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Abstract

In this paper, we study multi-objective tempo-
ral planning problems in discrete time and space
formulated as single-objective dynamic optimiza-
tion problems with a minimax objective function.
We propose efficient node-dominance relations for
pruning states that will not lead to locally optimal
plans. Based on the theory of Lagrange multipli-
ers in discrete space, we present the necessary and
sufficient conditions for locally optimal plans, par-
tition the Lagrangian function into distributed La-
grangian functions, one for each stage, and show
the distributed necessary conditions in the form of
local saddle-point conditions in each stage. By uti-
lizing these dominance relations, we present effi-
cient search algorithms whose complexity, despite
exponential, has a much smaller base as compared
to that without using the relations, and that can con-
verge asymptotically to Pareto optimal plans. Fi-
nally, we demonstrate the performance of our ap-
proach by integrating it in the ASPEN planner and
show significant improvements in CPU time and
solution quality on some spacecraft scheduling and
planning benchmarks.

Introduction

dominates solutionz if x is worse than or equal tg in all
objectives, with at least one strictly worse. Most seargo-al
rithms look for POS in the Pareto optimal set.

There are several approaches for finding POS in uncon-
strained space. Consider a problem of optimizif(g:) con-
sisting of a vector of objective functions:

F(z) = (fi(x), f2(2), - fu(@)™. (D)

The easiest and widely used approach is the weighted-sum
method[Steuer, 198bthat combines the multiple objectives
linearly into a single objective using a vectors of weights,
one for each objective. A new POS can be found by varying
the weights and by solving the single-objective problem for
each combination of weights. The main disadvantage of this
method is that all POS in the Pareto optimal set can only be
generated when all the objective functions are convex.én th
special case of looking for local POS (with respect to other
local POS in the neighborhood), the convexity assumption
is satisfied when the objective functions are continuous and
differentiable, but fails in general for discrete objeetfunc-
tions considered in this paper. In the latter, there may xist e
weights for some local POS with respect to other local POS
in their discrete neighborhoods.

The norm method is based on minimizing the relative dis-
tance from a candidate solution to an ideal reference solu-
tion vector(fy,---, f5). It transforms the multiple objec-
tives into the following single objective with integer

min
T

Many planning and scheduling applications can be formu- k
lated as nonlinear constraindghamic optimization problems

with variables that evolve over time. In this paper we focus

wfEe (T o

i=1

on multi-objective Al planning problems that can be formu- . . . , L
lated using a discrete planning horizon, discrete statovec where each POS is associated with a fixed combination of

representing positive and negative facts, and constregpts weights. It represents a family of methods because differen

resenting preconditions and effects of actions.

any feasible candidate solution to a multi-objective optan
tion problem isPareto optimality [Steuer, 1986 A Pareto

distance measures are obtained by varyingnd more POS

An important property commonly considered necessary fof"€ expected to be found in nonconvex problems using larger

p. However, for finitep, it cannot guarantee that all POS be
found, even for all possible combinations of weights.

optimal set consists ofPareto optimal solutions (POS) that The minimax methogSteuer, 198Bcan potentially gener-

are not dominated by any other solutions, where solugion &€ all POS for nonconvex problems by minimizing the max-
imum of the weighted criteria in the feasible set, leading to
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This is a special case of (2) when= oo and f; = 0. In  optimal set unless all its objectives are convex, we propmse

contrast to norm methods using finite only the minimax use a more general objective that minimizes the maximum of

approach guarantees that all POS be reachable. the weighted criteria in the feasible set. The use of a mini-
Due to its generality, we use the minimax approach in thismax objective in constrained optimization has not been done

paper to handle multiple objectives. A multi-objective fion  before due to its non-differentiability. Second, all exigt

ear constrained planning problem in discrete space and timglanners search in the original problem space that grows ex-

can be formulated assingle-objective dynamic optimization ~ ponentially with respect to the number of variables, or ap-

problemwith equality constraints as follows: ply heuristics to prune the search space that may not lead to
min Jly] = m’gx[wiJi(y)] (4) feasible plans. To address this issue, we propose new dom-
Yy i=1 inance relations that prune infeasible space and help eeduc
suchthat  E(t,y(t)) =0, t=0, ---, N+1 the base of the exponential complexity without sacrificing
G(t,y(t),y(t + 1)) =0, feasibility. We further apply constrained simulated arimgga

