Multiprocessing of
Combinatorial Search Problems

Benjamin W, Wah, Guo-jie Li, and Chee Fen Yu

Multiprocessor solutions
to complex science and
engineering problems
require an effective
representation of the
problem and an efficient
search. Functional
requirements for search
algorithms must open up
a variety of architectures
for any problem.

June 1985

Purdue University

Multiprocessing refers to the con-
current execution of processes

(or programs) in a computer hardware
complex with more than one indepen-
dent processing unit.! Conventional-
ly, multiprocessing is defined as a cen-
tralized computer system with central
processors, input-output processors,
data channels, and special-purpose
processors.

With the advent of VLSI technolo-
gy, it has become cost effective to in-
clude a large number of general- and
special-purpose processors in a multi-
processing system. The definition of
multiprocessing has been extended to
systems such as multiprocessors,
systolic arrays, and dataflow com-
puters. In this sense, parallel process-
ing and multiprocessing can be con-

sidered synonymous. Examples of

such systems range from the IBM 360
computers with channels, Illiac IV,
Staran, Cm"*, Trac, MPP, and the
Cray X-MP to the latest fifth-gen-
eration computer system.

Major issues of
multiprocessing

In using a multiprocessing system to
solve a given problem, tremendous ef-
fort can be spent in designing a good
parallel aigorithm. The objective is to
wbtain an algorithm with a speedup
proportional to the number of proces-
sors over the best available serial

“Saying that a problem is intractable ‘with an exponential
complexity implies that the best parallel algorithm cannot
have a polynomial complexity with a polynomial number
of processors. Supposing this is false, a serial simulation
of this parailel algorithm can soive the problem in
polynomial time, hence contradicting the fact that the
problern has an exponential complexity.

O018-9162/85/0600-0093301.00 © 1988 IEEE

algorithm. This must be done within
the architectural constraints, and it in-
volves trade-offs in computation time,
memory space, and communications
requirements.

The applicability of multiprocessing
to the problem is also an important
issue. The problem should be poly-
nomially solvable by a serial com-
puter. Intractable problems with com-
plexity that is exponential in respect to
problem size cannot be solved in poly-
nomial time® unless an exponential
number of processors are used.2 This
is, of course, technologically infeasible
for large problems. For example, if the
best serial algorithm requires 2~ micro
seconds to solve a problem of size NV, it
would require 2% microseconds, or
366 centuries, to solve a problem of of
size 60. Assuming that a linear speedup
is possible, it would require 2% pro-
cessors to solve the problem in approx-
imately one second, and 24 processors
to solve the problem in 20 minutes. For
intractable problems, approximate
solutions should be used in order to
complete the algorithm in a reasonable
time.

Multiprocessing is generally used to
improve the computational efficiency
of solving a given problem, not 1o ex-
tend the solvabie probiem space of the
problem. Suppose that it takes N*
units of time to solve a problem of size
N, where kis a constant (= 1) Assum-
ing a linear speedup, a parallel
algorithm with NV processors in N
units of time can solve problem of size
NU+I/B | For k=3, this size is NI-33,
Similarly, for a serial algorithm that
takes &V, k>1 units of time to solve a
problem, the solvable probiem size

"N

with N processors in kVunits of time is
N+ log,N. For a large N, this size is
approximately N.

Search problems. This article ex-
amines the use of multiprocessing in
solving combinatorial search prob-
lems. Combinatorial search problems
involve the search for one or more op-
timal or suboptimal solutions in a
defined problem space. They can be
classified as decision problems, which
find solutions satisfying a given set of
constraints, or as optimization prob-
lems, which seek solutions satisfying
the constraints and also optimizing an
objective function. Examples include
proving theorems, playing games,
evaluating a logic program, solving a
database query, designing a computer
system, assigning registers for a com-
piler, finding the shortest path in a
graph, solving a mathematical pro-
gramming problem, and searching for
a permutation order to sort a set of
numbers. These problems occur in a
wide spectrum of engineering and
science applications, including ar-
tificial intelligence and operations
research.

A search problem can be repre-
sented as an acyclic graph® or as a
search tree. These representations are
characterized by a root node with no
edge entering it and by one or more ter-
minal nodes with no exiting edges. In a
search graph, one or more edges can
enter any node except the root; in a
search tree, each node except the root
has exactly one edge entering it.

An edge in a search graph represents
an assignment of value to an unas-
signed parameter. This can be il-
lustrated by the 0/1 knapsack prob-
lem, in which N objects are to be
packed into a knapsack. Object jhas a
weight w;, and the knapsack has a
capacity M. If object i is placed in the
knapsack, then a profit p; is earned.
The objective is to fill the knapsack so
as to maximize profit. The unassigned
parameters are the set of objects that
have not been considered. In expand-
ing a node, an object, say i, is selected,

"An acyclic graph is one without cycles. In general, some
graphs with cycles can be searched, but this lopK is
beyond the present scope.

94

and two alternatives are created: (a)
object / is included in the knapsack,
and (b) object / is not included.

The nonterminal nodes in a search
tree can be classified as AND nodes
and OR nodes. An AND node repre-
sents a (sub)problem that is solved
only when all its children have been
solved. An example of an AND nodeis

T

A PY ARt p D]
IR AN

s Sy
R e

Search problems can be
represented as acyclic graphs
‘or search trees.
one that adds the solutions from all
subtrees expanded from this node. In
contrast, an OR node represents a
(sub)problem that is solved if any one
of its children are solved. (The defini-
tions of AND and OR nodes are taken
from Martelli and Montanari3; the
roles of the AND and OR nodes in an
ANDY/OR tree are reversed in Nilsson’s
definitions.4) Expanding a 0/1 knap-
sack problem by choosing an object to
beincluded or excluded corresponds to
transforming the problem from one
state to another until the goal state is
achieved. In this sense, the resulting

tree contains only OR nodes.

To facilitate the design of multi-
processing systems for solving a search
problem, the problem is transformed
into one of the following paradigms
according to the functions of the
nodes. 45

(1) AND tree: All nonterminal
nodes in the search tree are AND
nodes. An example is a divide-and-
conquer algorithm that decomposes a
problem into subproblems and solves
the original problem by combining the
solutions of the subprobiems.

(2) OR tree: all nonterminal nodes in
the search tree are OR nodes. Branch-
and-bound algorithms that systemati-
cally prune unnecessary expansions
belong to this class.

(3) AND/OR graph: The nonter-
minal nodes are either AND or OR
nodes. Game trees and logic programs
can be represented as AND/OR trees.
Dynamic programming problems can
be solved as acyclic AND/OR-graph
searches.

A node is active if its solution value
has not been found; otherwise, it is fer-
minated. In a serial algorithm, the set
of active nodes is maintained in a
single list. A heuristic value defined by
a heuristic function is computed for
each node. The active node with the
minimum heuristic value is always ex-
panded first. A search is called a
depth-first search if the negation of the
level number is used as the heuristic
function. In this case, the nodes in the
active list are expanded in a last-
in/first-out order. A search is called a
breadth-first search if the level number
is used as the heuristic function. In this
case, the nodes in the active list are ex-
panded in a first-in/first-out order.
Lastly, a lower bound can be com-
puted for each node in the active list.
This represents the lower bound of the
best solution that can be obtained
from this node. By using the lower-
bound function as the heuristic func-
tion, a best-first search expands the
node with the minimum lower bound.

Dominance relations. To reduce the
search space, unnecessary expansions
can be pruned by dominance relations.
When a node P; dominates another
node P;, it implies that the subtree
rooted at P; contains a solution node
with a value no more (or less) than the
minimum (or maximum) solution val-
ue of the subtree rooted at P

As an example, consider two assign-
ments, P; and P,, on the same subset
of the objects to be packed into a
knapsack in the 0/1 knapsack prob-
lem. If the total profit of the objects
assigned to the knapsack for P, ex-
ceeds that of P, and the total weight of
the objects assigned in P, is less than
that of P,, then the best solution ex-
panded from P, dominates P,.

A special case of the special class
dominance tests is the class of lower-
bound tests, which are used in branch-
and-bound algorithms to solve mini-
mization problems. If a solution with
value v has already been found, then
all active nodes with lower bounds
greater than v can be terminated, since
they would not lead to better solutions.
The minimum of the solution values
obtained at any time can be conve-

COMPUTER

‘ated to the complexity of S(N) and
(N). In finding the sum or the max-
num of N numbers, S(N) + C(N)
= O(1); in using N/(log, N), processors
zhieve the maximum utilization. In
orting N numbers, S(N) +C(N)
= O(N), and log, N processors should
e used to maximize processor utiliza-
on. We have studied the asymptotic
rocessor utilization and found that
V/logyN is a threshold when
(N)+C(N)=0(N).}® For k (a
unction of N) processors, the pro-
essor utilization is one, between zero
nd one, or zero when the limiting
atio of k and N/log, N is zero, greater
han zero, or approaching infinity,
espectively.

