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In a macropipeline of systolic arrays. outputs of one systolic array in a given format 
have to be fed as inputs to another systolic array in a possibly different format. A 
common memory becomes a bottleneck and limits the number of systolic arrays that 
can be connected together. In this paper. we study designs of buffers to convert data 
from one format to another. The minimum number of buffers is determined by a 
dynamic-programming algorithm with 8(n2

) computational complexity. where n is 
the problem size. A general-purpose converter to convert data from any distribution 
to any other in a subset of the possible data distributions is also proposed. Last. buffer 
designs for a macropipeline to perform feature extraction and pattern classification are 
used to exemplify the design process. ~· 1988 Academic Press. Inc. 

l. INTRODUCTION 

The evolution in very-large-scale-integration (VLSI) technology has had a 
great impact on both computer architecture and digital signal processing. An 
important architectural approach resulting from the availability of inexpensive 
special-purpose VLSI circuits is the systolic array, which consists of multiple 
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regularly connected processing clements to exploit the potential ofpipclining 
and multiprocessing [II, 10]. Several data items flowing along diflcrcnt pipes 
with the same or different rates may meet and interact. The processing elements 
operate synchronously~ that is, each data item must stay in a processing ele­
ment for one and only one clock cycle. and all necessary operands to be 
processed by a processing element in each computational step must arrive at 
this processing element simultaneously. The major advantage of systolic pro­
cessing is that each data item, once accessed, will be used a number of times, 
and thus a high computational throughput can be achieved with a modest 
input/output bandwidth. Other advantages include modular expandability, 
extensive concurrency; simple and regular data and control flow, and sim­
plicity and uniformity of processing cells. 

In a large system, especially in real-time applications, a pool of systolic 
arrays of different types can be configured into a macropipeline to solve a 
given problem. A macropipeline is a pipeline of systolic arrays with the outputs 
of one array acting as inputs to another array in the pipe. Each stage of the 
pipe is a systolic array that performs one operation, such as matrix addition 
or multiplication. Such structure of macropipelines characterizes most image­
processing algorithms [ 16, 17]. Examples include real-time vision system [ 15], 
analysis of motion [I], image reconstruction from projections [ 4 ], radar signal 
processing [2], air traffic control [7], pattern analysis and image database 
management [6], recursive filtering [ 18], and pattern recognition [8]. The 
Programmable Systolic Chip [5] and the Warp array processor [ 12] are ex­
amples of reconfigurable systolic arrays dedicated to handling compute-bound 
problems in image and digital signal processing. A number of these arrays 
can be used in a pipelined fashion to perform the various tasks in image and 
signal processing. 

A data distrihlllion of a systolic array is either the format of inputs fed into 
the systolic array or the format of outputs exiting the systolic array. The input 
data distribution of one systolic array may be different from the output data 
distribution of another~ hence, when two systolic arrays are connected together, 
it may be necessary to convert the outputs of the systolic array that feeds data 
to the other into its required input data distribution. A conventional approach 
is to use a common memory to buffer the outputs of the systolic arrays, which 
becomes a bottleneck when many systolic arrays are sharing the common 
memory. Another approach is to design the systolic arrays such that the output 
format of one array is the same as the input format of the next array in the 
macropipeline and to connect the systolic arrays directly. This may not always 
be possible, especially when the macropipeline is reconfigurable. A third ap­
proach is to design a converter between two stages of the macropipeline, 
which consists of multiple buffers and a control unit to select the appropriate 
buffers for inputs and outputs [3]. This approach is exemplified by MOSAIC 
[ 14 ], a project carried out at ESL. The system consists of a statically scheduled 
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FIG. I. Macropipelining of systolic arrays. (a) A macropipeline of systolic arrays. (b) Conversion 
of data from one distribution to another. 

crossbar switch that connects multiple Warp processors, each with local 
memory modules, into a macropipeline. The local memory modules are used 
to store input data and restructure them into the required input format. Since 
Warp processors are reconfigurable general-purpose systolic arrays, the mem­
ory requirement for each module is not defined at design time~ hence, all 
memory modules are of the same size. The interfacing of multiple systolic 
arrays was also addressed in an ad hoc fashion in the design of a 450-MFLOP 
systolic processor for adaptive beamforming in acoustic and signal processing 
applications at ESL [9]. 

The concept of using buffers to perform data conversion is illustrated in 
Fig. 1~. C1 and C2 are converters to convert the output data into the required 
input formats. Figure I b shows this conversion. To convert data from distri­
bution D; to D0 , at least six buffers are needed. The first column of Do cannot 
be output until the third column of D; has arrived. Six buffers are needed to 
store the data in D; such that elements in the first column of Do are available 
in the buffers. Likewise, five buffers are needed for the second column, and 
three buffers are needed for the last. Note that the input and output rates may 
not be the same when the minimum number of buffers are used. 

In this paper, we study designs of converters to interface systolic arrays in 
a macropipeline. The design depends on the type of macropipeline. A static 
macropipeline consists of a fixed pipeline of systolic arrays with a fixed function 
in each array. Hence, the conversion of data distributions between adjacent 
stages is fixed as well, and special-purpose converters are needed. In contrast. 
in a dynamic macropipeline, a subset of systolic arrays is selected from the 
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pool and configured into a pipeline depending on the application. As the 
configuration of a dynamic macropipcline may not be fixed and data of dif­
ferent formats may be fed into a given array, general-purpose converters arc 
needed here. 

