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Abstract

In this paper, we study strategies in incremental plan-
;{ning for ordering and grouping subproblems partitioned
by the subgoals of a planning problem when each sub-
iproblem is solved by a basic planner. To generate a rich
-set of partial orders for ordering subproblems, we pro-
.pose a new ordering algorithm based on a relaxed plan
‘built from the initial state to the goal state. The new
algorithm considers both the initial and the goal states
and can effectively order subgoals in such a way that
greatly reduces the number of invalidations during in-
cremental planning. We have also considered trade-offs
between the granularity of the subgoal sets and the com-
plexity of solving the overall planning problem. We show
an optimal region of grain size that minimizes the total
complexity of incremental planning. We propose an ef-
ficient strategy to dynamically adjust the grain size in
partitioning in order to operate in this optimal region.
We further evaluate a redundant-execution scheme that
uses two different subgoal orders in order to improve the
quality of the plans generated without greatly sacrificing
run-time efficiency. Experimental results on using three
basic planners (Metric-FF, YAHSF, and LPG-TD-speed)
show that our strategies are general for improving the
time and quality of each of these planners across vari-
ous benchmarks.

1 Introduction

In this paper, we study new strategies in incremen-
tal planning for solving planning problems. Incremental
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Figure 1. Anillustration of incremental planning that

decomposes P with subgoal sets Gy, Gz, Gs into sub-
problems P, Pz, P3. Each dot is a subgoal factin G.

planning {8] solves a planning problem in a multi-step
fashion by achieving in each step (or stage) all the facts
{subgoal facts of the final goal or some other facts) con-
sidered in this and the previous steps. As is illustrated in
Figure 1, the planner tries to satisfy all the goal facts up
to the current step in each step of the process.

The framework studied in this paper is for the
STRIPS domains but can be extended to domains with
durative actions. In a STRIPS domain, a planning prob-
lem P = (F,0,Z,G) is a taple with four components,
where F is a finite set of all the facts, and O is a finite
set of all the actions. State § = {f1,- -+ , fn_ } is a sub-
set of facts in F that are true; T is the set of facts in the
initial state; and G is a set of subgoal facts to be made
true in the goal state. The planning task of P is to find a
sequence of actions (o1, - - - , 0y, ) that transform the state
from Z to a goal state where all the facts in G are true.

Incremental planning entails the decomposition of
G into N disjoint subgoal sets, Gy, -+, Gy, where
G = |J._, Gi, and the solution of the sequence of NV
subproblems 71, .-+, Py. Here, P; aims to generate
a plan (0,,, -+ ,0,, ) from state S;_; of achieving
G1,...,G;_1 tostate S5; of achieving Gy, ..., G;:

Incremental planning has been studied for many
years in Al It has been applied in planning under uncer-
tainties in which a planner reacts to new uncertain events
by planning incrementally. Tt has been used in dynamic



domains in which a planner outputs valid prefixes of a fi-
nal plan before it finishes planning. Recently, it has been
used to decompose large planning tasks into smaller sub-
problems in such a way that a subset of them can be
solved more efficiently than the original problem [8]. It
is different from subgoal partitioning in SGPlan, [3] we
have developed. In SGPlan,, each subproblem that rep-
resents a subgoal is solved individually, and inconsis-
tent global constraints across the subgoals are resolved
at the end. Since global constraints only exist as bi-
ases in each subproblem and may not be satisfied after
solving the subproblems, the subproblems will have to
be re-evaluated. In contrast, incremental planning will
not incur violated global constraints because all previ-
ous subgoals have to be satisfied in solving a subprob-
lem. However, backiracking to a different order of sub-
goal evaluations may be needed when a feasible plan to
a subproblem is not found.

