified
based on statistics collected on �o v � uG	 � and uG	 at various o
when �a��� and ���f�	��� are used to solve ten discretized
benchmark problems G1-G10 [7]. Figure 1b illustrates the
existence of such an absolute minimum when �����	��� witho � �

was applied to solve G1.
Similar to the design of ����� e�f , we apply iterative deep-

ening to estimate uG	������ . �a��� ef in Figure 5b uses a set of
geometrically increasing uH	 to find a �a�eb I + :

uG	�	 �
 W u�� $ \ �3�X$(] $'&(&'& (9)

where u� is the (small) initial number of generations.
Under each uG	 , �a��� is run for a maximum of � times

but stops immediately when a feasible solution has been
found, when no better solution has been found in two succes-
sive generations, and after the number of iterations has been
increased geometrically at least five times. These conditions
are used to ensure that iterative deepening has been applied
adequately. For iterative deepening to work,
��] .

Let �o>v � uG	�	 � be the reachability probability of one run
of �a��� under uG	�	 generations, ��jml=n � � M � be the expected
total number of probes taken by �a��� with u 	������ to find
a �a�eb I + , and � e�f � �9MU� be the expected total number of
probes taken by �a��� ef in Figure 5b to find a solution of
quality �#M starting from u� generations. According to (8),

�aj:l)n � � M �2� o u
	������
�o v � uG	������ � (10)

The following theorem shows the sufficient conditions in
order for � ef � �9MU�2� � � � j:l)n � �9M0�*� .
Theorem 3. Optimality of �a��� ef and ��������� ef .
� e�f � �9M��f� � � � jml=n � �9M��*� if

a) �o v ���8��� � ; �o v � uG	 � is monotonically non-decreasing
for uG	 in ��� $ X � ; and O ��
 ��.Q I �o>v � u
	 �P�] ;

b) �] _ �o v � u 	 ����� �*� �
 c] .
The proof is not shown due to space limitations.

Typically,
 � �
, and �o v � u
	������ �	gL�X& � � in all the bench-

marks tested. Substituting these values into condition (b) in
Theorem 3 yields � � � & � . In our experiments, we have used
� � �

. Since �a��� is run a maximum of three times under
each u 	 , � j:l)n � � M � is of the same order of magnitude as one
run of �a��� with u 	 ����� .

The only remaining issue left in the design of �a��� e�f
and �����	��� ef is in choosing a suitable population size o
in each generation.

In designing �a���!ef , we found that the optimal o ranges
from 4 to 40 and is difficult to determine a priori. Although
it is possible to choose a suitable o dynamically, we do not
present the algorithm here due to space limitations and be-
cause it performs worse than �����	���!ef .

In selecting o for �����	���!ef , we note in the design of����� ef in Figure 2b that � � �
parallel runs are made

at each cooling schedule in order to increase the success
probability of finding a solution. For this reason, we seto � � � �

in our experiments. Our experimental results
in the next section show that, although the optimal o may
be slightly different from 3, the corresponding expected over-
head to find a �a�eb I + differs very little from that when a
constant o is used.

4 Experimental Results

We present in this section our experimental results in eval-
uating ����� ef , �a��� ef and ��������� ef on discrete con-
strained NLPs. In implementing ����� e�f , �a��� ef and�����	��� e�f , we have used the defaualt parameters of
CSA [9] in the SA part and those of Genocop III [6] in the
GA part. In addition, for iterative deepening to work, we have
set the following parameters:
 � �

, � � �
, u�� �] ��5���� ,

and u ?�� � �] & � M](� � ��� , where ��� is the number of vari-
ables, and u� and u ?�� � are, respectively, initial and maxi-
mum number of probes.

Based on the framework in Figure 4, we first determine
the best combination of strategies to use in generating probes
and in organizing candidates. Using the best combination of
strategies, we then show experimental results on some con-
strained NLPs.