Since processor utilization increases
vith a decreasing number of pro-
essors, it is not an adequate measure
»f the effects of parallel processing. A
nore appropriate measure is the K72
riterion, which considers both pro-
essor utilization and computational
ime. We have proven that the asymp-
otic optimal number of processors to
ninimize XT? in parallel divide-and-
-onquer algorithms is ©(N/log,; V),
vhen S(N)+C(N)=0(1)." Simu-
ations have verified that the optimal
wumber of processors is either exactly
N/(logsN—-1) or very close to this
value.

QiAo -, -5 I RIS AUIAIA DI £ SO IS

3ranch-and-bound algorithms

A branch-and-bound algorithm is a
systematic search of an OR tree. 16 [t is
-haracterized by four constituents: a
sranching rule, a selection rule, an
»limination rule, and a termination
condition.

The selection rule examines the list
of active subproblems (nodes) and
selects one for expansion based on the
heuristic value. For a serial search, the
minimum number of nodes is ex-
panded under a best-first strategy,
provided all lower bounds are
distinct.'s This is achieved at the ex-
pense of increased memory space, as
there are a large number of concur-
rently active subproblems. The algo-

smerees mmeard wrdiare All Active

P TR

The elimination rule prunes un-
necessary expansions by means of
lower-bound and dominance tests. For
lower-bound tests, the incumbent 2
holds the value of the best solution
found so far in the search. In minimi-
zation problems, a lower bound is
calculated for each subproblem when
it is created. A subproblem cannot lead
to the optimal solution if its lower
bound exceeds the incumbent; such
subproblems can be eliminated from
further consideration. This lower-
bound test can be relaxed by defining
an allowance function, €(z). Sub-
problems with lower bounds greater
than z—e(2) are eliminated, resulting
in a suboptimal solution that deviates
from the optimal solution by at most
¢(2), where z¢ is the value of the op-
timal solution.!” An example of an
allowance function is the relative error
deviation; a subproblem is terminated
if its lower bound is greater than
z/(1 +¢). An allowance function is
very effective in reducing the computa-

. tional complexity of branch-and-

bound algorithms. We have found
that for some NP-hard problems
under best-first searches, a linear
reduction in accuracy of the solution
results in an exponential reduction in
the computational overhead, 8.1

Each of the four constituents of a
serial branch-and-bound algorithm
can be implemented by means of
parallel processing.

(1) Parallel selection of subprob-
lems: Multiple subproblems with the
smallest heuristic values can be se-
lected for expansion.

(2) Parallel expansion of sub-
problems.

(3) Parallel termination tests and
update of the incumbent.

(4) Parallel elimination tests: These
include the lower-bound and domi-
nance tests.

We have studied the performance
bounds of parallel branch-and-bound
search, assuming (1) that only lower-
bound tests are active, (2) that there is

o tente crlhnernrd v arvm e TN that A Aare

nously, and (5) that the heuristic func-
tion is unambiguous.?

Let T,(k) (resp. T4(k)) be the
number of iterations required to ob-
tain the optimal solution under a best-
first (resp. depth-first) search with &k

processors. The following bounds

have been derived:

(1) For a parallel best-first search, if
the value of optimal-solution nodes
differs from the lower bounds of other
nodes, then

T <T,(k)
< ._7.'9_(_1_)_+£‘_lh 2)
k k_

where & is the maximum number of
levels in the branch-and-bound tree.

(2) For a parallel depth-first search,
if all solution nodes exist at level A,
then)

Tb‘k‘_*_'-n)

—

Tl) | (ktD)(e+D)y
k k

A

(€)

where ¢ is the number of distinct in-
cumbents obtained during the search.
A similar equation can be also derived
for parallel breadth-first searches.
Equations (2) and (3) show almost a
k-time reduction in the number of
iterations when parallel processing is
applied on the same search strategy
and when 7,(1)/k is large.

The best search strategy depends on
the accuracy of the problem-depend-
ent lower-bound function. Very inac-
curate lower bounds are not useful in
guiding the search; very accurate lower
bounds prune most unnecessary ex-
pansions. In both cases, the number of
subproblems expanded by depth-first
and best-first searches does not differ

greatly. A depth-first search is better
lerailes 1t renlirac lece mermorv Spnace

related to the complexity of S(N) and
C(N). In finding the sum or the max-
imum of N numbers, S(N) + C(N)
= (X1); in using N/(log, N), processors
achieve the maximum utilization. " In
sorting N numbers, S(N) +C(N)
=O(N), and log, N processors should
be used to maximize processor utiliza-
tion. We have studied the asymprotic
processor utilization and found that
N/log,N is a threshold when
S(N)+C(N)=0(N).! For k (a
function of N) processors, the pro-
cessor utilization is one, between zero
and one, or zero when the limiting
ratio of k and N/log, N is zero, greater
than zero, or approaching infinity,
respectively.

Since processor utilization increases
with a decreasing number of pro-
cessors, it is not an adequate measure
of the effects of parallel processing. A
more appropriate measure is the K72
criterion, which considers both pro-
cessor utilization and computational
time. We have proven that the asymp-
totic optimal number of processors to
minimize K72 in parallel divide-and-
conquer algorithms is ©(N/log,N),
when S(N) +C(N)=0(1)."S Simu-
lations have verified that the optimal
number of processors is either exactly
N/(logaN-1) or very close to this
value,

S N T e ey e

Branch-and-bound algorithms

A branch-and-bound algorithm is a
systemnatic search of an OR tree. !6 [t is
characterized by four constituents: a
branching rule, a selection rule, an
elimination rule, and a termination
condition.

The selection rule examines the list
of active subproblems (nodes) and
selects one for expansion based on the
heuristic value. For a serial search, the
minimum number of nodes is ex-
panded under a best-first strategy,
provided all lower bounds are
distinct.'® This is achieved at the ex-
pense of increased memory space, as
there are a large number of concur-
rently active subproblems. The aigo-
rithm is terminated when all active
subproblems have been either ex-
panded or eliminated.

96

The elimination rule prunes un-
necessary expansions by means of
lower-bound and dominance tests. For
lower-bound tests, the incumbent z
holds the value of the best solution
found so far in the search. In minimi-
zation problems, a lower bound is
calculated for each subproblem when
itis created. A subproblem cannot lead
to the optimal solution if its lower
bound exceeds the incumbent; such
subproblems can be eliminated from
further consideration. This lower-
bound test can be relaxed by defining
an allowance function, ¢(z). Sub-
problems with lower bounds greater
than z—e(z) are eliminated, resulting
in a suboptimal solution that deviates
from the optimal solution by at most
€(Z), where z, is the value of the op-
timal solution.!” An example of an
allowance function is the relative error
deviation; a subproblem is terminated
if its lower bound is greater than
Z/(1+¢). An allowance function is
very effective in reducing the computa-

. tional complexity of branch-and-

bound algorithms. We have found
that for some NP-hard problems
under best-first searches, a linear
reduction in accuracy of the solution
results in an exponential reduction in
the computational overhead. '8.19

Each of the four constituents of a
serial branch-and-bound algorithm
can be implemented by means of
parallel processing.

(1) Paralle!l selection of subprob-
lems: Multiple subproblems with the
smallest heuristic values can be se-
lected for expansion.

(2) Parallel expansion of sub-
problems.

(3) Parallel termination tests and
update of the incumbent.

(4) Parallel elimination tests: These
include the lower-bound and domi-
nance tests.

We have studied the performance
bounds of parallel branch-and-bound
search, assuming (1) that only lower-
bound tests are active, (2) that there is
asingle shared memory, (3) that no ap-
proximations are allowed, (4) that the
subproblems are expanded synchro-

nously, and (5) that the heuristic func-
tion is unambiguous.20

Let T,(k) (resp. T, (k)) be the
number of iterations required to ob-
tain the optimal solution under a best-
first (resp. depth-first) search with &
processors. The following bounds
have been derived:

(1) For a parallel best-first search, if
the value of optimal-solution nodes
differs from the lower bounds of other
nodes, then

r._T"_“_)_'.l_H' <T,(k)
k
- [1,0) L et 2
k k

where 4 is the maximum number of
levels in the branch-and-bound tree.