Although some intractable planning problems can be
solved efficiently by incremental planning, the approach
does not always work well in a naive mode that ran-
domly orders the subgoals. To make the technique ef-
fective, we study in this paper two important issues.

a) Subgoal ordering. The ordering of subgoals may

have great impact on both the search efficiency and the
solution quality. In the ideal case, solving P; would only
require finding actions from 5;_; to achieve G;, with-
out invalidating facts found previously for &y, ..., Gi-1.
For example, it would be desirable to order G; and G5 in
Figure 1 in such a way that, when solving Ps(Gy, Ga).
the subgoal facts found by solving P1(G1) do not have
to be invalidated. Thus, we do not need extra actions and
search time to re-achieve P1(G1).
A well-known approach for ordering subgoals in in-
cremental planning is reasonable ordering {8]. Although
it tries to avoid some unnecessary invalidations of previ-
ous subgoals, it does not work well on many IPC4 [4]
benchmarks because it deduces partial orders among
subgoals by considering only the goal state. Without
taking the initial state into consideration, it can generate
partial orders that are invariant to any initial state.

In this paper, we propose a new ordering algorithm
based on a relaxed plan built from the initial state to the
goal state. The new ordering relations consider both the
initial and the goal states and can effectively order sub-
goals in such a way that greatly reduces the number of
invalidations during incremental planning.

b) Subgoal grouping. Another aspect that may im-
pact search efficiency is the grouping of subgoals in in-
cremental planning. Current planning approaches fall
into two extremes. Many planners simply group all sub-
goals into a single problem and resolve them simulta-
neously. In contrast, traditional incremental planning
schemes add only one subgoal from G in each step. Al-
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though both are natural choices, they do not always lead
to the minimum time or the best quality in planning.

In this paper, we study a general strategy that groups
multiple subgoals together in each step. Based on trade-
offs -between the size of subgoal groups and the com-
plexity of each subproblem, we show that there is an
optimal group size that minimizes the time for solving
the overall problem. We propose an efficient strategy to
dynamically adjust the size of subgoal groups in order to
operate in this optimal region. To improve plan quality
without sacrificing planning time, we introduce a strat-
egy that evaluates two subgoal orders together.

Based on the subgoal ordering and the granularity-
control strategies developed, we present a general incre-
mental planning framework that can be integrated with
existing STRIPS planners to enhance their performance.
Our extensive experimental results on benchmarks show
that incremental planning is a general approach that can
improve the performance of different planners across
multiple domains without sacrificing solution quality,

2 Subgoal Ordering

The order of resolving subgoals can have significant
effects on the performance of incremental planning. An
ideal order is one in which each subgoal does not inval-
idate any previous subgoals achieved already. That is,
if fact f in P; has been achieved (i.e., f € G;), then f
should stay true in all subsequent states.

If each subgoal does not invalidate any previous sub-
goal during planning, then incremental planning effec-
tively decomposes a planning task into a sequence of
subproblems, each resolving a small number of addi-
tional subgoals. On the other hand, if many subgoals
are invalidated after being made true, then incremental
planning becomes less useful, because the previous ef-
forts to achieve ceértain subgoals will be wasted when
their subgoals are invalidated.

2.1 Previous Reasonable-Ordering Algorithm

The goal of the algorithm is to detect partial orders
between some pairs of subgoals g; and g; and to deter-
mine if a plan must invalidate g; before reaching g;. If
any plan that reaches g; must invalidate g; first, then g,
should be ordered after g; because it wiil be invatidated
anyway if it is resolved before g;.

A heuristic procedure in FF [8] to incompletely detect
some of the reasonable orders consists of two steps:

a) For each subgoal fact g, it generates a FALSE set
F(g) that includes some facts to be invalidated before
reaching ¢. This is found by enumerating all actions
supporting ¢ as an add effect and by finding the commen
delete effects of all supporting actions.



