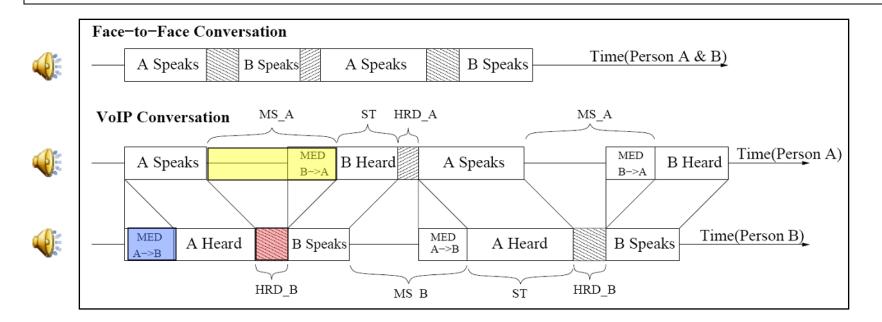


Play-out Scheduling and Loss-Concealments in VoIP for Optimizing Conversational Voice Communication Quality

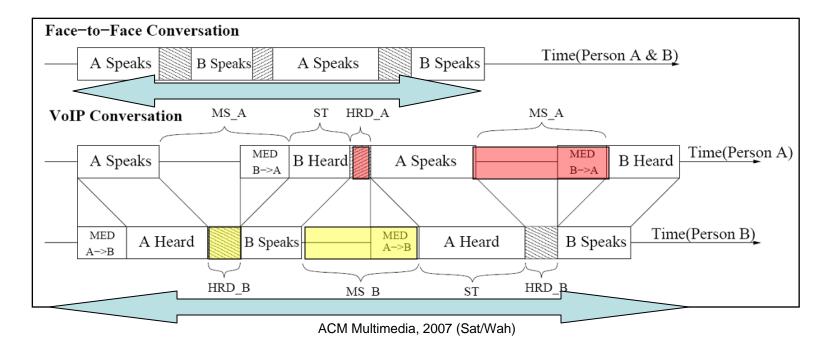
Batu Sat, Benjamin W. Wah 09/25/2007

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign, USA


- Introduction
 - Conversational dynamics
 - Conversational voice communication quality
 - Perceived effects of delay
- Network environment & network control
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

Conversational Dynamics

- Interactive conversation
 - One-way speech segments
 - Switches (turn-taking) between speakers
- Common perception of reality in face-to-face conversation
- Multiple realities in conversation over channel with delays
 - Participants perceive different timing and duration of speech & silence events
 - <u>Mouth-to-Ear Delay</u> (MED)
 - Human Response Delay (HRD): Duration waited after hearing speech until responding
 - <u>Mutual Silence</u> (MS): Perceived duration before hearing response to speech



Conversation over Channel with Delays

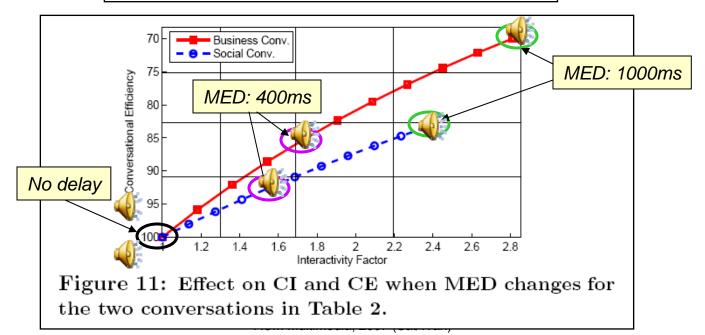
- Effects of delays on conversational dynamics
 - <u>Conversational Interactivity</u> (CI)

- Ratio of perceived silence durations before and after person's speech.
- Asymmetric with increased MED
- <u>Conversational Efficiency</u> (CE)
 - Ratio of conversation duration over channel with delays vs. face-to-face setting
 - Decreasing with increased MED