The objective of this paper is to provide a methodology to design an efficient 
converter for given input and output distributions. It is assumed that both 
inputs and outputs arc two-dimensional arrays in which the clements are 
equally spaced along the rows and columns in the data distributions, that 
there are no duplicated data in the distribution, and that data can be described 
by two vectors to be discussed in Section 2.1. The macropipeline is asyn­
chronous, and the interarrival times of data may be different for difterent 
systolic arrays. In the remaining sections, we study the minimum number of 
buffers for a given conversion [ 19], propose design procedures for general­
purpose and special-purpose converters, and exemplify the design process. 

2. MINIMUM NUMBER OF BUFFERS 

A converter is made up of buffers, the interconnections among the buffers. 
and the necessary control hardware that issues signals to buffers to accept or 
send data at the proper times. Bmin is defined as the minimum number of 
buffers in a converter to buffer incoming data before they are output. In this 
section. an algorithm is presented to find Bmin for given input and output 
distributions. 

2.1. Data Distrihlllivns 

To describe different data distributions. two vectors are introduced here 
[ 13). Suppose that the row and column indices of X are i and}, respectively. 
The row vector of X is defined as the directional distance between X;.; and 
X;+ l.J and is denoted by 7. Similarly, the column vector of X. denoted by 7. 
is defined as the directional distance between X;.J and X;,J+ 1 • A data distribution 
with vectors 1 and 7 is denoted by D(7, 7). Two data distributions are illus­
trated in Fig. 2. 

The geometric layout of a data distribution can be described in the Cartesian 
plane. Without loss of generality. it is assumed that x1.1 for both the input 
and output distributions is placed at the origin. and that data are moving in 
the direction of the positive x-axis. Vectors 7 and 7 used to define a data 
distribution determine the locations of its elements uniquely. CxU. }) and 
Cl'(i, j) denote the x- and y-coordinates of element X;.r 1\ and J\ are the 
projections of vectors 1 and 7 on the x-axis. Likewise, 1,. and J,. are the 
corresponding projections on they-axis. Then. 

Cx(i,j) = (i- 1 )fx + (}- 1 )J.\ ( 1 ) 
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FIG. 2. Two data distributions and their corresponding vectors. (The first data distribution has 
five streams of dataflow, and the second one has three streams. assuming that data are moving 
from left to right.) 

Cy(i,j) = (i- 1 )I.r + (j- 1 )l.r· (2) 

Note that if l..;, l.n l_n and }_1• are integers, then the coordinates will be integers. 
In the Cartesian-coordinate representation we have adopted, the x-coor­

dinate indicates timing; that is. elements with the same x-coordinate arrive 
at (or depart from) the converter at the same time. Data with the smallest x­
coordinate arrive at (or depart from) the converter first, while data with the 
largest x-coordinate arrive (or depart) last. The ith (input or outplll) step is 
defined as the set of elements in the (input or output) distribution with the 
x-coordinate equal to i. 

2.2. Finding the lo.1inimwn Number of Buffers 

A dynamic-programming formulation is developed to find Bm;n, the min­
imum number of buffers to convert the data distribution from D,- to D0 • Let 
b,- be the number of buffers needed after the (i - I )st output step has been 
carried out and before the ith step of Do can be output, while the necessary 
data to output in the ith output step are being received. In deriving b,-, it is 
assumed that all input data items are buffered before they can be output. 
Further, let B,- be the maximum number of buffers needed when the ith step 
of D" is output, and let the boundary conditions be B0 = 0. For the example 
in Fig. I, before X1.1, x~. 2 , and xu can be output, b 1 (=6) buffers are needed 
to buffer the first three columns of D,-. Before the second output step of D" 
can be carried out, data in the first four input steps with eight data items must 
have been received. Hence, b2 is 5, assuming that the first output step has 
been completed. Similarly, b3 = 3. As a result. 

i=O 

i= 1,2, 3. 
(3) 

Bmin = B3 = max{b3 , max{b2, max{h 1 , B0 }}} = b 1 = 6. (4) 
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Note that in deriving the minimum number of buffers, the input and output 
clocks may be running at ditlcrent rates. 

To allow a more precise formulation, two partitions on the data set 
X= {.x;,1: I~ i,j ~ n} and a partial ordering of these partitions arc introduced. 

An inplll partition partitions the input array X into N; disjoint subsets, I,,, 
I ~ p ~ N;, where 

p = 1, ... ,N;. (5) 

and N; is the number of input steps. /i and Ji are the row and column vectors 
of the input distribution, respectively, and /~ and J~,- are the corresponding 
projections on the x-axis. lp represents the set of input elements with the same 
x-coordinate aP. 11 is the set of input data that arrive at the converter first, 
and IP is the pth arrival set. 

