Systems communications delays obstruct optimal file allocation and
migration, but heuristics provide practical, approximate solutions.

File Placement on Distributed
Computer Systems

Benjamin W, Wah, Purdue University

Advances in large-scale integrated logic and com-
munication téchnology coupled with the applications ex-
plosion have led to distributed architectures. A distri-
buted computer system is basically an interconnection of
processing elements, each having certain capabilities,
communicating with other elements through a network,
and working on a set of related or unrelated jobs. DCS
architecture is implemented in global systems such as Ar-
panet, local computer networks such as C m"'» and office
information systems.

One important DCS characteristic is localized infor-
mation processing by a subset of the processing elements.
A piece of information may be processed repeatedly
within a local subsystem before it changes locality. For
example, a seat assignment file in an airline reservation
system is very heavily used first at the airport where
passengers are preparing to board. Then, as the plane
flies to another airport, the use locality changes. To max-
imize the efficiency of the system, the file should be
~ distributed so that it is accessible at the locality of first

use and should be allowed to migrate as the need
changes.
The distribution of DCS information is the distribu-
tion design problem.! In general, information is parti-
. tioned into fragments (files) and placed in appropriate
locations. In some systems, the files are uniquely
defined, and no partitioning is necessary. But often
databases must be partitioned horizontally, when the in-
stances of an object are divided into fragments, or ver-
tically when the attributes are divided into possibly
overlupping fragments. After the fragments are parti-
tioned, the FAP, or (optimal) file allocation problem,
distributes files and fragments on a DCS to satisty system
objectives, such as availability, reliability, and delay con-
straints, and if the constraints and needs change
dynamically, the files are allowed to migrate. The op-

January 1984

timal file migration problem ad justs the file migration se-
quence to assure efficient adaptation to changing needs.

Solutions to the distribution design problems depend
on the operations performed on the information. In the
simplest form, an operation is a file access from a
specified origin. In a database distributed on a DCS, an
operation or query may originate in a program located
anywhere in the system. It may access multiple files
assembled at a single node before it is processed, or the
query and the-intermediate results created in each step
may be sen't'%equentially through the files. A combina-
tion of the two strategies is also possible. In addition,
query processing is related (o file placement, concurrency
control, and communication network design, as shown
in Figure 1, since files are partitioned and placed accord-
ing to the network characteristics and query character-
istics in the system. It is very difficult to solve these prob-
lems as whole units for real databases, so the designer
usually decomposes them into independent problems.

The FAP was originally isolated and investigated by
Chu? who studied it with respect to multiple files on a
multiprocessor system. Current work lies in the integration
of the query processing, file partitioning, concurrency
control, and network design problems with the file place-
ment problem. This article examines recent developments
in these areas.

Simple file allocation

Problem formulation. The basic file placement prob-
lem is the allocation of multiple copies of a single file. It
assumes that average query and update rates can be
assessed for cach node, that cach query accesses only one
copy of the file, and that all copies must be accessed by
an update. Queries, updates, and data storage are repre-
sented as system costs, which must be minimized. The

0018-9162/84/0100-0023801.00 © 1984 IEEE

23

problem addresses the most basic attributes of query, up-
date and storage costs, and omits operational features,
such as the delay of return traffic and system reliability.
This was called the file allocation problem, but after
studies with different design requirements for optimiza-
tion, it was renamed the simple file allocation problem.
There is a corresponding simple file migration problem.
The solution can be formulated as a linear integer pro-
gram. The cost function is expressed as a combination of
query, storage, and update costs over the multiple copies
of the single file when the nearest file copy is accessed. 4
The problem is to find an index set

I'=(Yy=0o0rl,k=1,...n

such that the cost function is minimized, where Y, =1 if
a copy exists at node k (0 otherwise) and » is the number
of nodes. This is an NP-hard problem3: it belongs to a
class of problems for which there is no known optimal
algorithm, and computation time increases at least ex-
ponentially with the size of the problem.’ The computa-
tion times for all known optimal algorithms for this class
increase at least exponentially with the problem size, so if
n represents the size of the problem, then the computa-
tion time increases at least as fast as k" where k>1.
These algorithms are, therefore, very expensive to run in
reajtime.

For large problems, heuristics offer *‘reasonable”
polynomial time search strategies, which, however, do not
guarantee precision. They are generally interactive

FILE
PARTITIONING

y

CONCURRENCY [«
CONTROL >

FILE > QUERY
PLACEMENT |g PROCESSING

[

y

COMMUNICATION
NETWORK DESIGN

Figure 1. Problems related to file placement. Arrows indicate informa-

Table 1.

Mapping between simple file allocation and single-

commodity warehouse location.

SINGLE COMMODITY WAREHOUSE

SIMPLE FILE ALLOCATION PROBLEM

LOCATION PROBLEM

Locations of computers

Locations of file

Access for a file

Unit cost of communicating one query
unit from j to k

File storage cost + multiple update
cost for file at node k

File migration)

Cost of migraing a copy of the file from
jtok

Possible warehouse sites

Locations of warehouse

Commaodity flow

Unit cost of shipping commodity from
plant to warehouse j and from
warehouse j to customer k

Fixed cost of opening a warehouse
at site k

Warehouse relocation

Cost of relocating a warehouse from
site j to site k

24

algorithms that generate feasible solutions. A decision
algorithm then decides whether or not to improve the solu-
tion and how to improve it. Since heuristics do not alwavs
generate optimal solutions and the analytical average and
worst-case behaviors are difficult to evaluate, evaluations
are generally made by simulating sample cases.