Conversational Voice Communication Quality

• Quality of an interactive conversation

- Listening-only speech quality (LOSQ) of one-way speech
- Perceived degradations due to delays in communication channel
 - MED cannot be perceived directly
 - CI and CE can be perceived
- CVCQ can be represented by (LOSQ, CI, CE)
- Trade-offs between (LOSQ, CI, CE) depend on MED
 - MED 🗋: LOSQ 👕, CI 📕, CE 📕
 - MED \downarrow : LOSQ \downarrow , CI \uparrow , CE \uparrow

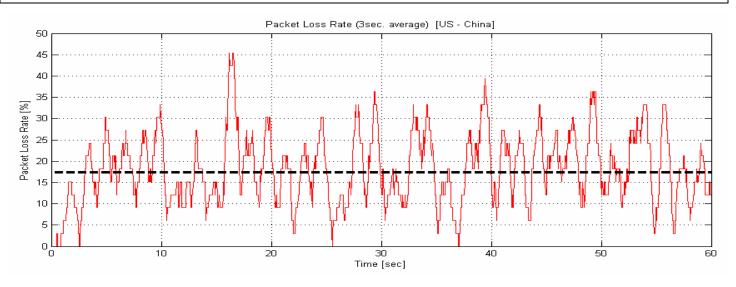

Perceived Delay Effects

- Perceived effects of MED depend on conversational conditions
 - CI depends on the Human Response Delay

ECE Illinois

- CE depends on Switching Frequency of conversation

Table 2: Statistics of two face-to-face conversations.						
Conversation	Avg. single-					
Type	talk duration	duration	$\operatorname{switches}$	Time		
Social	3,737 ms.	729 ms.	7	35 sec.		
Business	$1,\!670 { m \ ms.}$	552 ms.	15	$35~{\rm sec.}$		

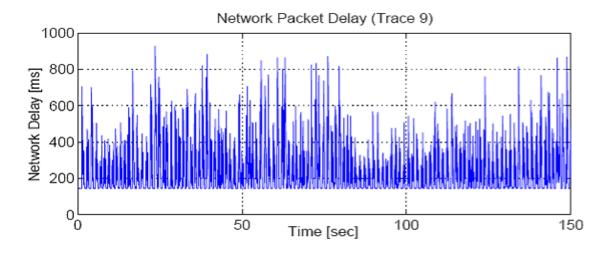

• Introduction

- Network environment & network control
 - Network conditions
 - Network control: POS and LC
 - Trade-offs in system-controllable metrics
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

Network Conditions: Packet Loss

Network-loss conditions change in a matter of seconds
 Stationary models cannot track fast changing conditions

- Retransmission of lost speech packets not feasible in real-time VoIP
- Redundancy needed to conceal lost packets at receiver
 - Piggybacking previously sent frame(s) in current packet
 - Require receiver to wait for redundant packet



Network Conditions: Packet Delay

• Packets experience network delays

ECE Illinois

Delays exhibit jitters and high spikes

- IP packets arrive irregularly but speech needs to be played smoothly
 - Employ jitter-buffers and adaptive play-out scheduling (POS)
 - Additional delays

Network Control via POS/LC

• Goal of Network Control: Mitigate network imperfections

System-observables

- Network-loss rate & burstiness
- Network delays & jitters

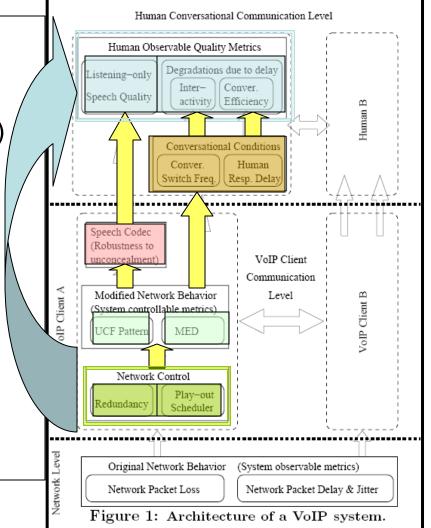
System controls

- Redundancy rate (degree of piggybacking)
- Play-out schedule of speech segments
- Intermediate quality metrics (system-controllables)
 - Un-concealable Frame Rate (UCFR)
 - Un-concealable Frame Pattern (UCFP)
 - Mouth-to-ear delay (MED)

Trade-offs in System-Controllable Metrics

- Trade-offs between UCFR and MED
 - Depending on network conditions
 - Must be adaptive

