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Abstract

In this paper, we develop heuristics for finding good start-
ing points when solving large-scale nonlinear constrained
optimization problems (COPs). We focus on nonlinear pro-
gramming (NLP) and mixed-integer NLP (MINLP) prob-
lems with nonlinear non-convex objective and constraint
functions. By exploiting the highly structured constraints
in these problems, we first solve one or more simplified ver-
sions of the original COP, before generalizing the solutions
found by interpolation or extrapolation to a good starting
point. In our experimental evaluations of 190 NLP (resp.,
52 MINLP) benchmark problems, our approach can solve
97.9% (resp., 71.2%) of the problems using significantly
less iterations from our proposed starting points, as com-
pared to 85.3% (resp., 46.2%) of the problems solvable by
the best existing solvers from their default starting points.

1 Introduction

The NLP and MINLP problems studied in this paper have
nonlinear and non-convex objective and constraint func-
tions and are formulated as follows:

(Pm) : minz f(z) (1)

subject to h(z) = 0 and g(z) ≤ 0,

where z = (x,y), and x ∈ R
v and y ∈ D

w are, respec-
tively, vectors of continuous and discrete variables; f(z)
is an objective function; h(z) = (h1(z), . . . , hm(z))T

is a vector of m equality constraint functions; and
g(z) = (g1(z), . . . , gr(z))T is a vector of r inequality
constraint functions. Because no closed-form solution to
(1) exists, we focus on finding its constrained local minima.

Consider ORTHRGDS, an NLP from the CUTEr bench-
mark suite. Its goal is to find values of x[i], y[i], z1, z2,
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a) NLP ORTHRGDS b) 50 sampled constraints
Figure 1. The regular constraint structure of
ORTHRGDS

and z3 that minimize f(z) and that satisfy N = 5000 non-
convex equality constraints hi(z) = 0 for i = 1, . . . , N :

min
z

f(z) =
N∑

i=1

(
(x[i] − xd[i])2 + (y[i] − yd[i])2

)
(2)

subject to hi(z) = 0 for 1 ≤ i ≤ N,

where

hi(z) =
(
(x[i] − z1)2 + (y[i] − z2)2

)2

− (
(x[i] − z1)2 + (y[i] − z2)2

)
(1 + z2

3)
2,

xd[i] = (C1 + cos(p(i)) cos(p(i))(1 + C2 cos(C3p(i)),
yd[i] = (C1 + cos(p(i)) sin(p(i))(1 + C2 cos(C3p(i)),
p(i) = 2π(i − 1)/N,

and C1 = 1 + 1.72, C2 = 0.2, and C3 = 237.1531. This
problem cannot be solved by SNOPT [2] and Lancelot, but
can be solved by Knitro [1] and Ipopt [5].

ORTHRGDS belongs a large class of benchmark prob-
lems specified by an algebraic modeling language, like
AMPL (http://www.ampl.com) and GAMS (http:
//www.gams.com) that uses indexes to define groups of
variables and constraints with some common properties. In-
dexing is useful when specifying large-scale problems be-
cause it will be cumbersome to give a unique name for ev-
ery variable and constraint. The use of indexed constraints
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a) z1, z2 and z3 b) 5 sampled constraints c) 20 sampled constraints d) 100 sampled constraints
Figure 2. An illustration of finding good starting points. a) The values of z1, z2, z3 found from the
simplified problem; b) - d) The variables converge with an increasing number of sampled constraints.

leads to a large number of similar and related constraints.

Figure 1a illustrates the regular structure of the con-
straints in ORTHRGDS. It shows a dot where a constraint
on the x-axis is related to a variable on the y-axis. In partic-
ular, the ith constraint hi(z) = 0 involves variables x[i] and
y[i] with index i and common variables z1, z2, and z3.

In this paper, we show for COPs with good structural
properties that it is possible to find good starting points by
exploiting their structures. Many COPs are supplied with
default starting points, which can be used to test the ability
of individual solvers to solve them. Our approach is to gen-
erate better starting points from those defaults and to show
improved solution times or quality in solving the COPs.

As an illustration, consider a simplified version of OR-
THRGDS obtained by uniformly sampling the constraints
in Figure 1a. (See Figure 1b where 50 constraints are uni-
formly sampled.) Figure 2a depicts the values of z1, z2, and
z3 when solving by SNOPT the simplified problem of var-
ious numbers of sampled constraints. Although there are
small fluctuations in their values, the variables converge to
some stable values when 20 or more constraints are sam-
pled. This convergence behavior is also extended to the
other variables x[i] and y[i]. Figures 2b-2d shows the val-
ues of x[i] and y[i] for three simplified problems, each with
a different number of sampled constraints. The graphs show
that the values of the variables of the same index are highly
related. This smoothness property is typical in most of the
AMPL benchmarks whose constraints are grouped in sev-
eral forms and the parameters of the constraints in each
group are closely related.

