
Solving Large-Scale Nonlinear Programming Problems
by Constraint Partitioning�

Benjamin W. Wah and Yixin Chen

Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory,

University of Illinois, Urbana-Champaign,
Urbana, IL 61801, USA

{wah, chen}@manip.crhc.uiuc.edu
http://www.manip.crhc.uiuc.edu

Abstract. In this paper, we present a constraint-partitioning approach for find-
ing local optimal solutions of large-scale mixed-integer nonlinear programming
problems (MINLPs). Based on our observation that MINLPs in many engineer-
ing applications have highly structured constraints, we propose to partition these
MINLPs by their constraints into subproblems, solve each subproblem by an ex-
isting solver, and resolve those violated global constraints across the subprob-
lems using our theory of extended saddle points. Constraint partitioning allows
many MINLPs that cannot be solved by existing solvers to be solvable because it
leads to easier subproblems that are significant relaxations of the original prob-
lem. The success of our approach relies on our ability to resolve violated global
constraints efficiently, without requiring exhaustive enumerations of variable val-
ues in these constraints. We have developed an algorithm for automatically parti-
tioning a large MINLP in order to minimize the number of global constraints, an
iterative method for determining the optimal number of partitions in order to min-
imize the search time, and an efficient strategy for resolving violated global con-
straints. Our experimental results demonstrate significant improvements over the
best existing solvers in terms of solution time and quality in solving a collection
of mixed-integer and continuous nonlinear constrained optimization benchmarks.

1 Introduction

In this paper, we study mixed-integer nonlinear programming problems (MINLPs) of
the following general form:

(Pm) : min
z

f(z), (1)

subject to h(z) = 0 and g(z) ≤ 0,

where variable z = (x, y), and x ∈ R
v and y ∈ D

w are, respectively, the continuous and
the discrete parts. The objective function f is continuous and differentiable with respect
to x, whereas the constraint functions h = (h1, . . . , hm)T and g = (g1, . . . , gr)T are
general functions that can be discontinuous, non-differentiable, and not in closed form.

� Research supported by National Science Foundation Grant IIS 03-12084.

P. van Beek (Ed.): CP 2005, LNCS 3709, pp. 697–711, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

698 B.W. Wah and Y. Chen

MINLPs defined by Pm include discrete problems and continuous nonlinear pro-
gramming problems (CNLPs) as special cases. Ample applications exist in production
management, operations research, optimal control, and engineering designs.

Because there is no closed-form solution to Pm, we aim at finding local optimal
solutions to the problem. We, however, focus on solving some of the more difficult
instances that cannot be solved by existing solvers.

An example MINLP that cannot be solved by existing solvers is TRIMLON12. This
is an instance of the TRIMLON benchmark [9] with I = J = 12. The goal is to produce
a set of product paper rolls from raw paper rolls by assigning continuous variables m[j]
and y[j] and integer variables n[i, j], where i = 1, . . . , I and j = 1, . . . , J , in order to
minimize f as a function of the trim loss and the overall production cost.

objective: minz=(y,m,n) f(z) =
∑J

j=1(c[j] ·m[j] + C[j] · y[j]) (OBJ)

subject to: Bmin ≤
∑I

i=1(b[i] · n[i, j]) ≤ Bmax (C1)
∑I

i=1 n[i, j]−Nmax ≤ 0 (C2)
y[i]−m[j] ≤ 0 (C3)
m[j]−M · y[j] ≤ 0 (C4)
Nord[i] −∑J

j=1(m[j] · n[i, j]) ≤ 0. (C5)

An instance can be specified by defining I and J , leading to (I+2)J variables and 5J+
I constraints. For example, there are 168 variables and 72 constraints in TRIMLON12.

A key observation we have made on many application benchmarks, including
TRIMLON12, is that their constraints do not involve variables that are picked ran-
domly from their variable sets. Invariably, many constraints in these benchmarks are
highly structured because they model relationships that have strong spatial or temporal
locality, such as those in physical structures and task scheduling.

Figure 1a illustrates this point by depicting the constraint structure of TRIMLON12.
It shows a dot where a constraint (with a unique ID on the x axis) is related to a variable
(with a unique ID on the y axis). With the order of the variables and the constraints ar-
ranged properly, the figure shows a strong regular structure of the constraints. Figures 1b
and 1c further illustrate the regular constraint structure of two other benchmarks.

 0

 40

 80

 120

 160

 200

 0 10 20 30 40 50 60 70 80

V
ar

ia
bl

e
ID

Constraint ID

 0

 10

 20

 30

 40

-20 0 20 40 60 80 100

V
ar

ia
bl

e
ID

Constraint ID

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

V
ar

ia
bl

e
ID

Constraint ID

a) TRIMLON12 (MINLP) b) POLGAS (MINLP) c) ORTHRGDS (CNLP)

Fig. 1. Regular structures of constraints in some MINLP and CNLP benchmarks. A dot in each
graph represents a variable associated with a constraint.

