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Abstract

In this paper, we study multi-objective tempo-
ral planning problems in discrete time and space
formulated as single-objective dynamic optimiza-
tion problems with a minimax objective function.
We propose efficient node-dominance relations for
pruning states that will not lead to locally optimal
plans. Based on the theory of Lagrange multipli-
ers in discrete space, we present the necessary and
sufficient conditions for locally optimal plans, par-
tition the Lagrangian function into distributed La-
grangian functions, one for each stage, and show
the distributed necessary conditions in the form of
local saddle-point conditions in each stage. By uti-
lizing these dominance relations, we present effi-
cient search algorithms whose complexity, despite
exponential, has a much smaller base as compared
to that without using the relations, and that can con-
verge asymptotically to Pareto optimal plans. Fi-
nally, we demonstrate the performance of our ap-
proach by integrating it in the ASPEN planner and
show significant improvements in CPU time and
solution quality on some spacecraft scheduling and
planning benchmarks.

1 Introduction
Many planning and scheduling applications can be formu-
lated as nonlinear constraineddynamic optimization problems
with variables that evolve over time. In this paper we focus
on multi-objective AI planning problems that can be formu-
lated using a discrete planning horizon, discrete state vectors
representing positive and negative facts, and constraintsrep-
resenting preconditions and effects of actions.

An important property commonly considered necessary for
any feasible candidate solution to a multi-objective optimiza-
tion problem isPareto optimality [Steuer, 1986]. A Pareto
optimal set consists ofPareto optimal solutions (POS) that
are not dominated by any other solutions, where solutiony
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dominates solutionx if x is worse than or equal toy in all
objectives, with at least one strictly worse. Most search algo-
rithms look for POS in the Pareto optimal set.

There are several approaches for finding POS in uncon-
strained space. Consider a problem of optimizingF (x) con-
sisting of a vector ofk objective functions:

min
x

F (x) = (f1(x), f2(x), · · · , fk(x))T . (1)

The easiest and widely used approach is the weighted-sum
method[Steuer, 1986] that combines the multiple objectives
linearly into a single objective using a vectors of weights,
one for each objective. A new POS can be found by varying
the weights and by solving the single-objective problem for
each combination of weights. The main disadvantage of this
method is that all POS in the Pareto optimal set can only be
generated when all the objective functions are convex. In the
special case of looking for local POS (with respect to other
local POS in the neighborhood), the convexity assumption
is satisfied when the objective functions are continuous and
differentiable, but fails in general for discrete objective func-
tions considered in this paper. In the latter, there may not exist
weights for some local POS with respect to other local POS
in their discrete neighborhoods.

The norm method is based on minimizing the relative dis-
tance from a candidate solution to an ideal reference solu-
tion vector(f∗

1 , · · · , f∗

k ). It transforms the multiple objec-
tives into the following single objective with integerp:

min
x

[ k
∑

i=1

wi

(

fi(x) − f∗

i

f∗

i

)p] 1

p

, (2)

where each POS is associated with a fixed combination of
weights. It represents a family of methods because different
distance measures are obtained by varyingp, and more POS
are expected to be found in nonconvex problems using larger
p. However, for finitep, it cannot guarantee that all POS be
found, even for all possible combinations of weights.

The minimax method[Steuer, 1986] can potentially gener-
ate all POS for nonconvex problems by minimizing the max-
imum of the weighted criteria in the feasible set, leading toa
scalar objective at pointx as follows:

min
x

{

k
max
i=1

[wifi(x)]

}

. (3)



This is a special case of (2) whenp = ∞ andf∗

i = 0. In
contrast to norm methods using finitep, only the minimax
approach guarantees that all POS be reachable.

Due to its generality, we use the minimax approach in this
paper to handle multiple objectives. A multi-objective nonlin-
ear constrained planning problem in discrete space and time
can be formulated as asingle-objective dynamic optimization
problem with equality constraints as follows:

min
y

J [y] =
k

max
i=1

[wiJi(y)] (4)

such that E(t, y(t)) = 0, t = 0, · · · , N + 1

G(t, y(t), y(t + 1)) = 0,

and I[y] = 0,

with dummy constraintsG(N + 1, y(N + 1), y(N + 2)) = 0
always satisfied. Here,yi(t) is theith discrete dynamicstate
variable in staget; y(t) = (y1(t), · · · , yu(t))T is au-element
state vector in discrete spaceY; (J1[y], J2[y], · · · , Jk[y])T

is a k-element vector of objective functions;E =
(E1, · · · , Er)

T is ar-component vector oflocal constraints,
G = (G1, · · · , Gp)

T is a p-component vector ofLagrange
constraints [Cadzow, 1970]; andI = (I1, · · · , Iq)

T is a q-
component vector ofgeneral constraints.