Using the starting points found by solving ORTHRGDS
with 20 sampled constraints and by interpolating the val-
ues of the other variables (Figure 2c), we can solve OR-
THRGDS in significantly fewer iterations and CPU times (8
iterations/1.635 sec. by Ipopt and 7 iterations/1.604 sec. by
Knitro) when compared to those using the default start-
ing point (16 iterations/3.359 sec. by Ipopt and 47 itera-
tions/9.555 sec. by Knitro). The overhead for solving the
problem with 20 sampled constraints is negligible (9 iter-
ations/0.018 sec. by Ipopt and 5 iterations/0.00275 sec. by
Knitro). Our approach also leads to a better solution than
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Figure 3. Trade-offs between the time for solv-
ing a problem with sampled constraints and
the time for solving the original problem us-
ing the starting point found.

Knitro (1523.90 versus 1776.23).
There is a trade-off between the time for solving a

problem with sampled constraints (which increases as the
number of constraints increases−Figure 3a), and the time
for solving the original problem using the starting points
found (which decreases when the number of sampled con-
straints increases and the quality of the starting point found
improves−Figure 3b). Because the time for solving a
sampled problem is usually much smaller, we can simply
choose the number of sampled constraints based on the con-
vergence of the variables found. For example, Figure 2
shows that the solutions of ORTHRGDS converge when 20
or more constraints are sampled.

The importance of using good starting points is also il-
lustrated in solving EIGENA2 from the CUTEr benchmark
suite. EIGENA2 is easily solvable by SNOPT when the ma-
trix variable q[i, j], where 1 ≤ i, j ≤ 10, is initialized to an
identity matrix (the default). However, SNOPT fails to find
a feasible solution when q[i, j] is initialized to a zero matrix.

To show that many existing benchmarks have regular
structures that can be exploited in finding good starting
points, we have exhaustively tested the CUTEr, NLP, Non-
sys, COPS, MacMINLP and MINLP Library suites (Ta-
ble 1). Among those tested, we eliminate unconstrained,
linear, or quadratic problems, and small problems with less
than 50 variables or constraints. These result in 242 (190
NLP and 52 MINLP) benchmarks studied in this paper.
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Table 1. NLP and MINLP benchmark suites studied in this paper.
CUTEr Nonlinear optimization (revisited) http://www.numerical.rl.ac.uk/cuter-www/
NLP AMPL NLP benchmarks http://plato.asu.edu/ftp/ampl-nlp.html
NonSys Nonlinear systems of equations http://plato.asu.edu/ftp/ampl_files/nonsys_ampl/
COPS Large-scale optimization problemshttp://www-unix.mcs.anl.gov/˜more/cops/
MacMINLP AMPL collection of MINLP http://www-unix.mcs.anl.gov/˜leyffer/macminlp/
MINLP Library GAMS MINLP test models http://www.gamsworld.org/minlp/minlplib.htm

Our main contribution in this paper is on the develop-
ment of heuristics for finding good starting points that can
be used for solving NLPs and MINLPs. Without a good
starting point, a search may get stuck and does not converge.
We describe in Section 2 our methods for sampling the con-
straints of indexed as well as non-indexed COPs. Section 3
summarizes some properties of the starting points found.
We present in Section 4 our experimental results.

2 Generation of Good Starting Points

Our approach is to solve one or more simplified versions
of a COP, whose solutions can be generalized to provide
a good starting point to the original COP. In this section,
we present three methods for handling indexed problems,
followed by methods for discovering the structures of non-
indexed problems.

Finding starting points for indexed problems. To effec-
tively analyze the constraint structure of an indexed COP
written in AMPL, we have developed a recursive descent
parser (using a Perl module ParseRecDescent from CPAN:
http://www.cpan.org) that can automatically parse
its representation. Using the parser to identify the vari-
ables in the constraints, our system automatically generates
one or more simplified AMPL problems with sampled con-
straints and solves them in order to find good starting points.
The three methods described below are based on the unique
structures discovered in these problems.

a) Constraint sampling and interpolations. For NLPs
whose constraints are independent except for a few global
shared variables, the constraints can be uniformly sampled
in order to generate one or more simpler versions of the
original NLP that are coupled through the shared variables.
Using the approach described in Section 1 for solving OR-
THRGDS, the NLPs with sampled constraints are solved
until the shared variables converge.

To avoid enumerating all possible combinations of sam-
pled constraints, we determine the number of sampled con-
straints as follows. As is depicted in Figure 2, the variables
converge to some stable values as more constraints are sam-
pled. Therefore, we start solving a simplified problem using
a very small number (N1) of sampled constraints. We then
gradually increase the number of sampled constraints (Ni)
until convergence is observed. Let v

i
be the vector con-

taining the values of the variables after solving a simplified

problem with Ni sampled constraints. We stop generating
new problems when the following condition is reached:

(1 − a)|v
i−1

| − K ≤ |v
i
| ≤ (1 + a)|v

i−1
| + K, (3)

where 0 < a < 1 and K is a constant in case |v
i
| is very

close to zero. When the value of |v
i
| is within the bounds

(1 ± a)|v
i−1

| or when Ni exceeds 10% of the total con-
straints, we stop and use v

i
as the starting point. This ap-

proach is intuitively sound, as we expect v
i

to converge to
some stable form as more constraints are sampled.