“Isomorphism in simple file allocation. The SFAP and
SFMP have been shown to be isomorphic to two well-
known problems in operations research, the Single Com-
modity Warehouse Location Problem and the Single
Commodity Dynamic Warehouse Location Problem. 4
In the SCWLP, a set of warehouses has to be located for
given sets of factories and customers so that the fixed and
operational costs of the system are minimal. In the
dynamic version of the same problem, plant or ware-
house locations are allowed to change over multiple
periods to adapt to the changing demands of customers.
SFAP and SCWLP mapping parameters are shown in

Table 1.
Isomorphism permits many techniques developed for

the SCWLP and SCDWLP to solve SFAP and SFMP.
Optimal algorithms developed for the SCWLP belong to
two types: the branch-and-bound type,® which ex-
haustively enumerates possible solutions to obtain the
optimal allocations; and the direct-search or implicit-
enumeration type, which allows the search to be ter-
minated with predefined conditions. Heuristic solutions,
on the other hand, are usually of the add-drop type and
alter feasible allocation in order to generate a better solu-
tion.” And dynamic programming? assigns dynamic
warehouse locations with specified access requirements
at fixed time intervals. Conversely, SCWLP and
SCDWLP can be solved by techniques developed for
SFAP and SEMP--the hypercube technique; B9 (he
clustering technique; ' and (he dynamic programming
method,? which is used to solve for the optimal migra-
tion sequence. ¢ '

Similar to SFAP is the Stone problem of allocating
processes to interconnected network of computers. !!
There is a fixed allocation cost, and the objective is to
minimize assignments and communications costs. The
Stone problem differs from SFAP in that it has multiple
processes of one copy each and its process communica-
tion is initiated from another process, not from a fixed
computer (in simple file allocation, there are -multiple
copies of a single file, and accesses and updates are in-
itiated from fixed locations). The process allocation
problem can be shown to be isomorphic to the single
commodity quadratic assignment problem.? In the
SCQAP, there is a set of possible plant locations and
plants that require the exchange of fixed quantities of a
single type commodity. The problem is to assign the
plants to locations to minimize the total cost of the
system. The isomorphism is in associating processes with
plants, accesses with commodity flows, and in locating
computers and plants.

Branch-and-bound algorithms. All feasible SFAP
solutions are successively partitioned into smaller and
smaller subsets by branch-and-bound algorithms. ¢ Both

i

COMDIITER

lower and upper bounds are calculated for solutions
within each subset. Newly created subsets are rejected if
their lower bounds lie above the least upper bound of all
subsets. Then the partitioning continues until the process
finds a solution ‘with a value equal to or less than the
lower boundary of any subset.

The state of the partitioning process:at any time can be
represented as a partial tree. Each terminal node in the
tree represents a partition, called a subproblem, which
branches into even smaller partitions. Three search
strategies are available to select a branching node: the
breadth-first search, the depth-first search, and the best-
first search.

* In a breadth-first search, tree nodes are examined at
various levels. Nodes at a lower depth will always be
examined before nodes at a higher depth. This
search always yields a goal node nearest the root.
However the sequence of nodes examined is prede-
termined, so the search is “‘blind.”’

®* The depth-first search is similar, except that it
generates complete subtrees before generating and
examining others. In both algorithms, the next node
to be examined is known, so the unique state of the
parent node is easily found. Since the memory space
required for storing the state is very small, these two
algorithms save space.

* The best-first search stores all active subproblems as
intermediate data. The total number of nodes ex-
panded is minimal, since branching operations
governed by this strategy are also performed under
other strategies, provided the lower bounds are
unique. However, it has the disadvantage of requir-
ing lnrge storuge space.

Onee i node has been selected Tor partitionitg, a prob-
lem parameter with an undetermined value must also be
selected, alternative parameters defined, and multiple
subproblems created. In SFAP, the alternative
parameters are a set of unassigned computers. In ex-
panding a subproblem, the algorithm selects an unassign-
ed computer and creates two alternatives, one with an
allocated copy and another without. Expansion
parameters are usually chosen to suit specific problem
needs, and the computer with the highest query traffic
can be selected for branching.

The lower boundary is usually furnished by the same
problem with relaxed constraints: The integrality con-
straint on Y, is disregarded, and the overall cost op-
timization is solved as a linear program. A closed form
has been derived by Efroymson and Ray.® The upper
bound is updated when a feasible solution is found.

To simplify computation of the simple file allocation,
rules have been developed to decide, without any
enumeration, whether a copy of the file should be placed
at a node. Table 2 informally lists the four principal
rules, which can be applied during the evaluation of the
branch-and-bound algorithm to reduce the complexity
of search algorithms, 4

Casey’s five-node example? illustrates the algorithmin
the best-first search strategy. The lower bound of a sub-

problem is computed by Efroymson and Ray’s .

equation.® Suppose the following matrix represents the
query and update costs for a five-node System:

January 1984

0 6 12 9 6

6 0 6 12 9

query _ update 12 6 0 6 12
costs ~ costs 9 12 6 0 6
‘ 6 9 12 6 0

Let query rates = [24,24,24,24,24],
update rates = {2,3,4,6,8], and
storage costs = [0,0,0,0,0].