An olllput partition partitions the output array X into N 0 disjoint subsets 
Ob 1 ~ k ~ N0 , where 

k = l, ... ,N,, (6) 

and No is the number of output steps for the output distribution. 7 o and l" 
are the vectors of the output distribution, respectively, and ~~~-and 1~:. are the 
corresponding projections on the x-axis. Ok represents output elements with 
the same x-coordinate ak. 0 1 represents the set of data that depart from the 
converter first, and Ok is the kth departure set. 

Figure 3a shows D; and D0 of a 3 X 3 array X. Since X arrives in three 
steps, there are three input partitions (i.e., N; = 3). Similarly, there are seven 
output partitions (i.e., No = 7) because the outputs depart in seven steps. Let 
S and 0 be the sets of input and output partitions and II be their union. 

s = { Ip II ~ p ~ N;} 

0= {Okll ~k~No} 

II=SUO. 

(7) 

(8) 

(9) 

For 7r; E II, l1r;l represents the number of elements in 7r;. The corresponding 
input and output partitions in Fig. 3a are shown in Fig. 3b. 

The example in Fig. 3 shows that there exists a relationship between the 
Ok's and lp's. A partial ordering .. _, can be defined on II as follows. If 
lk- Ip, then data in IP will arrive earlier than those oflk. IfOk- Op. then 
data in Op will leave earlier than those of Ok. Further, if Ok- lp, then data 
in Ip must arrive before data in Ok can depart. To output the elements in Ok, 
all elements in IP's such that Ok nIp =F 0 must have arrived at the converter. 
In short, 
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FIG. 3. Partitioning and partial ordering. (a) Input distribution D; and output distribution D,. 
(b) Input and output partitions. (c) Lattice for the partial ordering (transitive arcs are not shown). 

(l) lk- lp, if k > p; 

(2) ok- op, if k > p; 

(3) Ok- lp, if either Ok n Ip =I= 0 or there exists an integer q such that 
lq n Ok =I= 0 and that Iq- lp. 

The above definitions imply that if Ok - lp, then Ok - Ip- 1 -

Ip-2 - • • • - 11 • The integer qk = p such that Ok - lp and that Ok ~ lp+ 1 

is defined as the key number for Ok. Note that all the relationships among 
the Ip's and Ok will be known once qk is found. The partial ordering of the 
partitions can be represented in a lattice. Fig. 3c shows the lattice of the partial 
ordering for the example in Fig. 3a. For instance, q3 = 2 is the key number 
for 0 3 since 0 3 n 12 = {x2.1}, and 0 3 can be output once elements in 12 have 
arrived. 

To use dynamic programming to find Bmin. 01, 02, ... , Ok are examined 
sequentially. It is assumed that the inputs and outputs may be driven by 
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different clocks; that is, the minimum amount of data arc input to generate 
the· necessary outputs. If qk is the key number for Ok, then 11, 12 , ••• , lqk 

must have arrived at the converter before elements in Ok can depart. The 
reason is that either Ip, I ~ p ~ qk> contains data in Ok. or 1{1 does not contain 
data in ok but Iqk __. Ip. Therefore, elements in the set I I u I2 u ... u Iqk 

that remain after Iqk has arrived and Ok-1 has left must be buffered. In other 
words, bb the number of buffers needed, is 

Qk ' k-1 

bk = L II; I- L IO;I, k = 1, ... ,N0 • ( 1 0) 
i= I i= I 

By the principle of optimality, which states that an optimal sequence of de­
cisions has the property that whatever the initial state and decision are, the 
remaining decisions must constitute an optimal decision sequence with regard 
to the state resulting from the first decision, we can formulate the problem 
in dynamic programming as follows. 

IOoi=O; qo=O; ( 11 a) 

k=O 
(11 b) 

k = 1, ... ,N0 

k= 1, ... ,N0 • 

(12) 

Note that the summation in Eq. ( 11 b) is zero if the lower limit is greater than 
the upper limit. 

To establish the partial ordering of partitions, a counter is used to count 
the number of elements in each partition, and the key number qk is kept for 
each Ok. C~(i,j) and C~(i,j) are computed for every element X;,J in the input 
and output distributions. If X;,j is in ok and Ip, then ok- Ip, and the counters 
for ok and Ip are incremented. qk is updated top if pis larger than the previous 
value of Qk· The algorithm to compute the partial ordering is shown in Fig. 
4. The computational complexity of the algorithm is 0(n2), since all elements 
in D; and Do must be considered. A better algorithm with a computational 
complexity of O(max{N;, No}· min{!~, J~}) can be devised but will not be 
presented here. 

The example in Fig. 3a is used to illustrate the algorithm. Initially, all key 
numbers are initialized to zeros, N; = 3, and N 0 = 7. Since C~(l, 1) = 0, 
C~( 1, I) = 0, hence, x,,, E 0 1 , and x1.1 E I1 • q1 and the counters for 0 1 and 
I, are updated to ones. Similarly, it is found that X1.3 E 0 3 and x 1•3 E I 1• The 
counters for 0 3 and I, are incremented, and q3 is set to one. For x2•1, it is 
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procedure computc__partial_ordering; 

/* Inputs: 1 and1: vectors for input distribution; 

C~ (1.1) = C~(l.l) = 0, and all c~ (i,j) and C~(i,j) are integers; 

1' and T: vectors for output distribution; 

N;: number of input steps; 

No: number of output steps; 

Outputs: Three arrays <ll(N0), Q(N0), S(N;). where 

Q(k)= :a..:. the number of elements in 0.,; 

Q(k) = Qk, the key number for 0..; 

S(p) = : lp:. the number of elements in lp. •t 

(1) Initialize ell, Q, and S to zeroes. 