(2) For a parallel depth-first search,
if all solution nodes exist at level A,
then

[T,0)1 ol

=Tk
P =T4(k)

L -

-
Ta) | (k+D-e+)
k k

A

o

where ¢ is the number of distinct in-
cumbents obtained during the search.
A similar equation can be also derived
for parallel breadth-first searches.
Equations (2) and (3) show almost a
k-time reduction in the number of
iterations when parallel processing is
applied on the same search strategy
and when 7, (1)/k is large.

The best search strategy depends on
the accuracy of the problem-depend-
ent lower-bound function. Very inac-
curate lower bounds are not useful in
guiding the search; very accurate lower
bounds prune most unnecessary ex-
pansions. In both cases, the number of
subproblems expanded by depth-first
and best-first searches does not differ
greatly. A depth-first search is berter
because it requires less memory space,
in proportion to the height of the
search tree. When the accuracy of the

-
3
1
]

—e
~
§

/ / SUBPROBLEM lN MAIN MEMDRY o
SUBPROBLEM IN SECONDARY MEMOHY

e

AR ot ey Rl indalsna R iRt i e

GLOBAL DATA REGISTER

; EMPTY SLOT

|

& . i ' l

E [suzm e : auma i l

- L R LI ’

b = | : | | susrrosLem

g . MEMORY

% | 4 4. l = CONTROLLER
SR Ee " S R R et
bpoTA BEE 1 o
o B B e
I NN N -
1 ' : ‘,STACK ' . l
T 2 . | -
Sy 2 seconmv! iy ! .
L SACK . wemoRy |1 seconoany |1
ST L STORAGE [t |
] .' MAm MEMOHY . - lvg‘
;. | 'AEGioN” | REGION' lasmoi* | ‘

F;gure 1. The architecture and loglcal structure of MANIP--a multipmcessor for parallel best-first search.

lower-bound function is moderate, a
best-first search performs better. In
this case, a good memory management
system is necessary to support the
memory space required.

Several architectures based on im-
plicit enumeration have been proposed
for parallel processing of branch-and-
bound algorithms. These architectures
delegate a subproblem to each proces-
sor, which reports to its parent proces-
sor when the evaluation is complete. 2!
The limited degree of communication
causes some processors to work on
tasks that a better interconnection net-
work would eliminate. Moreover, im-
plicit enumeration is wasteful. Imai et
al.?? and El-Dessouki and Huen23
have investigated parallel branch-and-
bound algorithms based on a general-
purpose network architecture -with
limited memory space and slow inter-
processor communication. They used
depth-first search, due to memory
limitations.

Problems more efficiently evaluated
by a parallel best-first search require
more compiex architectures. The de-

June 1985

sign problems are a selection of sub-
problems with the minimum lower
bounds and management of the re-
quired large memory space.

Manip — Multiprocessor for parallel
best-first search with lower bound tests
only. Figure | shows the architecture
of Manip. !3-24 It consists of five major
components: a selection and redistri-
bution network, secondary storage,
processors, global data register, and
subproblem memory controllers.

The selection network selects sub-
problems with the minimum lower
bounds for expansion in each iteration
and connects ihe memory controilers
for load balancing. Secondary storage
holds excess si:bproblems that cannot
be stored in the memory controllers.
The memory controllers manage the
local list of subproblems, maintain the
secondary siorage, and communicate
with other controllers through the
selection and redistribution network.
The processors are general-purpose
computers for partitioning subprob-
lems and evaluating lower bounds.

SUBPROBLEM
MEMORY
CONTROLLER
Cwm-1

SECONDARY
STORAGE

The global data register is accessible to
all memory controllers and contains
the value of the incumbent. To avoid
contention during updates, this regis-
ter can be implemented by a broadcast
bus or a sequential associative mem-
ory. In the latter case, the minimum is
found when the values of the feasible
solutions are shifted out bit-serially and
synchronously from all processors.

Two difficult issues must be soived
in a parallel best-first search. First, the
k subproblems with the smallest lower
bounds must be selected from the N
active subproblems in the system.
Selection by software requires a time
overhead of O(N) in each iteration. A
practical multistage selection network
for selecting k elements from N ele-
ments requires O(log,Vlog, &) time
complexity and O(N-log2 k) hard-
ware complexity. 2

A single-stage selection network can
also be used. One or more subprob-
lems with the minimum lower Sounds
in each processor are sent (0 the
neighboring processors and inserted
into their local lists. A maximum of

97

(k~ 1) shift-and-insert operations are
needed to ersure that each processor
has one of the & subproblems with the
smallest lower bounds.!® Assuming
that insertion is implemented in soft-
ware, the time overhead in each itera-
tion is O(k-logy V). In all these cases,
selection represents significant system
overhead. ~

No-wait policy. Selection overhead
is high; furthermore, the selection rule
is based on a fallible lower-bound
heuristic. Therefore, it might be more
efficient not to follow the selection rule
strictly; We propose a no-wait policy.
Instead of waiting for one of the k sub-
problems with the smallest lower
bounds, each processor would expand
the “‘most promising’’ subproblem in
its local memory and initiate a fetch of
the ‘“‘most promising” subproblem
from its neighbors. In this case, the
most promising subproblem is the one
with the minimum lower bound.

When the k¥ most promising sub-
problems are randomly distributed
. among the processors, the average
fraction of processors containing one
or more of the most promising sub-
problems is at least 0.63, !® resulting in
a speedup proportional to 0.63%.
However, as expansion proceeds, the
distribution might become nonran-
dom and require an interconnection
network to randomize the distribu-
tions and balance the workload in the
system. Experimental results on ver-
tex-cover and knapsack problems have
shown that the number of subprob-
lems expanded increases by only about
10 percent when the above scheme re-
places a complete selection. The per-
formance is almost as good as that of a
complete selection when the proces-
sors expand subproblems synchro-
nously and perform one shift-and-
insert operation for each subproblem
expanded. The shift-and-insert opera-
tion can be overlapped with subprob-
lem expansions and supported by a
unidirectional ring network.

A second issue in implementing a
best-first search iies in the manage-
ment of the large memory space re-
quired. The multiprocessing model
used to study this problem comprises a

98

CPU, a main memory, a slower sec-
ondary memory, and a secondary-
memory controller. The expected
completion time of the branch-and-
bound algorithm on this model is
taken as the performance measure.

A direct implementation involving
an ordered list of pointers to the sub-
problems results in poor locality of ac-
cess, because the subproblems are not
ordered by lower bounds in the virtual
Space. A better alternative is a special

AL RN M T s X D b M L L N

Experimental results on integer
and vertex-cover programming
verify the algorithm’s usefulness.

2 A S Tt R AL 1, SIS S AERA Y

virtual memory that tailors its control
strategies according to the locality of
access.® However, this approach is
inflexible, because the parameters of
the control strategies are problem
dependent. The inadequacies of these
approaches are due, again, to strict
adherence to the selection rule. We can
also apply the no-wait policy here; it
has resulted in the design of a modified
branch-and-bound algorithm. %

A modified algorithm. In this modi-
{ied algorithm, the range of possible
lower bounds is partitioned into & dis-
joint regions (Figure 1). The subprob-
lems in each region are maintainedin a
separate list. The top portion of each
list resides in the main memory, and
the rest resides in the secondary
memory. Due to the high overhead of
secondary-storage accesses, subprob-
lems in a list are expanded in a depth-
first manner. To implement the no-
wait policy, the modified sefection rule
chooses for expansion the subproblem
in the main memory with the smallest
lower bound. Since subproblems with-
in a list are not sorted, the /ower-
bound elimination rule has to be
modified.

Assuming that the new incumbent
lies in the range of list ¢, all lists with
indices greater than ¢ are eliminated.
Subproblems in list ¢ with lower
bounds greater than the incumbent are
eliminated only when they are moved
to the main memory during the expan-
sion of list £. As a result, it is necessary

to carry out the lower-bound test on
each selected subproblem before it is
expanded.

When one list is used, the modified
algorithm is identical to a depth-first
search; when infinity lists are used, it
is identical to a best-first search. In
general, as the number of lists in-
creases, the number of subproblems
expanded decreases and the overhead
of the secondary-memory accesses in-
creases. The number of lists should be
chosen to maximize the overlap be-
tween computations and secondary-
memory accesses. This overlap, in
turn, depends upon the accuracy of the
lower-bound function and the access
times of the main and secondary
memories. The accuracy of the lower-
bound function is problem dependent
and can be estimated from sample
problems of the same type.