The branch-and-bound tree is shown in Figure 2,
where the state vector shows the state of the allocation.
The state of a node i can be 0 (Y;=0), 1 (Y;=D),or U
(Y;=unassigned). The number belpw each vertex is the
linear-programming lower bound. The corresponding
conditions of Table 2 are shown on the edges. (See
Ramaroorthy and Wah? for calculations.) The order of
traversal is shown within each vertex. Since the minimum
lower bound criterion is used, (UUO!1) is expanded.
Then, there are three subproblems, (U0011), 1011,
and (UU111) with lower bounds 693, 657, and 567,
respectively. Subproblem (UU1!1) with the minimum

{

(U1011)
657

(

(01011)
7

OPTIMAL
SOLUTION

567

Y 1= 0
CONDITION B)

(0U111)

2=0
CONDITION B)

(00111)
m

Figure 2. Application of branch-and-bound algorithm and conditions
of Table 2 for Casey’s five-node example. U indicates that a node is

unassigned; the integer outside each node is the lower
tual cost.

bound or ac-

25

lower bound is selected for expansion in the next itera-
tion. The vertex obtained after step 9 gives the optimal
solution. ’

Besides branch-and-bound algorithms, other enumer-
ative approaches are also available. For example, Casey
has developed a technique that shows all possible
assignments in a hypercube.® He found that, if the total
system cost decreases when a new copy is introduced, it is
worthwhile to introduce one, but unnecessary to in-
troduce further copies otherwise. Although the size of
the enumerations is reduced, the complexity of the prob-
lem still increases exponentially. In other words,
enumerations are impractical when the problem is large.

Fast heuristics for simple file allocation. Branch-and-
bound and other enumerative algorithms are time-
consuming because they backtrack on previous deci-
sions, once it is determined that the current path may not
lead to an optimal solution. To speed up processing,
backtracking is limited or eliminated, but at the risk of
reducing the quality of the solution.

A fast heuristic can be extended from the branch-and-
bound algorithm discussed earlier. The set of unassigned
nodes K is selected, one node at a time, and the current
assignment is extended by the selected node. There are
two possibilities: either to assign or not to assign a copy
of the file. Then there are 2 | K3 | possible extended
assignments. The linear programming lower bounds are
calculated for each of these. A criterion for deciding
which node to extend is to select the extended assignment
with the minimum fower bound. The effect of the
heuristic applied on Casey’s five-node example is shown
in Figure 3.

Another effective heuristic is the add-drop algorithm,”?
which begins by finding a feasible allocation. It then tries
to reduce the total system cost by successive addition or
deletion of file copies. When a feasible, lower cost solution

Table 2.

Summary of conditions for placement and non-placement of a file at

an unassigned node i.

CONDITION

RULE USE

A

Preassignment in each
iteration

Yi = 1if the cost of a
local copy at node i is
smaller than the
smallest possible access
cost increase without a
copy at node /.~

Y; = 0 if the cost of a
local copy at node i is
greater than the max-
imum possible access
cost increase.

The number of possible
users who can access a
copy at an unassigned
node should be reduced
by 11t itis more cost-
effective to access an
already existing copy.
¥; = 0 if there exists a
‘‘better'" site nearby.

Preassignment in each
iteration

Evaluating linear pro-
gramming lower bound

Initial preassignment

26

is found, the algorithm adopts it as a new starting solution,
and the process continues. Eventualiy, it reaches a local
optimum in which addition or deletion does not reduce the
cost. The whole procedure can be repeated with a different
starting solution to produce another local optimum. The
final solution is obtained by taking the minimum over all
the local optima. The heuristic is illustrated in Figure 4,
which shows an initial copy assignment to every node.
Copies are successively dropped until costs can no longer
be reduced. Then copies can be added to the assignment
to test for further improvement. '

Extensive evaluations of the first heuristic on sample
SFAP and SCWLP cases confirm its reliability, 4 Of the
22 cases evaluated, 14 show optimal assignments. As a
comparison, the application of the add-drop algorithm
results in nine optimal assignments, but the error percen-
tage for the add-drop algorithm is smaller (0.10 vs. 0.22
percent). Since both heuristics have polynomial time
complexity,—O(n*) in both cases—they can be applied
simultaneously to take advantage of the benefits of each.

Although the NP-hardness produces exponential time
optimal algorithms, some special cases can be solved op-
timally in polynomial time. Coffman et al.,? for in-
stance, derived a simple formula to achieve the maximum
READ throughputs where there are infinite READs and
updates arriving stochastically. Whitney!® considered
the allocation of a fixed number of copies without the
update effects on a network modeled by a linear graph
and found that the computational complexity is
O({n-—~q)7) where g is the given number of copies, ~
Clovh M developed polynominl 1me gorithmn fon
distributing a database so that miultiple segments satisly-
ing a query can be retrieved in parallel. These special
cases are hard to generalize, however, and suboptimal
heuristics prevail in the general file allocation problem.

General file allocation

FAP, the general file allocation problem, allocates
single or multiple files with design requirements such as
delay, storage capacity, parallelism, and availability, and
in the presence of program accesses and specialized hard-
ware. Its objective functions are storage and communica-
tion costs. The communication cost is further broken
down for queries and updates. The optimization prob-
lem is to locate copies that (1) minimize the cost function
and (2) satisfy all the accesses. More complicated cost
functions can also be written. For example, the cost of a
query can be separated into the cost of the request and
the cost of data return.