Using the values of variables found in the simplified
NLP, we interpolate the values of those variables in the orig-
inal NLP that are not solved in the simplified version. Based
on the starting point found, we then solve the original NLP.

Overall, the approach is used in solving 34 (or 14.0%) of
the 242 benchmarks tested (indicated by A in Table 2).

b) Constraint sampling and extrapolation. For an NLP
whose constraints are related to their neighborhood con-
straints by some common variables, uniformly sampling the
constraints of the problem may result in a new NLP with in-
dependent constraints that do not have common variables.
For example, the problem HAGER4 from CUTEr has con-
straints of the form (n−1)x[i]−nx[i−1]−exp(t[i])u[i] = 0
for 1 ≤ i ≤ 5000, and the i − 1st constraint is related to the
ith constraint by x[i − 1]. This means that if every other
constraint is sampled, then the resulting problem has in-
dependent constraints. In this case, solving the simplified
problem will not lead to new insights on the starting point.

For these NLPs, instead of uniformly sampling the con-
straints, we generate a version using a subset of the contigu-
ous constraints and eliminate those variables that are not in
the sampled constraints. For example, in HAGER4, we gen-
erate a 500-constraint problem related to x[0], . . . , x[499].
Figures 4a (resp., 4b) shows the values of x[i] and u[i]
found using the first 50 (resp., 500) constraints.

After solving the simplified problem, we extrapolate the
values of the variables found to those in the original prob-
lem. In the simplest case, the extrapolations can be done
by assigning the value found for a variable in the sim-
plified problem to the corresponding variable in the origi-
nal problem and by interpolating the values of other vari-
ables in between. This works in HAGER4 when we assign
x[j], j = 1, . . . , 500, in the simplified problem to x[j′],
j′ = 10(j − 1) + 1, in the original problem. Figure 4c
shows the values of x[i] and u[i] that are extrapolated for
the version of HAGER4 with 5,000 constraints.
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Figure 4. The common features of the solutions of two simplified versions of HAGER4 (resp., EX1)
and their generalization.

Overall, this approach is used in solving 119 (or 49.2%)
of the 242 benchmarks (indicated by B1 in Table 2).

In more general cases, the solution of the simplified
problem may be in a complex form, although the solution
can be generalized using some features that have to be iden-
tified. For example, EX1 in the NLP suite has variables x[i],
1 ≤ i ≤ n2 and n = 59. When we solved two simplified
problems with n = 19 with n = 29, the solutions have,
respectively, 19 and 29 peaks with a similar envelope (Fig-
ures 4d and 4e). When EX1 is solved with n = 39, we
obtain a solution with 39 peaks and an envelope similar to
that of n = 29. Hence, we generalize the solutions found to
the initial solution of EX1 in Figure 4f, which has 59 peaks
and the same envelope as that of n = 39.

Overall, this technique is used in solving 37 (or 15.3%)
of the 242 benchmarks (indicated by B2 in Table 2).

c) Constraint relaxation for MINLPs. For MINLPs, we
generate a good starting point by solving each as an NLP
without the integrality requirement. We further apply the
two approaches above in case that the relaxed MINLP is
too large to be handled by an existing NLP solver.

This technique is used in solving 52 (or 21.5%) of the
242 benchmarks (indicated by C in Table 3).

Finding starting points for non-indexed problems. As
is mentioned in Section 1, most of the problems writ-
ten in AMPL or GAMS have indexed variables and con-
straints that can be exploited in generating simplified ver-
sions of these problems. However, some problems may not
be indexed because they might have been converted from
AMPL/GAMS to GAMS/AMPL by a converter. Moreover,
the names of variables and constraints in some industrial
benchmarks might have been concealed and replaced by
some random names for security reasons.

Since the indexing of variables and constraints is criti-
cal when sampling constraints and when interpolating and
extrapolating variables, we have developed techniques to re-
cover the indexes of those non-indexed problems, assuming
that these problems were originally indexed.

Using the parser we have developed for analyzing AMPL
problems, we analyze each constraint in a non-indexed
problem and group those of the same form together. Within
a group of constraints, we extract variables and reorder them
by their names. We further assume that variables at the same
ordinal location in each group of constraints were indexed
by the same variable name. After recovering the indexed
form, we apply the same techniques earlier to generate good
starting points. Note that this approach will not work if the
variables were shuffled and randomly indexed.

As an example, consider CATMIX800 (with 2,403 vari-
ables and 1,600 constraints) from the NLP suite. The bench-
mark has two different types of constraints. After proper
parsing, grouping, and reordering, its constraints can be rep-
resented in Figure 5a. We can rewrite this problem into an
indexed form by assigning arbitrary names on variables and
constraints. Here, variables x1 . . . x801, x802 . . . x1602 and
x1603 . . . x2403 are, respectively, assigned to X [i], Y [i] and
Z[i] for 0 ≤ i ≤ I and I = 800 (see Figure 5b). Lastly,
we generate two simplified problems with I = 100 and
I = 200 using technique B1 discussed in this section. Fig-
ure 6 shows the convergence behavior for the variables in
CATMIX800 when I is extended from 100 to 200.