1. procedure Relaxed-Plan-Ordering (7 = (7, 0,7,G))
construct planning graph & from I to G without
computing mutual exclusions;
3 extract a relaxed plan from G;
4, for each pair of subgoals g; and g;
5. set PREC +— true,
6
7
8

b2

for each action o in P that has g; as an add effect
if (g: ¢ del(0)) and (pre(o) N F(g:) == @)
. then PREC +— false;
9. end_for

10. if PREC == true

11. then order g; before g;;

12, else if g; is reached before g; in the relaxed plan
13. then order g; before g:;

14, else order g; before g;;

15.  end_for

16. end_procedure

Figure 2. The relaxed-plan ordering algorithm that
uses a planning problem P with m subgoals G =
(g1,- -, gm) as input and that outputs an ordered se-
quence of subgoals.

b) For each pair g; and g;, it checks all supporting ac-
tions for g;. If any supporting action of g; either deletes
g or requires some facts in F'(g;) as preconditions, then
g is ordered before g;.

A deficiency of reasonable ordering is that it only an-
alyzes interactions of the subgoal facts in ¢ but does not
consider the initial state Z. Therefore, it can generate
invariant ordering relations that hold true for any initial
state, which are rare in practice. For instance, our tests
on all the [PC4 domains show that reasonable ordering
can find some partial orders in 42 out of 50 instances
in the Airport domain, 42 out of 100 instances in the
Pipesworld domain, and none in the other five domains
(Satellite, Promela, UMTS, Settlers, and PSR).

2.2 Proposed Relaxed-Plan Ordering

Figure 2 shows our proposed relaxed-plan ordering
algorithm that takes both Z and § into consideration in
generating partial orders. It consists of three steps:

a) Line 2: Build a planning graph G [2] from initial
state T until a fixed point is reached. Starting from a fact
level with ali facts in Z, ¢ alternates between a level of
all possibly achievable actions and a level of all possibly
achievable facts. It will level off at a certain fixed-point
level where no more new actions or facts can be added.
In contrast to planning graphs in Graphplan, we do not
compute mutual exclusions in this step.

b) Line 3: Based on G, extract a relaxed plan from
7 to G by ignoring delete effects. This is the standard
backward chaining in FF’s relaxed-plan heuristic [6].

c¢) Lines 4-15: Determine a proper order between
each pair of subgoals g; and g; by examining all actions
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in G that makes g; true. If any of these actions either
deletes g; or needs a fact in the FALSE set F(g;) as a
precondition, then g; is ordered before g;; otherwise, g;
and g; are in the same order as they appear in the relaxed
plan. If a cycie occurs in the order, then the subgoals in-
volved must be at the same level of the relaxed planning
graph. In that case, we will use the original sequence
specified in the problem file to order those subgoals.

An important property of relaxed-plan ordering is
that it is strictly stronger than reasonable ordering in the
sense that all partial orders detected by reasonable or-
dering are also detected by relaxed-plan ordering but not
vice versa. This is true because in reasonable ordering,
g; 1s ordered before g; only when all actions supporting
g; invalidate g;, whereas in relaxed-plan ordering, g; is
ordered before g; when all actions in planning graph G
supporting g; invalidate g;. In other words, relaxed-plan
ordering can detect more partial orders than reasonable
ordering because it uses a subset of all supporting ac-
tions for g; in G when deriving the ordering relations.

Note that our algorithm can use the relaxed plans con-
structed already in each search step in the three planners
studied in this paper. It does not have additional memory
requirements and incurs little overhead for ordering,

2.3 A Comparison of The Ordering Schemes

To compare the three schemes for ordering subgoals:
original ordering provided by the planning model, rea-
sonable ordering, and proposed relaxed-plan ordering,
we measure their quality using N**¥, the total number
of invalidations in incremental planning. Given m sub-
goals g1, -+ , gm, N is defined as:

N‘i‘n‘u — N}Inv + Ngnv 4. +N:;:w’

where N/™ is the number of times g; is invalidated. To
compute N/, suppose g; first appears in the k" sub-
problem (g; € Gi). We have:

N
N:ﬂu = Z Inv(g‘i!j)s
F=k+1
where Inv(g;, j) is 1 if g; is invalidated in the subplan
for P; and is O otherwise.