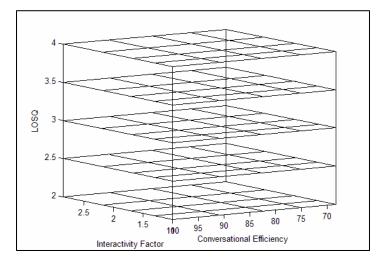
Network Control used under conditions		Network Delay Condition		
		Low Jitter	High Jitter	
Network Loss Condition High Lo	Low Loss	No-redundancy Short & slow changing MED	No-redundancy UCFR improves gracefully with MED	
	High Loss (Bursty)	Redundant Piggybacking MED to allow receipt of redundant packets	Redundant Piggybacking High MED to reduce UCFR	

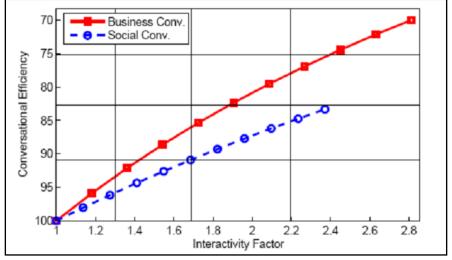

- Introduction
- Network environment & network control
- Trade-offs in CVCQ attributes
 - Trade-offs via system controllable metrics
 - CVCQ representation
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

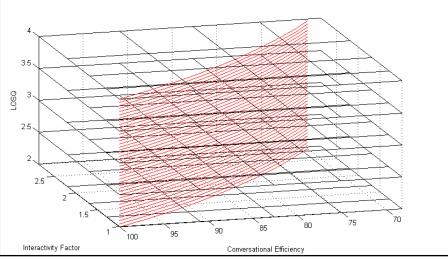
Trade-offs by System Controllable Metrics

- Trade-offs between
 - CVCQ attributes (LOSQ, CI, CE)
 - System-controllable (UCFR,MED)
- LOSQ(UCFP)

- Codec's intrinsic quality
- Codec's robustness to losses
- CI(MED) and CE(MED)
- Optimizing CVCQ
 - By controlling UCFR/MED



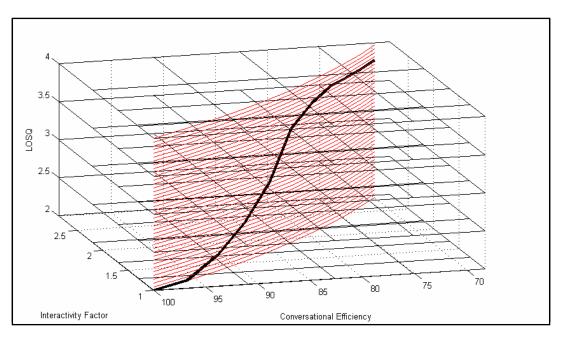



CVCQ Representation

• CVCQ = (LOSQ,CI,CE)

- Point in 3-D space
- CI and CE depend on MED and conversational conditions
 - Given conversational condition
 - Restricted to curve (e.g. C_business, C_social) on (CI,CE) plane
 - Restricted to plane (e.g. P_business) on (LOSQ,CI,CE) space

ACM Multimedia, 2007 (Sat/Wah)



Trade-offs in CVCQ Attributes

- LOSQ depends on MED, redundancy, codec, and network conditions
 - Given codec and network conditions

ECE Illinois

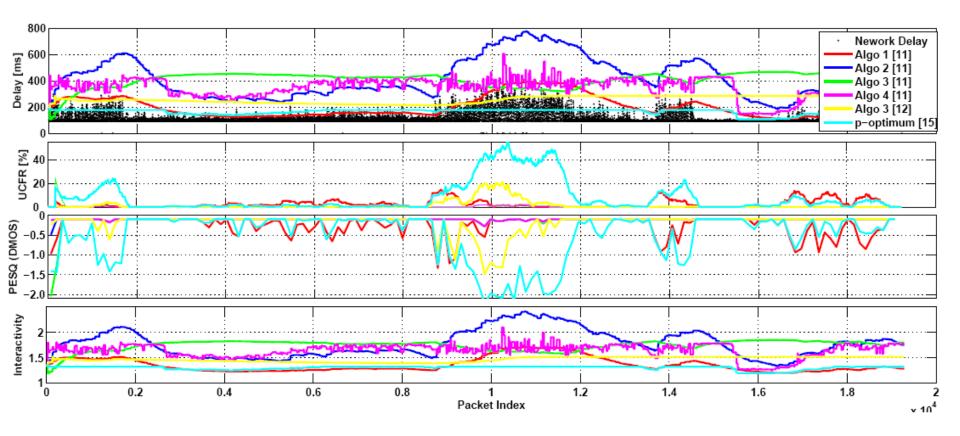
• Restricted to a curve on the P_business plane in (LOSQ,CI,CE) space