Experimental results on integer-
programming and vertex-cover prob-
lems verify the usefulness of the
modified algorithm. For vertex-cover
problems, the lower-bound function is
very accurate, so a depth-first search
results in the best performance. For
integer-programming problems, the
lower-bound function is less accurate.
As a result, more stacks (two to three)
achieve best performance. The im-
provement in paging overhead over a
direct implementation of the best-first
search can exceed a factor of 100.

Experience with Manip and prior
studies show three functional re-
quirements for efficient evaluation of
branch-and-baund algorithms with
only lower-bound tests: a loosely
coupled interconnection of processors
with load-balancing capability, a
method of concurrent update, and
broadcast of the incumbent.

Parallel dominance tests. When
general dominance tests are used, it is
necessary to keep the set of current
dominating nodes (denoted by N,;) in
memory. These are nodes that have
been generated but not yet dominated.
In general, NV, can be larger than the
set of active nodes. A newly generated
node, B, has to be compared with all
nodes in NV, to see whether P, or any
nodes in N, are dominated.

COINDL 1T

If Ny is small, it can be stored in a
bank of global data registers. How-
ever, centralized comparisons are inef-
ficient when N, is large. A large NV,
should then be partitioned into &
subsets, N9,...,N !, and distrib-
uted among the local memiories of the
k processors. A subproblem, P,
generated in processor i, is first com-
pared with NV/; any subproblems in
N} dominated by P, ; are removed. If
P, T is not dominated by a subproblem
innN ;, it is sent to a neighboring pro-
cessor and the process repeats. If it has
not been dominated by any node in
Ny P;; eventually returns to pro-
cessor / and is inserted into V.

The functional requirements for im-
plementing parallel dominance tests
depend on the size of NV, and the struc-
ture of the dominance relation. When
[V4]is small, broadcast buses or global
registers carry important unstructured
dominance tests, in which a domi-
nance relation can exist between any
pair of nodes. For structured domi-
nance tests, it might be possible to par-
tition the search tree and localize the
dominance tests, but this poses addi-
tional complexity on the system ar-
chitecture. On the other hand, when
IIV4lis large, it is necessary to partition
N4 into subsets and to perform the
dominance tests in parallel. This re-
sults in tight coupling of the pro-
cessors, because the transfer of newly
generated nodes between processors
must be synchronized and overlapped
with computations.

Anomalies of parallelism in branch-
and-bound algorithms. Since it is
possible to overiap the communication
overheads with computations for the
various search strategies, the speedup
of branch-and-bound algorithms can
be measured by the ratio of the num-
ber of iterations of the best serial algo-
rithm to that of the parallel aigorithm
under synchronous operations.

A k-fold speedup is expected when k&
processors are used. However, simula-
tions have shown that the number of
iterations for a parailel branch-and-
bound algorithm using & processors
can be more than the number of itera-
tions of the best serial algorithm (this

June 1985

ERE

L ‘zyF;Asm'L_s

R O e ol St i 4 2

T

RS "

@ A FEASIBLE SOLUTION -
| === LOWER-BOUND TESTS =

i
E:,'
e

e b o Ko i T

s SOLUTION IN o (Gt
. PARALLEL CASE '~ P S

- PR . = L e

Figure 2, Example of a detrimental anomaly under a parallel depth-first
search (allowance function ¢ =0.1). :

phenomenon is a detrimental anoma-
{y); less than one-kth of the number of
iterations of the best serial algorithm
(an acceleration anomaly); or less than
the number of iterations of the best
serial algorithm, but more than one-
kth of the number of iterations of the
best serial algorithm (a deceleration
anomaly), 20.28.29

It is desirable to discover conditions
that preserve acceleration anomalies,
eliminate detrimental anomalies, and
minimize deceleration anomaiies.

Figure 2 gives an example of a detri-
mental anomaly. Let g(P;) be the
lower bound of subproblem P; and
J(P,) be the value of the best solution

that can be obtained from P,. Suppose
that the best serial algorithm for the
problem is a depth-first search. In a
serial depth-first search, subtree Tyis
terminated by the iower-bound test of
Pl as fiP;/(1 +e)<g(P,), wher
€=0.1. In a parallel depth-first search
with two processors, a feasible solu-
tion, Py, which terminates P jand Py,
is found in the second iteration. Con.
sequently, P, is not eliminated, since
P, is not generated and S(PY/(1+¢)
>g(P,). Subtree T, has to be ex-
panded; this eventually terminates
subtree T;. If T, is much larger than
T, the time it takes to expand Ts by
using two processors exceeds the time
to expand T'; by using one processor.

+.

A FEASIBLE SOLUTION
R AL S raegn

UN

L R N adh Sk o

-
$oo
&2

Figure 3. Example of an acceleration an

search (allowance function ¢ = 0.1).

Figure 3 shows an example of an ac-
celeration anomaly. Subtree 7 will be
expanded in a serial depth-first search,
as f(P3)/(1+¢) >g(P,) when ¢ =0.1,
but not in a parallel depth-first search
with two processors, since P,, and
hence T, will be terminated by the
lower-bound test with Ps: (f(Py)
/(i+e)<g(P,)).If Tis very large, an
acceleration anomaly will occur.

A heuristic function is unambiguous
if all nodes in the search tree have
distinct heuristic values. An elimina-
tion rule (lower-bound or dominance
tests) is said to be consistent with the
heuristic function if the elimination of
P; by P; implies that P, is selected
before P; in a serial search. Anomalies
are caused by a combination of rea-
sons: (1) there are multiple solution
nodes; (2) the heuristic function is am-
biguous; and (3) the elimination rule is
not consistent with the heuristic func-
tion.2 These conditions cause the tree
to be searched in a different order in
the serial and parallel cases.

We have discussed the conditions
sufficient for eliminating detrimental
anomalies and the conditions neces-
sary to preserve acceleration anom-
alies in a previous article?%; a brief

100

omaly under a parallel depth-first

summary is given here. Assume that
the same search strategy is used in
serial and parallel cases. For branch-
and-bound algorithms with domi-
nance tests, only a best-first search
with the following conditions guar-
antees that detrimental anomalies will
not occur:

(1) The heuristic function is unam-
biguous.

(2) Approximations are not al-
lowed.

(3) The dominance relation is con-
sistent with the heuristic function.

Ambiguity in the heuristic function
can be resolved by augmenting the
original heuristic function with a tje-
breaking rule, say, by level and lef-
right orientation. For most problems,
dominance relations that are consis-
tent with the heuristic function can be
designed. Acceleration anomalies can
occur in one of following cases: when a
breadth-first or depth-first search is
used; when some nodes have identical
lower bounds; when the dominance re-
lation is inconsistent with the heuristic
function; when multiple lists of sub-
problems are used; or when a subop-
timal solution is sought.

TESTS o

TIITOT bd =
M (it i b g, RPN I, o

AND/OR-tree search

Searching an AND/OR tree is more
complex than searching an AND tree
or an OR tree. An AND/OR tree is
searched in two phases. The first is a
top-down expansion, as in searching
an OR tree; the second is a bottom-up
evaluation, as in searching an AND
tree. Due to the existence of both AND
and OR nodes, a parallel search algo-
rithm should combine the features of
AND- and OR-tree searches. The
presence of OR nodes demands that a
good selection strategy be developed.
The granularity of parallelism, like
that of parallel divide-and-conquer
algorithms, is an important considera-
tion. Specific restrictions on a given
problem, such as pruning rules, must
be considered. These rules are usually
more complicated, as more informa-
tion is involved in the process.

When two AND/OR subtrees are
searched concurrently, more work
than necessary might be performed if
pruning information obtained from
one processor is unavailable to the
other processor. The extra work is
called information deficiency over-
head. Pruning information can be ex-
changed by messages or through a
common memory. Increased commus-
nication overhead needed for pruning
is called information transfe- over-
head. In general, a tradeoff exists be-
tween the information-deficiency and
information-transfer cverheads. A
good parallel AND/OR-tree search
should weigh the tradeoffs—the merits
of parallel processing against the com-
munications overhead of obtaining the
necessary pruning information.