(CSA) [Wah & Wang, 1998 which can converge asymptot-
and  Ify] =0, ically to a constrained global optimum, in order to look for

with dummy constraint&(N +1,y(N +1),y(N +2)) =0  POS in the reduced space.

always satisfied. Heregy;(t) is thei'" discrete dynamistate

variablein stage’; y(t) = (y1(t), - ,y.(t))" isau-element 2 Dominance Relations

state vector in discrete spac®’; (Ji[yl, Jao[yl, -, Je[y])T . .

is a k-element vector of obJ(ec'Eiv]e fhr]mtions;E[ ]): In general, the complexity of a multi-stage path-searcispro

(Ey,---,E,)" is ar-component vector dbcal constraints, lem can be reduced by dominance relations. Such relations

be D (G’1 " G,)T is ap-component vector ofagrange ~ ©20 be classified into path dominance and node dominance.
- ) ) P

A special case of (4) with local and Lagrange constraints
but without general constraints can be solved by dynamie pro
gramming. ThePrinciple of Optimality states that, i€ lies on
the optimal bundle frons to the final state, then it is neces-
sary and sufficient for the bundle frosrto ¢ to be optimal. It
!ﬁ?ds tgpath dominance that allows the optimal path between
s’andc to dominate other suboptimal paths. Path dominance
leads to search complexity that is polynomial in the number
of states in the problem.

When general constraintsy] = 0 are present in (4),
the Principle of Optimality is not satisfied because a path-
nqeominated partial bundle in a stage may satisfy a general
constraint that spans beyond this stage, whereas a path-
dominating partial bundle may not. Without path dominance,
an algorithm for finding an optimal bundle may need to enu-

merate all possible bundles across all stages in the wasst ca

Existing methods for solving discrete-state discretestim leading to a complexity exponential in the number of states.

planning problems can be classified into three categorjes: a; '?Qg;%er tti)rlr?aeli?f iioan;:gggE:(J(Iaotrz?rggr?fesrg?attzg\r/lol;\é?vrlgiuptr\w_
Systematic search methods that explore the entire state spa pt pd ét tecs i id to dominat

are expensive, as they are enumerative in nature. Exampl@esct andey. Statee; 1S said 1o dominate; (c2 — c1)
include Graphplan, STAN, and PropPLAN. b) Heuristically Nenci can be pruned safely because it cannot lead to better
guided local searches that search in discrete path space Jggstlble to_bj%q#ve V?l;*es thartlhtr(ljose_c@f Nodbe dom'”a?cel
pend heavily on the guidance heuristics used and are notgud S agde IS It etren _rotr)r|1 pa t;mlné;mc? ecauﬂs]e Itr?nty
anteed to find feasible bundles. Examples include HSP, FiEi€Pends on state variables in stagend not on paths (tha
AltAlt, and ASPEN. c¢) Transformation methods transform adepend on states in earlier stages) leading to these states.

problem into a constrained optimization or satisfactioobpr helps reduce the overall number of bl_mdles enumerated be-
lem before solving it by existing constrained programmingcause any feasible bundle should only involve dominatirtg bu

techniques. They allow objectives to be coded easily angot dominated states in each stage. Note that node dominance

discrete resource constraints to be handled. However, cof® OF"V necessary for global optimality In (4.)'
strained searches are too computationally expensive when a, [ 19ure 1 illustrates the effect of pruning in each stage due

plied to solve large planning problems. Examples include® "0d€ dominance. As an illustration, consider an enumer-
SATPLAN, ILP-PLAN, and Blackbox. ative algorithm for finding an optimal bundle in a simple

There are two major issues in existing work that we plan(N + 2)-stage problem, with an initial state in the first stage,

to address in this paper. First, with the exception of AS-  iThe implicit assumption is that (4) with general nonlines-d
PEN([Chien,et al., 2004, all existing planners use either a crete constraints is NP-hard; hence, it is unlikely thatpheblem

single objective or no objective at all in their formulat&®n is polynomially solvable. An enumerative algorithm can fardop-

whereas ASPEN allows multiple objectives in a weightedtimal bundle in worst-case complexity ||~ , where|))| is the

sum. As a weighted sum cannot lead to all POS in the Paretaumber of states in each stage.

constraints [Cadzow, 1970 andI = (Iy,---,I,)T is ag-
component vector ajeneral constraints.