In the absence of other constraints, the optimization
problem can be decomposed into multiple optimization
problems—one for each file, since all the files are in-
dependent. Techniques described in the previous section
can solve individual optimization problems. When delay,
availability, and capacity constraints are taken into ac-
count, their effects,are usually represented in constraint
equations. Then one file may affect the allocation of
other files and preclude decomposition.

An interesting decomposition problem was investi-
gated by Morgan and Levin. ? In their model, queries and

l COMDLITED

updates were processed by the corresponding programs
before they were sent to databases. Query traffic from
programs to databases could not be determined for each
node, however, because the locations of programs are
not fixed. And if the problem assigns negligible costs to
program storage, programs can be duplicated in every
node. For a given placement of a file, the route taken to
access the file from a node through a program was fixed.
Because of the fixed routing, file independence, and
freedom from delay and storage constraints, the op-
timization could be handled as multiple problems, one
for each file.

Delay constraints. The delay in accessing is an impor-
tant factor in determining file placement, but individual
access or update delays are not analyzed. Rather, many
simplifications are made, and an average delay for all
transactions is calculated. We examine some of the
methods here. .

Chu modeled the traffic between two points of a net-
work as an M/D/1 queueing process. 2 By evaluating the
arrival and service rates of transactions and by neglecting
the overhead of sending requests to files, he found a
closed formula for the average delay. He calculated the
average delay for sending file f from node jto node £ and
added it as a constraint to the optimization problem so
that it was less than the maximum allowable retrieval
time,

In their model, Mahmoud and Riordon'? assumed
that the query and gquery-return traffic for a request
originating from the same node are equally divided
among all the copies in the system. By using a fixed
routing, the traffic along a link in the network could be
eviluated, The delay along a link was modeled by an
M/M/E queudcing process. I was assumed that all in-
termediate messages were independent and exponentially
distributed. The average delay in the network was the
average delay for all messages.

" Irani and Khabbaz!3 produced the most accurate
analytical evaluation of delay. They used the same
M/M/1 queueing model for a link as Mahmoud and
Riordon, but they accounted for the effects of routing
and congestion more accurately. They showed that the
flow along a link depends on the placement of copies,
network connectivity, and diameter. Adaptive routing
schemes were used, and flow was directed along paths
with the least congestion.

Since analytical delay equations may not fully repre-
sent the effects of adaptive routing procedures and flow
control techniques, Laning and Leonard developed a
simulation model to evaluate the delays in each step of an
iterative heuristic. !4 Their evaluation time may be long,
so it is difficult to apply this technique in real time.

In updating multiple copies of a file; the updates can
be issuqd sequentially or in parallel. When multiple, con-
current updates are issued by different users, all except
one has to be blocked, then reissued, Queries are also
delayed when updates are made. Detailed update effects

.are excluded, first, because the model was already fairly
complicated and second, because the dynamic, interac-
tion of updates would probably not be a significant
factor in determining the allocation. |

|
i
|
i
i

January 1984

‘(OUU11) (v

un)

540 564

(uout1)

(u1U11)
600

{Uuot1) (Uu111)
537 567

Yi=0 Yi=1/Y,=0 Yo=1

(UO11) (tuo1Y) (uoott) (uro1Yy
597 621 693 657

Y2=1 (CONDITION B)

(01011)
ni

SUB OPTIMAL SOLUTION

Figure 3. Application of heuristic and conditions of Table 2 on Casey’s
five-node example. U indicates that node is unassigned; the integer
outside each node is the lower bound or actual cost.

(11111)
m

DROP
01111) (10111) (11011) (11101) S(11110)
747 735 13 789 792
DROP OPTIMAL
SOLUTION
(00111} (10011) (10101) (10110)
m 705 753 756
DROP ADD
. (00011) (10001) (10010) (11011) (10111)
« 753 726 41 735
e 4
NO IMPROVEMENT NO IMPROVEMENT
WITH DROP WITH ADD

Figure 4. Application of add-drop heuristic on Casey’s five-node example.

27

28

Availability constraint. Multiple copies of a file must
be kept to insure that at least one copy is readily accessi-
ble if the network or a computer fails, The availability of
a given file is defined as the probability that it is accessi-
ble through the storage location of the file. The reliability
of a file is the probability that at least one intact copy is
maintained. High reliability can be achieved by main-
taining a large number of copies on the system, but high
availability cannot because it depends on the network
configuration.

The availability requirement is a constraint to establish
the minimum acceptable availability for file £ (/). It
should be less than or equal to the average availability as
evaluated from the file distribution and network config-
uration (/).

Mahmoud and Riordon evaluated o as the average
availability of file f accessed from node j, Hfj, weighted
over the total traffic demand with adjustments, for the
total traffic demand for file f at node /.15 Since static
routing was assumed in the model, afj was approximated
in terms of the availability of a fixed set of network paths
leading to copies weighted by the network connectivity,
Similar availability constraints were used by Laning and
Leonard.!? :

The general problem allocates
files with design requirements
while controlling program accesses and
specialized hardware.

Irani and Khabbaz expressed availability as the prob-
ability that the network is connected and that at least one
computer can make a copy available. '3 Network reliabil-
ity is a function of the network diameter, degree of con-
nectivity, and site and link reliabilities. Copies can be
correctly updated only if the network is connected, and
when the network is partitioned, updates within a parti-
tion cannot be communicated to other partitions.