Parallel o-8 search. A two-person
game between players MAX and MIN
can be represented in a game tree in
which the moves of MAX and MIN
are put in alternate levels of the tree. In
the corresponding AND/OR iree, OR
modes represent board pos:tions re-
sulting from MAX’s moves and AND
nodes represent positions resulting
from MIN’s moves. All nonterminal
MAX nodes take the maximum score

COMPUTER

of their children, while nonterminal
MIN nodes take the minimum score.
This minimax procedure is used to
find the best move for the MIN player
represented as the root.$

A well-known technique to improve
the efficiency of a minimax search is
a-B pruning.* This technique uses two
parameters, « and 8, to define the
search window. The o carries the lower
bound of the MAX nodes; 8 repre-
sents the upper bound of the MIN
nodes. The game tree has solution
values defined for the terminal nodes
only and is searched in a depth-first
fashion.

In expanding a MIN node, if the
value returned by any of its children is
less than «, then this node can be
pruned without further expansion. In
this case, the value returned by this
node to its parent-—a MAX node—is

less than « and another MAX node

with value equal to « (according to the
definition of) already exists. The 3 is
updated when a MIN node with a
smaller value is found.

On the other hand, in expanding a
MAX node, if the value returned by
any of its children is greater than 3,
then this node can also be pruned. The
a is updated when a MAX node with a
larger value is found. The search is ter-
minated when all nodes have been
either pruned or expanded. The a-3
search performs better when the initiai
search window is small.

The cost of searching a game tree
depends on the distribution of values
of the terminal nodes. The tree is said
to have a best-case ordering if the {irst
(or leftmost) branch from each node
leads to the best value; it has a worst-
case ordering if the rightmost branch
from each node leads to the best value.

A number of parallel game-tree
search techniques have been dcvel-
oped.?® In the parallel aspirution
search, the a- window is divided into
nonoverlapped subintervals, which are
independently searched by multipie
processors; Baudet reported that the
maximum expected speedup is around
five or six, regardless of the number of
processors. 3! The speedup is limited
because at least W in2) +« Winz} |
nodes must be evaluated for a uniform

June 1985

tree of depth 4 and constant width W,
even when « and 8 are chosen to be the
optimal minimax values.® Accelera-
tion anomalies can also occur when the
number of processors is small, say two
or three.

Finkel and Fishburn have proposed
a tree-splitting algorithm that maps a

look-ahead tree onto a processor tree

with the same interconnection struc-
ture.32 The information-transfer
overhead is small, due to the close
match between the gommunications
requirements and the interconnec-
tions. However, this is a brute-force

| it il R D

An efficient search method must
involve AND and OR pruning.

KOG I TSRS o, R T

search algorithm, and pruning is not
considered in process assignments.
The speedup drops to vk under the
best-case ordering, where k is the
number of processors.

In the mandatory-work-first
scheme, 3 the minimum tree searched
in a serial algorithm is.searched in
parailel during the first phase. The
resulting «-8 window is used in the sec-
ond phase, during which therest of the
tree is searched. This scheme performs
better than the tree-splitting scheme
under best-case ordering, but can be
worse in worst-case ordering. In the
latter case, many nodes pruned in the
tree-splitting scheme might be visited
in the second phase.

Another approach is to use a best-
first search, such as the SSS* algo-
rithm. 34 SSS* is effective in searching
arandomly or poorly ordered tree, but
requires more space and is not signifi-
cantly better than an «-0 search on
strongly ordered trees. Kumar and
Kanal have shown that the SSS* algo-
rithm can be interpreted as a branch-
and-bound procedure, and they have
presented two parallel implementa-
tions of SSS*. %

Previous approaches to parallel
game-tree search have emphasized
reduction of the information-transfer
overhead, but paid little attention to
information-deficiency overhead. We

will consider the information-defi-
ciency overhead in the illustrative con-
text of the scheduling of parallel logic
programs,

Parallel logic programs. Logic pro-
gramming is a programming method-
ology based on Horn-clause resolu-
tion.3¢ An example of a high-level
language for logic programming is
Prolog. Execution of a logic program
can be considered as the search of an
AND/OR tree.3537 The root repre-
sents the initial problem queried, the
OR nodes represent (sub)goals, and
the AND nodes represent clauses. All
subgoals in the same body of a clause
are children of an AND node. A
(sub)goal (OR node) and its children
display the choices of clauses with the
same head. The terminal nodes denote
clauses or subgoals that cannot be
decomposed.

Searching an AND/OR tree for a
logic program is quite different than
searching other types of search trees.
First, in contrast to extremum searches
that find the best solution, solving a
logic program corresponds to finding
any or all solutions that satisfy the
given conditions, the implicative Horn
clauses, and the consistent binding of
variables for the AND nodes. Second,
the value of a node in the AND/OR
tree for a logic program is either
TRUE (success) or FALSE (failure). A
node is usually selected for evaluation
on the basis of a fixed order, such as
the depth-first search. Third, a vari-
able in a logic program can be bound
to several values, and some subgoals
might share a common variable.

An efficient search method must in-
volve pruning. Two kinds of pruning
exist here. In an AND pruning, if one
of the children of an AND node is
found to be FALSE, then all remain-
ing children of this AND node can be
pruned. Likewise, in an OR pruning, if
one of the chiidren of an OR node is
found to be TRUE, then all remaining
children of this OR node can be
pruned. It should be noted that OR
pruning applies only if the OR node
shares no variables with its siblings.

Much research strives for parallel
execution of logic programs. Conery

101

3
%

X3yd

i e S Ko i e tatansie sl i Y e s

Figure 4. A binary AND/OR search tree (a) with high success probability and the corresponding fail-token-flow graph
Gy. (b)AND nodes are represented as squared nodes; OR nodes are represented as circular nodes.

102 COMPUTER

and Kibler?” have classified four kinds
of parallelism of logic programs: AND
parallelism, OR parallelism, stream
parallelism, and search parallelism;
they have also investigated AND par-
allelism. Furukawa et al. 38 and Ciepie-
lewski et al.? have discussed OR
parallelism, while Lindstrom et al. 4
have addressed stream parallelism and
pipelined Prolog processors.

However, very few studies have ad-
dressed processor assignment as a
means to reduce information-deficien-
¢y overhead. Below, we present an
algorithm that schedules searches of
nodes according to estimated proba-
bilities of a terminal node being true
and does not distinguish AND and OR
parallelism.

A new scheduling algorithm. Con-
sider the case in which all terminal
nodes have the value TRUE. For a
binary AND/OR tree of height & (his
even and theroot is at level 0), the solu-
tion tree is found after 2#/2 terminal
nodes have been visited, as shown in
Figure 4a. Once 1, 3, 9, and 11 have
been visited, the root is determined to
be true. In contrast, if all terminal
nodes are FALSE, one can determine
that the root is false by visiting 272 ter-
minal nodes (nodes 1, 2, 3, and 6 in
Figure 4a). These observations imply
that when most of the terminal nodes
in a subtree are TRUE, searching the
‘subtree by assuming that its root is
TRUE is more efficient; otherwise, the
subtree should be searched by assum-
ing that its root is FALSE.

For the AND/OR tree in Figure 4a,
we see that in a sequential search, if
node 1 fails, then node 2 is examined;
otherwise node 3 is examined next.
That is, whether node 2 or node 3 is ex-
amined depends on the result of
searching node 1. Similarly, the traver-
sal of node 5 depends on the results of
traversing nodes 1, 2, 3, and 4. A fail-
token-flow graph, G, as depicted in
Figure 4b for the tree in Figure 4a, can
be drawn, according to this depen-
dence information. A niode (circle) in
the graph is active only if it receives a
fail-token from an incident edge.
When a terminal node in the search
tree is found to be false, a fail-token is

June 1988

sent along the direction of the cor-
responding edge. The coordinator
(shaded box) in the graph represents a
control mechanism that coordinates
the activities of the connected blocks.
When a fail-token is received from any
of the incident edges of a coordinator,

fail-tokens are sent to a// directly con-.

nected nodes. At the same time, any
node searched in the block directly
connected to this coordinator can be
terminated, because it does not belong

A PSRN Lo) 5 o ST A S e SR

The token-flow graph of
AND/OR tree roots is modular
and can be decomposed:
subgraphs correspond to
nonterminal tree nodes.

B Tt S W Ty e wmmertepe-w e pprasgmy
to the solution tree. For example,
when node 1 is found to be false, a fail-
token is sent to node 2. If node 2 is
found to be false, a fail-token is sent to
coordinator X . Any node concur-
rently searched in block D can then be
terminated.

