
1144 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985

Resource Scheduling for Local Computer Systems with
a Multiaccess Network

BENJAMIN W. WAH, SENIOR M E M B E R , IEEE, A N D JIE-YONG JUANG, MEMBER IEEE

Abstract—Resource scheduling maps requests to a pool of re­
sources to optimize a combination of resource usage, response
time, network congestion, and scheduling overhead. The over­
head of collecting the necessary status information for the sched­
uler is usually high, which results in the use of outdated status
information and a degradation of performance. In this paper, we
study resource scheduling based on a distributed state-dependent
discipline for a system of processors connected by a local multi­
access network. The scheduling problem is reduced to the iden­
tification of the extremum from a set of physically dispersed
random numbers. We propose a method of utilizing the primitive
operations of collision detection and broadcast in multiaccess net­
works to efficiently distribute status information and to identify
the extremum. The optimal performance of identifying the ex­
tremum is found to be constant on the average independent of the
number of contending processors. The protocol can be imple­
mented either by minor hardware modification of existing
multiaccess-network interfaces or in software.

Index Terms —Broadcast, collision detection, distributed state-
dependent resource scheduling, extremum search, load bal­
ancing, multiaccess network, resource sharing.

I . INTRODUCTION

THE decreasing cost, the growth in technology, and the
diversification of applications have caused computer

systems to evolve from being centralized to being distrib­
uted. A distributed computer system may possess a large
number of general- and special-purpose autonomous process­
ing units interconnected by a network. Besides allowing
communication among devices, the network facilitates re­
source sharing that allows a local task to be migrated and
processed at a remote location of the network [36], Tasks are
migrated because the local processor does not have the re­
quired computational capabilities or data or has failed. A task
may also be processed remotely if the expected turnaround
time is better.

A resource can be logical, such as a shared database, or can
be physical, such as a special-purpose functional unit. In this
paper, a resource refers to a processor receiving the migrated
task, and a request generator refers to the processor gener­
ating the migrated task. A computational device may play the
roles of both request generator and resource. For example, a

Manuscript received May 7, 1985; revised August 27, 1985. This work was
supported by CIDMAC, a research unit of Purdue University, sponsored by
Purdue, Cincinnati Milicron Corporation, Control Data Corporation, Cummins
Engine Company, Ransburg Corporation, and TRW.

B . W. Wah is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801.

J. -Y. Juang is with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60201.

processor may migrate a task to compute the fast Fourier
transform to a special-purpose processor, while accepting a
task from another heavily loaded processor. In a system with
load balancing, excess load in a heavily loaded processor is
offloaded to another lightly loaded processor. In a multi­
processor system with a pool of identical (or sets of identical)
systolic arrays performing special functions such as matrix
inversion and sorting, a task is directed to any one or more of
the free resources. Resource sharing is also an important
element in data-flow machines. Tasks in node store are sent
to a pool of identical processors for processing.

In resource scheduling, tasks are scheduled to any one or
more or a pool of free resources that can optimize a combina­
tion of resource usage, response time, network congestion,
and scheduling overhead. Resource scheduling decisions can
be made in a centralized or a distributed manner. A central­
ized decision implies that status information is collected, and
decisions to schedule are made at one location. An example
would be a system with a job scheduler at one location that
collects jobs and dispatches them to resources for processing.
Theoretical studies on centralized load balancing have been
made by Foschini [9], Chow and Kohler [7], Towsley [32],
and Ni and Hwang [25]. The major problem lies in the over­
head of collecting status information and jobs. If this over­
head is large, scheduling decisions are frequently based on
inaccurate and outdated status information, which could be
detrimental to performance.

In contrast, a distributed resource scheduling scheme does
not limit the scheduling intelligence to one processor. It
avoids the bottleneck of collecting status information and
jobs at a single site and allows the scheduler to react quickly
to dynamic changes in the system state. We have studied
distributed resource scheduling in which the status informa­
tion of resources is propagated through the network and is
available to all request generators [36], [16]. Requests are
sent into the network without any destination tags, and the
network is responsible to route the requests to the best avail­
able resource.

Resource scheduling can also be classified as deterministic
or probabilistic [7], A decision based on the current state of
the system is deterministic or state dependent. For this type
of decision, system performance is optimized by either
minimizing or maximizing a system parameter such as re­
sponse time, system time, or throughput. A decision is
probabilistic if an arriving job is dispatched to the resources
according to a set of branching probabilities that were
collected from previous experience. Deterministic strategies
have been found to perform better than probabilistic ones be-

0018-9340/85/1200-1144$01.00 © 1985 IEEE

WAH A N D JUANG: RESOURCE SCHEDULING FOR LOCAL SYSTEMS 1145

cause the latter are sometimes insensitive to dynamic changes
in system load. However, they usually have higher overhead
and are more difficult to implement.

Distributed state-dependent resource scheduling has been
found to give a good tradeoff between resource usage and
scheduling overhead. However, the scheduler is often im­
plemented on a network model that is independent of the
hardware characteristics. Besides simplifying the design of
strategies, a simple network model allows the software to be
transportable, and permits many applications of different re­
quirements to share the same network. A protocol hierarchy
is used which allows the scheduler to interact with the lower
levels through system calls. As a result, the status informa­
tion needed in the control and interchange of data among sites
must be formulated into messages that are recognized by the
lower levels of the hierarchy. This mismatch between the
characteristics of the physical network and the requirements
of the scheduler results in inefficiency and increased com­
plexity of the control strategies. To improve the perfor­
mance, the capabilities of the network must be matched
against the requirements of the scheduler.

An example is shown in the load balancing strategy of the
Purdue Engineering Computer Network [13] which is a sys­
tem of computers connected by a hybrid of Ethernet and
point-to-point networks. The load balancing decisions are
distributed: each processor decides whether to send its job for
remote execution. A processor polls other processors for
status information about their loads, decides which processor
has the lowest load, and sends the job for remote processing
if the turnaround time is shorter. This polling results in O(n)
messages for each job load-balanced where η is the number
of computers in the system. More efficient solutions are pro­
posed in this paper to reduce this overhead.

In this paper, we have studied distributed state-dependent
resource scheduling for a local computer network. Resource
allocation is studied with respect to requests that need one
resource only; multiple resources needed by a request are
allocated sequentially. The network is assumed to be a re­
liable multiaccess bus with broadcast capability. Carrier-
sense-multiaccess networks wi th collision detection
(CSMA/CD networks) belong to this class, and are exem­
plified by the Ethernet [30] [Fig. 1(a)].

CSMA/CD networks evolved from CSMA networks which
have listen-before-talk protocols to avoid overlapping trans­
missions. The collision-detection capability of CSMA/CD
networks allows processors to additionally listen-while-talk,
so collisions resulting from simultaneous transmissions can
be detected and stopped immediately. The time for a pro­
cessor to assert that there is no overlapping transmissions is
the end-to-end propagation delay on the bus and is called a
contention slot. To avoid repeated collisions, a contention-
resolution protocol is used to control transmissions and to
eventually isolate one station for transmitting the message.
The operation of the bus is thus divided into two alternating
phases, the contention-resolution phase consisting of a se­
quence of contention slots, and the data-transmission phase
consisting of the message transmission [Fig. 1(b)]. Many
contention-resolution protocols have been proposed and im-

Θ © - θ Θ

j c o n t e n t i o n
b u s

Θ Θ - Θ
r e s o u r c e s

(a)

c o n t e n t i o n s l o t

p a c k e t DD p a c k e t c k e t

c o n t e n t i o n p a c k e t - t r a n s m i s s i o n
i n t e r v a l i n t e r v a l

(b)
Fig. 1. (a) A resource sharing system connected by a single multiaccess bus.