A local constraint in (4) involves only local state variables
in one stage; a Lagrange constraint involves state variables in
adjacent stages; and a general constraint involves state vari-
ables across more than two stages. Note that constraints may
involve conditions on individual states, preconditions onan
action, conditions to be maintained throughout an action, and
post-conditions to be achieved by an action, and thatJ , E, G
andI arenot necessarily continuous and differentiable.

A solution y = (y(0), y(1), · · · , y(N + 1)) to (4) con-
sists ofu discrete-stage curves (also called sequences), one
for each dynamic state variable. Following conventional ter-
minologies in continuous control theory, we cally a bundle
(or a vector of curves), andJi[y], the ith functional defined
as a mapping fromy to a value inR.

Existing methods for solving discrete-state discrete-time
planning problems can be classified into three categories: a)
Systematic search methods that explore the entire state space
are expensive, as they are enumerative in nature. Examples
include Graphplan, STAN, and PropPLAN. b) Heuristically
guided local searches that search in discrete path space de-
pend heavily on the guidance heuristics used and are not guar-
anteed to find feasible bundles. Examples include HSP, FF,
AltAlt, and ASPEN. c) Transformation methods transform a
problem into a constrained optimization or satisfaction prob-
lem before solving it by existing constrained programming
techniques. They allow objectives to be coded easily and
discrete resource constraints to be handled. However, con-
strained searches are too computationally expensive when ap-
plied to solve large planning problems. Examples include
SATPLAN, ILP-PLAN, and Blackbox.

There are two major issues in existing work that we plan
to address in this paper. First, with the exception of AS-
PEN [Chien,et al., 2000], all existing planners use either a
single objective or no objective at all in their formulations,
whereas ASPEN allows multiple objectives in a weighted
sum. As a weighted sum cannot lead to all POS in the Pareto

optimal set unless all its objectives are convex, we proposeto
use a more general objective that minimizes the maximum of
the weighted criteria in the feasible set. The use of a mini-
max objective in constrained optimization has not been done
before due to its non-differentiability. Second, all existing
planners search in the original problem space that grows ex-
ponentially with respect to the number of variables, or ap-
ply heuristics to prune the search space that may not lead to
feasible plans. To address this issue, we propose new dom-
inance relations that prune infeasible space and help reduce
the base of the exponential complexity without sacrificing
feasibility. We further apply constrained simulated annealing
(CSA) [Wah & Wang, 1999], which can converge asymptot-
ically to a constrained global optimum, in order to look for
POS in the reduced space.

2 Dominance Relations
In general, the complexity of a multi-stage path-search prob-
lem can be reduced by dominance relations. Such relations
can be classified into path dominance and node dominance.

A special case of (4) with local and Lagrange constraints
but without general constraints can be solved by dynamic pro-
gramming. ThePrinciple of Optimality states that, ifc lies on
the optimal bundle froms to the final state, then it is neces-
sary and sufficient for the bundle froms to c to be optimal. It
leads topath dominance that allows the optimal path between
s andc to dominate other suboptimal paths. Path dominance
leads to search complexity that is polynomial in the number
of states in the problem.

When general constraintsI[y] = 0 are present in (4),
the Principle of Optimality is not satisfied because a path-
dominated partial bundle in a stage may satisfy a general
constraint that spans beyond this stage, whereas a path-
dominating partial bundle may not. Without path dominance,
an algorithm for finding an optimal bundle may need to enu-
merate all possible bundles across all stages in the worst case,
leading to a complexity exponential in the number of states.1

Another type of dominance that does not involve the Prin-
ciple of Optimality is a node-dominance relation between two
statesc1 andc2. Statec2 is said to dominatec1 (c2 → c1)
whenc1 can be pruned safely because it cannot lead to better
feasible objective values than those ofc2. Node dominance
in staget is different from path dominance because it only
depends on state variables in staget and not on paths (that
depend on states in earlier stages) leading to these states.It
helps reduce the overall number of bundles enumerated be-
cause any feasible bundle should only involve dominating but
not dominated states in each stage. Note that node dominance
is only necessary for global optimality in (4).