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 699

Subproblem 2
Subproblem 1

Subproblem 11
Subproblem 12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80

V
ar

ia
bl

e
ID

Constraint ID

Local Constraints

Constraints
Global

Fig. 2. An illustration of the partitioning of the constraints in TRIMLON12 into 12 subproblems

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12

Fr
ac

tio
n

of
 G

lo
ba

l C
on

st
ra

in
ts

Number of Partitions

TRIMLON12
C-Reload

ORTHRGDS
OPTCDEG

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

A
vg

 T
im

e
fo

r
So

lv
in

g
a

Su
bp

ro
bl

em

Number of Partitions

TRIMLON12 (by MINLP_BB)
C-Reload (by MINLP_BB)
ORTHRGDS (by SNOPT)

OPTCDEG (by SNOPT)

a) Monotonic increase in fraction
of global constraints

b) Exponential decrease in average time
for solving a subproblem

Fig. 3. Trade-offs between the number of global constraints to be resolved and the average time
for evaluating a subproblem. As the number of partitions increases, the number of global con-
straints to be satisfied increases, while the average time to solve a subproblem decreases.

Based on the regular constraint structure of a problem instance, we can cluster its
constraints into multiple loosely coupled partitions. To illustrate the idea, consider the
partitioning of the constraints in TRIMLON12 by index j ∈ SJ = {1, · · · , 12}. Sup-
pose SJ is partitioned into N disjoint subsets in such a way that S1 ∪ · · · ∪ SN =
SJ . Then the kth subproblem, k = 1, . . . , N , has variables y[j], m[j], n[j, i], where
i = 1, · · · , I, j ∈ Sk, and a common objective function (OBJ). (C1)-(C4) are its local
constraints because each involves only local indexes on j. (C5), however, is a global
constraint because it involves a summation over all j.

Figure 2 illustrates the decomposition of TRIMLON12 into N = 12 partitions,
where SJ is partitioned evenly and Sk = {k}. Of the 72 constraints, 60 are local and
12 are global. Hence, the fraction of constraints that are global is 16.7%.

The fraction of constraints that are global in a problem instance depends strongly on
its constraint structure and the number of partitions. Using the straightforward scheme
in TRIMLON12 to partition the constraints evenly, Figure 3a illustrates that the fraction
of global constraints either increases monotonically or stays unchanged with respect to
the number of partitions for four benchmarks.

In contrast, the time required to solve a subproblem decreases monotonically as
the number of partitions is increased. When a problem is partitioned by its constraints,

700 B.W. Wah and Y. Chen

P:P:

S
A
∨ S

B
∨ S

C
= S

P

C ′B′A′CBA

S
A′ ∧ S

B′ ∧ S
C′ ∧ S

G
= S

P

G

a) Subspace partitioning b) Constraint partitioning

Fig. 4. An illustration of subspace partitioning and constraint partitioning. Subspace partitioning
decomposes P into a disjunction (∨) of subproblems, where the complexity of each subproblem
is similar to that of P . In contrast, constraint partitioning decomposes P into a conjunction (∧)
of subproblems and a set of global constraints (G) to be resolved, where the complexity of each
subproblem is substantially smaller than that of P .

each subproblem is much more relaxed than the original problem and can be solved in
exponentially less time than the original. Figure 3b illustrates this exponential decrease
of the average time for solving a subproblem with increasing number of partitions. The
overheads between no partitioning and partitioning can be several orders of magnitude.

The partitioning of a problem by its constraints creates a new issue not addressed in
past studies, namely, the resolution of global constraints relating the subproblems.

Traditional methods solve MINLPs by subspace partitioning. This decomposes a
problem by partitioning its variable space into a disjunction (∨) of subspaces and by
exploring each subspace one at a time until the problem is solved (Figure 4a). Although
pruning and ordering strategies can make the search more efficient by not requiring the
search of every subspace, the complexity of searching each subspace is very similar to
that of the original problem. In contrast, constraint partitioning decomposes the con-
straints of a problem into a conjunction (∧) of subproblems that must all be solved in
order to solve the original problem. Each subproblem is typically much more relaxed
than the original and requires significantly less time to solve (Figure 3b). However,
there are global constraints (S

G
in Figure 4b) that may not be satisfied after solving the

subproblems independently. These global constraints include constraints in P that span
across variables in multiple subproblems and new constraints added to maintain the con-
sistency of shared variables across the subproblems. As a result, the subproblems may
need to be solved multiple times in order to resolve any violated global constraints. The
number of times that the subproblems are to be solved depends strongly on the difficulty
in resolving the violated global constraints.

The keys to the success of using constraint partitioning to solve MINLPs and
CNLPs, therefore, depend on the identification of the constraint structure of a prob-
lem instance and the efficient resolution of its violated global constraints. To this end,
we study four related issues in this paper.

a) Automated analysis of the constraint structure of a problem instance and its par-
titioning into subproblems. We present in Section 4.1 the analysis of an instance spec-
ified in some standard form (such as AMPL [5] and GAMS). We show methods for
determining the structure of an instance after possibly reorganizing its variables and its
constraints, and identify the dimension by which the constraints can be partitioned.

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 701

b) Optimality of the partitioning. The optimality relies on trade-offs between the
number of violated global constraints to be resolved (Figures 3a) and the overhead for
evaluating a subproblem (Figure 3b). We present in Section 4.1 a metric for compar-
ing the various partitioning schemes and a simple and effective heuristic method for
selecting the optimal partitioning according to the metric.

c) Resolution of violated global constraints. We present in Section 3 the theory of
extended saddle points (ESP) for resolving violated global constraints. The theory was
originally developed for solving AI planning problems [15] whose constraints are not
necessarily continuous, differentiable, and in closed form. Since continuity and differ-
entiability of the continuous subspace is generally true in CNLPs and MINLPs, they
can be exploited to speed up tremendously the solution of each subproblem.

d) Demonstration of improvements over existing solvers. We demonstrate the suc-
cess of our approach in Section 5 by solving some large-scale CNLP and MINLP bench-
marks that cannot be solved by other leading solvers.