(b) The operations of a contention bus with alternating phases.

plemented [3] , [5] , [6] , [10] , [14] , [15] , [17] , [18], [2 1] -
[23], [33], [35]. They are distinguished by the different trans­
mission control.

In this paper, we have studied the resource allocation prob­
lem in resource sharing systems connected by a contention
bus. In Section II, a special class of resource allocation
schemes is characterized. Optimal resource scheduling in this
class of problems can be reduced to finding the extremum
among a set of physically distributed random numbers. An
efficient distributed window-search scheme is described in
Section III. The proposed scheme can be integrated into the
contention-resolution protocol of the bus or can be imple­
mented by explicit message transfers. Section IV details the
evaluation of al ternat ive window-search schemes, and
Section V draws conclusions.

II. OPTIMAL RESOURCE-ALLOCATION ALGORITHMS

The optimal resource-allocation problem can be consid­
ered as an optimization problem that optimizes the system
performance or cost subject to constraints of the network. Let
Ρ be the set of request generators and let R be the set of
resources. Each request generator ρ Ε Ρ is characterized by
a priority xp which measures the urgency that the request
generated has to be serviced. Similarly, each resource r Ε R
is characterized by a preference yr which measures its capa­
bility to service a generated request. Since there is only one
communication channel in a single-bus system, only one
resource can be allocated at a time, and the scheduling prob­
lem is reduced to finding a pair of request generator and
resource that optimize the system performance or cost. The
optimization can be represented as

min H(xp,yr)
(p,r)EPxR

(1)

where Η is a cost function defined with respect to a given
scheduling discipline.

In general, the cost function Η depends on the character-

1146 IEEE TRANSACTIONS ON COMPUTERS, V O L . C-34, N O . 12, DECEMBER 1985

istics of tasks and resources, as well as the interconnection
network. It may be very complex and difficult to optimize.
We will only stuay a special class of the cost functions that
are monotonic with respect to xp and y r . That is,

a ,
—H(xp,yr) is either positive or negative for all xp and yr oxp

(2a)

—H(xp,yr) is either positive or negative for all xp and yr.
dyt

(2b)

The above conditions imply that for a given resource, the
cost is minimized by servicing a task of the highest priority
(if (2a) is negative) or one with the lowest priority (if (2a) is
pos i t ive) . Similar ly , for a given reques t , the cost is
minimized by choosing a resource of the highest preference
(if (2b) is negative) or one with the lowest preference (if (2b)
is posi t ive) . For instance, if (d/dxp)H(xp9yr) ^ 0 and
(d/dyr)H(xp,yr) ^ 0, then it follows directly from (1) and (2)
that

min H(xp, yr) = //(max (xp), min (y r)) . (3)
{p,r)EP*R pEP rER

Optimal resource scheduling can thus be considered as
choosing a request generator ρ with the maximum xp and a
resource r with the minimum yr independently.

Many existing resource scheduling problems can be solved
by independently selecting the task to be serviced and the
resource to service the task. Some notable examples are given
here.

1) Random Access Protocols in CSMA Networks: In
CSMA networks, all processors share a single commu­
nication channel to communicate with each other. Processors
with message to transmit are request generators, and the
communica t ion channel is the only shared r e source .
Contention-resolution protocols in CSMA networks are de­
signed to resolve contentions in using the channel, Since each
request generator has equal right to access the channel, its
priority can be considered as a random number in (0 , 1] , and
the cost function H(xp,yr) = xp. The request generator with
the minimum tiumber generated is given the access right to
the channel.

2) First-Come-First-Serve Discipline in CSMA Net­
works: The channel is the only resource to be scheduled.
The priority level xp is an increasing function of the task
arrival time. The cost function H(xp,yr) = xp.

3) Shortest-Job-First Discipline in CSMA Networks: The
channel is the only resource to be scheduled. The priority
level xp is an increasing function of size of the job. The cost
function H(xp,yr) = xp, and the scheduler selects the small­
est job.

4) Priority Scheduling: Messages in the network are di­
vided into priority classes (levels), and the channel is allo­
cated to service messages in decreasing order of priority
levels. Several CSMA protocols for handling priority mes­
sages have been suggested recently [11], [26], [27], [31].
They may be classified as linear protocols and logarithmic

protocols. Each station is assigned the highest priority of the
local messages. In a linear protocol, a slot is reserved for
each priority level during the resolution of priorities. An
active station contends during the slot reserved for the local
priority level. When the station(s) with the highest priority
level is determined, the process is switched to identifying a
unique station within this priority level. This scheme is good
when high-priority messages are predominantly sent. A loga­
rithmic protocol determines the highest priority level in
(log 2 P) steps by a binary-divide scheme where Ρ is the
maximum number of priority levels [26]. This assumes that
the highest priority level is equally likely to be any one of the
Ρ priority levels. Neither of the above schemes is able to
adapt to the various traffic patterns.

Resource scheduling in this case can be carried out in two
phases. The first phase determines the highest priority level
present in the network. A cost function H(xp,yr) = -xp is
assumed. There may be multiple stations in this priority
level, and scheduling for these stations is done in the second
phase using one of the above criteria.

5) Resource Sharing of a Pool of Identical Resources:
The priority of a request generator is an integer between one
and P. The preference of a resource can be a random number
in [0,1] indicating its status (zero indicates that it is busy; any
number between zero and one indicates that it is free). Re­
source scheduling is carried out in two phases The first phase
identifies a request generator with the highest priority. The
second step identifies a free resource to service the task.
Examples of cost function H(xp,yr) that can be used are
(-xp - yr) or (~xpyr).

6) Load Balancing: This uses the communication facility
to support remote job execution in a user-transparent fashion
to improve resource utilization and to minimize response
time. A decision to load balance a job is made if the job is
likely to be finished sooner when executed remotely than
when executed locally. Resource scheduling is performed in
two phases. In the first phase, processors are treated as re­
quest generators and are assigned priority equal to the aver­
age response time of executing a job locally. The processor
with the highest response time is chosen as the request gen­
erator to send the job. In the second phase, processors are
treated as resources and are assigned preferences equal to the
sum of the average transmission time of sending a job across
the network and the average response time of executing a job
locally. The processor with the lowest preference is chosen
[35], [2]. The cost function H(xp,yr) = —xp + yr is the
reduction in response time of executing a job remotely at pro­
cessor r.

In the above examples, only linear functions on xp and yr

are defined. In general, they can be any function satisfying
(2a) and (2b).

A general organization of a resource scheduler is shown in
Fig. 2. There may be multiple classes of problems in re­
source sharing and they will be assigned different priorities
in scheduling. For example, the network may be designed
primarily for message transfers, and load balancing may be
its secondary function. The resource scheduler will schedule
all message transmissions before initiating load balancing for
the system. For this example, Ρ = 6 and Κ = 2 in Fig. 2.