Figure 1 illustrates the effect of pruning in each stage due
to node dominance. As an illustration, consider an enumer-
ative algorithm for finding an optimal bundle in a simple
(N + 2)-stage problem, with an initial state in the first stage,

1The implicit assumption is that (4) with general nonlinear dis-
crete constraints is NP-hard; hence, it is unlikely that theproblem
is polynomially solvable. An enumerative algorithm can findan op-
timal bundle in worst-case complexityO

�

|Y|N

�

, where|Y| is the
number of states in each stage.
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Figure 1: The pruning of dominated states in each stage leads to
a smaller search space in finding optimal bundles across different
stages. The dominating states are shown to satisfy the localcon-
straints in the figure, and stronger dominance can be achieved by
using the distributed saddle-point conditions shown in Section 3.

a final state in the last stage, and a discrete search spaceY
in staget = 1, · · · , N . Without node dominance, the algo-
rithm will enumerate all possible combinations of bundles of
|Y| states in staget, leading to a worst-case complexity of
O

(

|Y|N
)

. In contrast, by partitioning the search into stages
and by applying node dominance in each stage, the search
can be restricted to only dominating states in each stage. As-
suming that node dominance leads to|s| dominating states in
each stage and that it takes a worst-case complexity of|Y| in
staget to find a dominating state ins, the worst-case com-
plexity will be O

(

N |Y| × |s|N
)

. Since|s| is generally much
smaller than|Y|, node dominance helps reduce the base of the
worst-case exponential complexity to a much smaller value.

Figure 1 illustrates a weak form of node dominance in
which dominating states only satisfy the local constraintsin
each stage. In this paper, we present stronger dominance rela-
tions found by formulating (4) in a Lagrangian function with
discrete variables, based on the theory of Lagrange multipli-
ers in discrete space[Wah & Wu, 1999], and by partitioning
the Lagrangian function into multiple Lagrangian functions,
each involving only local variables in a stage. The dominating
states are those that satisfy the local saddle-point condition of
the partitioned Lagrangian function. This new approach of
optimization in discrete space reduces the search of a locally
optimal bundle to that of a saddle point in a discrete neigh-
borhood of the bundle, and further to the search of multiple
local saddle points, one in each stage.

3 Node Dominance by Distributed
Saddle-Point Conditions

In this section we describe our proposed node-dominance re-
lations in the form of distributed necessary conditions forlo-
cally optimal bundles.

To handle inequality constraints, we first define a non-
negative continuous transformation functionH that trans-
forms inequality constraintg(x) ≤ 0 into an equivalent
equality constraintH(g(x)) = 0, where:

H(y)

{

= 0 iff y = 0,

≥ 0 otherwise.
(5)

Function H is easy to design; examples of which in-
cludeH(g(x)) = [|g1(x)|, · · · , |gk(x)|]T and H(g(x)) =
[max(g1(x), 0), · · · , max(gk(x), 0)]T . Such transformations

are not used in conventional Lagrange-multiplier methods in
continuous space because the transformed functions are not
differentiable atg(x) = 0. However, they do not pose any
problem here because we do not require their differentiabil-
ity. Moreover, practical algorithms employing greedy search
do not enumerate all possible neighborhood points.

User-defined neighborhoods. To characterize constrained
solutions of (4), we first defineN (t)

b (y), the neighborhood
in a stage, and the discrete neighborhood of a bundle. In-
tuitively, N (t)

b (y) includes all bundles that are identical toy
in all stages exceptt, where the state vector in staget is per-
turbed to a neighboring state inNv(y(t)). The discrete neigh-
borhood of bundley is the union of discrete neighborhoods
across each of theN + 2 stages.

Definition 1. Nv(s), the discrete neighborhood of state
vectors ∈ Y, is a finite user-defined set of states{s′ ∈ Y}
such thats′ ∈ Nv(s) ⇐⇒ s ∈ Nv(s′). Further, for
any s1, sk ∈ Y, it is possible to find a finite sequence
s1, · · · , sk ∈ Y such thatsi+1 ∈ Nv(si), i = 1, · · ·k − 1.