2 Previous Work

In this section, we survey existing penalty methods for solving CNLPs and MINLPs
and partitioning methods for decomposing large problems into subproblems.

Penalty Methods for Constrained Programming. Penalty methods belong to a gen-
eral approach that can solve continuous, discrete, and mixed constrained optimization
problems, with no continuity, differentiability, and convexity requirements. A penalty
function of Pm is a summation of its objective and constraint functions (possibly under
some transformations) weighted by penalties. The goal of a penalty method is to find
suitable penalty values in such a way that the z∗ which minimizes the penalty function
corresponds to a local optimal solution of Pm.

Penalty methods can be classified into global (resp., local) optimal penalty methods
that look for constrained global (resp., local) optimal solutions.

Global optimal penalty methods rely on the one-to-one correspondence between a
constrained global minimum (CGM) of Pm and a global minimum z∗ of the following
penalty function with non-negative (transformed) constraint functions [13]:

Ls(z, c) = f(z) + c ·
[m∑

i=1

(hi(z))ρ +
r∑

i=1

(max(0, gi(z)))ρ

]

, (2)

where ρ is a constant no less than 1, and c is a positive penalty parameter that is larger
than a finite c∗. Here, c∗ can be finite or infinite, depending on the value of ρ, and can
be statically chosen or dynamically adjusted.

Methods based on finding the global minimum of (2) are of limited practical impor-
tance because the search of a global minimum of a nonlinear function is very computa-
tionally expensive. Techniques like simulated annealing are too slow because they only
achieve global optimality with asymptotic convergence.

To avoid expensive global optimization, local optimal penalty methods have been
developed for finding constrained local minima (CLM) instead of CGM. One approach
is the Lagrange-multiplier method developed for solving CNLPs with continuous and
differentiable objective and constraint functions. It relies on the Karush-Kuhn-Tucker

702 B.W. Wah and Y. Chen

(KKT) condition [1], a first-order necessary condition on a CLM that is also a regular
point. Because the condition is expressed as a system of simultaneous equations, its so-
lution leads to unique Lagrange multipliers at a CLM. When the condition is nonlinear
and not solvable in closed form, iterative procedures have been developed. However,
there is no efficient solution procedure for resolving inconsistent assignments when the
nonlinear equations are partitioned into subproblems and solved independently.

Another local optimal penalty method for solving CNLPs is the �1-penalty method
based on the following �1-penalty function [8]:

�1(z, c) = f(z) + c ·max
(

0, |h1(z)|, · · · , |hm(z)|, g1(z), · · · , gq(z)
)

. (3)

Its theory shows that there is a one-to-one correspondence between a CLM and an un-
constrained local minimum of (3) when c is larger than a finite c∗. The method cannot
support the constraint partitioning of Pm for two reasons. First, the theory was derived
under the continuity and differentiability assumptions on constraints similar to those in
the first-order KKT condition. In fact, c∗ can be proved to be the maximum of all La-
grange multipliers of the corresponding Lagrangian formulation. Second, since there is
only one penalty c on the maximum of all constraint violations, it is difficult to partition
(3) by its constraints and to reach a consistent value of c across the subproblems.

Existing Partitioning Methods. Partitioning is popular in existing methods for solving
NLPs. Many MINLP solution methods are based on subspace partitioning and decom-
pose the search space of a problem instance into subproblems. Examples include the
following. a) Generalized Benders decomposition (GBD) [6] decomposes a problem
space into multiple subspaces by fixing the values of its discrete variables, and by using
a master problem to derive bounds and to prune inferior subproblems. b) Outer ap-
proximation (OA) [4] is similar to GBD except that the master problem is formulated
using primal information and outer linearization. c) Generalized cross decomposition
(GCD) [10] iterates between a phase solving the primal and dual subproblems and a
phase solving the master problem. d) Branch-and-reduce methods [14] solve MINLPs
and CNLPs by a branch-and-bound algorithm and exploit factorable programming to
construct relaxed problems. All these methods require the original problem to have spe-
cial decomposable structures and the subproblems to have some special properties, such
as nonempty and compact subspaces with convex objective and constraint functions.

Another class of decomposition methods is separable programming methods based
on duality [1]. By decomposing a large problem into multiple much simpler subprob-
lems, they have similar advantages as our constraint partitioning approach. However,
they are limited in their general applications because they have restricted assumptions,
such as linearity or convexity of functions. In this paper, we study a general constrained
optimization approach with no restricted assumptions on constraint functions. Instead
of using duality, we build our theoretical foundation on a novel penalty formulation
discussed in the next section.

3 Constraint Partitioning by Penalty Formulations

In this section, we summarize our theory of extended saddle points (ESP). Our goal
in solving Pm is to find a constrained local minimum z∗ = (x∗, y∗) with respect to

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 703

Nm(z∗), the mixed neighborhood of z∗. Due to space limitations, we only summarize
some high-level concepts without the precise formalism [15].