Other constraints. Other constraints can be added for
capacity, privacy/security and parallelism. The capacity
constraint has been used by Chu, 2 but other researchers
excluded it, since storage cost is very low and virtually
unlimited storage capacity can be provided at any node.
Morgan and Levin felt that the network management
should provide storage transparent to network users.2
The capacity constraint is perhaps important only for
some small microcomputer-based systems, and since the
size of files may grow, it is difficult to anticipate future
capacity needs at design time. Consequently, the design-
er need distinguish only between expandable nodes and
unexpandable nodes.

For file security, it may be necessary to preclude the
storage of copies at some nodes. The constraint Yfk=3
prevents the storage of file f at node £. And to take ad-
vantage of special processing capabilities of nodes and to
allow maximum parallelism, a constraint may be needed
for copies in a subset of nodes or for copies of two files
on different computers. 10

Heuristic solution techniques. Constraints increase the
complexity of the problem. The conditions of Table 2 are
no longer applicable because they reflect no restrictions.
In addition, delay and availability constraints prevent the
decomposition of optimization for multiple files, so the
most reliable method for solving placement problems is
exhaustive enumeration, such as branch-and-bound
algorithms. !8 ' ’

Heuristics including the add-drop heuristic, !° cluster-
ing algorithm,!3 steepest ascent and subgradient
method, and greedy algorithm '3 have been used effec-
tively in sample cases. Simulations have also been used
iteratively to search for a feasible solution.!? A linear-
programming, lower bound without the integrality con-
straints can be developed, but It cannot be put Into a
closed form asin SFAP, ¢ and the linear program must be
evajuated each time. Other integer-programming algo-
rithms can also be.applied,2!2 but the size of solvable
problems is very restricted.

General file allocation with network design

Optimal file allocation parallels network design. Be-
sides placing programs and files at appropriate locations,
the capacities of communication lines are assigned, 1516
computer processing power is chosen, '8 and a network
with maximal connection and minimal diameter is de-
signed. 16 The genex:;al form of the optimization problem is

minimized cost =1‘ storage cost + link cost

subject to netwofrk reliabi_lity constraints, database
availability constraints, and access delay con-
straints, and othérs.

Among objective functions, Mahmoud and Riordon
considered costs of file storage and leasing communica-
tion links. !5 To these, Irani added the termination cost
of a link.!® Both formulations sought optimal link
capacities, and query and update effects were included in
the delay constraint.

A complicated objective function was developed by
Loomis and Popek,!? who included the specialized
needs of a query, the extent of specialization of a node,
local memory accessibility, transmission delay time, and
the possibility of accessing two objects in parallel. An
equally elaborate objective function was also used by
Chen and Akoka,!® who considered the costs for
database software, computer equipment, communication
line instailation, database storage, and communication of
query/update from users to programs and from programs
to databases. Their goal here was to simultaneously op-
timize the distribution of processing power, the allocation
of programs and databases, and the assignment of com-
munication link capacities on a system in which queries
and updates were sent along static routes.

In a heuristic approach, a feasible file allocation is first.
generated, and the communication network is designed
with the given file allocation and the delay and availabili-
ty constraints. The files are reallocated, and design steps
are iterated until no further improvement in cost is pos-
sible. 1516 The cost function includes storage and net-
work. Queries and updates affect only the delay in the

COMPUTER

network. This approach is an improvement over prob-
lems discussed earlier, which model the effects of queries
and updates as system costs. It is not appropriate,
however, when file migration is allowed because link
capacities cannot be changed dynamically. An optimiza-
tion suitable for investigating file migration should have
the following form: '

minimized cost = storage cost

subject to access delay contraints, database avajl-
ability constraints and others.

Here, link capacities are assumed to be statically chosen.

General file allocation with query
processing

In general, a query may access multiple files. A query
processing strategy schedules the order that the files are
accessed. To solve the query processing problem, file
locations must be known, while solutions to the file
allocation problem require a query processing strategy.
All the studies described so far assume that a query or up-
date is directed toward a single file and that queries and
updates originate from a known location. Morgan and
Levin have assumed a more general query or update
originating from a given node, which must be processed
by u program before it is sent to a file, 12

Solving combined query and allocation problems is ex-
tremely complex, especially when delay and availability
constraints are also included, Apers proposed a solution
based on the assumption that the overhead of communi-
cation depends on the amount of data sent and that the
. cost of communication per unit data is constant in the
network.1® The two problems can then be solved in-
dependently. First, the query processing order is opti-
mized independently for each query or update providing
that distinet copies of files are used, Distinat copics ure
located at virtual sites and the fite allocation becomes the
mapping of the virtual sites to physical sites so that the
total communication costs are minimal. It is assumed
that the cost of communication within a physical site is
zero. The optimization can be formulated as a nonlinear
integer program. Branch-and-bound algorithms and
heuristics have been proposed to solve the combined
query and allocation problem, and network configura-
tion would not enter into the optimization.

Optimization is further complicated when the com-
munication cost is not uniform in the network because
the query processing order and file allocation must be
optimized together. Future research will have to establish
conditions that permit the two problems to be studied
independently.

File migration

The problem of file migration arises from the dynamic
nature of accesses. Although there may be a locality of
access for a file, there are occasionally very few activities
inside the locality, and the file is accessed outside its
locality. Moreover, the locality of access may be time-

January 1984

varying, as in global networks distributed over different
time zones. Then it is more efficient to allow the file to
migrate to major access points.