A local constraint in (4) involves only local state variable
in one stage; a Lagrange constraint involves state vasgaible
adjacent stages; and a general constraint involves stete va
ables across more than two stages. Note that constraints m
involve conditions on individual states, preconditionsam
action, conditions to be maintained throughout an actiod, a
post-conditions to be achieved by an action, and fhd, G
andI arenot necessarily continuous and differentiable.

A solutiony = (y(0),y(1),---,y(N + 1)) to (4) con-
sists ofu discrete-stage curves (also called sequences), o
for each dynamic state variable. Following conventional te
minologies in continuous control theory, we calb bundle
(or a vector of curves), and;[y], thei*" functional defined
as a mapping fromp to a value inR.



General Constraintéy) — 0 and Functional Objectivé]y) are not used in conventional Lagrange-multiplier methads i

continuous space because the transformed functions are not
differentiable aty(x) = 0. However, they do not pose any
problem here because we do not require their differentiabil
ity. Moreover, practical algorithms employing greedy sbar

do not enumerate all possible neighborhood points.

Pruned dominated
nodes

Lagrange
Constraints

User-defined neighborhoods. To characterize constrained

. . . t .
Figure 1: The pruning of dominated states in each stage leads t(§0|u“ons of (4), we f'.rSt defma/_b( )(y), the neighborhood
a smaller search space in finding optimal bundles acrossreiifft N @ Stage, and the discrete neighborhood of a bundle. In-
stages. The dominating states are shown to satisfy the ¢oral  tuitively, Nb(t) (y) includes all bundles that are identicalgo
straints in the figure, and stronger dominance can be achieye in all stages except where the state vector in stages per-
using the distributed saddle-point conditions shown inisea. turbed to a neighboring state.M, (y(t)). The discrete neigh-

) ) ) borhood of bundley is the union of discrete neighborhoods
a final state in the last stage, and a discrete search §paceycross each of the + 2 stages.

in staget = 1,---, N. Without node dominance, the algo-

rithm will enumerate all possible combinations of bundlés o o _ )

)| states in stage, leading to a worst-case complexity of Definition 1. A, (s), the discrete neighborhood of state

O (JYIV). In contrast, by partitioning the search into stagesV€Cto's € V. Is a finite user-defined set of statgs € )}

and by applying node dominance in each stage, the seardh/ch 1thakts € N?J(S_) = 8 € Nv(s )- _F_urther, for

can be restricted to only dominating states in each stage. A1 59 € Y, 1tis p?ff"ble to if'nd a finite sequence

suming that node dominance leadggodominating statesin 5 >+ 5 € Y suchthat™ e Ny(s'), i =1,---k — 1.

each stage and that it takes a worst-case complexify|df

staget to find a dominating state in, theT worst-case com-  peginition 2. N _ thet*"-stage discrete neighborhood

plexity will be O (N]Y| x |§|N). Sincels| is generally much o bndle y for gi\l;erg\)/v(s) and a?l?t — 0.1, ’]% 11, is:

smaller than)’|, node dominance helps reduce the base of the

worst-case exponential complexity to a much smaller value. ) {
Yy) =47

Dominating node

Figure 1 illustrates a weak form of node dominance inVy
which dominating states only satisfy the local constraints
each stage. In this paper, we present stronger dominarsce rel
tions found by formulating (4) in a Lagrangian function with - . :
discrete variables, based on the theory of Lagrange midltipl Deigrgg?iz e?a a sj\f/g(ligczv'v;he discrete neighborhood of bundle
ers in discrete spadgVah & Wu, 1999, and by partitioning ¥’ :
the Lagrangian function into multiple Lagrangian functpn Nl
eachinvolving only local variables in a stage. The domigati _ (t) 7
states are those that satisfy the local saddle-point dondif No(y) U Ny (). ™
the partitioned Lagrangian function. This new approach of
optimization in discrete space reduces the search of ayocal
optimal bundle to that of a saddle point in a discrete neighpefinition 4. Bundle y is a discrete-neighborhood con-
borhood of the bundle, and further to the search of multiplegyzined 1ocal minimum ((CLMdn) of (4) if a) y satisfies all
local saddle points, one in each stage. the constraints in (4), and b)jy] < J|[z] for all feasible bun-

dlesz € Ny(y).