Definition 1. A mixed neighborhoodNm(z), z = (x, y), in mixed space R
v × D

w is:

Nm(z) =
{

(x′, y)
∣
∣ x′ ∈ Nc(x)

}

∪
{

(x, y′)
∣
∣ y′ ∈ N (y)

}

, (4)

where Nc(x) = {x′ : ‖x′ − x‖ ≤ ε and ε → 0} is the continuous neighborhood of x,
and the discrete neighborhoodN (y) is a finite user-defined set of points {y′ ∈ D

w}.
Definition 2. Point z∗ is a CLMm, a constrained local minimum of Pm with respect
to points in Nm(z∗), if z∗ is feasible and f(z∗) ≤ f(z) for all feasible z ∈ Nm(z∗).

Definition 3. The penalty function of Pm with penalty vectors α ∈ R
m and β ∈ R

r is:

Lm(z, α, β) = f(z) + αT |h(z)|+ βT max(0, g(z)). (5)

Theorem 1. Necessary and sufficient ESPC on CLMm of Pm [15]. Assuming z∗ ∈
R

v × D
w of Pm satisfies a constraint-qualification condition (not shown due to space

limitations), then z∗ is a CLMm of Pm iff there exist finite α∗ ≥ 0 and β∗ ≥ 0 that
satisfies the following extended saddle-point condition (ESPC):

Lm(z∗, α, β) ≤ Lm(z∗, α∗∗, β∗∗) ≤ Lm(z, α∗∗, β∗∗) (6)

for any α∗∗ > α∗ and β∗∗ > β∗ and for all z ∈ Nm(z∗), α ∈ R
m, and β ∈ R

r.

Note that the condition in (6) is rather loose because it only needs to be satisfied for
any α∗∗ and β∗∗ that are larger than some critical α∗ and β∗. The theorem is important
because it establishes a one-to-one correspondence between a CLMm z∗ of Pm and
an ESP of the corresponding unconstrained penalty function in (5) when penalties are
sufficiently large. Moreover, it leads to a way for finding CLMm. Since an ESP is a
local minimum of (5) (but not the converse), z∗ can be found by increasing gradually
the penalties of violated constraints in (5) and by finding repeatedly local minima of (5)
until a feasible solution to Pm is obtained. This is practical because there exist many
search algorithms for locating the local minima of unconstrained nonlinear functions.

The ESPC in Theorem 1 has two features that distinguish it from the traditional
penalty theory. First, because the ESPC can be satisfied by many possible penalty val-
ues, the search of these penalties can be carried out in a partitioned fashion in which
each subproblem is solved by looking for any penalty values that are larger than α∗ and
β∗. This is not possible if the search were formulated as the solution of a system of
nonlinear equations as in the KKT condition, or as the search of a single penalty term in
the �1-penalty function in (3). Second, the condition is developed for general constraint
functions and does not require continuity and differentiability as in the KKT condition.
Further, it can be implemented by looking for the local minima of a nonlinear penalty
function, and not for the global minima as in the general penalty theory.

Consider Pt, a version of Pm whose constraints can be partitioned into N stages.
Stage t, t = 1, . . . , N , has local state vector z(t) = (z1(t), . . . , zut(t))

T , where z(t)

704 B.W. Wah and Y. Chen

includes all the variables that appear in any of the local constraints in stage t. Note that
since the partitioning is by constraints, z(1), . . . , z(N) may overlap with each other.

(Pt) : min
z

J(z) (7)

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0 (local constraints)

and H(z) = 0, G(z) ≤ 0 (global constraints).

Here, h(t) = (h(t)
1 , . . . , h

(t)
mt)T and g(t) = (g(t)

1 , . . . , g
(t)
rt)T are local-constraint func-

tions in stage t that involve z(t); and H = (H1, . . . , Hp)T and G = (G1, . . . , Gq)T

are global-constraint functions that involve z ∈ X × Y .
Without showing the details [15], we first describe intuitively Nb(z), the mixed

neighborhood of z in Pt. Nb(z) is made up of N neighborhoods, each perturbing z in
one of the stages of Pt, while keeping the overlapped variables consistent across the
other stages. Next, by considering Pt as a MINLP and by defining the corresponding
penalty function, we apply Theorem 1 and derive the ESPC of Pt. Finally, we decom-
pose the ESPC into N necessary conditions, one for each stage, and an overall necessary
condition on the global constraints across the subproblems.

The partitioned condition in stage t can be satisfied by finding the ESPs in that
stage. Because finding an ESP is equivalent to solving a MINLP, we can reformulate
the search in stage t as the solution of the following optimization problem:

(
P

(t)
t

)
: min

z(t)
J(z) + γT |H(z)|+ ηT max(0, G(z)) (8)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0.

The weighted global-constraint violations in the objective of P
(t)
t are important because

they lead to points that minimize such violations. When they are large enough, solving
P

(t)
t will lead to points, if they exist, that satisfy the global constraints.

4 Partitioning and Resolution Strategies

Figure 5 presents CPOPT, a partition-and-resolve procedure for solving Pt. It first parti-
tions the constraints into N subproblems (Line 2 of Figure 5b, discussed in Section 4.1).
With fixed γ and η, it then solves P

(t)
t in stage t using an existing solver (Line 6). To

allow P
(t)
t to be solvable by an existing solver that requires a differentiable objective

function, we transform P
(t)
t into the following equivalent MINLP:

min
z(t)

J(z) + γT a + ηT b (9)

subject to h(t)(z(t)) = 0 and g(t)(z(t)) ≤ 0,

−a ≤ H(z) ≤ a and G(z) ≤ b,

where a and b are non-negative auxiliary vectors. After solving each subproblem, we
increase γ and η on the violated global constraints (Line 7, discussed in Section 4.2).
The process is repeated until a CLMm to Pt is found or when γ and η exceed their
maximum bounds (Line 9, discussed in Section 4.2).