Definition 2. N
(t)
b (y), thetth-stage discrete neighborhood

of bundle y for givenNv(s) and allt = 0, 1, · · · , N + 1, is:

N
(t)
b (y) =

{

z

∣

∣

∣

∣

z(t) ∈ Nv(y(t)) andz(i) = y(i); i 6= t

}

. (6)

Definition 3. Nb(y), the discrete neighborhood of bundle
y, is defined as follows:

Nb(y) =

N+1
⋃

t=0

N
(t)
b (y). (7)

Definition 4. Bundle y is a discrete-neighborhood con-
strained local minimum (CLMdn) of (4) if a) y satisfies all
the constraints in (4), and b)J [y] ≤ J [z] for all feasible bun-
dlesz ∈ Nb(y).

Necessary and sufficient conditions. The following two
definitions define the terms needed in the conditions.

Definition 5. UsingH defined in (5), ageneralized discrete
Lagrangian function of (4) is:

Ld(y, γ, λ, µ) = J [y] +

N+1
∑

t=0

{

γT (t)H (E(t, y(t))) (8)

+λT (t)H (G(t, y(t), y(t + 1)))

}

+µT H (I[y]) ,

whereγ(t) = (γ1(t), · · · , γr(t))
T ∈ Rr, λ(t) = (λ1(t),

· · · , λp(t))
T ∈ Rp, andµ = (µ1, · · · , µq)

T ∈ Rq are vec-
tors of Lagrange multipliers.



Definition 6. A discrete-neighborhood saddle point
SPdn(y∗, γ∗, λ∗, µ∗) of (4) is a point that satisfies the follow-
ing property for ally ∈ Nb(y

∗); γ, γ∗ ∈ R(N+2)r; λ, λ∗ ∈
R(N+2)p; andµ, µ∗ ∈ Rq:

Ld(y
∗, γ∗, λ∗, µ∗) ≤ Ld(y, γ∗, λ∗, µ∗),

Ld(y
∗, γ, λ∗, µ∗) ≤ Ld(y

∗, γ∗, λ∗, µ∗), (9)

Ld(y
∗, γ∗, λ, µ∗) ≤ Ld(y

∗, γ∗, λ∗, µ∗),

Ld(y
∗, γ∗, λ∗, µ) ≤ Ld(y

∗, γ∗, λ∗, µ∗).

These inequalities state that(y∗, γ∗, λ∗, µ∗) is at a local
minimum of Ld(y, γ, λ, µ) with respect toy and at a local
maximum with respect toγ, λ andµ. The following nec-
essary and sufficient condition was first derived in[Shang
& Wah, 1998] and shows the one-to-one correspondence be-
tweenSPdn andCLMdn.

Lemma 1. Bundley in the discrete search space of (4) is a
CLMdn iff it satisfies the discrete-neighborhoodsaddle-point
conditions in (9).

Partitioned Lagrangian functions. The Lagrangian func-
tion in (8) can be partitioned into multiple sub-functions,one
for each stage. The sub-functions are useful for characteriz-
ing the properties of the distributed solution space of (4).

Definition 7. Thetth-stage distributed discrete Lagrangian
function of (8), t = 1, · · · , N , is:
Γd(t, y, γ, λ, µ) = J [y] + γ(t)H(E(t, y(t))) (10)

+ λ(t − 1)H(G(t − 1, y(t − 1), y(t)))

+ λ(t)H(G(t, y(t), y(t + 1))) + µH(I [y])

with boundary functions:
Γd(0, y, γ, λ, µ) = J [y] + γ(0)H(E(0, y(0)))

+ λ(0)H(G(0, y(0), y(1))) + µH(I [y]),

Γd(N + 1, y, γ, λ, µ) = γ(N + 1)H(E(N + 1, y(N + 1)))

+J [y] + µH(I [y]) + λ(N)H(G(N, y(N), y(N + 1))).

Distributed necessary conditions. By applying Lemma 1
on the distributed Lagrangian function in (10), we obtain nec-
essary conditions on locally optimal bundles with respect to
bundles in their neighborhoods defined in (7). These condi-
tions help prune dominated states in each stage that do not sat-
isfy the conditions (cross-shaded area in Figure 1). They are
necessary but not sufficient because states that satisfy these
conditions may not satisfy the general constraints.