- Different planes for different conversational conditions
- Different curves for different network conditions

- Introduction
- Network environment & network control
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

Previous Work: Adaptive POS Schemes

Open-loop schemes


- Heuristics to adapt MED, no explicit control, no explicit target
 - PRO: Simple
 - CON: Not robust against all conditions
- Closed-loop schemes with intermediate metrics
 - Adapt MED to control intermediate metrics towards target
 - PRO: Guide control towards well-defined direction
 - CON: Hard to relate to good end-to-end metrics
- Closed-loop schemes with end-to-end metrics
 - Adapt MED to control user-observable metrics \rightarrow target
 - PRO: Guide control towards target user-observable metrics
 - CON: Hard to estimate at run-time

Previous Work: Adaptive POS Schemes

ECE Illinois

• None of previous schemes provides consistent balance between CVCQ attributes under changing network conditions

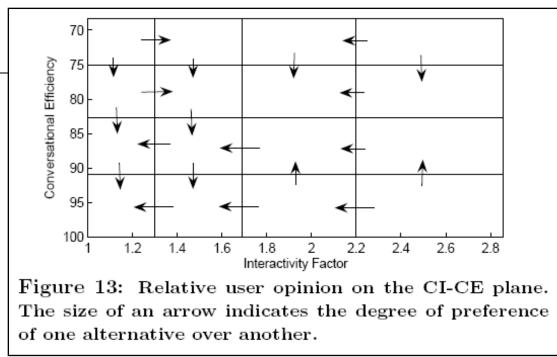
Contributions of Paper

Develop network-control POS & LC schemes

- Optimize trade-offs among LOSQ, CI, and CE observable metrics
 - Trading system-controllable metrics
 - Utilizing knowledge on codec performance, conversational and network conditions
- Deliver high and consistent CVCQ

- Introduction
- Network environment & network control
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

Subjective Tests: Comparative MOS


- Comparing perceived quality of two conversations
 - Subjects asked to compare A against B
- Illustration of user preference in 2-D

ECE Illinois

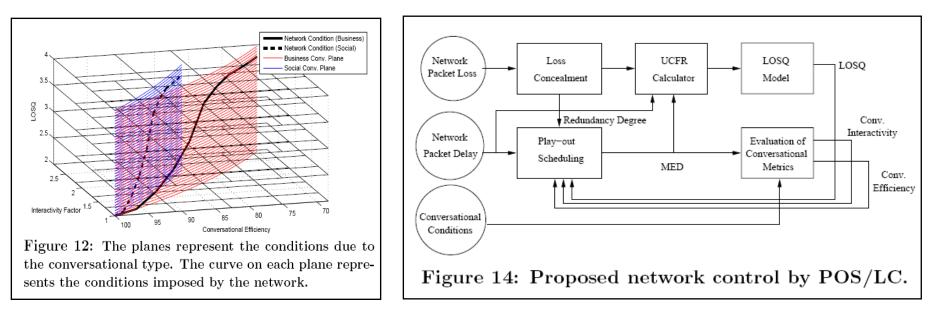
- Direction of arrow represents preference
- Length of arrow represents strength of preference

User response	CMOS score
A is strongly preferred against B	$^{-2}$
A is preferred against B	-1
A and B are preferred equally	0
B is preferred against A	1
B is strongly preferred against A	2

Table 3: Comparison MOS tests: User responses.