We describe below the partitioning of the constraints and the update of the penalties.

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 705

(
P

(N)
t

)
:

subject to h(N)(z(N)) = 0 and g(N)(z(N)) ≤ 0

minz(N) J(z) + γT |H(z)| + ηT max(0, G(z))(
P

(1)
t

)
:

subject to h(1)(z(1)) = 0 and g(1)(z(1)) ≤ 0

minz(1) J(z) + γT |H(z)| + ηT max(0, G(z))

Lm(z, α, β, γ, η)
�
⏐

γ,η
to find γ∗∗ and η∗∗

a) The partition-and-resolve framework to look for CLMm of Pt

1. procedure CPOPT
2. call automated partition(); // automatically partition the problem //
3. γ ←− γ0; η ←− η0; // initialize penalty values for global constraints//
4. repeat // outer loop //
5. for t = 1 to N // iterate over all N stages to solve P

(t)
t in stage t //

6. apply an existing solver to solve P
(t)
t ;

7. call update penalty(); // update penalties of violated global constraints //
8. end for;
9. until stopping condition is satisfied;
10. end procedure

b) CPOPT: Implementation of the partition-and-resolve framework

Fig. 5. The partition-and-resolve procedure to look for CLMm of Pt

4.1 Strategies for Partitioning Constraints into Subproblems

Our goal in Line 2 of Figure 5b is to partition the constraints in such a way that mini-
mizes the overall search time. Since the enumeration of all possible ways of partition-
ing is computationally prohibitive, we restrict our strategy to only partitioning by index
vectors of problems modeled by the AMPL language [5].

Definition 4. An index vector V in an AMPL model is a finite ordered array of discrete
elements that are used to index variables and constraints.

For example, TRIMLON12 described in Section 1 has two index vectors: I = J =
{1, · · · , 12}. A variable or a constraint function can be indexed by one or more index
vectors: n[i, j], i ∈ I, j ∈ J , is indexed by I and J ; and (C5) is indexed by I alone.

Definition 5. A partitioning index vector (PIV) of an AMPL model is an index vector
in the model that is used for partitioning the constraints.

Definition 6. Constraint partitioning by PIV. Given a PIV of an AMPL model, an N -
partition by the PIV is a collection of subsets of the PIV, S1, · · · , SN , where a) Si ∈
PIV ; b) S1 ∪ · · · ∪ SN = PIV ; and c) Si ∩ Sj = ∅ for i �= j and i, j = 1 . . .N .

The constraints of a problem can be partitioned along one or more index vectors.
With multiple index vectors, the Cartesian-product space of the PIVs is partitioned into
subsets. For instance, we have shown in Section 1 the partitioning of TRIMLON12 by
J into N = 12 subproblems; that is, PIV = {J}, and S1 = {1}, · · · , S12 = {12}. This
allows all the constraints indexed by J (C1 to C4) to be grouped into local constraints,
and those not indexed by J (C5) to be the global constraints.

706 B.W. Wah and Y. Chen

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

R
gl

ob
al

Number of Partitions N

I
L

M
T

(I,T)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

R
gl

ob
al

Number of Partitions N

members
yield

dof
Nsize

(members,yield)

a) C-RELOAD-r-104 b) SPACE-960-r

Fig. 6. Ratio of global constraints when partitioned by different PIVs for two MINLPs

We argue that it is reasonable and effective to partition constraints by their index
vectors. First, indexing is essential in modeling languages like AMPL and GAMS for
representing a complex problem in a compact form. Without it, it will be very cum-
bersome to use a unique name for each variable, especially when there are thousands
of variables and constraints. Second, index vectors in large application problems are
typically associated with physical entities. When constraints are partitioned by their in-
dex vectors, the partitions can be interpreted meaningfully. For example, index vector
J in TRIMLON12 corresponds to the possible cuts of paper rolls, and a subproblem
partitioned by J entails the optimization of the individual paper production in each cut.

Given a MINLP specified in AMPL, we present in the following our approach to
automatically partition the problem by its constraints. We propose a metric to measure
the quality of partitioning, present an algorithm to select the optimal PIV, illustrate the
trade-offs between the number of partitions and the overall complexity, and show an
efficient heuristic for determining the optimal number of partitions.

a) Metric of partition-ability. Since the time to solve a partitioned problem is largely
driven by the overhead in resolving its inconsistent global constraints, we define Rglobal

to be the ratio of the number of global constraints to the number of all constraints. This
metric also needs to account for the shared variables in multiple subproblems that must
be consistent with each other. For simplicity, we assume each shared variable v that
appears in k subproblems to be equivalent to k − 1 global constraints, where the ith

constraint involves the consistency between the ith copy and the i+1st copy. Note that
the metric is heuristic because the exact overhead depends on the difficulty of resolving
the inconsistent global constraints and not on the number of global constraints.