WAH AND JUANG: RESOURCE SCHEDULING FOR LOCAL SYSTEMS 1147

lowest
priority-

level

result
return,
packet

transmission

job
migration,

packet
transmission

resource
scheduling
decision

result
return,
packet

transmission

job
migration,

packet
transmission

resource
scheduling
decision

Scheduling Class Κ resources Scheduling Class 1 resources

Fig. 2. A protocol to support resource sharing of multiple classes of
resources connected by a multiaccess bus.

Class 1 tasks refer to load balancing operations, and class 2
tasks refer to message transmissions. Generally, within a
class of resource scheduling problems, the return of results
from a previously migrated job, if any, is given a higher
priority than the migration of a new request because any
delay in returning results contributes to an increase in re­
sponse time, while an earlier transmission of a request to a
remote resource may not reduce the response time unless the
remote resource is idle. The migration of a request is given
a higher priority than the identification of a new request-
generator/resource pair because a request must be completely
sent before it can be processed, and any delay in completing
a job transfer may tie up valuable buffer space unnecessarily
and reduce the resource utilization.

I I I . A DISTRIBUTED M I N I M U M - S E A R C H A L G O R I T H M

The operations of the resource scheduler in Fig. 2 can be
reduced to the primitive operation of identifying the ex­
tremum from a set of physically dispersed random numbers
called contention parameters. The generation of these pa­
rameters may be dependent on each other, and may also be
site-dependent. For tractability reasons, the parameters are
assumed to be independently generated and possibly site-
dependent in this paper. Specifically, the identification of
the task with the highest priority in Fig. 2 can be considered
as the search of the maximum priority level from a set of
priority levels, one from each processor. Similarly, the trans­
mission of a message (result or job) can be regarded as the
selection of a ready station from a set of ready stations, each

of which generates a contention parameter from a uniform
distribution between zero and one. Likewise, the identi­
fication of a request generator or resource is again the selec­
tion of the station with the maximum or minimum parameter.

Conventionally, the implementation of an extremum-
search algorithm relies on the message-passing mechanism to
collect all information to a central site. This requires 0(n)
messages where η is the number of stations. In this section,
an efficient distributed protocol for identifying the minimum
is presented. The algorithm for searching the maximum is
similar. The proposed algorithm has a load-independent be­
havior, which is important for resource-sharing applications
because the number of processors to participate in identifying
the extremum is usually large. Conventional contention-
resolution algorithms, such as Ethernet 's binary exponential
backoff algorithm, are load-dependent, but perform satis­
factorily because the channel load is normally low for point-
to-point message transmissions. Moreover, these algorithms
cannot be directly applied to identify the extremum.

It is assumed that each processor in the network is capable
of maintaining a global reference interval or window, and
counting whether there is none, one, or more than one con­
tention parameter falling in the window. A global window
can be maintained in all stations if they start in the same
initial state, receive identical information from the bus, and
execute the same control algorithm in updating the window
with information received from the bus. Suppose that the set
of contention parameters is {xu · · · ,xn} in the interval be­
tween L and U, and that y, is the ith smallest of the x/s. To
search for the minimum, an initial window is chosen with the

1148 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985

lower bound at L and the upper bound between L and U.
There can be zero, one, or more than one contention param­
eter in this window. If there is exactly one contention param­
eter in the window, it can be verified as the minimum yl.
Otherwise, the window has to be updated: it is moved if it is
empty or is shrunk to a smaller size if it contains more than
one number. This process is repeated until the minimum is
uniquely isolated in the window. An implementation of the
distributed window-search scheme at Station /, 1 =̂ i ^ n,
on a multiaccess bus with a three-state collision-detection
mechanism is shown in Fig. 3.

Fig. 4 illustrates the steps involved in the window-search
scheme. Initially, five stations are ready, and they sense that
the bus is free. Each of them generates a random contention
parameter in (L, U] , sets the window as (L, w x] , and transmits
in the next contention slot if its contention parameter falls in
the window. Station 3 and 5 are eliminated in the first
iteration. As stations 1, 2, and 4 transmit, collision is de­
tected. The stations reduce the upper bound of the interval to
Wi and set the windows to (L, w 2] (identical for all stations as
they use identical window-control algorithms and inputs). In
the second iteration, no transmission is detected because all
contention parameters are outside the window. The lower
bound of the interval is set at w 2 , and all stations set the
windows as (π^ ,ν^] . In the third iteration, successful trans­
mission is detected, and the process terminates.

The concept of window protocols has been proposed with
respect to contention resolution on multiaccess networks, but
has not been developed for resource sharing and extremum
search in general. Moreover, efficient and practical window-
control algorithms have not been found. The optimization of
the window size in the Urn Protocol [18] was studied by
Hluchyj [14], who formulated it into a Markov decision pro­
cess with an exponentially large number of states. Mosley
and Humblet proposed to use the generation times of mes­
sages as a basis for the transmission order on the bus [23].
This protocol is a generalization of Gal lagher 's proce­
dure [10] which is itself based on an idea from Hayes [12]
and Capetanakis [4] . Towsley and Venkatesh [33] and
Kurose and Schwartz [20] further extended Mosley and
Humblet's algorithm by developing new heuristics. Mosley
and Humblet also proposed that stations can generate ran­
dom numbers as the content ion parameters [23] . The
throughput was analyzed according to an infinite-population
assumption.

The basic operations required for the proposed window-
search scheme can be implemented easily either in hardware
or in software on an existing multiaccess network such as the
Ethernet. The global window can be maintained by updating
an initially identical window with a common algorithm and
using identical information broadcast on the bus. Assuming
that information broadcast is received correctly by all sta­
tions, the global window will be synchronized at all sites.

To count the number of contention parameters falling in the
window, the collision-detection capability of the network
interface can be used effectively to detect whether the pre­
vious contention slot was empty, successful, or had collision.
Stations with parameters inside the window contend for the

procedure window protocol statlon__l;
/* procedure to find window boundaries for Isolating one of the contending stations */
[/* window - function to calculate window size w,

random - funcUon to generate local contention parameter,
estimate - function to estimate channel load,
transmit_signal - function to send signal to bus with

other stations synchronously,
detect - function to detect whether there is collision on the bus (three-state),
r, - local contention parameter,
٤ - estimated channel load,
lb_minimum - lower bound of interval containing minimum (minimum is L),
ub_minimum - upper bound of interval containing minimum (maximum is U),
contending - boolean to continue the contention process,
state - state of collision detect, can be collision, idle, or success

(for three-state collision detection). */
lb_minimum:- L;
ub_minimum :- U;
Tj:- random (L,U);
٤ : - estimate ();
w :- window (lb_minimum, ub_minimum, fi);
contending:- true;
while (contending) do [

if (r} > lb_minimum and r, < w) then [
/* parameter is inside window, contend for bus */
transmit_signal ();
/* test for unique station in the window V
state:-detect ();
if state = collision then

/* update upper bound of interval containing minimum */
ub_minimum:- w;

else /* successful isolation of minimum */
return (lb_minimum, ub_minimum);

w :- window (lb_minimum, ub_minimum, fi)]
else [

state:- detectO;
if state = idle then

/* all parameters are outside window */
/* update lower bound of interval containing minimum */
lb__minimum :- w

else
/* some other parameters are inside window, stop contending V
contending:- false]

return (failure)

Fig. 3. Procedure illustrating the basic steps executed in each station for
contending the channel with a three-state collision-detection mechanism.