(2) for i=l ton do [ 

for j= 1 to n do [ 

k := C~(i.j)+ I; Q(k) := Q(k)+ I; 

p := C~(i,j)+ I; S(p) := S(p)+ 1i 

Q(k) :=max [Q(k), p} 

FIG. 4. Algorithm to compute the partial ordering of partitions. 

9 

found that x2•1 E 12 and that x2.t E 0 3 • The counters for 0 3 and hare incre­
mented, and q3 is set to max { q3 , 2} = 2. Likewise, the remaining elements 
in X can be examined. The results of applying the algorithm in Fig. 4 are 

<I> = [ 1, I, 2, I, 2, l, I]; Q = [ 1' 1' 2, 2, 3, 3, 3]; S=[3,3,3]. 

Applying Eq. (11) results in [bk] = [3, 2, 4, 2, 4, 2, 1]. From Eq. (12), we 
obtain B1 = 4. 

3. COMBINATIONS OF OAT A DISTRIBUTIONS 

In this section, we discuss some properties of data distributions that are 
useful for designing the converters. As. mentioned before, a data distribution 
is characterized by two nonparallel vectors. Two data distributions D(l 1

, 

] 
1

} and D(l 2
, ]

2) are said to be equivalent (or belong to the same equivalence 
class) if 

and J' =]2 X X ( 13a) 

and 

( 13b) 
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where /~ (resp. J~J is the projection of 7 i (resp. 7 i) on the x-axis. The first 
condition (Eq. ( 13a)) ensures that the data distributions have the same pro­
jections on the x-axis. Consequently, the orders in which data arrive at the 
systolic array for the two data distributions are identical. The second condition 
(Eq. ( 13b)) ensures that the data arriving at the systolic array at the same time 
have the same permutations. Note that for the two vectors 7 and 7, if 0 is 
the angle in a clockwise direction from 7 to 7, then sin(O) = U.J.r 
- fylx)/(111·171). The number of streams of data flowing into the systolic 
array for two equivalent data distribl•tions may not be equal and can range 
from n to (2n - l ). As an example, the two data distributions in Fig. 2 are 
equivalent, but have different numbers of streams of dataflow. 

The following theorem shows the number of possible equivalence classes 
of data distributions. 

THEOREM. There are Q(2n) equivalence classes qf data distributions for an 
n X n array of data. 

Proof In proving the number of equivalence classes, only the projections 
of the vectors on the x-axis have to be considered. Without loss of generality, 
assume that 7 is not orthogonal to the x-axis. From the x-projections of the 
first row of data, Cx( l, 1 ), Cx{ l, 2), ... , CA 1, n), it is necessary to determine 
the number of possible x-projections for the remaining rows. Consider the 
x-projection of x2,1• Assuming that Cx(2, 1) ~ Cx( 1, 1 ), there are 2n possible 
positions for Cx{2, l ), namely, Cx{2, 1) = CAl, i), i = l, ... , n; CA 1, i) 
< Cx(2, l) <ex( I, i + 1), i = l, ... , n- I; and Cx{2, 1) > Cx{l, n). Suppose 
that Cx( 1, l) < Cx(2, 1) < Cx( l, 2); then there are three possibilities for Cx(3, 
1), namely, Cx(3, l) = Cx(l, 2), Cx{2, 1) < Cx(3, l) < Cx(l, 2), and Cx{l, 2) 
< Cx(3, 1) < Cx( l, 3) (see Fig. 5). When Cx{3, I) = CAl, 2), the positions of 
the remaining elements are determined. However, when either Cx{2, 1) 
< Cx(3, l) < Cx(l, 2) or Cx(l, 2) < Cx(3, 1) < C~(l, 3), then Cx(4, 1) can 
fall into three possible ranges, as shown on the second level of the tree in Fig. 
5. The same argument can be applied to the remaining levels of the tree for 
x 5•1, ••• , Xn,l· In level Q, l < Q < n- 3, there are 20-• terminals, while in 
level n - 2, there are 3 · 2n-J terminals. The total number of terminals is 

n-3 
L 2Q-l+J·2n-3=2n-3_1 +3·2n-3=4·2n-3_l. (14) 

Q=l 

A similar argument can be made when Cx{ l, l) > C\"(2, l) or C\"(2, l) 
> C.A 1, 2). Since each of the above data distributions belongs to a distinct 
equivalence class, the total number of possible data distributions is Q(2n). • 

It is practically impossible to design a general-purpose converter to perform 
all the possible data transformations. Some restrictions are necessary to reduce 
the space of data distributions. 
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Cx (2, 1) < Cx (3,1) 
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FIG. 5. Possible positions for Xz.1. x3.1 •.••• Xn,l. 
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• • • 