b) Selection of PIV. To select the best PIV that minimizes Rglobal, we observe from
the benchmarks tested that the best PIV for a problem instance is independent of the
number of partitions N . To illustrate this observation, Figure 6 plots the value of Rglobal

for various PIVs as a function of N for two benchmarks. It shows that the best PIV that
minimizes Rglobal is the same for all N . Based on this property, we first fix an arbitrary
value of N in our implementation. As there are usually less than five index vectors in
a model file, we just enumerate all possible combinations of PIVs, compute Rglobal for
each case, and pick the one that minimizes Rglobal.

c) Number of partitions. Based on the best PIV selected, we decide next the number
of partitions. Experimentally, we have observed a convex relationship between N and

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 707

Table 1. Trade-offs between N and the total solution time on the SPACE-960-r MINLP

Number of partitions N 1 15
�

�

�

�

30 60 120 240 480

Time per subproblem >3600 8.4
�

�

�

�

3.3 3.1 2.8 2.7 2.6

Time per iteration >3600 126
�

�

�

�

99 186 336 648 1248

Number of iterations 1 1
�

�

�

�

1 2 2 2 5

Total time to solve problem >3600 126
�

�

�

�

99 372 672 1296 6240

1. procedure optimal number of partitions (PIV)
2. N ←− |PIV |; last time←−∞ ;
3. repeat
4. evaluate a subproblem under N partitions, and record the solution time Tp(N);
5. overall time←− Tp(N) ·N ;
6. if (overall time > last time) then return (2N);
7. last time←− overall time;
8. N ←− N/2 ;
9. end repeat
10. end procedure

Fig. 7. An iterative algorithm to estimate the optimal number of partitions

the total solution time. We illustrate this observation in Table 1 for various values of N
on the SPACE-960-r MINLP from the MacMINLP library [12]. It shows the average
time to solve a subproblem, the total time to solve N subproblems in one iteration,
the number of iterations needed to resolve the inconsistent global constraints, and the
overall time to solve the problem. The best N for this problem is 30.

The convex relationship is intuitively reasonable. When the number of partitions is
small or when there is no partitioning, the global constraints will be few in number and
easy to revolve, but each subproblem is large and expensive to evaluate. On the other
hand, when there are many partitions, each subproblem is small and easy to evaluate,
but there will be many global constraints that are hard to resolve.

The convex relationship allows us to determine an optimal number of partitions that
minimizes the overall solution time. We start with the maximum number of partitions
in the original problem (Line 2 of Figure 7) and evaluate a few subproblems in order
to estimate Tp(N), the average time to solve a subproblem when there are N parti-
tions (Line 4). We also evaluate overall time, the time to solve all the subproblems
once (Line 5). Assuming the number of iterations for resolving the global constraints
to be small, overall time will be related to the time to solve the original problem by a
constant factor. This assumption is generally true for the benchmarks tested when N is
close to the optimal value (as illustrated in Table 1). Next, we reduce N by half (Line
8) and repeat the process. We stop the process when we hit the bottom of the convex
curve and report 2N that leads to the minimum overall time (Line 6).

The algorithm requires Tp(N), which can be estimated accurately based on the ob-
servation that it has little variations when the constraints are partitioned evenly. Table 2
illustrates this observation and shows that the standard deviation of the time to evalu-
ate a subproblem is very small for two values of N . As a result, we only evaluate one
subproblem in each iteration of Figure 7 in order to estimate Tp(N) (Line 4).

708 B.W. Wah and Y. Chen

Table 2. Average and standard deviation of solution time per subproblem for two benchmarks

Problem instance ORTHRGDS SPACE-960-r

Number of partitions N 1000 20 100 10
Avg. time per subproblem (Tp(N)) 1.8 8.5 2.8 9.4

Std. dev. of time per subproblem 0.021 0.31 0.013 0.015

For the SPACE-960-r MINLP in Table 1, we set N to 480, 240, 120, 60, 30, 15. We
stop at N = 15 and report N = 30 when overall time starts to increase. The total time
for solving the six subproblems is only 22.9 seconds, which is small when compared to
the 160.45 seconds required by CPOPT for solving the original problem (see Table 3).

4.2 Strategies for Updating Penalty Values

After solving each subproblem, we use the following formulas to update the penalty
vectors γ and µ of violated global constraints (Line 7 of Figure 5b):

γ ←− γ + ρT |H(z)|, η ←− η + �T max(0, G(z)), (10)

where ρ and � are vectors for controlling the rate of updating γ and η.
We update each element of ρ and � dynamically until the corresponding global con-

straint is satisfied. Vector ρ is initialized to ρ0 and is updated as follows. For each global
constraint Hi, i = 1, · · · , p, we use ci to count the number of consecutive subproblem
evaluations in which Hi is violated since the last update of ρi. After solving a subprob-
lem, we increase ci by 1 if Hi is violated; if ci reaches threshold K , which means that
Hi has not been satisfied in K consecutive subproblem evaluations, we increase ρi by:

ρi ←− ρi · α, where α > 1, (11)

and reset ci to 0. If Hi is satisfied, we reset ρi to ρ0 and ci to 0. In our implementation,
we choose ρ0 = 0.01, K = 3 and, α = 1.25. We update � in the same manner.