We have evaluated the three ordering schemes for two
of the IPC4 domains: Afrport and Pipesworld. These
are domains where a lot of invalidations can occur under
random ordering. The other five IPC4 domains are rel-
atively easy in the sense that there are few invalidations
under the original or random ordering.

Figure 3 compares N*** on the various instances of
the Airport and Pipesworld domains with respect to the
three ordering schemes when Metric-FF [5] is used as
the embedded planner. Figure 3a show that relaxed-plan
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Figure 3. A comparison of original ordering, rea-
sonable ordering, and relaxed-plan ordering in terms of
the number of invalidations N*"* on two [PC4 domains
when using Metric-FF as the embedded planner.

ordering is consistently better (has smaller N**¥) than
reasonable ordering in 20 instances of the Airport do-
main (the values in the first ten instances are too small
to be compared) and is better than original ordering in all
but instances 18 and 20. The results in Figure 3b show
that relaxed-plan ordering is better than original order-
ing and reasonable ordering in all the 20 instances of the
Pipesworld domain except instance 3 and 12.

Note that the difference in the number of invalida-
tions in Figure 3 among the three schemes may be seem-
ingly small. However, the search overhead actually
grows exponentially with respect to the number of inval-
idations. This happens because once an earlier subgoal
is invalidated, the final state of the invalidated subgoal
is also invalidated, and all subsequent subgoals based on
that state must be reevaluated.

2.4 Dynamic Reordering

Although relaxed-plan ordering can detect more par-
tial orders than reasonable ordering, the search may still
get stuck in incremental planning. This happens when
the embedded planner takes too long to find a feasible
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plan from the final state in one stage to the next stage
with a new group of subgoals. For instance, assume that
state 57 has been reached in solving P (G1) in Figure 1
and that G5 is ordered before G3. It is possible that the
embedded planner fails to find a feasible plan in the time
allowed for solving Py(G1, G2) but may find a feasible
plan easily when solving Pa(G;, Ga).

An effective way to alleviate the above problem is to
re-order the subgoals and try to achieve those easy-to-
reach subgoals first. For example, if an airplane at A
needs to visit B and C and there isa path A — B —
C, then it is more efficient to get to B before reaching
C than to get to C before reaching B. This ordering
may not be detected in the initial relaxed-plan ordering
because the airplane may be at point D) initially and is
closer to C than B, Therefore, relaxed-plan ordering
will order C before B. But as planning progresses, the
current state changes and the airplane may be moved to
A, where B is closer than C. At this point, re-ordering
B before C' will allow the airplane to move to B first.

To this end, we propose to dynamically re-order un-
satisfied subgoals, based on a heuristic estimate of the
distance from the current state to each subgoal. We set
a threshold of planning time for each subproblem and
invoke dynamic re-ordering when the threshold is ex-
ceeded. At that time, we use FF's relaxed-plan heuristic
to estimate the distance from the current state to each
of the unsatisfied subgoals, and order the subgoals in an
ascending order of their estimated distances.

In practice, the above strategy can effectively avoid
getting a search stuck at some difficult subgoals with a
large heuristic distance from the current state, For ex-
ample, in the previous airpiane example, if the airplane
is at A and there is a path A — B — C, the relaxed-
plan heuristic will indicate that the subgoal of visiting
B has a shorter distance from A than that of visiting C.
Therefore, using dynamic re-ordering, the airplane will
try to get to B first before reaching C.

3 Granularity in Incremental Planning

After determining the ordering of subgoals, we
need to partition them into N disjoint subgoal sets:
Gi, - ,Gn, where G = |J;_, Gi. The subgoal sets
will be used in incremental planning in which P;,1 =
1,..., N, will generate a plan to achieve G, ..., G;.

The efficiency of incremental planning depends on
the granularity of the subgoal sets chosen. There is a
trade-off between this granularity and the complexity
of solving the overall problem by incremental planning.
One can estimate the total planning time by the sum of
the planning times for solving each subgoal individually.
If the grain size is too small, then each subproblem will
be easy to solve, but there will be many subproblems to



be evaluated and the complexity of incremental planning
will be high. In contrast, if the grain size is large, then
there will be only a few subproblems to be evaluated,
but each subproblem will be very expensive to solve. It
is clear that there is an optimal grain size that minimizes
the total time of incremental planning.