S t a t u

S t a t i o n 2

S t a t i o n 3

S t a t i o n 4

S t a t i o n 5

S t e p 1: co l l i s ion ,
u p d a t e u p p e r b o u n d t o W j

S t e p 2: n o t r a n s m i s s i o n
u p d a t e l o w e r b o u n d t o w 2

S t e p 3 : success fu l t r a n s m i s s i o n
s t o p .

c o n t e n t i o n
p a r a m e t e r

Fig. 4. An example illustrating the updates of the global window to isolate the
station with the minimum contention parameter. (Braces indicate windows
used in different steps.)

bus in a contention slot. If there are more than one station
with a parameter in the window, then a collision will be
detected. If there is exactly one station with a parameter in
the window, then a successful transmission will be detected.
If there is no station with a parameter in the window, then an
empty slot will be detected. Each iteration of the protocol in
Fig. 3 will be completed in one contention slot. Hardware
implementation will be discussed in Section IV-G after the
window-control algorithms are presented.

In systems where modification to existing hardware is

WAH AND JUANG: RESOURCE SCHEDULING FOR LOCAL SYSTEMS 1149

impossible, the window protocol can be implemented in
software. Software implementation is only necessary for ap­
plications that select a station based on the meaning of the
contention parameter (such as identifying the station with the
maximum response time). For applications that need to ran­
domly select a station, such as identifying a free resource, the
existing interface suffices. Suppose that an existing Ethernet
for point-to-point and broadcast transmissions is available.
Stations with parameters inside the window contend for the
bus. The station that is granted the bus will broadcast its
parameter. However, in this case, it is not clear whether
exactly one station or more than one station have parameters
inside the window. (This is equivalent to a network with a
two-state collision-detection capability.) Hence a verifica­
tion phase must follow to assert that the broadcast parameter
is the minimum. This verification phase can be implemented
as a timeout period, so other stations with smaller parameters
can continue to contend and broadcast a smaller parameter
inside this timeout period. In each iteration of the window
protocol, the channel has to be contended twice, and two
broadcasts of contention parameters have to be made. By
suitably adjusting the timeout period according to the channel
load, the station with the minimum parameter can be isolated
with a high degree of certainty and without significant deg­
radation to performance. The window will be adjusted ac­
cording to the minimum of the two broadcast contention
parameters.

IV. WINDOW-CONTROL ALGORITHMS

To minimize the number of iterations in the protocol to
identify the minimum, the window used in each stejJ must be
chosen appropriately. Given the lower and upper bounds of
the interval containing the minimum contention parameter,
the lower bound of the window is set at the lower bound of
this interval, and the upper bound of the window is to be
chosen. The contention parameters are assumed to be inde­
pendently generated from a uniform distribution in (0,1] .
When the distribution functions are identical but nonuniform,
the contention parameters can be transformed by the distri­
bution function into uniformly distributed parameters. Four
algorithms to determine the upper bound of the window are
described in this section. These algorithms assume that the
channel load and the distribution functions from which
the contention parameters are generated are exactly known.
Methods to estimate the channel load will be presented in
Section IV-E. The performance is worse when the channel
load is estimated. Lastly, issues on finding the distribution
functions and implementation are discussed.

A. Binary-Divide Window Control

A straightforward way to choose the upper bound of the
window in each iteration is to set it midway in the interval
containing the minimum. Binary search is applied in each
iteration to eliminate half of the remaining interval. This
method provides a lower bound on the performance.

The overhead is analyzed in terms of the number of itera­
tions of the protocol to determine the minimum. In any given
step, if the window size is greater than the difference between

w i n d o w

Η · r-*-

(a)
w i n d o w

—̂·
(b)

window

r—· 1 ·
y i y 2

(c)
Fig. 5. Possible sizes and positions of a window during a contention step.

(a) Contention is resolved by a window with size greater than (y 2 - y i) .
(b) Contention is not resolved by a window with size greater than (y 2

 - V i) .
(c) Contention is always resolved if size of window is smaller than (Y2 - YI)
and lower bound of window is smaller than y i .

the two smallest parameters yx and y 2 , the minimum may be
isolated depending on the relative positions of yl9 y 2 , and the
window [Fig. 5(a) and (b)]. On the other hand, if the window
is reduced to a size smaller than the difference between yx and
y 2 , and the bounds of the window are updated according to the
procedure in Fig. 3 , then the minimum will always be iso­
lated in such a window. This is illustrated in Fig. 5(c). Hence,
the maximum number of iterations to resolve the minimum
never exceeds the number of steps to reduce the window to a
size smaller than the difference between yx and y 2 . Assuming
that k steps are required, the following condition holds:

2"* < y 2 - yi < 2"(*"1). (4)
Taking the logarithm of the inequality in (4) and rearrang­
ing it,

This inequality gives the upper bounds of the binary-divide
window-control rule for given y{ and y 2 .

From the theory of ordered statistics [8], if the y, 's are
uniformly distributed in (0 , 1] , then the joint probability den­
sity function of yx and y 2 is

frftiyuyi)

.0 otherwise.

From (5) and (6) E(k), the average number of iterations
to resolve contentions in the binary-divide window-control
rule, can be obtained by integrating the weighted upper
bound over the domains of y{ and y 2 .

1150 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 12, DECEMBER 1985

15' I
0 10 20 30 40 50 60 70 80

NUMBER OF CONTENDING STATIONS

Fig. 6. Performance of the window protocol with different window-control and load-estimation methods. (Solid lines assume that
the channel load is exactly known; for dashed lines, the channel load is evaluated from previous experience.)

= 1 - n\
log.

(n - 2)! log, 2 J„ Uo
• (1 -y2r2dy2.

(y2 - yt)dy,

(7)

Since J",,2 log,()>2 - yt)dyi = y2 log, y2 - y2, (7) can be sim­
plified as

E(K) < 1 -
(n - 2)! log, 2

• i (l - yif'^yi log, y2 - y2)dy2. (8)
•Ό

The following integration can be evaluated to become

ί (1 - y2)"-2y2 log, y2dy2 = Hn - / / „ . , (9)

where H„ is the harmonic mean of the series {1,2 , · · · , n},
i.e.,

ι n ι
Ηη = - Σ -

n f=1 ι
(10)

The harmonic mean is approximately equal to log e η + γ +
0(\/η)/η [19] where γ is a constant. Hence, from (7)—(10),
we obtain

E(k) < 1 -
n(n - 1) Γ/log. η _ log.(n - 1)

log. 2 l \ η η - I

1

η η — 1 . (ID
Since log e η — \oge(n - 1) for large n, (11) may be re­
duced to

E(k) < 1 + — — < 3 + log 2 η. (12)
log. 2 n{n - 1)

Hence,

E(K) = 0(\og2 n). (13)

In addition to the above analysis, simulations have been
conducted to evaluate the performance of the binary-divide
window-control rule. The simulation program was written in
Fortran 77 and was executed on a DEC VAX 11/780 com­
puter. In each simulation run, Ν random numbers were first
generated in (0 , 1] , and successive windows were generated
until the*station with the minimum parameter was identified.
A 95 percent confidence interval of ±0 .1 was used in the
simulations. The results are plotted in Fig. 6. Note that the
average number of iterations is smaller than 0 (log 2 n), which
confirms that 0 (l o g 2 ή) is the upper bound of the average
performance.

B. Dynamic-Programming Window Control

The size of the window in each iteration of the window
protocol can be controlled by a dynamic-programming algo­
rithm that minimizes the expected total number of iterations
before the minimum is isolated. The following notations are
first defined.