- Introduction
- Network environment & network control
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

Proposed POS/LC Schemes

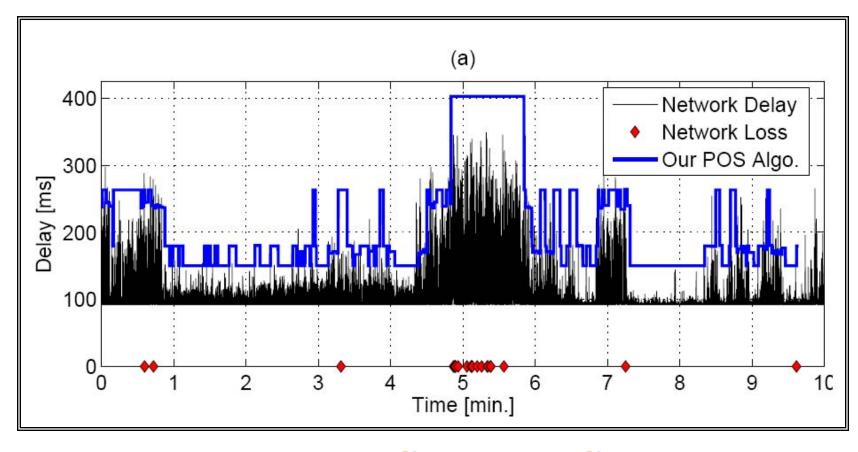

Loss concealment

ECE Illinois

Control redundancy degree

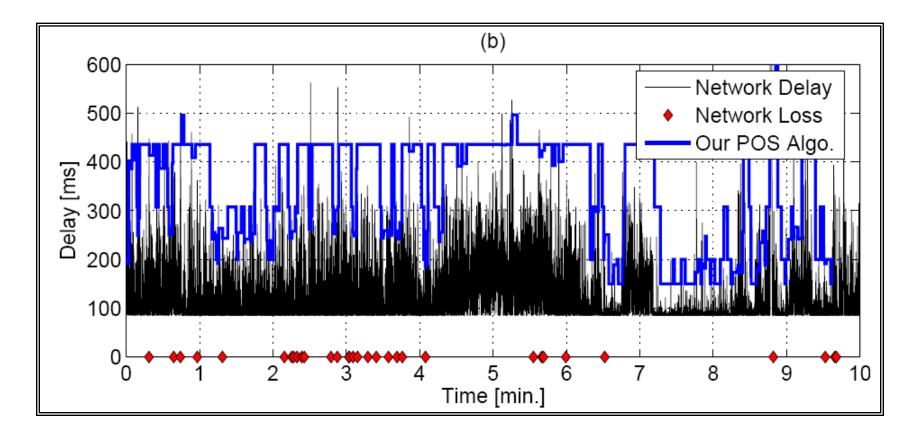
$$R_{i+FBD} = \min\{R \mid UCFR_i^W(\bar{p}, \bar{R}) \le 2\%\}.$$

- POS
 - Estimate CVCQ curve by conversational and network conditions
 - Adjust system-controllable metrics to maximize user preference along curve



- Introduction
- Network environment & network control
- Trade-offs in CVCQ attributes
- Previous work & our contributions
- Subjective tests
- Design of adaptive POS & LC schemes
- Experimental results

US-Switzerland



Our: 🍕 P-optimum: 🐗

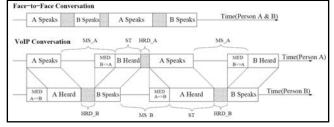
US-China

Our: 🍕 P-optimum: 🐗

ACM Multimedia, 2007 (Sat/Wah)

-11-(

Conclusions


Conversational quality

ECE Illinois

- Listening only speech quality
- Conversational interactivity and efficiency
- Subjective tests and just-noticeable difference
- Optimize via intermediate quality metrics

Trade-offs achieved via network controls

- Loss concealments via redundant piggybacking
- Suitable mouth-to-ear delays via play-out scheduling

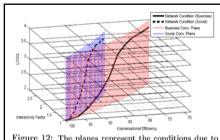
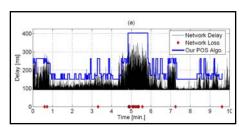



Figure 12: The planes represent the conditions due to the conversational type. The curve on each plane represents the conditions imposed by the network.