- Table 1 illustrates the trade-offs between grain size
(|G|, number of subgoals in one stage) and the total
planning time in incremental planning (T3o:0:) for solv-
ing the Satellite-15 instance in IPC4. Note that Tioz0s is
not equal to the product of the number of subproblems
{N) and the average time for solving one subproblem
(T%). The reason is that T is only the time for solving
each partition of subgoals, without considering any pre-
viously achieved subgoals. The results show that neither
the smallest nor the largest grain size leads to the op-
timal total time. In this example, the best total time is
obtained by a grain size of 2 and 12 subproblems.

We have designed experimentally a strategy to dy-
namically determine the granularity in incremental plan-
ning. Given a planning problem P with subgoal set G,
we first partition the subgoals into ten subsets, where
each subset has % subgoals. For example, in the
Satellite-15 instance illustrated, the initial grain size is
-% = 2.4 subgoals. We then test if the number of states
evaluated in solving the first subproblem is less than a
threshold (4 in our experiments), and double the grain
size (number of subgoals in each subset) if the number
of states evaluated is less than the threshold. We perform
this iterative doubling until the threshold is exceeded.

In the algorithm above, we have used multiplicative
instead of additive increases in determining a proper
grain size. Multiplicative increases allow us to estimate
a coarse grain size quickly. This is preferable because
the number of subgoals is relatively small in most do-
mains, and the effectiveness of granularity control de-
pends on how fast one find a good grain size. For the
same reason, the improvement due to dynamic decreases
of the grain size will be small when the number of sub-
goals is not sufficiently large,

4 Experimental Results

In this section, we describe our results on comparing
the various ordering and granularity-control strategies
using three basic planners: Metric-FF [5], YAHSP 1.1
(http:fwww.cril univ-artois fr/ ™~ vidal/Yahsp), and LPG-
TD-speed 1.0 (hitp://zeus.ing.unibs.it/lpg/registerlpg-
td.html). We have chosen YAHSP and LPG-TD-speed
because they are top planners in IPC4 and their binary
cades are available for integration as basic planners in
incremental planning. (YAHSP won the second prize
in the Suboptimal Propositional Track, whereas LPG-
TD won the second prize in the Suboptimal Temporal
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Table 1. Trade-offs between grain size |G;! and the to-
tal time Ty,¢q; to solve the Satellite-15 instance with 24
subgoals using incremental planning. Also shown are
the number of subproblems N and the average time to
solve a subproblem T,. The optimal grain size is to have
2 subgoals in each subproblem and 12 subproblems.

LNV T 1 2 374 6 12 24
IGil [f24 12 8 6 4 2 1
T, |66 22 14 11 003 0002 0.002
Tiotar { 6.6 43 42 43 02 002 006

Metric Track.)  We did not use Downward, another
leading IPC4 planner, because it is not available for
testing. Because YAHSP and LPG-TD-speed are only
available in binary form, they will incur additional over-
heads in parsing instance files each time they are called.
Since this overhead should be incurred once initially, we
discount the overhead of parsing instance files muitiple
times in our experiments.

We have also compared our planner with SGPlan,
{(http:/fmanip.crhc.uinc.edu/programs/SGPlan) [3]. The
planner won the first prize in the Suboptimal Tempo-
ral Metric Track and the second prize in the Subopti-
mal Propositional Track in IPC4. It cannot be used as a
basic planner because it already performs subgoal parti-
tioning and employs Metric-FF as a basic planner. As is
discussed earlier, SGPlan, employs a different partition-
and-resolve approach.