A simple parallel search strategy can
be derived with the aid of G,. To effec-
tively search the tree, no more than
2%72 processors are needed. A parallel
depth-first search is applied in the first
A steps by generating all children of a
selected AND node, but only the left-
most child of a seiected OR node. As
an example, nodes 1, 3,9, and 1 1 in the
search tree are assigned to four pro-
cessors in the fourth step. This cor-
responds to generating fail-tokens to
activate these nodes in G, (Figure 4b).
If a node, say 3, is found to be FALSE,
then a fail-token is generated and the
idle processor is assigned to evaluate
node 4. Close examination of Figure
4b shows that for each column of G,
there must be at least one node with the
value TRUE if a solution tree exists.
When a node is found to belorig to the

solution tree, 2ll nodes on the path

from the initial start node to this node
in G, must have failed. Processors for
searching the AND/OR tree can be
scheduled according to the state of exe-
cution in G, at any time.

When the AND/OR tree is com-
plete, and Pr(h) (the probability that a

terminal node is TRUE) is constant,
Pr(0) (the probability for a solution
tree is to be found from the root,
which is assumed to be an OR node)
can be shown to be close to one for
Pr(h)>0.618. The threshold is 0.382
(=1-0.618) if the root is an AND
node. In both cases, a node with the
value TRUE can be found quickly in
each column of G;. As a result, the
speedup is close to one.

On the other hand, if Pr(h) is small,
then the probability for a solution tree
to exist at the root is close to zero and
the above strategy is no longer suitable
because a large number of nodes must
be evaluated in each column of G,. In
this case, the scheduling should be
done according to the success-token-
Slow graph, G,. G, is the dual of G,,
in the sense that a success token
replaces a fail token and the columns
in G, are transposed to become the
rows in G,. Since searching for failure
from an AND node is equivalent to
searching for success from an OR
node, the above scheduling algorithm
can be extended with respect to G,.

The token-flow graph obtained for
the root of an AND/OR tree is modu-
lar and can be decomposed into modu-
lar token-flow subgraphs correspond-
ing to all nonterminal nodes in the tree.
If the probability of leading to a solu-
tion tree for a nonterminal node can be
refinec. as the search progresses, the
corresponding token-flow subgraph
can berederived. Anidle processor can
be scheduled according to the token-
flow subgraph derived for the root of
the given subtree. We have proposed a
muitiprocessor architecture, MALOP,
wihuch is based on an intelligent search
strategy and effective scheduling, 4!

In summary, the important issues in
parallel AND/OR-tree search are the
granularity of parallelism, the parallel
setection of nodes for evaluation, and
<he intelligent pruning of unnecessary
nodes. Processors should know the
glohal state of search in order to select
the nodes for expansion and should be
able to tell other processors to prema-
turely terminate their tasks, when nec-
essary. The architecture should support
dissemnination of this information.

PRy

Figure 5. A graph with
five stages and three
nodes in each inter-
mediate stage (a); an
AND/OR-graph repre-
sentation of the reduc-
tlon in finding an op-
timal path in a three-

stage graph (b). The
problemin (b)is to find
min f{a;; + b, });
i)ke{1,2}
AND nodes are repre-
sented as squared
nodes and indicate
summations; OR nodes
are represented as cir-
cular nodes and in-
dicate comparisons.

Dynamic programming

Dynamic programming, a powerful
optimization methodology, can apply
to many areas, including optimal cori-
trol, industrial engineering and eco-
nomics.“? In general, DP transforms
the problem into a form suitable for
optimization, but it is not an algorithm
for optimizing the objective function.
One can represent a problem solvable
by DP as a multistage problem, a
divide-and-conquer problem, or an
acyclic AND/OR graph-search prob-
lem. Various computational approach-
es can be used, depending on the for-
mulation and representation. We
discuss DP problems separately here
because they illustrate the effects of
representation on the design of the
supporting multiprocessing system.

A DP formulation is characterized
by a recursive equation whose left-
hand side identifies a function name
and whose right-hand side is an expres-
sion containing the maximization (or
minimization) of values of some mono-
tone functions, Depending on the
form of the functional equation, a DP
formulation can be classified into four
types: monadic-serial, polyadic-serial,
monadic-nonserial, and polyadic-
nonserial. Monadic and polyadic DP
formulations are distinct approaches

104

to representing various optimization
problems; DP formulations can solve
serial and nonserial optimization
problems. Serial optimization prob-
lems can be decomposed into stages,
and variables in one stage depend on
variables in adjacent stages only.
Problems such as sequential control,
resource allocation, fluid flow, circuit
design, and scheduling belong to this
class. If variables in one stage are
related to variables in other stages, the
problem is a nonserial optimization
problem. Examples include finding the
optimal binary search tree and com-
puting the minimum-cost order of
multiplying a string of matrices.

To illustrate the concept of serial
problems, consider the example of
finding the shortest path in a multistage
graph, as depicted in Figure Sa. Let Cij
be the cost of edge (i,/). The cost of a
path from source Sto sink Tis the sum
of costs on the edges of the path.
Define /) (i) as the minimum cost of a
path from /to 7. The cost of getting
from /to T via neighbor J is Cij +
J10). To find £, (i), paths through all
possible neighbors must be compared.
Hence, the problem can be represented
as

i@ =min[c;; +f£,(/)]
J

This is a forward functional equation.
The formulation is monadic; that is,

4

the cost function involves one recur-
sive term only.

From Equation (4), AC)), the
minimum cost from C, to T is

AC)=minfc,; +d,,, c;3+d,,,
€13 +ds] (%)

Equation (5) can be interpreted as
an inner-product operation in respect
to addition and minimization. If we
define matrix multiplication in terms
of a closed semi-ring (R, MIN, +,
+ ®, 0) in whick MIN corresponds to
addition and + corresponds to multi-
plication in conventional matrix muiti-
plications,? then equation (5) becomes
AC)=C-D, where C is a cost matrix
and D is a cost vector. It is easy to see
that searching the shortest path in a
multistage graph with a forward mo-
nadic DP formulation is equivalent to
multiplying a string of matrices, i.e.,
A-(B-(C-D)).

The same problem can be general-
ized to find the optimal path from any
vertex /to any other vertex ;. The func-
tional equation is

S26))=min (/2GR + £,k)] (6)
k

where f;(i,/) is the minimum cost of
getting from Jto J. This cost funa ion
is polyadic because it involves inore
than one recursive term. A divide-and-
conquer formulation is a special case
of polyadic-serial formulations.

COMPUTER

o
; -«'"':1..;.’1',.

AW

.22
>

e L 2T A ot i S L e A O

AND/OR graphs can also be used
to represent serial DF problems. Basic
operations in comparisons of partial
solutions over all alternatives are
represented as OR nodes. AND nodes
represent operations involving com-
putations of a cost function, such as
summations. Figure 5b shows an
AND/OR graph for reducing the
search of the shortest path in a three-
stage graph with two nodes in each
stage. Gensi and Montanari have
shown that formulating a DP problem
in terms of a polyadic functional equa-
tion is equivalent to searching for a
minimal-cost solution tree in an
AND/OR graph with monotone cost
function. 4

A nonserial DP problem can be
represented in monadic or pclyadic
form.* A monadic-nonserial formu-
lation is an extension of equation (4) in
which the dependence of the func-
tional term involves variables in more
than one adjacent stage. A polyadic-
nonserial formulation is usually renre-
sented in the form of an acyclic
AND/OR graph in which edges can
extenid between any two arbitrary
levels of the graph.

Parallel processing has been applied
to DP problems. Guibas, Kung, and
Thompson have proposed a VLSI
algorithm for solving the optimal pa-

June 1985

renthesization problem,* for which
linear pipelines have also been pro-
posed recently.* Clarke and Dyer
have designed a systolic array for curve
and line detection in terms of a non-
serial formulation.¥” However, these
designs were directed toward imple-
mentation of a few special cases of DP
formulations.

The choice of an architecture to sup-
port a serial DP problem depends on
the formulation. First, if the problem
is represented in a polyadic form and
considered a divide-and-conquer
problem, the architecture discussed
above under the divide-and-conquer
heading can be applied. For example,
the problem of finding the shortest
path in a multistage graph can be con-
sidered as the multiplication of a string
of matrices, which can be decomposed
into the multiplication of two or more
substrings of matrices.