2(t) € N(y(t)) andz(i) = yli);i # t}. ©)

3 Node Dominance by Distributed

Saddle-Point Conditions Necessary and sufficient conditions. The following two
In this section we describe our proposed node-dominance rélefinitions define the terms needed in the conditions.
lations in the form of distributed necessary conditiondder

cally optimal bundles. _ _ _ Definition 5.  Using H defined in (5), ajeneralized discrete
To handle inequality constraints, we first define a non-_agrangian function of (4) is:

negative continuous transformation functiéh that trans-

forms inequality constraing(z) < 0 into an equivalent N+1
equality constraint (¢(x)) = 0, where: La(y.v M) = Tl + > {7T<t>H (E(t.y(®)) ()
t=0
=0 iffy=0,
H0{Z5 otrermse. ©T0H @0+ D) T ().

Function H is easy to design; examples of which in- r

clude H(g(z)) = [lg1(2)],--- , |gk7§x)|]T and H(g(x)) = Wherev(t)Tz (@), %) € RT,TA(t) = (M),

[max(g1(z),0), - , max(gx(z),0)]”. Such transformations " ,Ap(t))" € R?, andp = (p1, -+, pq)" € RY are vec-
tors of Lagrange multipliers.



procedure DCV+CSA
set starting values af, \, v, u;
set starting temperatuie = T, and cooling scheduls;
setNr; /* number of probes per stage per T */
repeat/* outer loop in iterative scheme */
for t =0to N 4 1 do/*find S P, for staget*/
for : = 0to Nr do

Definition 6. A discrete-neighborhood saddle point 1
SPu,(y*,v*, \*, u*) of (4) is a point that satisfies the follow- g
ing property for ally € Ny (y*);vy,7* € RNVE2m A A* € 4
RWN+2)p: andy, p* € R 5
6
7
8

Ld(y*a’y*a A*aﬂ*) S Ld(y7’7*7)\*7u*)a

Lay™, 7, A" 1*) < Laly™ 7", A" 1), (©) . generate a trial point af(t), A(t), ory(t);
La(y*,v*, A\, %) < La(y*,~v*, A", u*), 9. accept the trail point with probabilitfir;
La(y™, 7", A", 1) < La(y™, " A", "), ﬂj emf%?for
These inequalities state they*,v*, A", ") is at a local 12, generate a trial point gf, /* ascents inu subspace */
minimum of Lq(y, v, A, 1) with respect toy and at a local 13, accept the trail point with probabilitgtr;
maximum with respect tey, A and . The following nec- 14. reduce temperature using a geometric schedule;

essary and sufficient condition was first derived $hang 15.  until stopping condition is satisfied;
& Wah, 1998 and shows the one-to-one correspondence be-16.end procedure

tweensS Py, andC'LMay,. Figure 2:DCV+CSA: an iterative procedure for finding points that

Lemma 1. Bundley in the discrete search space of (4) is g Satisfy (1) in Theorem 1 using CSA.
CLMin iffif[satisfiesthe discrete-neighborhoodsaddle-point,y/’7* € RIVHD™ and X, 3 € RONH2P for all ¢ ¢
con@yons in (9). . . _ N v e NP (y) and N e NP (1*) are perturbed
Partitioned Lagrangian functions. The Lagrangian func- in thet*" stage
tion in (8) can be partitioned into multiple sub-functionag '
for each stage. The sub-functions are useful for charaeteri The theorem is a straightforward application of the con-
ing the properties of the distributed solution space of (4). ditioFS in Lemma 1 o]r31 the partitioned Lagrangian func-
_— ‘h —_ ' . tion [Chen & Wah, 2008 The conditions are stronger than
If?xﬁgt?glnogfié) -trh:eli .-.s.ta%\e[dzss‘t:nbuted discreteLagrangian e dominance based on local constraints alone because

' oo they also require dominating states in each stage to satisfy
Pa(t,y, v, \p0) = Tyl +~1(OH(ER, (1)) 10 the Lagrange constraints (third condition in (11)).