3 Analysis of the Starting Points Found

Due to space limitation, we informally analyze the quality
of the starting points in this section.

a) Convergence of the objective function. Let p∗i be
the global minimum of Pi, a problem with i sampled con-
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e2: x802 + x803 + C(x1x802 + x2x803 − 10(x1x1603 + x2x1604)) = 0
. . .

e801: x1601 + x1602 + C(x800x1601 + x801x1602 − 10(x800x2402 + x801x2403)) = 0
e802: x1603 + x1604 − C(x1x802 + x2x803 − 9(x1x1603 + x2x1604) − x1603 − x1604) = 0

. . .
e1601: x2402 + x2403 − C(x800x1601 + x802x1602 − 9(x800x2402 + x2x2403) − x2402 − x2403) = 0

a) The constraints of CATMIX800 after parsing and reordering

E1: Y [i] + Y [i + 1] + C(X [i]Y [i] + X [i + 1]Y [i + 1] − 10(X [i]Z[i] + X [i + 1]Z[i + 1])) = 0
E2: Z[i] + Z[i + 1] − C(X [i]Y [i] + X [i + 1]Y [i + 1] − 9(X [i]Z[i] + X [i + 1]Z[i + 1]) − Z[i] − Z[i + 1]) = 0

b) The constraints of CATMIX800 with recovered indexes, 0 ≤ i ≤ 800

Figure 5. CATMIX800: an example non-indexed NLP benchmark.
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Figure 6. The generalizable solutions of two
simplified versions of CATMIX800

straints, and p∗N (or p∗) be the global minimum of PN , the
original problem with N constraints. Obviously, p∗i ≤ p∗j
for i ≤ j, where the constraints of Pi is a subset of those of
Pj . Therefore, the optimal value of each simplified problem
is a lower bound for p∗N . That is,

p∗0 ≤ p∗1 ≤ . . . ≤ p∗i ≤ . . . ≤ p∗j ≤ . . . ≤ p∗N . (4)

Let pi be a local minimum solution of Pi found by some
solver, where pi ≥ p∗i . Unlike (4), there is no similar re-
lation between pi and pj , where the constraints of Pi is a
subset of those of Pj , because pi may be greater than or
smaller than pj . Figure 7a illustrates this fact that the so-
lutions of the sampled problems found by Ipopt [5] do not
increase monotonically as the number of constraints grows.

b) Smoothness and convergence of the starting points. In
generating starting points for regularly indexed problems,
we assume that the values of variables of the same index
are highly related. Those variables have a smoothness prop-
erty when the mean squared error (MSE) between their opti-
mal and the linearly interpolated values decreases monoton-
ically as the number of sampled variables increases beyond
some threshold. As is discussed in Section 1, this smooth-
ness property has been found in many AMPL benchmarks,
where each problem has constraints that are grouped and
the parameters in each group are closely related. With this
property, our proposed techniques in Section 2 generally
work well because they are based on linear interpolations.

Figure 7b illustrates a) the values of x[i], 2001 ≤ i ≤
3000, found by Ipopt (Ipopt Sol: Orig. Prob.), b) the linearly
interpolated values of 50 sampled final solutions (Ipopt

Sol: Sampled), and c) the variable values found by solving
a problem with 50 sampled constraints (Sampled Prob: 50
Cons). Figure 7c shows that the MSE between (a) and (b)
for 1 ≤ i ≤ 5000 decreases monotonically when the num-
ber of samples exceeds 250 and converges to nearly zero
when the number of samples is 500. In contrast, the MSE
between (a) and (c) oscillates around 0.1, and the MSE be-
tween (a) and the default starting point is 8.0664.

4 Experimental Results and Conclusions

In this section, we test the effectiveness of the starting points
generated by our proposed methods on three leading NLP
solvers (SNOPT [2], Ipopt [5] and Knitro [1]) and two lead-
ing MINLP solvers (FilMINT [3] and MINLP BB [4]).

The experiments were conducted on the benchmark
suites shown in Table 1. As is mentioned in Section 1,
we study 242 (190 NLP and 52 MINLP) problems, after
eliminating relatively easy problems (unconstrained, linear,
quadratic, and small problems with less than 50 variables or
constraints). Among the problems studied, 99 NLP prob-
lems can be solved by SNOPT (an NLP solver using SQP),
and 10 MINLP problems can be solved by FilMINT (a
MINLP solver using branch-and-cut and filterSQP).

Tables 2 and 3 summarize the results on the the remain-
ing 133 (91 NLP and 42 MINLP) problems that cannot
be solved by SNOPT or FilMINT. Note that there are 45
more problems in the MINLP library that are not shown
in Table 3. These problems were discarded because they
have similar characteristics. For example, we have only
tested fo9 because fo9, fo9 ar2 1, fo9 ar25 1, fo9 ar3 1
and fo9 ar5 1 are all similar block layout design problems
of various aspect ratios. We use the number of iterations as
a metric for evaluating solution time, since CPU times vary
across different computers (except for FilMINT that only
reports CPU times). Also, all the results should be com-
pared within a solver and not across solvers.