If vectors 7 and J are restricted to have only unitary or zero projections 
on the x- andy-axes, then there will be eight possible directions for 7 pointing 
at 0, 45, 90, 135, 180,225,270, and 315°. For each direction of7, there are 
six possible directions for J, excluding the cases in which 7 and] are pointing 
in the same or opposite directions. Thus, there are 8 X 6 = 48 possible com­
binations of data distributions (Fig. 6a). Out of these 48 cases, there are only 
16 equivalence classes (distributions in the same column of Fig. 6a belong to 
the same equivalence class). 1 Data distributions in class i', l ~ i' ~ 8, can 
further be combined with the corresponding data distributions in class i, 
l ~ i ~ 8, into a new equivalence class if a reversal circuit is available to 
reverse the order of data arriving simultaneously at the converter. The resulting 
eight standard distributions are shown in Fig. 6b. 

4. GENERAL-PURPOSE CONVERTERS 

In this section, we discuss the design of a general-purpose converter that 
can convert data from any distribution to any other distribution provided 
that the vectors representing the data distributions have zero or unitary pro­
jections on the x- and y-axes. We will give the mathematical representation 
of this converter as a series of transformations applied to the input data dis­
tribution to produce the required output distribution. It is assumed that vector 

1 Note that clements in each equivalence class are not unique according to Eq. ( 13b). Figure 
6a shows one of the possible sets of equivalence classes. 
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a (1) (1')(2) (2')(3) (3')(4) (4')(5) (5')'(6) (6')(7)(7')(8) (8') 
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lrlllrl~lri7J~ 1/1 
FIG. 6. Possible data distributions when 7 and J have either zero or unitary projections on the 

x- andy-axes. (The arrow with a bar across it is 7; the other is J.) (a) All possible combinations 
of data distributions. (b) Eight standard output data distributions. 

7 is represented by the corresponding projections on the x- and y-axes. That 
IS, 

(15) 

1 can be represented similarly. The data-distribution vectors are represented 
as a 2 X 2 matrix D = [7, J]. A transformation process Tis a 2 X 2 matrix, 
and a transformation on a data distribution is the product of the transformation 
matrix and the corresponding matrix representation of the data-distribution 
vectors. It is further assumed that the input distribution Di(Ji, }i) and the 
output distribution D0 (l 0

, l 0
) are given, and that they belong to one of the 

48 data distributions in Fig. 6a. Figure 7 shows the transformation process. 
The first transformation is on reducing the number of data streams from 

the outputs of the previous stage of the macropipeline. It is assumed that the 
input matrix enters the converter in n streams~ that is, the distributions in the 
first row or columns (5) through (8') in the third row of Fig. 6a are used. If 
the output data from the previous stage require more than n streams, then 
both vectors 7; and }i of this data distribution must have nonzero x- and 
y-projections; that is, the distribution belongs to those in the second row or 
columns ( l) through (4') in the third row of Fig. 6a. In this case, the output 
data are multiplexed into n streams using n multiplexers before they are output 
from the previous stage (Fig. Sa). This multiplexing is equivalent to a linear 
transformation T1. 
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FIG. 7. The sequence of transformations in the conversion process. 

( 16) 

which changes the data distribution in the second row or columns (I) through 
(4') in the third row of Fig. 6a into that ofthe first row or columns (5) through 
(8') in the third row. The data distribution after multiplexing can be represented 
by DI(7I, ]t). 

- -l~.J;. 
a, - 1; Ji -fiJi' 

X J.' )' X 

if I_~= 0, J_~ =I= 0, J~. =I= 0 

where 

otherwise. 

( 17) 

Then X n array of data is routed into an n X n mesh of buffers with four­
neighbor connections until they are filled (Fig. 8c). If the data distribution 
belongs to one of those in columns (5) through (8') in rows I and 3 of Fig. 
6a. then it needs to be transformed into one of the data distributions in column 
( 1) through ( 4') in row I, which is the distribution of data that can be stored 
in the mesh of buffers. This transformation is represented by T2 . 

T, = ~ [
a~ 

- 0 
( 18) 
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a Multiplexer 

/ 

c 

w E - - b --~~-4------ b' 

Multiplexer 

~ 
FIG. 8. Architecture of the general-purpose converter (n = 3). (a) Multiplexing data from 

(2n - I) streams into n streams using n multiplexers (n = 3). (b) Demultiplexing data from n 
streams into (2n - I) streams using n demultiplexers (n = 3). (c) 3 X 3 mesh of buffers. (d) 
Reversal network. 

if 1_!.=0 
where (19) 

if J_:.=o. 

The two-dimensional interconnections in the buffers allow data to be shifted 
in one of the four directions. Data are input in one direction and may come 
out from any one of the four directions. Accessing data in one of the four 
directions can be represented as a rotation of vectors 7 and ] by an angle OJ, 
where OJ is 0, 90, 180, or 270°. This rotation can be represented as transfor­
mation T3 . 

-sin( OJ)]' 
cos( OJ) 

OJ = 0, 90, 180. 270°, (20) 



where 
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if 

if 

if 

(!_~, 1;~ = 0 and/~= -1~) or 

(1~,1~ = 0 and 1': = -1.~.) or 

(fi:,1~=0and1~:=-1;) or 

(J;,J~ = 0 and/~= -If.) 