The procedure in Figure 5 may generate fixed points of (5) that do not satisfy The-
orem 1. This happens because an ESP is a local minimum of (5) but not the converse.
One way to escape from infeasible fixed points of (5) is to allow periodic decreases of
γ and η (Line 7 of Figure 5b). These decreases “lower” the barrier in the penalty func-
tion and allow local descents in the inner loop to escape from an infeasible region. In
our implementation, we scale down γ and η by multiplying each penalty by a random
value between 0.4 and 0.6 if we cannot decrease the maximum violation of the global
constraints or improve the objective after solving five consecutive subproblems.

Example. Consider the partitioning of TRIMLON12 into 12 subproblems along index
J and the solution of the following P

(t)
t in Stage j:

min
z=(y,m,n)

f(z) +
I∑

i=1

⎛

⎝η[i] ·max

⎛

⎝0, Nord[i]−
J∑

j=1

m[j] · n[i, j]

⎞

⎠

⎞

⎠

subject to: local constraints (C1) - (C4) for Subproblem j, j = 1, · · · , 12,

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 709

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

Su
m

 o
f

pe
na

lty
 v

al
ue

s
in

 η

Iteration

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

Su
m

 o
f

gl
ob

al
 c

on
st

ra
in

t v
io

la
tio

ns

Iteration

a) Sum of penalty values in η b) Sum of global constraint violations (C5)

Fig. 8. Illustration of solving TRIMLON12 by CPOPT

where η is the penalty vector for the global constraints (C5). Using the penalty update
strategy discussed, Figure 8 shows the change on the sum of all penalty values in η
and the sum of the violations on the global constrains as CPOPT is run. The search
terminates in 46 iterations when all the global constraints are resolved.

5 Experimental Results

In this section, we compare the performance of CPOPT to that of other leading solvers.
In CPOPT, if P

(t)
t is a MINLP, CPOPT first generates a good starting point by solving

it as a CNLP using SNOPT [7] without the integrality requirement, before solving it by
MINLP BB [11]. If P

(t)
t is a CNLP, CPOPT applies SNOPT to solve it directly.

We have compared CPOPT to two of the best MINLP solvers, MINLP BB [11] and
BARON [14], on a collection of MINLP benchmarks from the MacMINLP library [12].
MINLP BB implements a branch-and-bound algorithm with a sequential-quadratic-
programming (SQP) solver for solving continuous subproblems, whereas BARON is
a mixed-integer constrained solver implementing the branch-and-reduce algorithm. Of
the 43 benchmarks in MacMINLP, we only show the results on 22 in Table 3. The re-
maining 21 benchmarks are all small problems and can be solved easily by all three
solvers in tens of seconds or less. For these 21 benchmarks, the average solution times
for CPOPT, BARON, and MINLP BB are, respectively 8.40 seconds, 4.59 seconds, and
5.45 seconds. CPOPT is slower in solving these small problems due to its overhead in
partitioning and in resolving the violated global constraints.

Note that although branch-and-bound methods, such as BARON and MINLP BB,
are theoretically complete methods that will converge to global optima, it is difficult to
achieve global optimality in practice. BARON reports the best feasible solution found
during its search until it times out in the 3600-sec time limit. For large problems, the gap
between the lower and upper bounds usually does not vanish before termination, which
implies that the solution found may not be optimal. Similarly, MINLP BB reports the
best solution found before it times out or runs out of memory.

We have also compared CPOPT to two of the best CNLP solvers, Lancelot (a solver
implementing an augmented Lagrangian method) [3] and SNOPT (an SQP solver) [7]
on the CNLPs from the CUTE library [2]. Table 3 summarizes only the results on

710 B.W. Wah and Y. Chen

Table 3. Results on solving MINLP benchmarks from the MacMINLP library [12] and CNLP
benchmarks from the CUTE library [2]. Results on MINLP BB and BARON were obtained
by submitting jobs to the NEOS server (http://www-neos.mcs.anl.gov/neos/) and BARON’s site
(http://archimedes.scs.uiuc.edu/baron/baron.html), respectively; results of other solvers were col-
lected on an AMD Athlon MP2800 PC running RH Linux AS4 and a time limit of 3,600 sec. All
timing results are in sec and should be compared only within a solver. For each instance, nc and
nv represent, respectively, the number of constraints and the number of variables. Solutions with
the best quality are boxed. “−” means that no feasible solutions were found in the time limit.

ID nc nv Quality Time Quality Time Quality Time

MINLP Test Problem MINLP BB BARON CPOPT(MINLP BB)