For the 91 NLP benchmark in Table 2, SNOPT (resp.,
Ipopt and Knitro) can solve 31 (resp., 17 and 30) more
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problems using the new starting points. For the other 74
(resp., 61) problems that can be solved from their default
starting points, Ipopt (resp., Knitro) can solve them with
35.1% (resp., 14.7%) less iterations from the new starting
points. For each solver, we have also highlighted those re-
sults that are better when using our proposed starting points.

For the 42 MINLP benchmarks in Table 3, FilMINT
(resp., MINLP BB) can solve 4 (resp., 10) more problems
using the new starting points. For the 12 that can be solved
from both their default and the proposed starting points,
4.9% less iterations are needed when using the new points.

There are 31 (16 NLP and 15 MINLP) prob-
lems that cannot be solved by any solvers: lukvle2
and lukvli2 in the NLP suite are likely to be in-
feasible, since no known solutions exist for them;
bratu2d, bratu2d l, bratu2dt, bratu2dt l, bratu3d, cbratu2d,
cbratu2d l, cbratu3d, porous1, porous1 l, porous2 and
porous2 l from Nonsys and cont4 400 and twod from the
NLP suite are too large, and the processes were killed due
to a lack of memory. However, the starting point generated
for the 12 problems in Nonsys that cannot be solved by any
of the three solvers from their default starting points were
close enough to satisfy all the constraints, and we consider
them solved in zero iteration by our approach in Table 2.

Figure 8 compares the normalized time and quality of the
109 problems that can be solved by our approach as well as
by SNOPT or FilMINT. These problems are smaller prob-
lems that require very small amount of execution times. In
general, due to the additional overheads for finding good
starting points, our approach is slower in solving these prob-
lems (Figure 8a). However, when only the times for resolu-
tion are considered, our approach is much faster in solving
most of them (Figure 8b). Note that the normalized solution
quality (dQ) of four of the problems found by our approach
is much worse than that of SNOPT or FilMINT. This is due
to the fact that those solutions found by SNOPT or FilMINT
(Qs) are very close to zero.

In conclusion, by using the better starting points gener-
ated by our proposed methods in this paper, most of the
tested problems can be solved in significantly less itera-
tions. This is due to the fact that the starting points found by
our approach are much closer to the feasible space. In our
experimental evaluations of 190 NLP (resp., 52 MINLP)
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Figure 8. Normalized time and quality of the
109 problems that can be solved by our ap-
proach as well as by SNOPT or FilMINT. (Q0:
our quality; Qs: SNOPT quality; T0: our time;
Ts: SNOPT time.) Our approach performs bet-
ter than SNOPT when dQ and dT are negative.

benchmarks, our approach can solve 97.9% (resp., 71.2%)
of the problems with significantly less iterations, as com-
pared to 85.3% (resp., 46.2%) of the problems solvable by
the best existing solvers from their default starting points.

In the future, we plan to automate the process of gener-
ating good starting points and integrate it as a preprocessor
to existing NLP and MINLP solvers. Also, our current re-
sults are based on starting points generated by SNOPT (the
only available solver on our local computer), and we plan
to employ other solvers besides SNOPT in our approach for
generating starting points.
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Table 2. Results on solving NLP benchmarks from the CUTEr, NLP, and Nonsys suites using SNOPT [2], Ipopt [5], and Knitro [1] with default and our proposed
starting points. Results on Ipopt and Knitro were obtained by submitting jobs to the NEOS server (http://www-neos.mcs.anl.gov/); results of the other solver
were collected on an AMD 2-GHz computer with RedHat Linux 3.4.6 and 2 GB memory and a time limit of 3,600 sec. All timing results refer to the number of iterations
used by each solver and should only be compared within a solver. For each instance, nc (*) and nv are, respectively, the number of (*nonlinear) constraints and variables;
and ns is the number of sampled constraints (for technique A), or the number of variables in the simplified problem (for B), or nil (for C where MINLP is relaxed to
NLP). “Tech.” refers to the method in Section 2 for generating starting points; “‡” refers to maximization instead of minimization problems; “f” means that no feasible
solutions were found.; “t” means that the process was killed due to time limit.; and “m” means that the process ran out of memory. For each solver, we have shaded those
results (time and quality) that are better when our proposed starting point as compared to that of using the default starting point.

Benchmark nc (*) nv ns Tech.
Default Proposed Default Proposed Default Proposed

Time Sol Time Sol Time Sol Time Sol Time Sol Time Sol

CUTEr (Not Solvable by SNOPT in 3,600 sec.) SNOPT Ipopt Knitro

dtoc1l 9990(0) 14985 1495 B1 f f f f 6 125.34 6 125.34 9 125.34 5 125.34
dtoc2 3996(3996) 5994 598 B1 f f f f 10 0.51 8 0.51 260 0.53 48 0.51
dtoc4 9997(4997) 14996 749 B1 f f f f 3 2.87 2 2.87 3 2.87 1 2.87
dtoc6 5000(5000) 10000 1001 B1 f f f f 11 134851.00 6 134851.00 12 134850.62 6 134850.62

hager2 5000(0) 10000 201 B1 f f f f 1 0.43 1 0.43 2 0.43 2 0.43
hager4 5000(0) 10000 1001 B1 f f f f 10 2.79 8 2.79 7 2.79 7 2.79