Table 1 shows the results of evaluating various combina-
tions of strategies in ����� ef , �a��� e�f , and �����	��� ef on
a discretized version of G2 [7, 4]. We show the average time
of 10 runs for each combination in order to reach two solu-
tion quality levels (] � or](� � worse than �a�eb I + , assuming
the value of �a�eb I + is known). Evaluation results on other
benchmark problems are similar and are not shown due to
space limitations.

Our results show that �a���!e�f is usually less efficient than�����def or �����	��� ef . Further, ����� ef or �����	��� ef has
better performance when probes generated in the � subspace
are accepted by annealing rather than by deterministic rules
(the former prevents a search from getting stuck in local min-
ima or infeasible points). On the other hand, there is little

Table 1: Timing results on evaluating various combinations of strategies in 1�2�3 *�, , 1�463 *�, and 1�2�36463 *�, with �>7:9 to find solutions
that deviate by 1% and 10% from the best-known solution of a discretized version of G2. All CPU times in seconds were averaged over 10
runs and were collected on a Pentinum III 500-MHz computer with Solaris 7. ’ / ’ means that no solution with desired quality can be found.

Probe Generation Strategy Insertion Target Solution 5�� off 1�4�� " � Target Solution 5.A�� off 1�4��-" �
� subspace

	
subspace Strategy 1�2�3 *�, 1�463 *�, 1�2�36463 *�, 1�2�3 *�, 1�463 *�, 1�2�35463 *�,

probabilistic probabilistic annealing 6.91 sec. 23.99 sec. 4.89 sec. 1.35 sec. / 1.03 sec.
probabilistic probabilistic deterministic 9.02 sec. / 6.93 sec. 1.35 sec. 2.78 sec. 1.03 sec.
probabilistic deterministic annealing / 18.76 sec. / 89.21 sec. 2.40 sec. /
probabilistic deterministic deterministic / 16.73 sec. / / 2.18 sec. /

greedy probabilistic annealing 7.02 sec. / 7.75 sec. 1.36 sec. / 0.90 sec.
greedy probabilistic deterministic 7.02 sec. / 7.75 sec. 1.36 sec. / 0.90 sec.
greedy deterministic annealing / 25.50 sec. / 82.24 sec. 1.90 sec. /
greedy deterministic deterministic / 25.50 sec. / 82.24 sec. 1.90 sec. /

Table 2: Results on 1�2�3 *�, , 1�463 *�, and 1�2�36463 *�, in finding the best-known solution ��� for 10 discretized constrained NLPs and their
corresponding results found by EA. (S.T. stands for strategic oscillation, H.M. for homomorphous mappings, and D.P. for dynamic penalty.� *�,6�����.! , the CPU time in seconds to find the best-known solution ��� , were averaged over 10 runs and were collected on a Pentinum III
500-MHz computer with Solaris 7. 	*� " represents the number of � " � 	 �&�_! -function evaluations. The best

� *�, ��� � ! for each problem is
boxed.)

Problem Best EAs 1�2�3 *�, 1�463 *�, 1�2�36463 *�,
ID Solution � � Best Found Method

� *�,6��� � ! 	*� " � #&%.' � *�,���� � ! � � *�,6��� � ! 	*� " � #&%.' � *�,6��� � !
G1 (min) -15 -15 Genocop 1.65 sec. 173959 40 5.49 sec. 3 1.64 sec. 172435 2
� �1.31 sec.

G2 (max) -0.80362 0.803553 S.T. 7.28 sec. 415940 30 311.98 sec. 3
� �5.18 sec. 261938 3
� �5.18 sec.

G3 (max) 1.0 1.0 S.T. 1.07 sec. 123367 30 14.17 sec. 3
� �0.89 sec. 104568 3
� �0.89 sec.

G4 (min) -30665.5 -30664.5 H.M.
� �0.76 sec. 169913 5 3.95 sec. 3 0.95 sec. 224025 3 0.95 sec.