+ AC-DH(G( -1,y —1),y(t))) As the number of combinations of dominating states across

AOH(G(t,y(t),y(t+1))) + pH[y]) different stages is substantially smaller than the numiber o

_|_
with boundary functions: combinations of possible states across different stades=-T
Ta(0, 9,7, A p) = Jly] +~v(0)H(E(0,y(0))) rem 1 leads to significant reduction in search complexity.
Our approach is similar to that ahlculus of variations
+ MO H(G(0,y(0),y(1))) + nH(Ily]), \ &
Ta(N + Ly ) = ~(N+1D)H(EN +1,y(N +1))) in continuous control theorjCadzow, 197Pthat partitions a

Lagrangian function of a multi-stage problem in continuous
+Jyl+pH(Iy]) + MN)H(G(N,y(N),y(N +1))). space into multiple sub-functions and that develops firden

Distributed necessary conditions. By applying Lemma 1 hecessary (Euler-Lagrange) conditions in each stagedivat g
on the distributed Lagrangian function in (10), we obtaio-ne €rn local optimality. Our approach, however, works in dis-
essary conditions on locally optimal bundles with respect t crete space and does not require the differentiability amd c
bundles in their neighborhoods defined in (7). These conditinuity of functions. Note that, although we have presented
tions help prune dominated states in each stage that dotrot s#he theory based on discrete-neighborhood saddle paets, t
isfy the conditions (cross-shaded area in Figure 1). They artheory can be expressed in terms of first-order descent-direc
necessary but not sufficient because states that satisfg thetions, similar to that of classical calculus of variationgon-
conditions may not satisfy the general constraints. tinuous space based on first-order gradient directions.

Theorem 1. Distributed necessary conditionsfor C' L My, . ; ;
If yis aCLMyg, in the discrete space of (4), then it satisfies4 ASymptOt_lca”y ConveTr_gent Algorithm
the following distributed discrete-neighborhood saduiént ~ Theorem 1 defines the conditions fOfL M, that are lo-
conditions fort = 0,1,--- , N + 1: cal optimal bundles with respect to their neighborhoods.
Da(t,y*,v*, X5, p1*) < Talt, v, v*, N, 1*); Such solutions can be found by performing greedy descents
Talt, y*, ', A%, 1) < Talt, y*, 7% A%, u*): 11 of Ty(t,y, \,7, 1) in the y(¢) subspace in stage and by
alt,y",y w) < Loty W) (1) performing greedy ascents in thét) and~y(t) subspaces.

* * / * * * * *\.
La(t,y™, 7", Nu™) < Ta(ty™, 7", A% 1); Once all the stages have been examined, greedy ascents of
where La(y, A\, v, n) are performed in the subspace (last condition
v =(70), (=19 @),y E+ 1), YT (N + 1)) in(9)) if there were unsatisfied general constraints.
N o= (A (0), -, A (= 1), N (@), N (t+ 1), , AN(N +1)); To find POS that areconstrained global minima
Y = 0)-- (= 1),y

( ), y* (t+1), -, y"(N+1)). (CGMay) to (4), we employconstrained simulated anneal-

N () = [y [ () € RT andn(i | i £ 1) = (i)} ing (CSA) [Wah & Wang, 1999that generates new probes

o V=T LA =7 W5 randomly in each stage, and accepts them based on the
NI = {A | A(t) € RP andA(i | i £ t) = A (D)} Metropolis probabilityAr if Ty (and Ly as well) increases