Theorem 1. Distributed necessary conditions for CLMdn.
If y is aCLMdn in the discrete space of (4), then it satisfies
the following distributed discrete-neighborhood saddle-point
conditions fort = 0, 1, · · · , N + 1:

Γd(t, y
∗, γ∗, λ∗, µ∗) ≤ Γd(t, y

′, γ∗, λ∗, µ∗);

Γd(t, y
∗, γ′, λ∗, µ∗) ≤ Γd(t, y

∗, γ∗, λ∗, µ∗); (11)

Γd(t, y
∗, γ∗, λ′, µ∗) ≤ Γd(t, y

∗, γ∗, λ∗, µ∗);

where
γ′ = (γ∗(0), · · · , γ∗(t − 1), γ′(t), γ∗(t + 1), · · · , γ∗(N + 1));

λ′ = (λ∗(0), · · · , λ∗(t − 1), λ′(t), λ∗(t + 1), · · · , λ∗(N + 1));

y′ = (y∗(0), · · · , y∗(t − 1), y′(t), y∗(t + 1), · · · , y∗(N + 1)).

N (t)
b (γ∗) = {γ | γ(t) ∈ Rr andγ(i | i 6= t) = γ∗(i)};

N (t)
b (λ∗) = {λ | λ(t) ∈ Rp andλ(i | i 6= t) = λ∗(i)};

1. procedure DCV+CSA
2. set starting values ofy, λ, γ, µ;
3. set starting temperatureT = T0 and cooling scheduleS;
4. setNT ; /* number of probes per stage per T */
5. repeat /* outer loop in iterative scheme */
6. for t = 0 to N + 1 do /* find SPdn for staget*/
7. for i = 0 to NT do
8. generate a trial point ofy(t), λ(t), or γ(t);
9. accept the trail point with probabilityAT ;
10. end for
11. end for
12. generate a trial point ofµ; /* ascents inµ subspace */
13. accept the trail point with probabilityAT ;
14. reduce temperature using a geometric schedule;
15. until stopping condition is satisfied;
16.end procedure

Figure 2:DCV+CSA: an iterative procedure for finding points that
satisfy (11) in Theorem 1 using CSA.

γ′, γ∗ ∈ R(N+2)r and λ′, λ∗ ∈ R(N+2)p for all y′ ∈

N
(t)
b (y∗); γ′ ∈ N

(t)
b (γ∗) andλ′ ∈ N

(t)
b (λ∗) are perturbed

in thetth stage.

The theorem is a straightforward application of the con-
ditions in Lemma 1 on the partitioned Lagrangian func-
tion [Chen & Wah, 2003]. The conditions are stronger than
node dominance based on local constraints alone because
they also require dominating states in each stage to satisfy
the Lagrange constraints (third condition in (11)).

As the number of combinations of dominating states across
different stages is substantially smaller than the number of
combinations of possible states across different stages, Theo-
rem 1 leads to significant reduction in search complexity.

Our approach is similar to that ofcalculus of variations
in continuous control theory[Cadzow, 1970] that partitions a
Lagrangian function of a multi-stage problem in continuous
space into multiple sub-functions and that develops first-order
necessary (Euler-Lagrange) conditions in each stage that gov-
ern local optimality. Our approach, however, works in dis-
crete space and does not require the differentiability and con-
tinuity of functions. Note that, although we have presented
the theory based on discrete-neighborhood saddle points, the
theory can be expressed in terms of first-order descent direc-
tions, similar to that of classical calculus of variations in con-
tinuous space based on first-order gradient directions.

4 Asymptotically Convergent Algorithm
Theorem 1 defines the conditions forCLMdn that are lo-
cal optimal bundles with respect to their neighborhoods.
Such solutions can be found by performing greedy descents
of Γd(t, y, λ, γ, µ) in the y(t) subspace in staget, and by
performing greedy ascents in theλ(t) and γ(t) subspaces.
Once all the stages have been examined, greedy ascents of
Ld(y, λ, γ, µ) are performed in theµ subspace (last condition
in (9)) if there were unsatisfied general constraints.