G5 (min) 4221.9 5126.498 D.P. 2.88 sec. 506619 30 68.9 sec. 3 2.76 sec. 510729 2
� �2.08 sec.

G6 (min) -6961.81 -6961.81 Genocop 0.99 sec. 356261 4 7.62 sec. 3 0.91 sec. 289748 2
� �0.73 sec.

G7 (min) 24.3062 24.62 H.M. 6.51 sec. 815696 30 31.60 sec. 3 4.60 sec. 547921 4
� �4.07 sec.

G8 (max) 0.095825 0.095825 H.M. 0.11 sec. 21459 30 0.31 sec. 3 0.13 sec. 26585 4
� �0.10 sec.

G9 (min) 680.63 680.64 Genocop 0.74 sec. 143714 30 5.67 sec. 3
� �0.57 sec. 110918 3
� �0.57 sec.

G10 (min) 7049.33 7147.9 H.M.
� �3.29 sec. 569617 30 82.32 sec. 3 3.36 sec. 608098 3 3.36 sec.

difference in performance when new probes generated in the

f subspace are accepted by probabilistic or by greedy rules
and when new candidates are inserted according to annealing
or deterministic rules. In short, generating probes in the � and

f subspaces probabilistically and inserting candidates in both
the � and f subspaces by annealing rules leads to good and
stable performance. For this reason, we use this combination
of strategies in our experiments.

We next test our algorithms on ten constrained NLPs G1-
G10 [7, 4]. These problems have objective functions of var-
ious types (linear, quadratic, cubic, polynomial, and nonlin-
ear) and constraints of linear inequalities, nonlinear equali-
ties, and nonlinear inequalities. The number of variables is
up to

� � , and that of constraints, including simple bounds, is
up to

� �
. The ratio of feasible space with respect to the whole

search space varies from � � to almost](� � � , and the topolo-
gies of feasible regions are quite different. These problems
were originally designed to be solved by evolutionary algo-
rithms (EAs) in which constraint handling techniques were
tuned for each problem in order to get good results. Exam-
ples of such techniques include keeping a search within fea-
sible regions with specific genetic operators and dynamic and
adaptive penalty methods.

Table 2 compares the performance of ����� e�f , �a��� ef ,
and ���f�	��� e�f with respect to � ef � � t � , the expected to-
tal CPU time of multiple runs until a solution of value � t
is found. The first two columns show the problem IDs and
the corresponding known � t . The next two columns show
the best solutions obtained by EAs and the specific con-
straint handling techniques used to generate the solutions.
The fifth and sixth columns show, respectively, the average
time and number of ` I ��� $�f�� function evaluations �����!ef
takes to find � t . The next two columns show the perfor-
mance of �a��� ef with respect to o�jml)n , the optimal popula-
tion size found by enumeration, and the average time to find

� t . These results show that �a��� ef is not competitive as
compared to ����� ef , even when o j:l)n is used. The results
on including additional steps in �a��� ef to select a suitableo at run time are worse and are not shown due to space lim-
itations. Finally, the last five columns show the performance
of �����	��� ef . The first three present the average times and
number of ` I ��� $(f,� evaluations using a constant o , whereas
the last two show the average times using ofjml)n found by enu-
meration. These results show little improvements in usingo jml)n . Further, ��������� ef has between 9% and 38% in im-
provement in � ef � ��t(� , when compared to that of ���f�!e�f ,

Table 3: Results on 1�2�3 *�, and 1�2�35463 *�, with � 7 9 in
solving selected Floudas and Pardalos’ discretized constrained NLP
benchmarks (with more than ��� 7 5(A variables). Since Problem��� �

and � � � are especially large and difficult and a search can rarely
reach their true 1�4��-" � , we consider a 1�4��-" � found when the
solution quality is within 5(A � of the true 1�4�� " � . All CPU times
in seconds were averaged over 10 runs and were collected on a
Pentium-III 500-MHz computer with Solaris 7.