(I~= -II and 1; = 0 and l1f.l = l1f.!) 

(1~ = -1i and 1; = 0 and !If. I= II~ I) 

UIJ~ = 0 and /~ = 1;) or 

u;,I~=Oand1f.=I},) or 

(1~,1~ = 0 and 1~ = 1;) or 

(1;,1~ = 0 and/~= 1;,) 

otherwise. 

15 

(21) 

or 

(22) 

T3 is equivalent to transforming one of the distributions (1) through ( 4') in 
the first row of Fig. 6a to another one in the same set. 

In conjunction with the rotation, the shifts of data from the buffers may 
be controlled by different clocks to allow staggering of data in different rows. 
This is equivalent to transforming one of the distributions (1) through ( 4') in 
the first row of Fig. 6a into one of the distributions in columns (5) thru (8') 
in rows I and 3. This transformation can be represented by T4. 

T = [a4 {34] 
4 

0 I ' 
(23) 

where {34 is the time difference between the output of the first element in 
row i and the first element in row (i + l ). T4 transforms D 3(l 3, 7 3) into 

-4 -4 
D4(1 , 1 ). 

where 
{34 = 1~/1f. 

{34 = 1~/ If. 

if 

if 

1_~. =I= 0 

If.=I=O. 
(24) 

Note that if the distributions are limited to those in Fig. 6a, then {34 = 0 or 
± l. However, T4 can also be applied to more general data distributions that 
will be discussed in Section 6. 
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Next, data may be routed through a reversal network to obtain the proper 
permutation (Fig. 8d). The reversal network maps data with output distribution 
(i) into that of(i') in Fig. 6a. This can be represented by a transformation T5 • 

(25) 

if Jj. =F 0 

where (26) 

if 1:. =F 0. 

Before data exit the converter and are sent into the systolic array in the 
macropipeline, they may be demultiplexed by n demultiplexers from n streams 
into (2n - 1) streams as shown in Fig. 8b. This can be represented as a 
transformation T6 • 

(27) 

which maps D5(l 5, ] 5
) into the output distribution D 0 (l 0

, l 0
). 

I~ JS 
15 =0 a6 = 

1
5, {36= 1-a62 if 

' X 
JS y 

Do= T6·Ds, where 
y 

(28) 
J~ [5 

a6 = 
1

5, {36= 1-a62 if J;.=o. [5 
X y 

The transformations described above are sufficient to transform any one 
of the 48 distributions in Fig. 6a to any other distribution in the same figure. 
By using multiplexers (T.) and by controlling the timing of different rows of 
data input into the mesh of buffers (T2), any one of the 48 distributions in 
Fig. 6a can be transformed into a distribution represented by vectors in the 
x- and y-directions only. Note that these distributions belong to one of those 
in columns (1) through (4') in row 1 of Fig. 6a. To transform between any 
two distributions represented by vectors in the x- and y-directions, a rotation 
of angle 8, where 8 is 0, 90, 180, or 270°, is needed. This can be achieved by 
selecting the direction to output the data in the mesh of buffers (T3) and a 
reversal network (T5). Likewise, by using demultiplexers (T6) and by con­
trolling the timing of the different rows of data output from the mesh of 
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buffers ( T4 ), one of the data distributions in columns ( 1) through ( 4') in row 
1 of Fig. 6a can be transformed into any one of the 48 distributions. 

The above design requires the entire matrix to be stored in the buffers 
before they are output. This simplifies the control but increases the delay. An 
alternative design uses demultiplexers to input data into selected buffers other 
than those on the perimeter. n demultiplexers, d1, d2 , ••• , dn, are added to 
the n rows of buffers in Fig. 8c. In the resulting design shown in Fig. 9, d 1 

and dn are two-way demultiplexers, while the rest are four-way demultiplexers. 
For buffers in row i, 1 < i < n, the four output lines of d; are connected to 
cells 1, i, (n - i + l ), and n. These connections are used to adjust the dataflow 
by outputting data as soon as possible and to obtain output distributions in 
columns (5) through (8') in rows 1 and 3 of Fig. 6a. Note that this is equivalent 
to applying T4 to the data distribution with /34 = 1 if we route d; to cell 
(n - i + 1) and with /34 = -1 if we route d; to cell i. For example, to convert 
from input distribution (I) to output distribution (5) in the first row of Fig. 
6a, demultiplexer d; is connected to cell (n - i + 1 ), I ~ i ~ n. Elements in 
the first row will stay in the buffers for one time unit, while elements in the 
ith row will go through i buffers and, hence, will stay in the buffers for i time 
units. Data will be output in the eastern direction. 

5. SPECIAL-PURPOSE CONVERTERS 

In this section, we discuss the heuristic design of special-purpose converters. 
An optimal design of these converters is difficult because they are problem 
dependent. 

The conversion between any pair of the eight standard distributions in Fig. 
6b is straightforward and is illustrated in the following examples. To convert 
from distribution (A) to distributions (B), (C), or (D), n2 buffers are needed. 