along they dimension and decreases alongitendy dimen-  the repair phase, It first generates an initial schedulentlagt
sions. The search then generates new probes ip thmen-  not be conflict-free, using an algorithm called forward dis-
sion after iterating over all stages, and accepts them b@sed patch. It then searches for a feasible plan from this initial
the Metropolis probability ifL; increases. The search stops plan, using iterative repairs that try to resolve each ceinfli
updating, v, andu when all the constraints are satisfied. individually in the current plan. In each repair iteratidhe
Note that, sincd’; includes both the objective and the con- planner must decide at eachoice point a conflict to resolve
straints, the algorithm looks for local POS that optimizes t and a conflict-resolution method from a rich collection of re
objective as well as satisfying the constraints atthe sameet  pair heuristics. To improve the quality of plans defined by
The acceptance probabilitdr of new trial points is a preference score, ASPEN uses a preference-driven, incre-
controlled by the decreasing temperatife It can be mental, local optimization method. Based on multiple choic
proved[Wah & Wang, 1999 that, by using a logarithmic points in each iteration, ASPEN provides various optimiza-
cooling schedule and by modeling the search as a finite intion heuristics for deciding search directions at choiceso
homogeneous Markov chain, the search converges asymptot-We have compared performance using three publicly avail-
ically to CGMy,, of (4). able benchmarks on scheduling parallel spacecraft opera-
Figure 2 outlines DCV+CSA, an algorithm that performstions: OPTIMIZE, PREF and CX1-PREF. These benchmarks
CSA one stage at a time before performing ascents inuthe encode goal-level tasks commanded by science and engineer-

subspace. We use a geometric cooling scheddlirga x T', ing operations personnel, with a goal of generating high-
where0 < o < 1in Line 14, since the logarithmic cooling quality plans as fast as possible. OPTIMIZE (10 objectives)
schedule is too slow in practice. and PREF (50 objectives) are two benchmarks developed

As it is very difficult to determine the optimal cooling rate at JPL that come with the licensed release of ASPEN. The
« in the cooling schedule, we try to select the duration of theCX1-PREF benchmadWillis, Rabideau, & Wilklow, 1999
cooling schedule iteratively. Based on an observed monrotor{7 objectives) models the operations planning of the Qitize
ically non-decreasing relationship between the success pr Explorer-1 (CX-I) satellite that took data relating to ozoand
abilities of obtaining a solution and the average comptetio downlinked its data to ground for scientific analysis. It has
times of CSA, we apply iterative deepening that schedule®roblem generator that can generate problem instances of di
multiple runs of CSA, using a set of geometrically incregsin ferent number of satellite orbits.
durations, in order to minimize the expected completioretim  In our experiments on ASPEN, we allowed it to alternate
(to a constant factof\Wah & Chen, 200D When the search between a repair phase with unlimited number of iterations
stops, one has a high probability that a POS has been founénd an optimization phase with 200 iterations.
Note that it is not possible to guarantee that a POS be found in Next, we tested ASPEN+CSA, a version of ASPEN that
finite time, as CSA only converges to a POS asymptotically. uses CSA to choose probabilistically among ASPEN's repair
and optimizations actions, select a random feasible aetion
; ; ; each choice point, apply the selected action to the current
5 Pareto Optimal Solutions in ASPEN schedule, and accept the new schedule based on the Metropo-
In this section we show the performance of integratinglis probability in CSA. In our implementation, we fix the ini-
DCV+CSA in ASPEN (Automated Scheduling and Planningtial temperature to be 1000, determine the cooling schedule
EnvironmenfChien,et al., 2004 developed at the Jet Propul- by iterative deepeningVah & Chen, 20010) initialize all La-
sion Laboratory (JPL)) in order to find POS. ASPEN is angrange multipliers to zero, and increase those multiplxrs
objective-based planner for automated complex plannidg anunsatisfied schedule conflicts in each iteration by 0.1. &her
scheduling of spacecraft operations. Such operation$vi@vo are no parameters in determining neighborhoods as in CSA
generating a sequence of low-level parallel spacecraft combecause all probes are generated by ASPEN heuristics.
mands from a set of high-level science and engineering goals Last, we tested ASPEN+DCV+CSA, a version of AS-
Using discrete time horizons and discrete state space, dPEN that uses DCV+CSA in Figure 2 to look for discrete-
ASPEN model encodes spacecraft operability constraintg)eighborhood saddle points in each stage that satisfy (11).
flight rules, spacecraft hardware models, science expatime Since the performance of the algorithm depends on the num-
goals, and operations procedures. It defines various tyfpes ber of stages, we study two ways of collapsing adjacent time
schedule constraintsthat may be in procedural form among or points in the discrete time horizon of ASPEN into stages.
within the parallel activities to be scheduled. Such caists In ASPEN+DCVs+CSA, we partition the horizon stati-
include temporal constraints, decomposition constranets  cally and evenly intaV stages. This simple strategy often
source constraints, state dependency constraints, arld gdeads to an unbalanced number of time points in different
constraints. In addition, the quality of a schedule is define  stages. During a search, some stages may contain no con-
a preference score, which is a weighted sum of multiple pref- flicts to be resolved, whereas others may contain too many
erences (that may also be in procedural form) to be optimizedonflicts. Such imbalance leads to search spaces of differ-
by the planner. Preferences can be related to the number eht sizes across different stages and search times thatenay b
conflicts, the number of actions, the value of a resource statdominated by those in a few stages.
or the value of an activity parameter. To address this issue, ASPEN+DCVd+CSA partitions time
Since ASPEN cannot optimize plan quality and search fopoints dynamically into stages by adjusting the boundary of
feasible plans at the same time, it interleaves its rep@setl  stages at run time in order to balance evenly the activities
feasibility planning with the optimization of plan qualitin ~ across different stages. This is accomplished by sortirgel