Problem �-� 	 ! 1�2�3 *�, 1�2�36463 *�,
ID Best � � ��� � *�,6��� � ! � *�,6��� � !

2.7.1(min) -394.75 20 35.11 sec.
� �14.86 sec.

2.7.2(min) -884.75 20 53.92 sec.
� �15.54 sec.

2.7.3(min) -8695.0 20 34.22 sec.
� �22.52 sec.

2.7.4(min) -754.75 20 36.70 sec.
� �16.20 sec.

2.7.5(min) -4150.4 20 89.15 sec.
� �23.46 sec.

5.2(min) 1.567 46 3168.29 sec.
� �408.69 sec.

5.4(min) 1.86 32 2629.52 sec.
� �100.66 sec.

7.2(min) 1.0 16 824.45 sec.
� �368.72 sec.

7.3(min) 1.0 27 2323.44 sec.
� �1785.14 sec.

7.4(min) 1.0 38 951.33 sec.
� �487.13 sec.

for the 10 problems except for G4 and G10.
Comparing �a��� ef and ��������� ef with EA, we see that

EA was only able to find � t in three of the ten problems, de-
spite extensive tuning and using problem-specific heuristics,
whereas both �a��� ef and �����	��� ef can find � t for all
these problems without any problem-dependent strategies. It
is not possible to report the timing results of EA because the
results are the best among many runs after extensive tuning.

Finally, Table 3 shows the results on selected discretized
Floudas and Pardalos’ benchmarks [2] that have more than
10 variables and that have many equality or inequality con-
straints. The first three columns show the problem IDs, the
known � t , and the number of variables (� �) in each. The last
two columns compare � e�f � � t � of ����� e�f and ���f�	��� e�f
with fixed o � �

. They show that ��������� ef is consis-
tently faster than ����� ef (between 1.3 and 26.3 times), es-
pecially for large problems. This is attributed to the fact that��� maintains more diversity of candidates by keeping a pop-
ulation, thereby allowing competition among the candidates
and leading ��� to explore more promising regions.

Acknowledgments

Research supported by National Aeronautics and Space Ad-
ministration Contract NAS2-1230.

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltz-
mann Machines. J. Wiley and Sons, 1989.

[2] C. A. Floudas and P. M. Pardalos. A Collection of Test
Problems for Constrained Global Optimization Algo-

rithms, volume 455 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1990.

[3] R. E. Korf. Depth-first iterative deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97–
109, 1985.

[4] S. Koziel and Z. Michalewicz. Evolutionary algorithms,
homomorphous mappings, and constrained parameter
optimization. Evolutionary Computation, 7(1):19–44,
1999.

[5] D. G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley Publishing Company, Reading, MA,
1984.

[6] Z. Michalewicz and G. Nazhiyath. Genocop III: A
co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. Proceedings of
IEEE International Conference on Evolutionary Com-
putation, 2:647–651, 1995.

[7] Z. Michalewicz and M. Schoenauer. Evolutionary al-
gorithms for constrained parameter optimization prob-
lems. Evolutionary Computation, 4(1):1–32, 1996.

[8] B. W. Wah and Y. X. Chen. Optimal anytime con-
strained simulated annealing for constrained global op-
timization. Sixth Int’l Conf. on Principles and Practice
of Constraint Programming, September 2000.

[9] B. W. Wah and T. Wang. Simulated annealing
with asymptotic convergence for nonlinear constrained
global optimization. Principles and Practice of Con-
straint Programming, pages 461–475, October 1999.

[10] B. W. Wah and Z. Wu. The theory of discrete Lagrange
multipliers for nonlinear discrete optimization. Prin-
ciples and Practice of Constraint Programming, pages
28–42, October 1999.

[11] Z. Wu. Discrete Lagrangian Methods for Solving Non-
linear Discrete Constrained Optimization Problems.
M.Sc. Thesis, Dept. of Computer Science, Univ. of Illi-
nois, Urbana, IL, May 1998.