orthrdm2 2000(2000) 4003 10 A f f f f 6 155.53 5 155.53 5 155.53 5 155.53
orthregd 5000(5000) 10003 50 A f f f f 6 1523.90 8 1523.90 6 1523.90 8 1523.90
orthrgdm 5000(5000) 10003 50 A f f f f 6 1513.80 7 1513.80 6 1513.80 6 1513.80
orthrgds 5000(5000) 10003 20 A f f f f 16 1523.90 8 1523.90 47 1776.23 7 1523.90
svanberg 5000(5000) 5000 500 B1 f f f f 30 8361.42 18 8361.42 15 8361.42 11 8361.42
catenary 166(166) 496 54 B1 f f f f 56 -348403.00 227 -406699 2928 -348403.16 1822 -406699

dtoc5 4999(4998) 9998 999 B1 f f f f 4 1.54 2 1.54 3 1.54 1 1.54
hadamard 256(128) 65 17 B1 f f 1 1.00 8 1.00 7 1.00 3 1.00 7 1.00

kissing 903(903) 127 67 B1 f f f f 350 0.85 350 0.85 62 0.85 62 0.85
orthregc 5000(5000) 10005 50 A f f f f 14 189.60 12 192.71 11 189.60 9 192.72

ubh5 14000(2000) 19997 2010 B1 f f f f 5 1.12 4 1.12 t t 2 1.12

NLP (Not Solvable by SNOPT in 3,600 sec.) SNOPT Ipopt Knitro

cont5 3717(236) 3953 517 B1 f f 1748 0.00 21 0.55 47 0.55 12 0.55 15 0.55
cont6 3717(236) 3953 517 B1 f f 2727 0.01 21 0.01 39 0.01 14 0.01 19 0.01
cont7 2597(2401) 2793 517 B1 f f 8005 3.00 f f f f 10 0.26 14 0.26
cont8 2597(2401) 2793 517 B1 f f 6778 3.00 f f f f 12 0.16 15 0.16
ex4 3717(3481) 7198 801 B1 f f 893 0.00 13 0.08 17 0.08 6 0.08 7 0.08
ex6 3717(3481) 7198 801 B1 f f f f 18 -4.22 23 -4.22 11 -4.22 19 -4.22

lukvle1 49998(49998) 50000 500 B2 f f f f 6 6.23 1 6.23 6 6.23 0 6.23
lukvle2 49993(49993) 50002 502 B2 f f f f m m f f m m m m
lukvle3 2(2) 50002 502 B2 f f 0 65.00 9 65.12 1 65.12 t t 0 65.12
lukvle4 49998(49998) 50002 502 B2 f f f f 16 242908.00 1 242908.00 20 243157.77 0 242907.68
lukvle5 49996(49996) 50002 502 B2 f f f f 15 2.64 2 0.37 19 2.64 1 0.37
lukvle6 24999(24999) 49999 500 B2 f f f f f f f f 14 3144226.08 1 3144226.08
lukvle7 4(4) 50002 502 B2 f f f f 17 -66139.60 2 -66139.60 20 -66139.62 2 -66139.62
lukvle8 49998(49998) 50000 1000 B2 f f f f 13 4130070 13 4130070 t t 2 4130073.56
lukvle9 6(6) 50000 50 B2 f f 1 4994.00 21 4994.67 1 4994.67 8352 4994.67 0 4994.67

lukvle10 49998(49998) 50000 500 B2 f f f f 13 17677.20 1 17677.20 94 17677.25 1 17677.24
lukvle11 33330(33330) 49997 497 B2 f f 0 0.00 8 0.00 0 0.00 t t 0 0.00
lukvle12 37497(37497) 49997 997 B2 f f f f 7 77203.90 2 77203.90 6 77203.88 1 77203.88
lukvle13 33330(33330) 49997 497 B2 f f f f 23 401793.00 5 401784.00 t t 1 401784.15
lukvle14 33330(33330) 49997 497 B2 f f f f 21 380425.00 3 380425.00 17 380424.85 2 380424.85
lukvle15 37497(37497) 49997 997 B2 f f 0 0.00 53 0.00 0 0.00 t t 0 0.00
lukvle16 37497(37497) 49997 997 B2 f f 0 0.00 7 0.00 0 0.00 28 0.00 0 0.00
lukvle17 37497(37497) 49997 997 B2 f f 0 71433.00 8 71433.10 1 71433.10 8 71433.15 0 71433.15
lukvle18 37497(37497) 49997 997 B2 f f 0 59982.00 13 59982.00 1 59982.00 12 59982.01 0 59982.01
lukvli1 49998(49998) 50000 50 B2 f f f f 3000 472.98 12 0.00 t t 0 0.00
lukvli2 49993(49993) 50000 502 B2 f f f f f f m m m m m m
lukvli3 2(2) 50000 500 B2 f f 0 11.00 10 11.58 5 11.58 9 11.58 2 11.58
lukvli4 49998(49998) 50000 500 B2 f f f f 26 20102.10 6 20102.10 t t 3 20102.05
lukvli5 49996(49996) 50000 500 B2 f f f f f f f f t t 9 0.53
lukvli6 24999(24999) 49999 500 B2 f f f f f f f f 16 3144227.58 2 3144225.96
lukvli7 4(4) 50000 500 B2 f f f f 22 -18633.90 7 -18633.90 69 -18633.85 2 -18633.84
lukvli8 49998(49998) 50000 500 B2 f f f f 183 5023590.00 93 4129430.00 50 6161014.81 42 4129611.13
lukvli9 6(6) 50000 50 B2 f f f f 39 4994.67 13 4994.67 t t 70 4994.67

