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Definition: 
Constrained Optimization Problems (COPs)

• NLP (Nonlinear Programming) and MINLP (Mixed 

2

Integer Nonlinear Programming)

• We focus on finding CLM (Constrained Local Minima).
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Motivation: Good Starting Points 
• Ex: HAGER4 from CUTEr

– An NLP with 10,000 variables and 5,000 constraints
– A large problem that cannot be solved by an existing solver 

MINOS from the default starting point.

– Very well structured
– Constraints are all in the same format

• Good constraint locality wrt variables• Good constraint locality wrt variables
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Motivation: Good Starting Points
• Relaxed problems of HAGER4 by constraint sampling

50 constraints 250 constraints 500 constraints

• The final solution generated by 
other solver

• Generated starting points (by 
extrapolations and interpolations)

Now, MINOS can solve the problem in 3.13 sec with this starting point.
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Constraint Localities in AI Problems

• Rovers-Propositional-P18 from IPC-5.
– 2,207 variables, 104,941 constraints
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• Constraint localities allow starting points to be generated

4

Problem Statement

• Exploit the localities of constraints in constrained 

optimization problems

• In order to generate much simpler subproblems

• Whose solutions can be generalized to form good 

starting points to the original problems
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• That allow the original problems to be efficiently solved
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Approach: Generating Good Starting Points:
Overview

1. Analyze the structure of the original problem
2. Generate small problems (relaxed/easier versions) that 

contain all the features of the original problem
3 Solve those small problems

…

3. Solve those small problems
4. Use the outputs to generalize to the starting point of the 

original problem

…
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• How do we generate those small problems? 
- constraint relaxation

6

• Constraint sampling and interpolations
– All the constraints share a few common variables

E l

(A) With a Few Common Variables (1/2)

– Example

Common 
Variables 50 sampled constraints

8
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Interpolate missing variables x[i] and y[i] from the extrapolated variables 

(A) With a Few Common Variables (2/2)

5 samples 10 samples5 samples 10 samples
Variable z1, z2 and z3 with various number of sampled constraints

Extrapolate variables x[i] and y[i] from subproblem with sampled constraints

20 samples 100 samples20 samples 100 samples

9
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(B) With Coupled Constraints (1/3)

• Constraint sampling and extrapolation
– Constraints are related to their neighborhood constraints

E l– Example:
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– Take a subset of contiguous constraints and extrapolate
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Simplified
Problem #1

Example: 

(B) With Coupled Constraints (2/3)


Simplified 
Problem #2

1 ≤ i  ≤250

11

Simplified 
Problem #3

Generated Starting Point

10

Example: A set of variables

Simplified 
Problem #1

N  19

(B) With Coupled Constraints (3/3)



N = 19

Simplified 
Problem #2

N = 29

12

Generated Starting Point

N = 59

11

Simplified 
Problem #3

N = 39
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(C) With Mixed Integer Constraints

• Constraint relaxation for MINLPs

– Solve an MINLP as an NLP without the integrality of 

integer variables.

– Apply (A) and (B) if MINLP is still too large to be 

handled by existing NLP solvers.

13
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Illustration on Performance of Approach

Name Nc Nv Ns Tech Solver
Default

Time        Sol
Proposed

Sptime     Time       Sol    Time        Sol Sptime     Time       Sol    

Ex4
3717

(3481)
7198 514 B

Conopt f f 5.61 27.26 0.08

Ipopt 1.36 0.08 1.71 1.77 0.08

Knitro 1.42 0.08 1.64 1.17 0.08

Snopt 130.40 0.08 8.31 8.16 0.08

cont5 40200 40400 131 B

Conopt 152.80 0.07 3.02 55.36 0.07

Ipopt 208.18 0.07 2.90 148.26 0.07

14

_
2_4 (200) 40400 131 B

Knitro 483.15 0.07 29.78 257.17 0.07

Snopt f f 2.96 2180.97 0.07

For SNOPT, even a good starting point is not good enough.
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Handling Large-Scale COPs by Parallel 
Decomposition [CP2005, Wah/Chen]

Locality 
Analysis

Optimal # of 
partitions 

(granularity)

Solving 
subproblems

Handling 
CVs

. . .

Complicating parts

Complicating 
variables (CVs)

Subproblem

CVs
Overhead 

(Time)

15

# of partitions

14

Again, Need Good Starting Points 
in Parallel Decomposition

• Fast convergence
– Subproblems are solved with the knowledge of others.

Complicating parts
Subproblems

• Handling complicating variables (CVs)

. . .

Subproblems

Need to enforce consistency of 
complicating variables in all subproblems.

z1=0 
z2=0 
z3=0

4.9
0  
0

5.0
1.5  
0

5.0
0  
0

16

Ex) Make them fixed throughout the 
solving process 

Need good values for z1,z2 and z3

15



Soomin Lee and Benjamin W. Wah October 2008

Finding Good Starting Points 9

Illustration on Parallel Decomposition with 
Good Starting Points [CP2005, Wah/Chen]

Name Nc Nv Ns Tech

orthrgds 5000(5000) 10003 5,10,20 A

lukvli7 4(4) 50000 52,502 B

Default

Name Solver

Default
w/o partitioning

Proposed w/o partitioning Proposed w/ partitioning

Time Sol
sp

Time
Time Sol Np Itr Time Sol

orthrgds

Conopt 439.41 5585.15 0.99 178.75 1523.90 25 9 131.50 2586.61

Ipopt 3.15 1523.90 1.25 1.75 1523.90 2 1 2.96 1523.90

Knitro 9.19 1776.23 1.50 1.75 1523.90 2 1 3.28 1523.90

Snopt f f 1.12 f f 20 1 18.58 1543.25

C

17

lukvli7

Conopt 35.71 62521.38 7.13 4.93 42643.98 5 1 12.48 -20731.69

Ipopt 7.57 -18633.85 4.01 11.59 -18633.85 2 1 5.49 -20731.69

Knitro 43.49 -18633.85 5.10 10.22 -18633.85 2 1 4.94 -20731.69

Snopt 1966.72 -18633.85 139.74 1471.94 -18633.85 5 1 601.45 -20731.69

16

No Enumerations!
- Problem Identification

• Each dot shows an instance.
• The best method for solving that particular instance.
• Ex) Knitro

1 Default w/o 
partitioning

2 Proposed w/o 
partitioning

Good starting 
points are 
important for 
large problems

18

• The same behavior applies to the other solvers as well.

17
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Conclusions/Future Work

• We were able to solve all the problems using 
one of the methods.

• We can determine what technique to use 
before actually solving a problem.

• Integrate the process of generating good 
starting points as a preprocessor to existing 
NLP and MINLP benchmarks. 
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NLP and MINLP benchmarks. 
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