N(a,b): The minimum expected number of iterations to
resolve contention given that there are η contention parame­
ters in (a, U] and collision occurs in the current window
(a,b].

g(w,n,a,b): Probability of success in the next iteration if
a window of (a, w], a < w < b, is used.

€(w, n, a, b): Probability of collision in the next iteration
if a window of (a, w], a < w < b, is used.

r(w,n,a,b): Probability of no transmission in the next
iteration if a window of (a, w], a < w < b, is used.

It follows directly from the above definitions that

€(w,n,a,b) + g(w, n,a,b) + r(w,n,afb) = 1. (14)

As the Principle of Optimality is satisfied, the problem of
minimizing the expected total number of iterations is reduced

W A H A N D JUANGI R E S O U R C E S C H E D U L I N G FOR LOCAL S Y S T E M S 1151

to that of finding w which minimizes the expected number of The first and last terms of (18) indicate the probabilities that
future iterations should collision or no transmission be de- all J C , ' S are greater than a and b, respectively. The second
tected in the current iteration. The problem can be formulated term is the probability that exactly one of the xt's is i n the
recursively as window (a9b\. Similarly,

g(w9n9a,b) =

η

Σ .

•

(F,(w) - F,(a)) X . n (l - W) - n [l - F , (&)]
ί'=1 ;= ι j - ι

L j*i)*i (19)

Π [ΐ -ΡΜ]-Σ
/=! ι=1

ΡΓ(Α)Π(1 -FM)
i= 1

[F(B) - F(W)]F\[L - FJ(B)]

R{W,N,A,B) (20)

ΡΓ(Λ)Π(1 - F (a))

N(A, B) = min {1 + 0 · G(W, N, A, B) + N(A, W)
a<w<b

• t(w, n9 a9 b) + N(w9 b) · r(w, n, a, &)}. (15)

The probabilities g(w, n9a9b)9 £(w9n9a9b)9 and r(w9n9

a9 b) can be derived from the distributions of the contention
parameters and the state of contention. When transmission is
unsuccessful, it is always possible to identify a window (a, b]
such that at least two of the JC,-'S lie in (a9b] and no is
smaller than a. This condition is designated as event A.

A = {at least two xl*s are in (a, b]9

given that all J C , ' S are in (a, £/]}.

Suppose that the window is reduced to (a9w]9 a < w < b\ in
the next iteration, three mutually exclusive events corre­
sponding to the three possible outcomes can be identified as
follows:

Β = {exactly one of the Λ , - ' S is in (a9w]9

given that all JC,-*S are in (a9 U]}
C = {no Xi is in (a, w], given that all J C , ' S are in (a, U]}
D = {more than one JC, is in (a9 w],

given that all J C , ' S are in (a9 £/]}.

From these events, the probabilities can be expressed as

Pr{A Π Β}
g(w9n9a,b) = ?τ{Β\Α} =

r(w9n9a9b) = Pr{C \A} =

Pr{A}

Pr{A Π C}
Pr{A} ' •

(16)

(Π)

The set Α Π Β represents the event that exactly one of the JC, 's
is in (a9w]9 that at least one JC, is in (w, b], and that all others
are in (w, U]. The set Α Π C represents the event that at least
two JC , ' s are in (w, b], given that all J C , ' S are in (w, L7].

Let F , (JC) (respectively, / (J C)) be the distribution (respec­
tively density) function that governs the generation of xi9

1 ^ i ^ η where η is the number of contending stations.
Then event A occurs with probability

It follows that an optimal window can be derived in each
iteration once the channel load and the distributions of con­
tention parameters are known. However, the dynamic-
programming formulation is continuous and requires infinite
levels of recursion. Boundary conditions must be set to termi­
nate the evaluations after a reasonable number of levels. In
practice, the J C , ' S may represent indistinguishable physical
measures when their difference is less than δ. It is assumed
that when the window size is smaller than δ, the probability
that two stations have generated parameters in this interval is
so small that contention can always be resolved in one step.
The following boundary condition is included.

N(A,B) = 1 for all (b - a) < δ .

The value of δ was set to 1/(10 x n) in our evaluations for
continuous distributions and to one for discrete distributions.
The results of evaluation are plotted in Fig. 6, which shows
that the average number of iterations is bounded by 2.4,
independent of the number of contending stations. This per­
formance is much better than that of the binary exponential
backoff protocol of Ethernet [28] as shown in the simulation
results in Fig. 7. It must be pointed out that the simulation
results for the proposed window protocol assume that the
number of contending stations is known, while those of the
binary exponential backoff protocol always start out with
the assumption that there is one contending station. However,
the advantage of the window protocol is that the channel
load can be estimated easily from previous windows (Sec­
tion IV-E), provided that the arrival rate does not change
abruptly, and that the degradation in performance with esti­
mated loads is negligible. In the case that the channel load
cannot be estimated and that the binary-divide window-
control protocol has to be used, the performance is still much
better than that of Ethernet.

Arrow et al. had studied a similar problem with the differ­
ence that the number of contending stations in a collided
window is assumed to be known exactly [29], [1]. The prob-

Π [1 - F (a)] - I

HA)

LF(B) - Α (β)] Π [ΐ -Fj(B)] - Π [1 ~F(B)]

(18)

Π 0 -F,(a))

1152 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985

Proposed Algorithm

10
—ι—
20

— ι —

30
—ι—
40

—ι
60 50 60 70 80

number of contending stations

Fig. 7. Comparison of Ethernet's binary exponential backoff protocol to the
proposed window protocol.

lem was formulated into a finite recursion, and an asymptotic
bound of 2.4 iterations was obtained by numerical evalua­
tions. We have obtained comparable results when only ter­
nary information on collision is available and the infinite
dynamic programming tree is truncated. This shows that the
information on the exact number of contending stations is
insignificant.

Although optimal, the dynamic programming algorithm
has a high computational complexity, which makes the algo­
rithm impractical for real-time applications. As an example,
the execution time to evaluate (15) on a DEC VAX 11/780
computer is 1.3 s for η = 20, and increases to 828 s for η =
100. Efficient hardware implementations will be discussed
in Section IV-G.

C. Optimal Greedy Window Control

The optimization of window control using dynamic pro­
gramming requires a high computational overhead because it
examines the entire sequence of possible future windows to
determine the window to be used in the next iteration. To
reduce this overhead, only ofce future window may be exam­
ined. An optimal greedy window-control scheme is one that
finds a window to maximize the probability of success
g(w, n,a,b) in the next iteration. When the contention pa­
rameters have identical cont inuous distr ibutions F(x),
g(w, n9a,b) can be expressed in a simple form as

g(w9n9a,b) = K[F(w) - F(a)]{[\ F(w)]n~l

[1 - F(b)Y~1} (21)

where Κ = η/{Ρτ(Α) [1 - F(a)]n}. It can be shown that (21)
is unimodal between a and b, so a maximum exists in the
window (a, b]. To find the optimal value of w, we set (d/dw) ·
g(w, n,a,b) = 0 and solve for w. This derivation leads to the
following equation if f(w) Φ 0:

[1 - F(w)]n~l - [1 - F(b)]n~l

= (n- l)[F(w) - F(a)][l - F(w)]T2. (22)

Let 2 = 1 - F(w); (22) becomes

(n - 1)[1 - F(a)]zn~2 [1 - F(b)]n~l

ζ""1 - = 0 .