A typical migration method involves the application of
a static algorithm. Access rates are set initially, and
migrations occur at fixed intervals. At the end of each in-
terval, either migrations take place or they do not.
Therefore, over a period of ¢ intervals, there are a
minimum of 2/ possible alternatives.

To simplify evaluation of the file allocation algorithm
in each iteration, additional conditions are set to
eliminate unnecessary enumerations. 12 If /, is the index
set of allocation in period ¢ and F(J ;) is the query and
storage costs with allocations /,, then

F(l,)=F(,) My d4y),

where M, (I,,1,,,) is the migration cost from I, 10
I,y at the beginning of period 7+ 1. Only alternatives
with F(1,) =F(I,~{i}) and F(I,_,) sFI,.1-{i})
have to be considered in the file allocation algorithm.
Dynamic programming, both static and stochastic, has
also been used in solving optimal migration sequences. In
static dynamic programming, it is assumed that time is
divided into periods during which the access rates remain

Optimal allocation places
programs and files at appropriate
locations and assigns communi-

cations capacities.

constant. In the stochastic version, the access rate is
modeled as a continuous random variable with a fixed
number of different values that vary according to a
Markov model.?® These assumptions permit solutions,
but they do not correspond to conditions in real systems.

Porcar has studied user behavior of file systems col-
lected on traces and proposed synthetic generation of
user accesses. 2! He observed that users access files at in-
dependently variable rates but in a rather precise order.
Basically, they tend to access files that have been recently
accessed in the working set. Heuristics for file migration
were proposed and were verified by simulations.

Current models are based on the user-file relationship
and on the assumption that access rates can be predicted
or collected accurately in real time. Future studies should
concentrate on the characterization of database behavior
and modeling of systems with long access delays, in
which the collection of accurate access rates is difficult.
A model has been investigated to determine the complex-
ity of migration detection. The NP-hardness of the prob-
lem makes enumerative algorithms impractical for real
time applications. Furthermore, the access character-
istics are dynamic and unpredictable and, therefore, can-
not be used by the same dynamic programming that pre-
computes the migration sequence. A polynomial time
heuristic proves to be very efficient for coping with the
transient nature of accesses.

Assuming that the access rates are set beforehand, de-
termining when to migrate multiple copies of a single file

29

in the time interval [0,7] to minimize the cost is NP-hard.
This fact can be proved by showing that the correspond-
ing decision problem—whether or not there is a migra-
tion sequence such that the total operating cost equals
B—is reducible from the knapsack decision problem.* A
special form of the problem in which migrations can be
initiated at discrete times is used to determine the NP-
hardness of the general problem.

This knapsack decision problem is reducible to the
above decision problem. Given an instance of the knap-
sack problem with inputs a,, a, ..., a,, A, we can
construct in polonimial time an instance of the migration
problem by selecting the parameters as follows:

Let

~_0f(no migration is initiated at ¢;)

I 7 1 (migration is initiated at ;)

the number of file movements at ¢; (assuming
that each file movement incurs a unit cost).

a;

A= B (the total migration cost).

There are no other costs associated with the operation of
the system.

The knapsack decision problem is, therefore, reduc-
ible to selecting the migration points. Since the knapsack
problem is NP-complete, the file migration problem is
also NP-hard, as arc more general forms of the file mi-
gration problems. It is clear that, even when the access
rates are known, exhaustive enumeration, such as in
Levin’s approach, 2 is necessary to determine the op-
timal migration sequence.

In general, specific access rates are rarely constant,
although the average access rate over a relatively long in-
terval is usually predictable. When there is a transient in-
crease in the access rate at a node without a copy, it may
be desirable to allow a copy of the file to migrate there,

*The knapsack decision problem has been shown to be NP-complete.’ In
this problem, a set of integers ay, @3, ..., a,. and A are given. It is

necessary to find a set {x;: x;€{0,11,i=1,} such that pa;x;=4.

NO
MIGRATION

I__ HEURISTIC
I MIGRATION
|

N OPTIMAL MIGRATION

T T Y T T T

23 25 27 39

29 31 33 35 37

QUERY RATE OF NODE 2

Figure 5. An illustration of heuristic migration detection using
Casey'’s five-node example (only query rate of node 2 is changing)

30

then eliminate it when the accesses cease. Experience
shows

® Access rates are not predictable in a short time inter-
val, and there may be transient variations. It is dif-
ficult to extrapolate trends from past behavior.

¢ Communication overhead and the transient nature
of accesses make it difficult to collect changes in ac-
cess rates to a central computer in real time and to
determine the optimal migration sequence. It is best
for each node to determine in a distributed fashion
whether or not to permit migration.

* The file allocation algorithm (optimal or heuristic) is
time-consuming when executed locally each time the
access rate changes. A simpler criterion should be
used by each node to determine whether migration is

needed.
i

These observation's suggest a simple heuristic that per-
mits limited migratidn in the locality of node j and deter-
mines when migration should be carried out. Let d; 4 be
the cost per unit sizelof query from j to k, I/ be the index
set of nodes with a copy of file f, and)\fj be the query
load originating at node j for file fper unit time. Suppose
k is a node in the locality of j containing a copy of file f,
such that .

djx= mind;and
Clel!