lukvli10 49998(49998) 50000 500 B2 f f f f 92 17677.20 4 17677.20 44 17677.24 4 17677.24
lukvli11 33330(33330) 49997 497 B2 f f f f 41 0.00 17 0.00 17 0.00 18 0.00
lukvli12 37497(37497) 49997 997 B2 f f 0 0.00 28 0.00 23 0.00 t t 0 0.00
lukvli13 33330(33330) 49997 497 B2 f f 47 2.00 23 0.00 22 0.00 t t 6 0.00
lukvli14 33330(33330) 49997 497 B2 f f f f 23 380425.00 22 72632.00 16 380425.00 16 72631.98
lukvli15 37497(37497) 49997 997 B2 f f 45 1.00 f f 21 0.00 24 6.34 15 0.00
lukvli16 37497(37497) 49997 997 B2 f f 0 3.00 24 0.00 32 0.00 16 0.00 0 0.00
lukvli17 37497(37497) 49997 997 B2 f f 8 0.00 75 1.55 21 0.39 55 8.94 24 0.39
lukvli18 37497(37497) 49997 997 B2 f f 0 5.00 19 0.00 12 0.00 13 0.00 13 0.01
cont5 1 40200(200) 40400 2651 B1 f f f f 14 2.72 15 2.72 t t 8 2.72

cont5 2 1 40200(0) 40400 2651 B1 f f f f 37 0.00 34 0.00 18 0.00 20 0.00
cont5 2 2 40200(200) 40400 2651 B1 f f f f 50 0.00 41 0.00 t t 21 0.00
cont5 2 3 40200(200) 40400 2651 B1 f f f f 50 0.00 45 0.00 30 0.00 24 0.00
cont5 2 4 40200(40000) 40400 2651 B1 f f f f 14 0.07 9 0.00 29 0.07 11 0.07
cont5 400 160400(0) 160800 2651 B1 f f f f m m f f m m m m

twod 129850(0) 132304 9641 B1 f f f f m m f f m m m m

475475475

Authorized licensed use limited to: University of Illinois. Downloaded on July 10, 2009 at 02:48 from IEEE Xplore.  Restrictions apply.



Table 2. (continued).
Benchmark nc (*) nv ns Tech.

Default Proposed Default Proposed Default Proposed
Time Sol Time Sol Time Sol Time Sol Time Sol Time Sol

NLP (Not Solvable by SNOPT in 3,600 sec.) SNOPT Ipopt Knitro

catmix800 1600(1600) 2401 303 B1 f f f f 15 -0.05 15 -0.05 8 -0.05 9 -0.05
ex8 2 1 31(25) 55 15 B1 f f f f t t f f 140 -73873259870.00 26 -3673965181.00
ex8 2 2 1943(1875) 7510 1512 B1 f f f f f f 56 -552.67 30 -552.67 34 -552.67
ex8 2 3 3155(3125) 15636 3136 B1 f f 5540 -3730.83 71 -3731.08 64 -3731.08 28 -3731.08 29 -3731.08
ex8 2 4 81(75) 55 35 B1 f f f f f f f f f f 10000 -4027.6
glider50 605(551) 654 121 B1 f f f f f f f f 723 -249.95 19 -249.99

glider100‡ 1205(1101) 1304 231 B1 f f f f f f f f 2989 250.00 39 249.99
glider200‡ 2405(2201) 2604 561 B1 f f f f f f f f 605 249.97 2251 249.99
glider400‡ 4805(4401) 5204 561 B1 f f f f f f f f 111 250.00 1081 274.61

Nonsys (Not Solvable by SNOPT in 3,600 sec.) SNOPT Ipopt Knitro

bratu2d 61504(61504) 62500 10000 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
bratu2d l 248004(248004) 250000 1000 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
bratu2dt 61504(61504) 62500 10000 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00

bratu2dt l 248004(248004) 250000 10000 B1 f f 0 0.00 f f 0 0.00 t t 0 0.00
bratu3d 27000(27000) 32768 512 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
cbratu2d 123008(123008) 62500 10000 B1 f f 0 0.00 f f 0 0.00 m m 0 0.00

cbratu2d l 316808(316808) 160000 10000 B1 f f 0 0.00 m m 0 0.00 f f 0 0.00
cbratu3d 11664(11664) 16000 125 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
chemrctb 50000(49998) 50000 500 B1 f f 0 0.00 3 0.00 2 0.00 3 0.00 2 0.00
porous1 61504(61504) 65000 10000 B1 f f 0 0.00 f f 0 0.00 m m 0 0.00

porous1 l 248004(248004) 250000 19603 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
porous2 61504(61504) 65000 10000 B1 f f 0 0.00 f f 0 0.00 m m 0 0.00

porous2 l 248004(248004) 250000 19603 B1 f f 0 0.00 m m 0 0.00 m m 0 0.00
semicon1 50000(50000) 50002 500 B1 f f 0 0.00 51 0.00 82 0.00 36 0.00 1 0.00

semicon1 l 100000(100000) 100002 1000 B1 f f 290 0.00 50 0.00 81 0.00 m m 0 0.00
semicon2 50000(50000) 50002 500 B1 f f 0 0.00 27 0.00 1 0.00 t t 1 0.00