To find POS that areconstrained global minima
(CGMdn) to (4), we employconstrained simulated anneal-
ing (CSA) [Wah & Wang, 1999] that generates new probes
randomly in each stage, and accepts them based on the
Metropolis probabilityAT if Γd (andLd as well) increases



along they dimension and decreases along theλ andγ dimen-
sions. The search then generates new probes in theµ dimen-
sion after iterating over all stages, and accepts them basedon
the Metropolis probability ifLd increases. The search stops
updatingλ, γ, andµ when all the constraints are satisfied.
Note that, sinceΓd includes both the objective and the con-
straints, the algorithm looks for local POS that optimizes the
objective as well as satisfying the constraints at the same time.

The acceptance probabilityAT of new trial points is
controlled by the decreasing temperatureT . It can be
proved[Wah & Wang, 1999] that, by using a logarithmic
cooling schedule and by modeling the search as a finite in-
homogeneous Markov chain, the search converges asymptot-
ically to CGMdn of (4).

Figure 2 outlines DCV+CSA, an algorithm that performs
CSA one stage at a time before performing ascents in theµ
subspace. We use a geometric cooling schedulingT = α×T ,
where0 < α < 1 in Line 14, since the logarithmic cooling
schedule is too slow in practice.

As it is very difficult to determine the optimal cooling rate
α in the cooling schedule, we try to select the duration of the
cooling schedule iteratively. Based on an observed monoton-
ically non-decreasing relationship between the success prob-
abilities of obtaining a solution and the average completion
times of CSA, we apply iterative deepening that schedules
multiple runs of CSA, using a set of geometrically increasing
durations, in order to minimize the expected completion time
(to a constant factor)[Wah & Chen, 2000]. When the search
stops, one has a high probability that a POS has been found.
Note that it is not possible to guarantee that a POS be found in
finite time, as CSA only converges to a POS asymptotically.

5 Pareto Optimal Solutions in ASPEN
In this section we show the performance of integrating
DCV+CSA in ASPEN (Automated Scheduling and Planning
Environment[Chien,et al., 2000] developed at the Jet Propul-
sion Laboratory (JPL)) in order to find POS. ASPEN is an
objective-based planner for automated complex planning and
scheduling of spacecraft operations. Such operations involve
generating a sequence of low-level parallel spacecraft com-
mands from a set of high-level science and engineering goals.

Using discrete time horizons and discrete state space, an
ASPEN model encodes spacecraft operability constraints,
flight rules, spacecraft hardware models, science experiment
goals, and operations procedures. It defines various types of
schedule constraints that may be in procedural form among or
within the parallel activities to be scheduled. Such constraints
include temporal constraints, decomposition constraints, re-
source constraints, state dependency constraints, and goal
constraints. In addition, the quality of a schedule is defined in
apreference score, which is a weighted sum of multiple pref-
erences (that may also be in procedural form) to be optimized
by the planner. Preferences can be related to the number of
conflicts, the number of actions, the value of a resource state,
or the value of an activity parameter.

Since ASPEN cannot optimize plan quality and search for
feasible plans at the same time, it interleaves its repair-based
feasibility planning with the optimization of plan quality. In

the repair phase, It first generates an initial schedule thatmay
not be conflict-free, using an algorithm called forward dis-
patch. It then searches for a feasible plan from this initial
plan, using iterative repairs that try to resolve each conflict
individually in the current plan. In each repair iteration,the
planner must decide at eachchoice point a conflict to resolve
and a conflict-resolution method from a rich collection of re-
pair heuristics. To improve the quality of plans defined by
a preference score, ASPEN uses a preference-driven, incre-
mental, local optimization method. Based on multiple choice
points in each iteration, ASPEN provides various optimiza-
tion heuristics for deciding search directions at choice points.

We have compared performance using three publicly avail-
able benchmarks on scheduling parallel spacecraft opera-
tions: OPTIMIZE, PREF and CX1-PREF. These benchmarks
encode goal-level tasks commanded by science and engineer-
ing operations personnel, with a goal of generating high-
quality plans as fast as possible. OPTIMIZE (10 objectives)
and PREF (50 objectives) are two benchmarks developed
at JPL that come with the licensed release of ASPEN. The
CX1-PREF benchmark[Willis, Rabideau, & Wilklow, 1999]
(7 objectives) models the operations planning of the Citizen
Explorer-I (CX-I) satellite that took data relating to ozone and
downlinked its data to ground for scientific analysis. It hasa
problem generator that can generate problem instances of dif-
ferent number of satellite orbits.