(23)

It can be shown that a real root of (23) exists and satisfies
the inequality (1 - F(b)) < z0 < (1 - F(a)). There is no
closed-form solution to (23), and z0 has to be solved numeri­
cally. Once z0 is obtained, w09 the upper boundary of the
window, can be computed directly from z0 as

w 0 = F - l (l - z j . (24)

The performance of the greedy scheme is measured by the
average number of iterations expended before the minimum
is identified. The performance as obtained by simulations is
suboptimal and approaches an average of 2.7 iterations to
resolve contentions (see Fig. 6) . The computational over­
head to solve (23) numerically is independent of η and is less
than 1 s of CPU time on the DEC VAX 11/780 in most cases.

It is worth noting that a binary-divide window-control
scheme is derived from the optimal greedy window-control
scheme by setting η to 2. When η is 2, (23) is evaluated to
become F(w0) = [F(a) + F(b)]/2. If F (y) is uniformly dis­
tributed in (0, 1], then wa = (a + b)/2. The binary-divide
control rule can also be used as a heuristic for window control
with general distribution functions. It can be interpreted as
one which always predicts that there are two contending
stations. As a result, it performs well when the channel is
lightly loaded and degrades to have an <9(log2 n) performance
when the channel load is heavy.

WAH AND JUANG: RESOURCE SCHEDULING FOR LOCAL SYSTEMS 1153

D. Approximate Greedy Window Control

The approximate greedy window-control scheme is similar
to the optimal greedy window-control scheme except that an
approximate equation on success probability is used. Equa­
tion (21) may be rewritten as

g(w9n9a9b)
n-2

= K[F(w) - F(a)][F(b) - F(w)][l - %) Γ 2 Σ ν
(25)

where ν = [1 - F(b)]/[l - F(w)]. A function g(w9n9a9b)
that has a maximum very close to that of g(w9 n9a9b) can
be obtained by substituting the term (Σ*Γ0

2 ν) by (η - 1).
That is,

g(w9n9a,b)

= K'[F(w) - F(a)][F(b) - F(w)][l - F(w)]n~2 (26)

where K' = (n - \)K. By solving (d/dw) [log, g(w9 n9

a9b)] = 0, we obtain

fM , /(HQ , (n - 2)f(w) _
F(w) - F(a) F(w) - F(b) F(w) - 1 K }

or, equivalently,

[F(w)f + C[F(w)] + D = 0

where

(n - l)[F(a) +F(b)] + 2

(28)

C = -

D =
F(a) + F(b) + (n - 2)F(a)F(b)

A solution to (28) in the window (F(a)9F(b)] is given by

w χ - C - V C 2 - 4D
= r . (29)

The approximate window wa as calculated from (29) gives a
performance that is nearly as good as that of the optimal
greedy scheme (see Fig. 6). The computational overhead to
calculate (29) is independent of η and can be done in less than
100 JUS on the DEC VAX 11/780.

E. Load Estimations

Before the window-control protocol is carried out, the
number of contending processors must be estimated from the
distributions of the contention parameters and the statistics of
previous channel activities. This information is essential in
estimating an initial window and in controlling the dynamic
changes in window sizes in the current contention period. A
method based on maximum likelihood estimation is de­
scribed here.

After the rth message is transmitted, the window (L, w(t)]
that successfully isolate the station with the minimum is
known to all processors. A maximum likelihood estimate of
n(t)9 the number of stations that have participated in the

contention, can be computed from a likelihood function on
the probability of success that the minimum lies in (L, w(t)].
Assuming that the contention parameters are independently
and uniformly distributed in (0 , 1] , the likelihood function is
derived as

LK(n(t)9w(t),0) = Pr(0 < Yx < w(t) < Y2)

= h{t)w(t){\ - w{t))h{t)-\ (30)

LK(n(t)9 w(t)90) is maximized at

- 1
log e (l - w(t))

0 < w(t) < 1. (31)

The number of contending stations to transmit the (t + l)th
message can be obtained by adding to fi(t) the difference
between the possible arrivals after the rth message has been
transmitted. The average number of iterations to resolve con­
tentions using this load estimation method, together with the
optimal greedy window-control scheme, is 3.1 as shown
in Fig. 6.

Since the extremum is readily available when contention
is resolved, this information can be "piggybacked" in the
packet transmitted. Hence, an alternative estimate is based
on the density function of this statistics. The conditional
density of yx is

/y , (y i | 0 < 7, < w < Y2) -
fYxY2{y\,yi)dy2

a
(32)

fYlY2(yuy2)dy2dyl

Since the contention parameters are independently and uni­
formly distributed in (0 , 1] ,

hdy-uyi) = n(n - 1)(1 - y 2) " - 2 .

Substituting (33) into (32) yields

fYl(yi\o<Yl<w<Y2)=±.

(33)

(34)

This result shows that the distribution of y{ is determined
once the window (0, w] is known. Therefore, no new infor­
mation is gained by using this first-order statistic in esti­
mating n.

The accuracy on load estimation can be improved by using
information on previous windows that successfully isolate a
single station. A technique in time-series analysis called
autoregressive-moving-average (ARMA) model can be ap­
plied to obtain an estimated window based on all previous
windows, w(l) , w(2), · · · , w(t). A simple example is to com­
pute a moving average wmv(t) using the following formula:

v (0
W m f c ~ 1) + W (t)

(35)

The value of wmv(t) is then used in (30) to estimate the chan­
nel load. The performance of using ARMA load estimation
and optimal greedy window control is very close to that when
the channel load is exactly known (see Fig. 6).

1154 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, N O . 12, DECEMBER 1985

F. Estimating the Distribution Functions of
Contention Parameters

In applications such as load balancing and finding the
highest priority class, the distribution functions from which
the contention parameters are generated are unknown and
have to be estimated dynamically. Generally, the distribution
functions are assumed, and parameters of the distribution
functions are estimated from statistics collected. Since infor­
mation on the distribution functions is essential and must be
consistent for all sites to optimize the window search, inde­
pendent monitoring of local information and information
broadcast on the bus may be insufficient and may lead to
unstable operations.

For load balancing, a single site is responsible for col­
lecting the distribution function on local response times and
distributing them to other sites. For scheduling transmissions
with the highest priority level, information on the priority
levels of messages transmitted can be observed on the bus. As
an example, let A, be the arrival rate of messages to the ith
priority level, and let tt be the arrival time of the most recent
packet in the /th level that has been transmitted. Assuming a
Poisson process for the packet arrivals, the probability that at
least one station has a message in the ith priority level is

-00

3, = 1 -
JT-t;

λ,<ΓΛ<' dt = e-W-V (36)

where Τ is the current time. The distribution that a station
generates a message in the ith priority level is

Fi(k) =
Ό

-λ,-σ-ί,ο

Jc < i

ι' ^ k *

k > Ρ

(37)

where Ρ is the total number of priority levels in the system.
The arrival time of a packet may be acquired by "piggy­
backing" this information on the packet transmitted. The
packet arrival rate may be estimated by observing the packet
arrival times.

The proposed window-control algorithms are quite robust
with respect to changes in the distribution functions. Experi­
ments on variations of the parameter of a Poisson distribution
did not lead to any significant degradation in performance.
However, there is always a delay between the time that the
distribution function is changed and the time that this change
is propagated to all sites. The optimization in the window
protocol may be unstable if changes cannot be disseminated
in time. The method for estimating the distribution functions
is highly problem-dependent and is currently a topic under
investigation.