C-RELOAD-q-49 1430 3733 − − −
�

�

�

�

-1.13 69.45

C-RELOAD-q-104 3338 13936 − − − −
�

�

�

�

-1.14 353.74

Ex12.6.3 57 92
�

�

�

�

19.6 23
�

�

�

�

19.6 423.1
�

�

�

�

19.6 13.43

Ex12.6.4 57 88
�

�

�

�

8.6 70
�

�

�

�

8.6 478.2
�

�

�

�

8.6 2.94

Ex12.6.5 76 130 15.1 4
�

�

�

�

10.3 845.5 10.6 3.33

Ex12.6.6 97 180
�

�

�

�

16.3 18
�

�

�

�

16.3 937.4
�

�

�

�

16.3 149.40

PUMP 34 24 − − 131124 977
�

�

�

�

130788 84.53

SPACE-960-i 6497 5537 − − − −
�

�

�

�

7.65E6 187.43

SPACE-960-ir 3617 2657 − − − −
�

�

�

�

7.64E6 145.76

SPACE-960 8417 15137 − − − −
�

�

�

�

7.84E6 1206.43

SPACE-960-r 5537 12257 − − − −
�

�

�

�

5.13E6 160.45

STOCKCYCLE 97 480 − − 436341 n/a
�

�

�

�

119948.7 6.45

TRIMLON4 24 24 12.2 10
�

�

�

�

8.3 11.0
�

�

�

�

8.3 2.73

TRIMLON5 30 35 12.5 14
�

�

�

�

10.3 55.3
�

�

�

�

10.3 24.5

TRIMLON6 36 48 18.8 19
�

�

�

�

15.6 1092.9
�

�

�

�

15.6 15.94

TRIMLON7 42 63 − −
�

�

�

�

17.5 990.7 18.1 65.34

TRIMLON12 72 168 − − − −
�

�

�

�

95.5 345.50

TRIMLOSS4 64 105 10.8 99 − −
�

�

�

�

10.6 9.76

TRIMLOSS5 90 161 12.6 190 − −
�

�

�

�

10.7 76.85

TRIMLOSS6 120 215 − − − −
�

�

�

�

22.1 69.03

TRIMLOSS7 154 345 − − − −
�

�

�

�

26.7 59.32

TRIMLOSS12 384 800 − − − −
�

�

�

�

138.8 323.94

CNLP Test Problem Lancelot SNOPT CPOPT(SNOPT)

CATENARY 166 501 - - - -
�

�

�

�

-1.35E5 245.64

DTOC6 5000 10001 - - - -
�

�

�

�

1.02E6 58.05

EIGMAXB 101 101
�

�

�

�

0.91 1.34 - - 1.87 24.33

GILBERT 1000 1000 2459.46 1.12 4700.61 689.18
�

�

�

�

2454.67 39.55

HADAMARD 256 129 - - - -
�

�

�

�

0.99 7.88

KISSING 903 127 0.84 123.43 - -
�

�

�

�

0.77 73.45

OPTCDEG 4000 6001 - -
�

�

�

�

45.76 10.23 46.98 19.65

ORTHREGC 5000 10005 - - 3469.05 557.98
�

�

�

�

2614.34 143.65

ORTHREGD 5000 10003 - - 8729.64 208.27
�

�

�

�

7932.92 123.49

ORTHRGDM 5000 10003
�

�

�

�

1513.80 4.56 10167.82 250.00 2340.34 20.34

ORTHRGDS 5000 10003 912.41 4.20 - -
�

�

�

�

894.65 105.34

VANDERM1 199 100 - - - -
�

�

�

�

0.0 45.34

VANDERM3 199 100 - - - -
�

�

�

�

0.0 36.70

VANDERM4 199 100 - - - -
�

�

�

�

0.0 52.33

Solving Large-Scale Nonlinear Programming Problems by Constraint Partitioning 711

the 14 CUTE benchmarks that either Lancelot or SNOPT has difficulty with. For the
remaining CUTE benchmarks that are easy to solve, the average solution times for
Lancelot, SNOPT, and CPOPT are, respectively, 23.43 seconds, 13.04 seconds, and
19.34 seconds. For the same reason as before, CPOPT is slower in solving those small
problems due to its additional overhead. The results show that, for those difficult-to-
solve CUTE benchmarks, CPOPT can find the best solution, that it is one to two orders
of magnitude faster, and that it scales well.

References

1. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts, 1999.
2. I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint. CUTE: Constrained and unconstrained

testing environment. ACM Trans. on Mathematical Software, 21(1):123–160, 1995.
3. A. R. Conn, N. Gould, and Ph. L. Toint. Numerical experiments with the LANCELOT

package (Release A) for large-scale nonlinear optimization. Mathematical Programming,
73:73–110, 1996.

4. M. A. Duran and I. E. Grossmann. An outer approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:306–307, 1986.

5. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks Cole Publishing Company, 2002.

6. A. M. Geoffrion. Generalized Benders decomposition. J. Optim. Theory and Appl.,
10(4):237–241, 1972.

7. P. E. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scale con-
strained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

8. N. I. M. Gould, D. Orban, and Ph. L. Toint. An interior-point �1-penalty method for non-
linear optimization. Technical report, RAL-TR-2003-022, Rutherford Appleton Laboratory
Chilton, Oxfordshire, UK, 2003.

9. I. Harjunkoski, T. Westerlund, R. Pörn, and H. Skrifvars. Different transformations for solv-
ing non–convex trim loss problems by MINLP. European Journal of Operations Research,
105:594–603, 1998.

10. K. Holmberg. On the convergence of the cross decomposition. Mathematical Programming,
47:269–316, 1990.

11. S. Leyffer. Mixed integer nonlinear programming solver. http://www-unix.mcs.anl.gov/
˜leyffer/solvers.html, 2002.

12. S. Leyffer. MacMINLP: AMPL collection of MINLP problems. http://www-unix.mcs.anl.
gov/˜leyffer/MacMINLP/, 2003.

13. R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.
14. N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal

of Global Optimization, 8(2):201–205, 1996.
15. B. Wah and Y. X. Chen. Fast temporal planning using the theory of extended saddle points

for mixed nonlinear optimization. Artificial Intelligence, (accepted for publication) 2005.

	Introduction
	Previous Work
	Constraint Partitioning by Penalty Formulations
	Partitioning and Resolution Strategies
	Strategies for Partitioning Constraints into Subproblems
	Strategies for Updating Penalty Values

	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