Table 1:Weighted-sum solution of ASPEN and 10 POS found by
ASPEN+DCVd+CSA on a CX1-PREF problem with 8 orbits.

‘ 7 ‘ASPEN| ASPEN+DCVd+CSA |

) Sol. [ SI S2 S3 S4 S5 S6 S7 S8 S9 S10
J1 1 1 1 1 1 1 1 1 1 1 1

J2 0 0 0 0 0 0 0 0 0 0 0

J3| 0.9910|0.9911 0.9915 0.9916 0.9951 0.9924 0.9998 0.9961 0.991910.9.991
J4|3.15e-0§ 0 0 0 5.49e-05 449-06 O 1.31e-06 O 0

J5| 0.745 | 0.776 0.742 0.740 0 0.735 0 0 0.776 0.776 0.J73
J6 1 1 1 1 1 1 1 1 1 1 1

J7 1 1 1 1 1 1 1 1 1 1 1

Number of Iterations

5000 \
4000
3000 -
2000 -
1000 -

ASPEN+DCVs+CSA——
ASPEN+DCVd+CSA—x— -

1 10 100 1000
Number of Stages

10000

_ _ ~ Figure 3:Number of iterations taken by ASPEN+DCVs+CSA and
time points at the end of the outer loop of DCV+CSA (Line ASPEN+DCVd+CSA to find a feasible plan for an 8-orbit CX1-

15 in Figure 2), and by partitioning the time horizon into
stages in such a way that each stage contains approximately
the same numben{/N) of time points, wheré/ is the total
number of time points in the horizon.

Figure 3 shows the number of iterations taken by AS-
PEN+DCVs+CSA and ASPEN+DCVd+CSA in finding a
feasible schedule in solving an 8-orbit CX1-PREF problem.
The results show that the best performance is achieved when
N = 100. Since other benchmarks also lead to similar con-
clusions, we selV = 100 in our experiments.

Figure 4 compares the performance of ASPEN with respect
to that of ASPEN+DCVd+CSA. In ASPEN+DCVd+CSA,
we plot ten different POS found using random sets of weights
(between 0 and 100) in the minimax formulation. In each
case, we show the Euclidean distance between the objective
vectors of the schedule found to the Utopian objective vec-
tor in which all objective functions are of the maximum value
1.0. The results show that ASPEN+DCVd+CSA can find a
POS one to two orders faster than ASPEN and can generate
multiple POS.

Table 1 further illustrates the various seven-objective so
lutions found on the 8-orbit CX1-PREF problem. It can be
verified that, due to the existence of S3 and S10, there exists
no combination of weights that make S2 a global minimum
in the weighted-sum objective used by ASPEN. This is true
because, in order for S2 to be better than S10 on the weighted
sum, the weight on J3 must be at least 155 times larger than
that on J5; however, this will make S2 worse than S3 in terms
of the weighted sum. As aresult, it is not possible for ASPEN
to find S2 using an objective based on a weighted sum.
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