G. Implementation of the Window Protocol on
Ethernet Interfaces

We have presented four window-control protocols in this
paper. Window control using dynamic programming requires
a high computational overhead, while the other window-

control algorithms require less computations but give poorer
performance. The implementation on Ethernet-type inter­
faces has a stringent real-time requirement because each con­
tention slot has a duration of less than 60 μ,β on a 10-Mbit/s
network [39]. The direct computation of the binary-divide
and approximate greedy window-control (using a lookup
table to compute the square root) schemes can satisfy this
timing requirement. In this section, we describe a lookup-
table method for implementing the dynamic-programming
window control.

The sequence of windows evaluated by dynamic program­
ming can be precomputed and stored in a lookup table. Given
a channel load n, the sequence of optimal windows derived
from (15) constitute a binary decision tree [Fig. 8(a)]. The
root of a subtree represents a window. The optimal window
for the next iteration will reside in the left subtree if collision
is detected in the current iteration. It will be in the right
subtree if no transmission is detected. A set of binary trees,
each of which corresponds to a channel load, can be con­
structed and stored as a lookup table in each station. The data
structure for implementing the binary decision tree is shown
in Fig. 8(b). The optimal window in each iteration can be
retrieved efficiently in real time. The windows are evaluated
based on a uniform distribution of the contention parameters.
In applications where the contention parameters have iden­
tical but nonuniform distributions, they must be transformed
by the distribution function into the uniform distribution be­
fore the lookup table is used.

One problem with the lookup-table method lies in the large
memory space required. Since the average number of itera­
tions is small, some subtrees can be pruned to reduce the
memory space without significant degradation to perfor­
mance. Window boundaries in the pruned subtrees have to be
obtained by interpolation techniques. Likewise, for those
channel loads for which no decision trees are stored, inter­
polation has to be used to obtain the window boundaries.

The lookup-table method has been designed on existing
Ethernet interfaces [37], [40]. A microcontroller, Intel MCS
8396, is placed between the Ethernet-protocol chip, Intel
82586, and the collision-detection chip, Intel 82501. A deci­
sion tree of four levels as evaluated by dynamic programming
is used, and the microcontroller switches to binary-divide
window control when more than four contention slots are
needed. Sixteen-bit random numbers are used for the con­
tention parameters and the entries of the decision tree. The
channel load is assumed to vary from 1-100 stations. Hence,
the total space required for storing the lookup table is
3 kbytes, which can fit in the 8-kbyte read-only memory of
the MCS 8396. The performance of the truncated decision-
tree method is less than 3.0 contention slots for a channel load
between one and seventy stations (assuming that the channel
load is exactly known).

The balanced binary tree in the above implementation sim­
plifies the data structure. However, the performance can be
improved if a skewed binary tree is used. The reasoning
behind the skewed tree is that when a collision occurs, the left

1 2 — —

Λ - — — - Ν

NUMBER OF
CONTENDING

STATIONS

(b)

Fig. 8. Lookup-table implementation of dynamic-programming window control, (a) Binary decision tree, (b) Corresponding
data structure.

subtree is traversed and the size of the interval containing the
minimum is small. In this case, a binary-divide control works
well. On the other hand, when no transmission is detected,
the right subtree is traversed and the size of the interval
containing the minimum is not reduced significantly. In this
case, the binary-divide control does not work well. Experi­
mental results indicate that less than 2.5 slots are required to
resolve a contention when a skewed binary tree with a height
equal to η and a height of one for the left subtree of every
nonterminal node (n is exactly known) is used. This means
that 2n words are required for every dynamic programming
tree. The total memory space required for η ranging from one
to sixty stations is 7.3 kbytes.

V . CONCLUSIONS

In this paper, we have shown that a class of resource-
allocation problems for a local computer system connected
by a multiaccess bus can be reduced to the problem of deter­
mining the extremum from a set of physically distributed
random numbers. A distributed algorithm to identify the ex­
tremum in a constant average time independent of the number
of contending stations is proposed. This load-independent
behavior is important because the number of contending sta­
tions to identify the extremum is usually large. Most existing
contention-resolution algorithms, such as the binary ex­
ponential backoff algorithm of Ethernet, are load-dependent

1156 IEEE TRANSACTIONS ON COMPUTERS, V O L . C-34, N O . 12, DECEMBER 1985

and cannot be used to identify the extremum. The proposed
algorithm can be implemented in hardware on a contention
bus with the collision-detection capability. The overhead in
each iteration is the time for a contention slot. On the other
hand, it can also be implemented in software on existing
multiaccess networks. In this case, two messages have to be
transmitted in each iteration. It must be pointed out that the
proposed window control is optimal in the sense of minimiz­
ing the number iterations before the extremum is found, but
is not optimal in minimizing the expected delay or maxi­
mizing the average throughput of the network.

The proposed algorithm requires the reliable transmission
of collision and broadcast information to all processors. This
may be difficult if the channel is noisy. Incorrect information
received may cause indefinite contentions and the inability to
identify the extremum. The problem can be resolved by
broadcasting the extremum after it is found. Further, the
proposed algorithm has a predictable average behavior. Sig­
nificant deviation from this behavior can be used to indicate
an unreliable channel.

Besides the resource sharing applications discussed in this
paper, the proposed algorithm can be extended to resolve
contentions for multiple multiaccess or bit-parallel buses
[24], [37], [34], [16], maintain consistency and process que­
ries in distributed databases [38], and unify many existing
adaptive CSMA protocols [15].

REFERENCES

[1] K. Arrow, L. Pesotchinsky, and M. Sobel, "On partitioning a sample
with binary-type questions in lieu of collecting observations," J. Amer.
Statist. Ass., vol. 76, no. 374, pp. 402-409, June 1981.

[2] Κ. M. Baumgartner and B. W. Wah, "The effects of load balancing on
response time for local computer systems with a multiaccess network,"
in Proc. Int. Conf. Commun., June 1985, pp. 10.1.1-10.1.5.

[3] T. Berger, N. Mehrauari, D. Towsley, and J. K. Wolf, "Random multiple
access and group testing," IEEE Trans. Commun., vol. COM-34,
pp. 767-779, July 1984.

[4] J. Capetanakis, "The multiple access broadcast channel: Protocol and
capacity considerations," Ph.D. dissertation, Massachusetts Inst. Tech­
nol., Cambridge, 1977.

[5] , "Tree algorithm for packet broadcast channels," IEEE Trans. In­
form. Theory, vol. ΙΤ-25, pp. 505-515, Sept. 1979.

[6] , "Generalized TDMA: The multiaccessing tree protocol," IEEE
Trans. Commun., vol. COM-27, pp. 1479-1484, Oct. 1979.

[7] Y. C. Chow and W. Kohler, "Models for dynamic load balancing in a
heterogeneous multiple processor system," IEEE Trans. Comput.,
vol. C-28, pp. 334-361, May 1979.

[8] H. A. David, Order Statistics. New York: Wiley, 1970.
[9] G. J. Foschini, "On heavy traffic diffusion analysis and dynamic routing

in packet switched networks," in Computer Performance, Κ. M. Chandy
and M. Reiser Eds. New York: North-Holland, 1977.