In our experiments on ASPEN, we allowed it to alternate
between a repair phase with unlimited number of iterations
and an optimization phase with 200 iterations.

Next, we tested ASPEN+CSA, a version of ASPEN that
uses CSA to choose probabilistically among ASPEN’s repair
and optimizations actions, select a random feasible actionat
each choice point, apply the selected action to the current
schedule, and accept the new schedule based on the Metropo-
lis probability in CSA. In our implementation, we fix the ini-
tial temperature to be 1000, determine the cooling schedule
by iterative deepening[Wah & Chen, 2000], initialize all La-
grange multipliers to zero, and increase those multipliersof
unsatisfied schedule conflicts in each iteration by 0.1. There
are no parameters in determining neighborhoods as in CSA
because all probes are generated by ASPEN heuristics.

Last, we tested ASPEN+DCV+CSA, a version of AS-
PEN that uses DCV+CSA in Figure 2 to look for discrete-
neighborhood saddle points in each stage that satisfy (11).
Since the performance of the algorithm depends on the num-
ber of stages, we study two ways of collapsing adjacent time
points in the discrete time horizon of ASPEN into stages.

In ASPEN+DCVs+CSA, we partition the horizon stati-
cally and evenly intoN stages. This simple strategy often
leads to an unbalanced number of time points in different
stages. During a search, some stages may contain no con-
flicts to be resolved, whereas others may contain too many
conflicts. Such imbalance leads to search spaces of differ-
ent sizes across different stages and search times that may be
dominated by those in a few stages.

To address this issue, ASPEN+DCVd+CSA partitions time
points dynamically into stages by adjusting the boundary of
stages at run time in order to balance evenly the activities
across different stages. This is accomplished by sorting all the



Table 1:Weighted-sum solution of ASPEN and 10 POS found by
ASPEN+DCVd+CSA on a CX1-PREF problem with 8 orbits.

J
ASPEN ASPEN+DCVd+CSA

Sol. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

J1 1 1 1 1 1 1 1 1 1 1 1
J2 0 0 0 0 0 0 0 0 0 0 0
J3 0.9910 0.9911 0.9915 0.9916 0.9951 0.9924 0.9998 0.9961 0.9911 0.9911 0.9913
J4 3.15e-06 0 0 0 5.49e-05 4.49e-06 0 1.31e-06 0 0 0
J5 0.745 0.776 0.742 0.740 0 0.735 0 0 0.776 0.776 0.773
J6 1 1 1 1 1 1 1 1 1 1 1
J7 1 1 1 1 1 1 1 1 1 1 1

time points at the end of the outer loop of DCV+CSA (Line
15 in Figure 2), and by partitioning the time horizon intoN
stages in such a way that each stage contains approximately
the same number (M/N ) of time points, whereM is the total
number of time points in the horizon.

Figure 3 shows the number of iterations taken by AS-
PEN+DCVs+CSA and ASPEN+DCVd+CSA in finding a
feasible schedule in solving an 8-orbit CX1-PREF problem.
The results show that the best performance is achieved when
N = 100. Since other benchmarks also lead to similar con-
clusions, we setN = 100 in our experiments.

Figure 4 compares the performance of ASPEN with respect
to that of ASPEN+DCVd+CSA. In ASPEN+DCVd+CSA,
we plot ten different POS found using random sets of weights
(between 0 and 100) in the minimax formulation. In each
case, we show the Euclidean distance between the objective
vectors of the schedule found to the Utopian objective vec-
tor in which all objective functions are of the maximum value
1.0. The results show that ASPEN+DCVd+CSA can find a
POS one to two orders faster than ASPEN and can generate
multiple POS.

Table 1 further illustrates the various seven-objective so-
lutions found on the 8-orbit CX1-PREF problem. It can be
verified that, due to the existence of S3 and S10, there exists
no combination of weights that make S2 a global minimum
in the weighted-sum objective used by ASPEN. This is true
because, in order for S2 to be better than S10 on the weighted
sum, the weight on J3 must be at least 155 times larger than
that on J5; however, this will make S2 worse than S3 in terms
of the weighted sum. As a result, it is not possible for ASPEN
to find S2 using an objective based on a weighted sum.
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