~ 
(row 1) 

rG 

~ 
(row 2) 

rBF 

~ 
(row i) 

r8···f8"· F 
~ 

(row n) 

rG 
FIG. 9. Organization of buffers for the modified general-purpose converter. 
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The input data are propagated from left to right and are output in the western, 
southern. or northern direction after the buffers are filled. To convert from 
distribution (A) to (E), n(n + 1 )/2 buffers are arranged as shown in Fig. 1 Oa. 
The conversion from distribution (A) to (F) needs n 2 buffers. Data are output 
from the west after the buffers are filled. Data in row i are output one step 
after data in row (i + I). The conversion from (A) to (G) is similar to that 
from (A) to (E), and that from (A) to (H) is similar to that from (A) to (F). 
The conversion from distribution (E) to (A) requires n(n + 1 )/2 bufters (Fig. 
1 Ob). For the conversions from distribution (E) to (B) or (C), n2 buffers are 
needed. The conversion from (E) to (D) is similar to that in Fig. I b. The 
conversion from (E) to (F) requires n2 buffers, and data in row i are output 
one step ahead of data in row (i + 1). The conversions from (E) to (G) or (H) 
are similar to that from (E) to (F). 

The design of a special-purpose converter between data distributions not 
defined in Fig. 6 may be complicated, and a heuristic procedure is proposed 
here. First, Bmin• the minimum number of buffers, is found by the algorithm 
in Section 2. A feasible control circuit with Bmin buffers is then searched. The 
control circuit contains demultiplexers that are individually controlled by a 
stored microprogram. If a feasible solution cannot be found easily or if the 
control circuit is too complex, then more buffers are added, and the procedure 
is repeated. 

6. DATA CONVERSION IN FEATURE EXTRACTION 

AND PATTERN CLASSIFICATION 

In this section, we give an example on interfacing the systolic arrays in a 
macropipeline using converters. Specifically, the problem on feature extraction 
and pattern classification will be used [ 18, 8]. 

a xll Xt2 Xt3 ---o- xu Xt2 XtJ 

X21 X22 X2J --{]--[]- X21 x22 X2J 

XJt XJ2 XJJ -o-o-o- XJt XJ2 XJJ 

b xu Xt2 Xt3 -o-o-o- xu Xt2 X1J 

X21 x22 X2J --{]--[]- X2t X22 X2J 

XJt XJ2 XJJ ---o- XJt XJ2 XJ3 

FtG. 10. Special-purpose converters. (a) Conversion from data distribution (A) to (E) (n = 3). 
(b) Conversion from data distribution (E) to (A) (n = 3). 
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In feature extraction, given an m' X I input vector x, the feature extractor 
has to produce a set of m' transformation vectors, D = { d; I i = I, ... , m'} 
using S, a set of training samples with known classes, where d; is an n X l 
column vector, ms is the sample mean of class s, and I'J. is the jth training 
feature vector of class s. The output of the extractor is the feature vector 
y = D · x. Figure l 1 a shows the schematic design of a V LSI feature extractor, 
which has a macropipeline of matrix multiplication, LV decomposition, and 
triangular-matrix inversion. 

For the pattern classifier, it is necessary to compute the feature offset vector 
m = ID51 - m52 , solve the linear system (G51 + Gs) · V = m for the discriminant 
vector V, and use V to compute the discriminant function F(y) and classify 
the vector y. Figure 11 b shows a schematic diagram for the VLSI feature 
classifier, which has a macropipeline of matrix multiplication, LV decom­
position, and triangular-system solver. 

Figure 12 shows a fast systolic array to multiply two n X n matrices in a 
pipelined fashion (n = 4 ). The outputs of the systolic array exit in (2n - 1) 
streams and are multiplexed by the converter into n streams. Figure 13 shows 
the systolic array for LV decomposition [ 1 0] and the associated input and 
output data formats. Although the outputs of the matrix-multiplication systolic 
array are in the same format as the inputs of the LV-decomposition systolic 
arra,y, the outputs of the multiplication systolic array are multiplexed from 
(2n - 1) streams into n streams to decrease the number of connections between 
the two chips. Hence, it is necessary to demultiplex the input data into 
(2n - 1) streams in the LV-decomposition array. Note that this conversion 
is not needed if the two systolic arrays are on the same chip. 

Figure 14 shows the triangular-matrix inverter and the associated input 
and output data distributions [ 13]. Figure 15 shows the conversion of the 
output matrix V from the LV-decomposition systolic array (Fig. 13) into the 
inputs of the matrix-inverter array (Fig. 14). Figures l5b and l5f show the 
data-distribution vectors of the inputs and outputs of the converter, respec­
tively. Although the input distribution in Fig. 15b is not one of the 48 standard 
data distributions in Fig. 6a, it can be converted by n multiplexers into the 
data distribution in Fig. l5c. These multiplexers are an implementation of 
the transformation process T 1 in Eq. (16) with a 1 = ~ and {3 1 = ~-The data 
distribution in Fig. 15c is then converted into that of Fig. 15d by entering the 
data into the n X n mesh of buffers until they are filled. This is an imple­
mentation of transformation T2 in Eq. ( 18) with a 2 = ! and {32 = -!. The 
data are output from the north side of the array, which is equivalent to a 
rotation of 270°. The resulting distribution is shown in Fig. 15e. Finally, n 
demultiplexers are used to convert the data distribution in Fig. 15e to that of 
Fig. l5f, which is transformation T6 in Eq. (28) with a6 = {36 = 1. The con­
version for the triangular array L can be done similarly. 