[10] R.G. Gallagher, "Conflict resolution in random access broadcast net­
works," in Proc. AFOSR Workshop Commun. Theory Appl.,
Sept. 17-20, 1978, pp. 74-76.

[11] Y.I. Gold and W.R. Franta, "An efficient collision-free protocol for
prioritized access-control of cable radio channels," Comput. Networks,
vol. 7, pp. 83-98, 1983.

[12] J. H. Hayes, "An adaptive technique for local distribution," IEEE Trans.
Commun., vol. COM-26, pp. 1178-1186, Aug. 1978.

[13] K. Hwang et al., "A Unix-based local computer network with load
balancing," IEEE Computer, vol. 15, pp. 55-66, Apr. 1982.

[14] M. G. Hluchyj, "Multiple access communication: The finite user popu-

[15;

[16;

[Π

[18

[i9;

[2o;

[21

[22;

[23

[24;

[25

[26;

[27

[28

[29;

[30

[31

[32;

[33;

[34;

[35

[36;

[37;

[38

[39;

[4o;

lation problem," Massachusetts Inst. Technol., Cambridge, Tech.
Rep. LIDS-TH-1162, Nov. 1981.
J. Y. Juang and B. W. Wah, "Unified window protocol for local multi­
access networks," in Proc. 3rd Annu. Joint Conf. IEEE Comput. Com­
mun. Soc, Apr. 1984, pp. 97-104.
J. Y. Juang, "Resource allocation in computer networks," Ph.D. dis­
sertation, Purdue Univ., West Lafayette, IN, Aug. 1985.
L. Kleinrock and F. A. Tobagi, "Packet switching in radio channels:
Part I — Carrier sense multiple access modes and their throughput-delay
characteristics," IEEE Trans. Commun., vol. COM-23, pp. 1400-1416,
Dec. 1975.
L. Kleinrock and Y. Yemini, "An optimal adaptive scheme for multiple
access broadcast communication," in Proc. Int. Conf. Commun., 1978,
pp. 7.2.1-7.2.5.
Ε. M. Reingold, J. N. Nievergelt, and N. Deo, Combinatorial Algo­
rithms. Englewood Cliffs, NJ: Prentice-Hall, 1979.
J. F. Kurose and M. Schwartz, "A family of window protocols for time
constrained applications in CSMA networks," in Proc. 2nd Joint Conf
Comput. Commun. Soc, 1983, pp. 405-413.
J. F. Kurose, M. Schwartz, and Y. Yemini, "Multiple-access protocols
and time-constrained communication," ACM Comput. Surv., vol. 16,
no. 1, pp. 43-70, Mar. 1984.
R.M. Metcalfe and D. R. Boggs, "Ethernet: Distributed packet switching
for local computer networks," Commun. ACM, vol. 19, pp. 395-404,
July 1976.
J. Mosley and P. Humblet, "A class of efficient contention resolution
algorithms for multiple access channels," IEEE Trans. Commun.,
vol. COM-35, pp. 145-157, Feb. 1985; also Lab. for Inform. Dec. Sci.,
Massachusetts Inst. Technol., Cambridge, Tech. Rep. LIDS-P-1194,
Dec. 1982.
A. K. Mok and S.W. Ward, "Distributed broadcast channel access,"
Comput. Networks, vol. 3, pp. 327-335, 1979.
L. M. Ni and K. Hwang, "Optimal load balancing strategies for a mul­
tiple processor system," in Proc. 10th Int. Conf. Parallel Processing,
Aug. 1981, pp. 352-357.
L. M. Ni and X. Li, "Prioritizing packet transmission in local multiaccess
networks," in Proc. 8th Data Commun. Symp., Cape Cod, MA, 1983.
N. Shacham, "A protocol for preferred access in packet-switching radio
networks," IEEE Trans. Commun., vol. COM-31, pp. 253-264, Feb.
1983.
J. F. Shock et al., "Evolution of the Ethernet local computer network,"
IEEE Computer, vol. 15, pp. 10-27, Aug. 1982.
M. Sobel and P. A. Groll, "Group testing to eliminate efficiently all
defectives in a binomial sample," Bell Syst. Tech. J., pp. 1179-1252,
Sept. 1959.
A.S . Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1981.
F. A. Tobagi, "Carrier sense multiple access with message-based priority
functions," IEEE Trans. Commun., vol. COM-30, Jan. 1982.
D. Towsley, "Queuing network models with state-dependent routing," J.
Ass. Comput. Mach., vol. 27, no. 2, pp. 323-337, Apr. 1980.
D. Towsley and G. Venkatesh, "Window random access protocols for
local computer networks," IEEE Trans. Comput., vol. C-31,
pp. 715-722, Aug. 1982.
D. Towsley and J. K. Wolf, "On adaptive polling algorithms," IEEE
Trans. Commun., vol. COM-32, pp. 1294-1298, Dec. 1984.
B. W. Wah and J. Y. Juang, "Load balancing on local multiaccess net­
works," in Proc. 8th Conf. Local Comput. Networks, Oct. 1983,
pp. 56-66.
B.W. Wah, "A comparative study of distributed Tesource sharing on
multiprocessors," IEEE Trans. Comput., vol. C-33, pp. 700-711, Aug.
1984.
B. W. Wah and J. -Y. Juang, "An Efficient contention-resolution protocol
for local multiaccess networks," pending U.S. Patent application, serial
number 06/652645, Sept. 1984.
B.W. Wah and Y.N. Lien, "Design of distributed databases on local
computer systems with multiaccess network," IEEE Trans. Software
Eng., vol. SE-11, pp. 606-619, July 1985.
Digital Equipment Corp., Intel Corp., and Xerox Corp., Ethernet: Local
Area Network Data-Link Layer and Physical Layer Specifications,
Version 1.0, Sept. 30, 1980.
B.W. Wah and W.Q. Li, "Interface design for efficient multiaccess
networks," under preparation.

WAH AND JUANG: RESOURCE SCHEDULING FOR LOCAL SYSTEMS 1157

Benjamin W. Wah (S'74-M'79-SM'85) received
the B.S. and M.S. degrees in electrical engineering
and computer science from Columbia University,
New York, NY, in 1974 and 1975, respectively, the
M.S. degree in computer science, and the Ph.D.
degree in engineering, both from the University
of California, Berkeley, in 1976 and 1979,
respectively.

He was on the Faculty of the School of Electrical
Engineering, Purdue University, West Lafayette,
IN, between 1979 and 1985. He is now an Associate

Professor in the Department of Electrical and Computer Engineering and the
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana. His current research interests include parallel computer architectures,
computer networks, artificial intelligence, distributed databases, and theory of
algorithms.

Dr. Wah received the IEEE Outstanding Paper Award in 1981. He has been
a Distinguished Visitor of the IEEE Computer Society since 1983, and serves
the Program Co-Chairman of the 1986 IEEE Data Engineering Conference.

Jie-Yong Juang (S'82-M'85) received the B.S. de­
gree in electrical engineering from the National Tai­
wan University, Taipei, Taiwan, in 1976, the M.S.
degree in computer science from the University of
Nebraska, Lincoln, in 1981, and the Ph.D. degree in
electrical engineering from Purdue University, West
Lafayette, IN, in 1985.

He is currently an Assistant Professor in the De­
partment of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL.
His research interests include computer architec­

tures, computer networks, distributed processing, and parallel processing.
Dr. Juang serves as the Tutorial Chairman of the 1985 IEEE COMPSAC

Conference.