Second, equivalence between poly-
adic representations and AND/OR
graphs allows various graph-search
techniques to be translated into tech-
niques for solving DP problems.
Sometimes, when the AND/OR graph
is regular, it can be mapped directly in-
1o a systolic array. !5

Third, a protlem can be represented
in a monadic form and solved with a
pipelining approach. This approach is
suitable when many aiternative partial

solutions must be compared. Below,
we illustrate this approach for eval-
uating the multiplication of a string of
matrices.

Figure 6 depicts a scheme for com-
puting (A-(B-(C-I))) for the multi-
stage graph in Figure 5a. An iteration
is defined as a shift-multiply-
accumulate operation in respect to the
time at which a row or column of the
input matrix enters a given processor
in the systolic array. Note that the
same iteration number is carried out at
different times in different processors
(iferation numbers are indicated in
Figure 6a).

In the first three iterations, C-D is
evaluated. The control signal FIRST is
one; D, the input vector is serially
shifted into the systolic array; and the
resuit vector, {f(C;),i=1,2,3], re-
mains stationary. At the end of the
third iteration, FIRST is set to zero. In
the following three iterations,
B:(C-D) is computed. Note that
matrix B is transposed, and the ith col-
umn of matrix B is fed into X ;. Thein-
put vector, {f(C)), i=1,2,3], remains
stationary, while the result vector
f(B;), i=1,2,3], is shifted. At the end
of the sixth iteration, the output vector
(AB)), i=1,2,3}, is formed. In the last
three iterations, input vectors A and
{A(B)) i=1,2,3} are shifted into P, to
form the final result.

108

PAELRS o

TR

S N T TR T

" ITERATION

AR han: ar, i

Figure 6. A pipelined version of a systolic array for muitiplying a string of
matrices (a); processor structure for K i {b).

For the systolic array in Figure 6a,
shifted data alternates between the in-
put vector and the result vector every
three iterations. The processor struc-
ture of X, depicted in Figure 6b, can
control this alternation. R, is a register
that stores an element of the input vec-
tor, and A4, is the accumulator that
stores the temporary result of an ele-
ment of the result vector. Control
signals ODD; and MOVE; control the
data paths. When the number of
matrix multiplications is odd, ODD; is
one; hence, R, is connected to the out-
put and the input vector is shifted
along the pipeline. When the number

106

of matrix multiplications is even,
ODD; is zero, A; is connected to the
output, and the result vector is shifted.
At the end of a matrix multiplication,
the generated result vector becomes
the input vector in the next iteration
and is moved, by the control signal
MOVE,', from A,’ to R,’.

In general, searching a multistage
graph with N stages and k nodes in
each stage takes (N - 1)k iterations
with k processors. Because there are no
delays between feedings of the input
matrices into the systolic array, a pro-
cessor utilization is very close 10 one
when N and £ are large.

Few architectures solve nonserial
DP problems directly. In an AND/ OR
graph representation of nonserial
problems, edges may connect nodes at
any two arbitrary levels. These graphs
might have to be searched by an ar-
chitecture with a flexible interconnec-
tion, such as a dataflow computer.
Another approach is to transform the
nonserial problem into a serial one and
solve it with approaches developed for
serial problems.!S For problems in
monadic-nonserial formulations, the
dependence of variables can be re-
moved by using one variable to repre-
sent the Cartesian product of several
dependent variables. For problemsina
polyadic-nonserial representation,
such as an AND/OR graph, the de-
pendence can be removed by replacing
each edge that connects nodes not at
adjacent levels with multiple edges that
connect nodes at adjacent levels. This
approach has been used in designing a
systolic array for {inding the optimal
binary search tree. 15

R:search in problem solving
sually aims at developing better
algorithms. Unnecessary combina-
torial searches should be avoided,
because they do not contribute to the
quality of the solutions. Evidence of
this is clear in the efforts to design op-
timal algorithms and to understand the
reasoning process in artificial intelli-
gence. However, searching becomes
inevitable when a good algorithm has
been developed and is an essential to
many applications.

In this article, we have investigated
the limitations of multiprocessing in
solving combinatorial searches. The
suitability of multiprocessing depends
on problem complexity, problem rep-
resentation, and the corresponding
search algorithms. Problem complexi-
ty should be low enough that a serial
computer can solve the problem.
Problem representations are very im-
portant because they are related to the
search algorithms.

However, the question of deciding
which representation leads to an effj.
cient search remains open. Moreover,
efficient architectures to evaluate
various search algorithms differ. That

COMPUTER

Tablg 1. Functional requirements of different paradigms of search
algorithms. (The magnitudes of large and small granularities in varlous
algorithms differ. Special Interconnections include the tree architecture.)

is why we have developed functional
requirements for a given search algo-

rithm, requirements that allow effi-

cient mapping of a search algorithm N FUNCTIONAL T
on a general-purpose multiprocessor ALGORITHM - - REQUIREMENTS TASKS
and development of special-purpose 3 S large . R — N
processors for searching. FDivide-;' “granularity . " Loosely coupled © . Balance load
In this article, we have not at- § angd-: TR ST e T s
tempted to list all possible cases, but to jconquer -~ Small .. ° 77 Tightly coupled; - - . Transfer control
ilustrate the different approaches [. =~ - granularty ~ Special interconnections .. and data ..
through examples (Table 1). We hope I R S L
these guidelines and examplescanhelp | Lower-bound .. Loosely coupled; *" Balance load;
designers select appropriate multipro- | Branch- " ftestonly . broadcast capability share incumbent

cessing systems for solving combina-

- Dominance |

" " Tightly coupled: o

“Balance load;

torial search problems. O B fests - shared memory - ~"“share dominating
T . nodes

References Serial ~ Large - = Loosely coupled; . Balance load;
" acyclic . Qranularity << .ot T Vbro.ngast capa_bimy -t 'z Share state

1. A. C. Shaw, The Logical Design of iﬁgl?a/pelﬂ'__,;j R e o evaluation

Operating Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1974,

2. M. R. Garey and D. S. Johnson,

ssearch " Small .

- granolarity -

g

¥ Tightly coupled;
- special interconqections

-

" Transfer control |
T anddata

Computers and Intractability: A e U e SR s
Guide 10 the Theory of NP-Complete- Nonserial .\ “{3igs Datafiow - Shara resources:
ness, Freeman, San Francisco, Calif., r acyclic < “granularty rocessing coordinate tasks
1979. AND/ORe <o ar - IR , Wt W
3. A. Martelli and U. Montanari, “Ad- 9raph - Smafl ', . Map to serial * > i Transfer control
ditive AND/OR Graphs,” Int’l Joint ~ [,Search " *“granularity _AND/OR-graphsearch - . - .. anddata | -

Conf. Anificial Intelligence, 1973, pP-
1-11.

4. N. J. Nilsson, Principles of Artificial
Intelligence, Tioga, Menlo Park,
Calif., 1980,

11.

F. Burton and Huntbach, *Virtual
* Tree Machines,”" JEEE Trans. Com-
puters, Vol. C-33, No. 3, Mar. 1984,

Operations Research, Vol. 1, No. 3,
1976, pp. 287-298.

- B. W. Wah and E. Y. W. Ma,

5. A. Barr and E. A, Feigenbaum, The pp. 278-280. 18 .‘? : and | Ia._

A rtificial i MANIP—A Multicomputer Archi
Clalnd[l’wk Igf ’;’"ﬁ"“’ I{"’e/ ’ii""e' 12. E. Horowitz and A. Zorat, “Divide tecture for Solving Combinatorial Ex-
C‘a’_ﬁ‘f 13’81 au mann, 05 IOS, and Conquer for Parauel Prming"’ tremum Search P!’Oblcms,” {EEE
-) IEEE Trans. Computers, Voi. C-32, Trans. Computers, Voi. C-33, No. 5,

6. E. Horowitz and S. Sahni, Fun- No. 6, June 1983, pp. 582-585. May 1984, pp. 377-390.
damentals of Computer Algorithms, W. W E Yu _
Computer Science Press, Potomac, 13. C. Tangand R. C. T. Lee, “Optimai 19. B. W. Wah and C. E. Yu, f’rob

S ; ’ abilistic Modeling of Branch-and-
Md., 1978. peedup.o_f Parallel Algorithm Baseg Bound Algorithms,” Proc. Compsac,

7. A. V. Aho, J. E. Hopcroft, and J. D. on the g""’e'a"d,@{‘q"“ Strategy, Nov. 1982, pp. 647-653; will also ap-
Ullman, The Design and Analysis of personal communication. pear in /EEE Trans. Software Eng-
Computer Algerithms, Addison-Wes- 14. D. J. Kuck, “A Survey of Farallel neering, Oct. 1985.
ley, Reading, Mass., 1974, Machine Organization and Program- 20, G.-J. Li and B. W. Wah, “Computa-

8. D. E. Knuth and R. W, Moore, “An ming,"” ACM Computing Surveys, tional Efficiency of Parallel Approx-
Analysis of Alpha-Beta Pruning,’” 47- Vol. 9, No. 1, Mar, 1977, pp. 29-59. imate Branch-and-Bound Algo-
fifi('iﬂ/ Inle//igence, Vol. 6, 1975, pPP. 15. G.-J. Li and B. W. Wah “Parallel rilhms," Proc. Int’l COflj: Parallef
293-326. Proccssing for Dynafnic program_ m‘ng, 1984, pp. 473-480.