Jy={x|dy,= min d,) with ties broken accordingly.
lelf '

J/, is the set of nodes in the locality of j which also ac-
cesses the copy of file fat node &£, Note that

ke

Suppose each node initiates migrations for the neighbor-
ing nodes based on the local change in access rates. When
M, is changed to N/;" and the access rates of other nodes
remain constant, the copy at node k is allowed to migrate
to any of the remaining | J/; | — 1 nodes; or the copy at
node k is eliminated, and all the nodes in J/; will access
other copies in the system. Whenever migration is
necessary, the static file allocation algorithm is called to
find the optimal allocations. This detection procedure re-
quires | J%; | + 1 evaluations of the cost function and is
relatively simple even with delay and availability.
constraints.

As an illustration, the detection procedure can be ap-
plied on Casey’s five-node example, where there is one
file and where index f is dropped. As evaluated before,
the optimal cost is 705 with allocations at nodes], 4 and
5. The copy at node 1 is shared between nodes'1 and 2,
that is

Jy=1{1,2}

Figure 5 shows a plot of the cost function when A3 is in-
creasing, and the cost for migrating the copy from node |
to node 2 is negligible. The algorithm detects that migra-
tion should be initiated at A, =32.05. At this point, the
static file allocation algorithm is called to find that the
optimal allocations are at nodes 3, 4, and 5, but for the
systém to operate optimally, migrations should be ini-
tiated when X, reaches 25.05.

COMPUTER

-

The advantage of the above scheme is that migration is
not initiated until after it is first needed to avoid transient
increase in the access rate. Moreover, the detection pro-
cedure is relatively simple to execute in real time. But if the
access rate does not reach a threshold, migration will not
be initiated and the system will be operating suboptimally.
A more accurate estimation algorithm may have to be

- used.

File migration requires that access rates be assessed in
real time at each node, which may be difficult for queries
that have not been executed. The assessment can be made
by estimating the access rate from the average access rate
in a previous time window. The size of the window is
application-dependent, but should not be so large that
transients are filtered out. The estimated access rate
should be transmitted regularly to other nodes.

Special file migration detection

Although the previous section shows that the detection
problem for file migration is NP-hard, some special cases
of the problem can be solved in polynomial time. The
Engineering Computer Network at Purdue University,
provides the capability of virtual terminal access. It
allows a4 user to connect directly 1o a remote host while
the terminal acts as though it were connected physically
to the remote host. Basically, the local host relays infor-
mation between the user and the remote host without in-
terpreting the information. Many users can share the link
and access remote files through the Unix high-level
operating system.

In a virtual terminal access approach, the processes
that access remote files are executed on the remote host.
A user editing a remote file actually communicates with
an alternative is to edit on the local host and com-
municate over the network with thé remote file. This ap-
proach is rarely effective, however, because a large part
ciate over the network with the remote file. This ap-
proach is rarely effective, however, because a large part
of the file may have to be searched in executing an editor
command. The last alternative migrates the file to the
local host, edits locally, and writes the file back at the end
of the session. These three techniques are illustrated in
Figure 6.

Using the first or the third approach, we can determine
precisely when migration should be initiated. Let x be the
amount of information transferred between a user and
the editor on a remote file. It includes requests sent and
the results returned. G(x) is the distribution function of
x and

X,:So x [dG (x)}]

is the mean of x.

Let S be the size of the remote file. We want to find a
threshold 7T such that, whenever x exceeds 7, the file
should be migrated to the local host for editing.

The information transfer is

T’ ™
s x [dG(x)]+ 5 28 [dG(x))
0 T

January 1984

It assumes that the file size is unchanged at the end of the
editing session. To find the value of 7 such that the
amount of information transfer is minimal, we can
rewrite the amount as

X+ S'r (25 —x) [dG(x))

We note that the integral is minimum when we start the
integration at 7=28S. In this case, the integrand is always
negative and the minimum of the integral is obtained.
For this example, the detection of migration is simple
and unique. At the beginning of the editing session, if
x>28, the file should be migrated immediately to the
local host; otherwise, remote editing should be done. Of

‘course, the value of x is unknown until the editing session

is completed. In this case, an estimated x, such as X, will
be used.

Besides the editor process, this migration detection is
applicable to other processes in the system. For instance,
if the overhead of remote execution is greater than the
overhead of migration and rewriting, migration is benefi-
cial. Still the workload of the local and remote computers
cannot be overlooked, and if the local computer is
seriously overloaded, it may be advisable to execute the
processes remotely.

Fiie migration is more difficult to solve than the file
allocation problem mainly because of the dynamic

COMMUNICATION

INTERFACE
kit
!
|
USER | EDITOR REMOTE
| PROCESS FILE

COST = COMMANDS + RESULTS

COMMUNICATION

INTERFACE

|
OO0
USER EDITOR | REMOTE
PROCESS | FILE

COST = INTERMEDIATE COMMANDS + INTERMEDIATE RESULTS

COMMUNICATION

INTERFACE
|
|
|
USER EDITOR LOCAL = REMOTE
PROCESS FILE | FILE

COST=FILE TRANSFER

Figure 6. Three techniques of editing a remote file.