Table 2 summarizes the results of the various com-
binations of basic solvers, grain sizes, and subgoal or-
dering schemes on the [PC4 AIRPORT-34 instance [4].
This instance involves the planning of eight planes to
take off while three are going to their parking positions.
We have evaluated the three original planners without
partitioning and with default parameters, and our incre-
mental planner under reasonable ordering, original or-
dering, random ordering, proposed relaxed-plan order-
ing, and a hypothetical optimal ordering. The optimal
order serves as an {impractical) upper bound on perfor-
mance and was determined by examining the order in
which subgoals were satisfied after the solution plan has
been generated. Note that dynamic granularity cannot be
applied in LPG-TD-speed because the number of states
evaluated is not available. Also, dynamic granularity is
not applicable in Metric-FF for this instance because the
nurnber of states evaluated in solving the subproblem in
the first stage is larger than the threshold of four.

The results show that AIRPORT-34 cannot be solved
by the original Metric-FF and YAHSP planners bui can
be solved by LPG-TD-speed and SGPlan,. They also
show that incremental planning can solve the instance
much faster than the original planners.

Table 3 compares the performance of our incremen-
tal implementation with that of the corresponding ba-



Table 2. An evaluation of the various combinations of
solvers, grain sizes, and subgoal ordering schemes on
the AIRPORT-34 instance.

Table 3. Quality-time comparisons of the inoremental
version of three planners and the non-incremental ver-
sion. The table also compares the performance of the

difficult for incremental planning. In Freecell, there is
a strong inter-dependency or interference among sub-
goals, whereas instances in Logistics have a number of
positive goal interactions. Last, Depots is indeed a com-
bination of Logistics and the well-known Blocksworld.