9. V, Kumar and L. Kanal, “A General ming,” to appear /nt’l Conf. Parctles 21. B. C. Desai, “The BPU: A Staged
Branch-and-Bound Formulation for Processing, August 1985. Parallel Processing System to Solve
Understanding and Synthesizing the Zero-Cne Problem,” Proc. /CS
AND/OR Tree Search Procedures,” 16 E. L. pawer_and & Mo Wood, 78, Dec. 1978, pp. 302-817.

Artificial Intelligence, Vol. 21, 1983, ranch-and-Boun ethods: A 2. M. !mai, T. Fukumara, and Y.

pp. 179-198.

10. F. Peters, ““Tree Machine and Divide-
and-Conquer Algorithms,"’ Conpar
81, Lecture Notes CSil!. 1981, PD.
25-38.

June 1985

Survey,” Operations Research, Voi.
14, 1966, pp. 699-719.

T. Ibaraki, ‘‘Computational Efficien-
¢y of Approximate Branch-and-
Bound Algorithms,”* Mathematical

Yoshida, ‘‘A Parallelized Branch-and-
Bound Algorithm: Implementation
and Efficiency,” System Computer
Controls, Vol. !0, No. 3, 1979, Pp.
62-70.

107

23.

24,

25.

26.

27,

29.

30.

31

32.

3.

108

O. L. El-Dessouki and W, H. Huen,
*“Distributed Enumeration on Net-
work Computers,’’ /EEE Trans.
Computers, Vol. C-29, No. 9, Sept.
1980, pp. 818-825.)

B. W. Wah, G.-J. Li, and C. E Yu,
“The Status of MANIP—A Multj-
computer Architecture for Solving
Combinatorial Extremum-Search
Problems,” Proc. 1ith Ann. Int’f
Symp. Computer Architecture, June
1984, pp. 56-63.

B.W.Wahand K. L. Chen, “A Pani.
tioning Approach to the Design of
Selection Networks,” JEEE Trans.
Computers, Vol. C-33, No. 3, Mar.
1984, pp. 261-268.

C. F. Yu and B. W. Wah, “Virtual-
Memory Support for Branch-and-
Bound Algorithms,” Proc. Compsac,
Nov. 1983, pp. 618-626.

C.F. Yuand B. W. Wah, “Efficient
Branch-and-Bound Algorithms on a
Two-Level Memory Hierarchy,””
Proc, Compsac, Nov. 1984, pp.
504-514.

G.-J. Li and B. W. Wah, “How to
Cope with Anomalies in Parallel Ap-
proximate Branch-and-Bound Algo-
rithms,” Proc. Nat’l Conf. Artificial
Intefligence, 1984, pp. 212.215.

T.H. Laiand S. Sahai, “Anomalies of
Parallel Branch-and-Bound Algo-
rithms,” Comm. ACM, Vol. 27, No.
€, June 1984, pp. 594-602.

T. A. Marsiand and M. Campbell,
“Parallel Search of Strongly Ordered
Game Trees,”” ACM Computing Sur-
veys, Vol. 14, No. 4, Dec. 1982, pp.
533-551.

G. Baudet,*The Design and Analysis
of Algorithms for Asynchronous Mul-
tiprocessors,”” Tech. Rep., Dept. of
Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., 1978.

R. Finkel and J. Fishburn, *‘Parallel-
ism in Alpha-Beta Search,"’ Artificial
Intelligence, 1982, pp. 89-106.

S. Akl, D. Barnard, and R. Doran,
“Design, Analysis, and Implementa-
tion of a Parallel Tree Search Algo-
rithm,” IEEE Trans, Pattern Analysis
and Machine Intelligence, Vol.
PAMI4, Mar. 1982, pp. 192-203.

G. Stockman, “A Minimax Algo-
rithm Better than Alpha-beta?”’ 4.
Sicial Intelligence, Vol. 12, 1979, pp.
179-196.

V. Kumar and L. Kanal, ‘“Parajlel
Branch-and-Bound Formuiations for
AND/OR Tree Search,”" [EEE Trans.
Pattern Anatvsis and Machine In-
tefligence, Vol. PAMI-6, 1984.

36. R. Kowalski, Logic for Problem Soly-
ing, North Holland, New York, 1979,

37, J. Conery and D. Kibler, ““AND
Parallelism in Logic Programming,”
Tutorial on Paraflel Logic Program-
ming, Int’l Conf. Parallel Processing,
D. DeGroot, ed., 1984, pp. 13-17.

38. K. Furukawa, X. Nitta, and Y. Mat-
sumoto, “‘Prolog Interpreter Based on
Concurrent Programming,”” Proc.
First Int'l Logic Programming Conf,,
1982, pp. 38-44,

39. A. Ciepielewski and S. Haridi, “Con-
trol of Activities in OR-Parallel Token
Machine,” [EEE Int’! Symp. Logic
Programming, 1984,

40. G. Lindstrom and P Panangaden,
‘‘Stream-Based Execution of Logic
Programs,” Proc. 1984 Int*l Symp.,
Logic Prog., Feb. 1984, pp. 168-176.

4l. G.J.LiandB. W. Wah, “MALOP: a
Multicomputer Architecture for Solv-
ing Logic Programming Problems,”
Proc. Int’l Conf. Paralle! Processing,
1985.

42. R. Bellman and S. Dreyfus, Applied
Dynamic Programming, Princeton
University Press, Princeton, N.J.,
1962,

43. S. Gensi, U. Montanari, and A.
Martelli, “Dynamic Programming as
Graph Searching: An Algebraic Ap-
proach,” J. ACM, Vol. 28, No. 4,
Apr. 1981, pp. 737-751.

44. U. Bertele and F. Brioschi, Nonserial
Dynamic Programming, Academic
Press, New York, 1972.

45. L. Guibas, H. Kung, and C. Thomp-
son, “Direct VLSI Implementation of
Combinatorial Algorithms,"* Proc.
Caltech Conf. VLSI: Architecture,
Design, Fabrication, 1979, pp.
509-52s.

46. P. Varman and V, Ramakrishnan,
“Dynamic Programming and Transi-
tive Closure on Linear Pipelines,”
Proc. Cony. Paralle(Processing, 1984,
pp. 359-364.

47. M. Clarke and C. Dyer, “Systolic Ar-
ray for a Dynamic Programming Ap-
plication,” Proc. 12th Workshop Ap-
plied Imagery Pattern Recognition,
1983,

Questions about this article can be
directed to Benjamin W. Wah, School of
Electrical Engineering, Purdue University,
West Lafayette, IN 47907,

Benjamin W. Wah is an associate professor
in the School of Electrical Engineering at
Purdue University. His current research in-
terests include paratlel computer architec-
tures, distributed databases, and theory of
algorithms.

Wah received the BS degree in 1974 and
the MS degree in 1975 in electrical engineer-
ing and computer science from Columbia
University. He received the MS degree in
computer science in 1976 and the PhD
degreein electrical engineering in 1979 from
the University of California, Berkeley. He
has been a Distinguished Visitor of the
IEEE Computer Society since 1983.

Guo-jie Liis a doctoral candidate in com-
puter science and engineering at Purdye
University. His research interests include
paraile} processing, computer architecture,
and antificial intelligence.

Li graduated from Peking University in
1968 and received the MS degree in com-
puter science and engineering from the
University of Science and Technology and
the Institute of Computing Technology,
Chinese Academy of Science, in 198].

Chee Fen Yuis adocroral candidate in elez-
trical engineering at Purdue University. His
current research interests include computer
architecture and artificial intelligence.

Yu received the BE degree in electrical
engineering from the University of Malaya
in 1980 and the MS degree in electrical
engineering from Purdue University in
1683,