Figure 16 shows the conversion from the outputs of the matrix inverter 
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a44 a34 a2A at4 

~3 a33 a23 an 

~2 an a22 a12 

~~ a31 a21 au 

cu 

C21 Ct2 

C31 C22 CtJ 

C41 C32 C23 Ct4 

c42 c33 c2A 

C43 CJ4 

C44 

cu 

C21 

CJt c22 

C41 CJ2 

c42 CJJ 

C43 

C44 

Ct2 

CtJ 

C2J Ct4 

c2A 

CJ4 

b41 b42 b43 b44 

hJt hJ2 hJ3 hJ4 
~~ ~ h2] ~ 

bu b12 bn b 14 

FIG. 12. Matrix-multiplication systolic array and the corresponding input and output data 
distributions. 

(Fig. 14) to the inputs of the matrix-multiplication systolic array (Fig. 12). 
Figure 16b shows the data distribution of the outputs of the matrix inverter. 
which can be transformed by n multiplexers into the data distribution in Fig. 
16c. Only n of the (2n- I) inputs to the multiplexers are used since the input 
matrix is an upper triangular matrix. The data will fill the n X n mesh of 
buffers and will be output in a staggered fashion to obtain the resulting data 
distribution in Fig. 16d. This corresponds to transformation T4 with a4 = 2 
and {34 = I. Finally, the data distribution in Fig. 16d is converted into that 
of Fig. 16e by a reversal network. This corresponds to T5 with a 5 = -I. 

For the pattern classifier. operations similar to those in the feature extractor 
are needed except that it is necessary to solve the system L · V · ,. = f after the 
LC decomposition A = L · V. This is done by first solving L · E = f and then 

FIG. II. Applications of macropipelining in image processing and pattern recognition. (a) Featun: 
extractor. (b) Pattern classifier. 
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8.41 041 

8.42 &31 042 031 

8.43 &32 &21 043 032 021 

8.44 &JJ a22 au 11.44 UJJ u22 uu 

a34 &23 a12 UJ4 U2J U12 

alA a13 U24 U13 

a14 U14 

FIG. 13. LU-decomposition systolic array (I 0]. 

W=w-uv 

w=;-w/u 
u=u 

FIG. 14. Triangular-matrix inverter. 
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U44 U33 u22 Utt 

a 

U34 U23 Ut2 

U24 Ut3 

Ut4 

b ') 
d -r 

j1 

4 multiplexers 

e 

n-by-n mesh of 

buffers 

4 demultiplexers 

c -r 
--;;r, 

-.J1 
1 

I )1 
FIG. 15. Data conversion from the outputs of the LU-decomposition systolic array to the inputs 

of the triangular-matrix-inverter array. (a) The converter. (b) Input data distribution before entering 
the converter. (c) Input data distribution to buffers after multiplexing. (d) Data distribution after 
the buffers are filled. (e) Output data distribution from the buffers. (f) Output data distribution 
after demultiplexing. 

U · v = E to get the solution vector v. Figure 17 shows a special-purpose 
converter to transform the output matrix L of the LU-decomposition array 
(Fig. 13) into the inputs required by the linear-system solver [ 1 0]. The su-

Vt4 v44 

v2A V13 n-by-n mesh of V34 V33 

V34 V23 Vt2 buffers v2A V23 v22 

v44 Y33 v22 VI! V14 YJJ V12 vu 

/ / 
n multiplexers reversal circuit 

b 

~1 
c d e 

1 1 _y 
j1 7 1 

FIG. 16. Conversion from the outputs of the matrix inverter to the inputs of the matrix-mul­
tiplication systolic array. (a) The converter. (b) Input data distribution before multiplexing. (b) 
Input data distribution after multiplexing. (d) Output data distribution from the buffers. (e) Output 
data distribution after reversal. 
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I I 
n Multiplexers n Demultiplexers 

linear 
system 
solver 

FIG. 17. Conversion of data in array L from the LU-decomposition array into the required 
input data format of the linear-system solver. 

perscript in an input element indicates the number of time units that this 
data item will stay in the buffers. n multiplexers will route a data item to the 
appropriate row in the buffers, which cause the necessary delay. and n de­
multiplexers will convert the data to the required format of the linear-system 
solver. The conversion of array U into the required format is done similarly. 

8. CONCLUSIONS 

Macropipelines of systolic arrays can be used in a wide range of applications, 
especially in signal and image processing. To synchronize the dataflows in a 
macropipeline and to avoid the bottleneck of a common memory, converters 
are necessary to convert the output data from one systolic array into the 
required input-data format of the next systolic array in the pipeline. In this 
paper. an efficient algorithm is developed to find the minimum number of 
buffers for any conversion. A methodology to design a general-purpose con­
verter is developed for the frequently used conversions. Methods to design 
special-purpose converters are also examined. The proposed design methods 
are exemplified on the design of converters for macropipelines in feature 
extraction and pattern classification. 
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