The results show that incremental planning can gen-
erally solve more instances and use less times than the
original planners. We have also found that Metric-
FE-inc performs better in terms of planning time than
SGPlan, on a majority of the instances. SGPlan, is
better in several domains because it not only partitions
a problem by its subgoals but also performs landmark
analysis and symmetry-group detection {3] to further de-
compose a problem into smaller subproblems.
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[ [Strategy [ Time States Actions N™"| incremental version of Metric-FF and SGPlan, that uses
no partitioning - - — - - Metric-FF as its basic solver.
E reasonable-order — — - = Domain [F; Fq Fy Fu Fut Fug Fi F2 Fu.
& |optimal-order(1) 9.18 540 427 0 Comparisons Between Metric-FF-inc and Metric-FF
% random-order{1)} - — — — airport 0.66 0.02 0.04 0.00'_0.00 0.00 028 0.00 0.00
% |origivalorder(h ) = -~ D 1076 032 o4 00 000 000 044 002 020
pw-tankage | 0. . . . . . 44 0. N
proposed(1) 923 540 47 O optical 0.71 0.00 0.00 0.00 0.00 0.00 0.00 000 029
no partiioning - - - - philosophers |0.41 0,00 0.00 0.00 0.00 0.00 0.00 0.00 059
reasonable-order || — - = - pstsmall 0,56 0.08 0.14 0.00 0.00 002 0.04 0.12 0.04
5 |optimal-order{1} || 0.23 41 443 0 satellite 0.39 0.00 0.42 0.00 0,00 0.06 0.06 0.00 0.08
g optimal-order(d) || 0.22 30 443 0 freecell 0.30 0.15 0.35 020 0.00 0.00 000 000 0.00
Z |random-order() || —  — . depots 020 0.00 0.70 0.00 0.00 0.00 0.10 0.00 0.00
& |rmndom-order@y | — - _ _ logistics | 0.00 0,00 100 000 0.00 000 0.00 0.00 0.00
T | original-order(1) _ _ ~ _ Comparisons Between Yahsp-ine and Yahsp
g ,g_ airport 0.60 0.06 0.04 0.00 000 000 0.26 000 002
original-order(d)y -~ — - - pipesworld [0.10 0.46 0.04 032 0.00 0.04 0.00 0.00 0.00
proposed(1) 022 41 443 0 pw-tankage |0.18 0.18 0.28 022 0.00 0.00 0.08 0.02 0.04
proposed(d) 020 30 43 0 optical 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
= |no partitioning 58.49 nfa 427 0 philosophers [ 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
] sr-smiall 038 0.00 0.22 0.02 0.00 024 0.00 0.00 0.00
S [reasonable-order |[292.06 wa 493 3 p3r-sma
% :) timal-order(1) || 4.56 a 427 0 satellite 0.83 0.00 0,08 0.00 0.00 006 0.00 0.03 0.00
] P : freecell 0.00 0.60 0.00 0.15 0.00 0.00 0.05 020 0.00
£ {random-order(l) | — - - - depots 030 030 0.15 0.00 0.00 000 005 0.15 0.05
& |original-order(1) || — - - - fogistics 0.02 0.00 0.89 0.00 000 0.10 0.00 0.00 0.00
~ | proposed(1) 468 nfa 427 0 Comparisons Between LPG-TD-speed-inc and LPG-TD-speed
SG|partition+resolve || 96.75  n/a 427 0 airport 070 0.00 0.12° 0.08 0.00 0.00 0.10 0.00 0.00
Keys pipesworld |0.24 0.10 0.14 0.34 000 002 0.10 0.02 0.04
- Sirategy failed to solve instance in one hour of CPU time pw-tankage |0.16 0.04 0.10 0.20 0.00 0.02 022 0.06 0.20
o an AMD MP2000 systemn running Linux AS3 optical 1.00 0,00 0.00 0.00 0.00 000 0.00 0.00 0.00
States Number of states evaluated (not provided in LPG) ph:iosorirers g;é g?g g?g ggg ggg ggg ggg ggg ggg
Actions Length of the selution plan psr-sma : - : : . - : - .
N ot munber ofsubgof, avalidations satellite.  [0.06 003 0.36 0.36 0.00 0.03 0.00 0.08 0.03
1 Argument of strategy with one subgoal in each subproblem freecell 005 000 0.20 0.00 0.00 000 0.00 0.70 0.05
d Argument of strategy with dynamically adjusted grain size depots 0.15 0.05 0.35 0.40 0.00 005 0.00 0.00 0.00
logistics 0.00 0.00 0.77 0.21 0.00 6.02 000 0.00 0.00
sic planner, using a quality measure of the number of Comparisons Between Metric-F inc and SGFan
siep » USING & quality T . airport 0772 0.00 0.16 0.00 0.00 0.00 0.12 0.00 0.00
actions and a CPU time limit of 30 minutes. It also pipesworld 1040 0.24 0.02 0.08 000 008 000 0.18 0.00
compares the performance of the incremental version of pw-tankage [0.22 0.24 0.00 0.06 0.00 0.02 022 0.10 C.12
Metric-FF with that of SGPlan,. To evaluate our pro- UEfical . g-gg g-gg g-gg g-gg (1)-2? g-gg g-gg g-gg g'gg
- philosophers f . . B . N . . .|
posed framework, we testgd all IPC4 STRIPS domal.ns. psrsmall | |0.58 0.00 0.14 000 0.00 002 002 0.12 0.04
We also conducted experiments on two JPC3 domains satellite 0.31 003 0.17 0.25 0.00 003 0.00 0.06 0.08
(Depots and Freecell) {7] and one IPC2 domain (Lo- freecell 0.10 0.10 035 0.35 000 0.05 0.00 0.00 0.00
istics) [1]. The latter three domains are considered depots 0.I5 0.05 0.65 0.05 000 0.10 0.00 0.00 0.00
& ) 11 m d logistics 000 0.00 1.00 .00 0.00 0.00 0.00 000 0.00

Keys: (t;, ¢i) = {time, quality) by the incremental method (INC)
(smaller values are better for both time and quality)
(tn. gn) = (time, quality} by non-inc. method (NON-INC)
F;: Fraction thai t; < tn and ¢; < gn
Fg: Fraction that t; > tn and g < gn
Fy: Fraction that &; < tn and g; > ¢n
F,;' Praction that £; > tn and g; > gn
F;e: Fraction that ¢; > £n and g; = gn
Flg: Fraction that £; = tn and g > gn
F1: Fraction solved by INC but not by NON-INC
I Fraction solved by NON-INC but not by INC
Fly: Fraction unsoived by both INC and NON-INC