Table 3. Result on solving MINLP benchmarks from the MacMINLP and MINLP Library suites using FilMINT [3] and MINLP BB [4] with default and our
proposed starting points. The results on MINLP BB were obtained by submitting jobs to NEOS (http://www-neos.mcs.anl.gov/), and those of FilMINT were
collected on an AMD 2-GHz computer with RedHat Linux 3.4.6 and 2 GB memory and a time limit of 3,600 sec. The timing results for FilMINT and MINLP BB are,
respectively, in sec. and the number of objective-function evaluations and should only be compared within a solver. The other notations are the same as those in Table 2.

Benchmark nc (*) nv(#) ns Tech.
Default Proposed Default Proposed

Time Sol Time Sol Time Sol Time Sol

MacMINLP (Not Solvable by FilMINT in 3,600 sec.) FilMINT MINLP BB

c-reload-14a‡ 308(258) 342(168) 0 C f f f f 1203 1.01 8 1.01
c-reload-14e‡ 308(258) 342(168) 0 C f f f f 100 1.03 20 1.02
c-reload-q-24‡ 632(584) 968(576) 0 C f f f f 122 0.00 5 0.00
c-reload-q-25‡ 658(608) 1033(625) 0 C f f f f 1155 1.12 2159 1.12
c-reload-q-49‡ 1430(1332) 3292(2401) 0 C f f f f f f f f

c-reload-q-104‡ 3338(3130) 12906(10816) 0 C f f f f f f f f
c-sched2‡ 137(0) 400(308) 0 C f f f f 95295 146205.96 t t

feedloc 247(147) 89(37) 0 C f f f f 30 0.00 31 0.00
space-25 235(25) 893(750) 0 C f f f f t t f f

space-25-r 160(25) 818(750) 0 C f f f f f f f f
space-960 8417(960) 15137(9600) 0 C f f f f f f f f

space-960-ir 3617(960) 2657(960) 0 C f f 1548.17 48000000.00 f f f f
stockcycle 97(0) 480(480) 0 C f f f f f f t t
trimlon6 72(12) 168(168) 0 C f f 113.97 17.10 429520 15.30 f f

trimlon12 72(12) 168(168) 0 C f f f f f f f f
trimloss5 90(5) 161(131) 0 C f f f f t t t t
trimloss6 154(7) 345(289) 0 C f f f f f f 837285 19.20
trimloss7 154(7) 345(289) 0 C f f f f t t f f

trimloss12 372(12) 800(644) 0 C f f f f t t t t

MINLPLib (Not indexed, not Solvable by FilMINT in 3,600 sec.) FilMINT MINLP BB

4stufen 94(33) 145(48) 0 C f f f f f f 4853 116329.67
beuster 109(46) 153(51) 0 C f f f f f f 307807 116329.67
deb9 566(426) 735(10) 0 C f f f f 1292 116.58 1360 116.58

enpro56 192(2) 128(73) 0 C f f f f f f 59869 263428.30
ex1266a 53(6) 48(48) 0 C f f f f f f f f
feedtray2 197(147) 64(12) 0 C f f f f 7 0.00 15 0.00
feedtray 91(62) 98(7) 0 C f f f f 10 0.00 8 0.00

fo7 211(14) 112(42) 0 C f f f f t t 678258 35.16
fo8 273(16) 144(56) 0 C f f f f t t 666549 36.90
fo9 343(18) 180(72) 0 C f f f f f f 2385472 58.42

gasnet 67(42) 86(10) 0 C f f f f f f 1040 0.00
gastrans 125(24) 89(15) 0 C f f f f 164 89.09 132 89.09
lop97ic 87(39) 1626(1531) 0 C f f f f t t t t

m7 211(14) 112(42) 0 C f f 935.58 106.76 t t t t
nuclear14a 633(584) 992(600) 0 C f f f f 51 -1.13 154 -1.13

o7 211(14) 112(42) 0 C f f f f f f t t
oil 1417(412) 1361(19) 0 C f f f f f f f f

product 1031(132) 948(92) 0 C f f f f t t 87891 -2139.51
super1 1580(372) 1264(31) 0 C f f 21.18 10.23 f f f f
tloss 53(6) 48(48) 0 C f f f f 1429 16.30 1455 16.30
tls5 90(5) 161(136) 0 C f f f f t t 1318698 12.30

waste 1882(1230) 1425(400) 0 C f f f f t t f f
waterx 54(16) 70(14) 0 C f f f f 1091 983.02 1389 945.19
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