31

nature of accesses and the infeasibility of collecting ac-
curate information in real time. Heuristics seem to be ap-
propriate for most applications, but adjusting param-
eters for these heuristics is application-dependent and
must be verified by experiments. The important feature
of a real-time file migration algorithm is to detect when
migrations should be carried out. The detection problem
is NP-hard, and a heuristic should determine the time for
migration. Long-term prediction of the access rates may
be feasible, but will not contribute to the optimal system
performance. Current research is in a combination of file
placement, query processing, file partitioning, and net-
work design problems. Most studies make very simple
assumptions about the other problems in order to make
the file placement problem sulvable The future trend lies
i relavation ol these imstimpcons white heoping the
file placement problem mathematically rractable, s

Acknowledgments

This research was partially supported by National
Science Foundation grant ECS81-05968 and by CID-
MAC, a research unit sponsored by Purdue University,
Cincinnati Milicron Corporation, Control Data Cor-
poration, Cummins Engine Company, Ransburg Cor-
poration, and TRW. ’

References

1. 8. Ceri, and S. B. Navathe, ** A Methodology for the Dis-
tribution Design of Databases,”* Proc. Compcon 83, Feb.
1983, pp. 426-431.

2. W.W. Chu, *“‘Multiple File Allocation in a Mutltiple Com-
puter System,”’ IEEE Trans. Computers, Vol, C-18, No.
10, Oct. 1969, pp. 885-889.

3. K. P. Eswaran, “‘Placement of Records in a File and File
Allocation in a Computer Network,” Information Pro-
cessing 74, IF1PS, 1974, pp. 304-307.

4. C.V.Ramamoorthy and B. W, Wah, ““The Isomorphism
of Simple File Allocation,”’ JEEE Trans. Computers, Vol.
C-32, No. 3, Mar. 1983, pp. 221-232.

5. M. R. Garey and D. S. Johnson, Computers and Intract-
ability: A Guide to the Theory of NP-Completeness, W.
H. Freeman and Company, 1979.

6. M. A. Efroymson and T. C. Ray, ““A Branch and Bound
Algorithm for Plant Location,” Operations. Research,
May-June 1966, pp. 361-368.

7. A. A. Keuhn and M. J. Hamburger, ““A Heuristic Pro-
gram for Locating Warehouses,”’ Management Science,
Vol. 9, No. 4, July 1963, pp. 643-666.

8. R. G, Casey, “Allocation of Copies of a File in an Infor-
mation Network,"” SJCC, 1972, pp. 617-625.

9. E. G. Coffman, Jr., et al, *‘Optimization of the Number
of Copies in a Distributed Database,’” IEEE Trans. Soft-
ware Engineering, Vol. SE-7, No. 1, Jan. 1981, pp. 78-84.

10. V. Whitney, “‘A Study of Optimal File-Site Assignment
and Communication Network Configuration in Remote-
Access Computer-Message-Processing and Communica-
tion Systems,’’ PhD thesis, Univ. of Michigan, 1970.

32

12.

13.

14,

20.

21,

)

allel computer architecture, distributed computer systems, and
theory of computing.

. S. P. Ghosh, “Distributing a Database with Logical

Associations on a Computer Network for Parallel Sear-
ching,”” IEEE Trans. Software Engineering, Vol. SE-2,
No. 2, June 1976, pp. 106-113.

H. L. Morgan and K. D. Levin, ““Optimal Program and
Data Locations in Computer Networks,”’ Comm. ACM,
Vol. 20, No. 5, May 1977, pp. 315-322.

M. E. S. Loomis and G. J. Popek, .‘*A Model for Data
Base Distribution,”* Computer Networks: Trends and Ap-
Plications, 1976, IEEE Press, New York, pp. 162-169.

H. S. Stone, ‘‘Multi-processor Scheduling with the Aid of
Network Flows,”” IEEE Trans. Software Engineering,
Vol, SE<3, No, 1, Jan, 1977, pp. B8-93,

S. Mahmoud and J. S. Riordon, “Optimal Allocation of
Resources in Distributed Information Networks,”” ACM
Trans. DataPRase Svetems., Vol. 1, No.- 1, Mar. 1976, pps
nh R,

K. W beand, and N. QL Khabbaz, ©A Methodology for the
Design of Communication Networks and the Distribution
of Data in Distributed Supercomputer Systems,'* JFE
Trans. Computers, Vol. C-31, No. 5, May 1982, pp.
419-434, . :

L. I. Laning and M. S. Leonard, ‘‘File Allocation in a
Distributed Computer Communication Network,”’ JEEE
Trans. Computers, Vol. C-32, No. 3, Mar. 1983, pp.
232-244,

. P.P.S, Chen and J. Akoka, ‘*Optimal Design of Dis-

tributed Information Systems,’ JEEE Trans. Computers,
Vol. C-29, No. 12, Dec. 1980, pp. 1068-1080.)

P. M. G., Apers, “Centralized or Decentralized Data
Aliocation,”” Distributed Data Sharing Systems,”’ R. P,
van de Riet and W. Litwin, eds., North-Holland, New
York, 1982.

A. Segall, “Dynamic File Assignment in the Computer
Network,”’ part 1, IEEE Trans. Automatic Control, Vol.
AC-24, no. 5, Oct. 1979.

J. M. Porcar, ‘“‘File Migration in Distributed Computer
Systems,”’ PhD thesis, Univ. of California, Berkeley, 1982,

Benjamin W, Wah is an assistant pro-
fessor of electrical engineering at Purdue
University. He received his BS and MS
degrees in electrical engineering and com-
J puter science from Columbia University in
1974 and 1975, and MS degree in compu-
ter science and the PhD degree in engineer-
y ing from the University of California at
Berkeley in 1976 and 1979, respectively.
His current research interests include par-

Wah’s address is, School of Electrical Engineering, Purdue

University, West Lafayette, IN 47907.

COMPUTER