Although incremental planning can be ten times
faster than the original planner, it is likely to lead to
longer plans. These quality degradations exist in a pum-



ber of domains, such as Pipesworld, Satellite, Freecell,
Depots and Logistics, and are illustrated in in Figures 4.
The figure plots the trade-offs between time and quality,
where the performance measures have been normalized
with respect to those of the non-incremental version.

The ordering of subgoals is crucial in incremental
planning for generating shorter plans. In the original
version of our incremental planners, we have imple-
mented one subgoal order. As there are significant im-
provements on run time, we have implemented a second
version that evaluates two alternative subgoal orders in
order to search for better plans. Our planner first tries
our proposed relaxed-plan ordering and then the origi-
nal ordering specified in the problem definition. Since
we would like to restrict the total time spent, we set a
time Iimit for the second ordering to be five times the
time spent for the first ordering plus one minute. The
time of incremental planning reported is then the total
time to find both orders and within the 30-minute limit.
The reported solution is the one with the shorter length.

Table 4 summarizes the results of our redundant-
ordering scheme. Figure 5 also shows the new quality-
time distributions on the Airport, Satellite, and Logistics
domains. The results show improved quality with little
increase in time, as compared to the original implemen-
tation without redundant ordering. '

5 Conclusions

In this paper, we have developed strategies to order
and group subgoals in incremental planning when each
partitioned subproblem is solved by a basic planner. Us-
ing a new ordering algorithm that considers both the ini-
tial and the goal states, we order subgoals in such a way
that greatly reduces the number of invalidations during
incremental planning. We have studied an efficient strat-
egy that adjusts dynamically the grain size of partition-
ing in order to operate with the optimal grain size that
minimizes the complexity of incremental planning. We
have also shown improved solution quality by evaluating
two alternative subgoal orders during planning.
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b) Results comparing the Metric-FF, YAHSP, LPG-TD, and SGPlan, planners on the Satellite domain.
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¢) Results comparing the Metric-FF, YAHSP, LPG-TD, and SGPlan, planners on the Logistics domain.

Figure 4. Quality-time distributio
non-incremental version on three domai

less normalized time.)

ns of the performance of the incremental version of a planner with respect to that of the
ns. (The upper right quadrant in each plot represents better normalized quality and

1.9 F MetricJFF-inc wrt Metric-FF 19 FYAHSP-inc wit YAHSP 19 FLpGne wri LPG 19 F"Metric-FFrinc wrt SGPlan
£ 4 £ 4 £ 14 S £ 14 :
3 & & 3 ‘
s L0 > 10 e 10 % e 10
2 £ 2 2
E] k] E] K|
T 07 g 07 T 07 S 07
05 * 05 05 05 i
0.1 1 10 100 1000 0.1 1 10 100 1000 0.1 1 .10 100 0.1 1 10 100
Relative Run Time Relative Run Time Relative Run Time Relagive Run Time
a) Results comparing the Metric-FF, YAHSP, LPG-TD, and SGPlan, planners on the Airport domain.
1.9 ["Metric-FFrinc wrt Meitic-FF 19 FYAHSP-inc wrt YAHSP 1.9 FLPG-inc wrt LPG 1.9 FMeiric-FF-inc wrt SGFlan
£ 14 ‘ £ 14 : £ 14 £ 14
5] & . & & . &
s 10| = 2 10 L g 10 e v 10
k| g i ki . 3
s 07 s 07 z 07 . z o7
05 05 03 0.5 .
0.1 1 10 100 0.1 1 10 100 0.1 1 10 0.1 1 10
Relative Run Time Relative Run Time Relative Run Time Relative Run Time
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f the incremental version of a planner that evaluates two alterna-
tal version on three domains. (The upper right quadrant in each




