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AhJtrtut -Some- imporUnt i~SIIe'S in Hsigning ron1pu1ers for anifid•l 
inl<lli~n«! (AI) ~nc an discuswd. 1lw Issues discuswd are dhiclecl 
inlo 1~ Se .. k: IM ~nlalion 1e .. 1, IM ronlrOI te .. t, and IM 

~- k•d. 1lw ~nrallon le•d deal• "ilh rhe kno,.ledge and 
""''hods used lo sol•• IM probltm and IM -an• lo represtnl il. 1lw 
ronlrOI lett! is ron<ft'l>td ,.;,b IM deltdion ol deptndencies and parol· 
lelism in 1he algorilhmic and program ~nlations ol the problem. and 
"ith tlw syndvoniurion and scheduling ol concutrenl tasks. 1lw ~­
..,. Inti addrftses lhe h.ard,...,.., and archittetunl components ntedecl to 
ttlluale !he aljlO<irhmic and program ~larions. Solutions In each 
k•d are iUustraled b)' a number ol ~nlatl•• S)'Sitms. Design d«i· 
siGns In ulstinc projects on AI compultn are classical into the top-doon~, 
botlom-up, and middlt-oul approadots. 

I. INTRODUCTION 

I N RECENT YEARS, artificial intelligence (AI) tech­
niques have been widely used in various applications, 

such as natural-language understanding. computer vision, 
and robotics. As AI applications move from the laborato­
ries to the real world and as AI software grows in complex­
ity, the romputational throughput and cost are increas­
ingly important concerns. The conventional von Neumann 
computers arc not suitable for AI applications because 
they were designed mainly for sequential and deterministic 
numeric computations. Extensive efforts have been de­
voted to investigate and develop efficient AI architectures 
[18!\j. This paper provides a state-of-the-art assessment or 
At-oriented systems and discusses the major issues in­
vol\'ed in such designs. 

A. Clwracraisric·s •if A I Compurations 

T,, de\'clop a special-purpose computer to support AI 
applications, the requirements of these applications must 
be fully understood. Many conventional numeric algo­
rithms are well analyzed, and bounds on their computa-
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tiona! performance have been established. In contrast, 
many AI applications are characterized by symbolic pro­
cessing, nondeterministic computations, dynamic execu­
tion, large potential for parallel and distributed processing, 
management of extensive knowledge, and an open system. 

Symbolic Processing: Data are generally processed in 
symbolic form in AI applications. Primitive symbolic oper­
ations, such as comparison, selection, sorting, matching, 
logic set operations (union, intersection, and negation), 
contexts and partitions, transitive closure, and pattern 
retrieval and recognition, are frequently used. At a higher 
level, symbolic operations on patterns such as sentences, 
speech, graphics, and images may be needed. 

Nondeterministic Computations: Many AI algorithms are 
nondeterministic, that is, planning in advance the proce­
dures to execute and to terminate with the available infor­
mation is impossible. This is attributed to a lack or knowl­
edge and a complete understanding of the problem: it may 
result in exhaustively enumerating all possibilities when 
the problem is solved or in a controlled search through a 
solution space. 

Dynamic Execution: With a lack of complete knowledge 
and anticipation or the soluti'on process, the capabilities 
and features of existing d:lla structures and functions may 
be defined and new data structures and functions created 
while the problem is actually being solved. Further. the 
maximum size for a given structure may be so large that it 
is impossible to allocate the necessary memory space ahead 
or time. As a result, when the problem is solved, memory 
space and other resources may have to be dynamically 
allocated and deallocated, tasks may be dynamically cre­
ated. and the communication topology may be dynami­
cally changing. 

Large Potential for Parallel and Distributed Processing: 
In parallel processing of deterministic algorithms. a set of 
necessary and independent tasks must be identified and 
processed concurrently. This class of parallelism is called 
A!'U parallelism. In AI processing, the large degree or 
nondeterminism offers an additional source of parallel 
processing. Tasks at a nondeterministic decision point can 
be processed in parallel. This latter class is called OR 
parallelism. 
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Knowledge Management: Knowledge is an important 
component in reducing the complexity of solving a given 
problem: more useful knowledge means less exhaustive 
searching. However, many AI problems may have very 
high inherent c0mplexity, hence the amount of useful 
knowledge may also be exceedingly large. Further, the 
knowledge acquired may be fuzzy, heuristic, and uncertain 
in nature. The representation, management, manipulation; 
and learning of knowledge are, therefore, important prob­
lems to be addressed. 

Open System: In many AI applications, the knowledge 
needed to solve the problem may be incomplete because 
the source of the knowledge is unknown at the time the 
solution is devised, or the environment may be changing 
and cannot be anticipated at design time. AI systems 
should be designed with an open concept and allow con­
tinuous refinement and acquisition of new knowledge. 

In general, two basic approaches are available for im­
proving the computational efficiency of processing AI 
tasks: having heuristic knowledge to guide searches and 
using faster computers. In the following sections, these 
approaches will be discussed. 

B. Heuristic Searches 

The key performance-related feature of AI computations 
is their nondetenninism, which results from a lack of 
complete understanding of the solution process. In other 
words, when a problem becomes well understood and can 
be solved by a detenninistic algorithm, we usually cease to 
consider it "intelligent," although the problem may still be 
symbolic [155]. 

The starting point of conventional computations is de­
terministic algorithms, whereas efficient deterministic alga-' 
rithms to solve a given AI problem is result from the 
knowledge accumulated and the gradual refinement of the 
computations. This involves the succinct choice of an 
appropriate knowledge-representation scheme, learning 
mechanisms to acquire the related knowledge, and a suit­
able architecture to support the computations. Good 
heuristics designed from previous experience may allow a 
complex problem to be solved efficiently, even on a serial 
processor. 

Since the mid-1960's, the AI community has realized 
that inference alone was often inadequate to solve real-life 
problems. To enhance the performance of AI algorithms, 
they must lx: augmented with knowledge and metaknowl­
edge of the problem domain in addition to formal reason­
ing methods. Metaknowledge refers to the control informa­
tion to guide the search. This realization gave birth to 
knowledge engineering and knowledge-based systems, the 
field of applied AI [54]. Since the knowledge stored in any 
knowledge-based system may be incomplete and inaccu­
rate, combinatorial searches are still needed. 

C. Fasur Technologies and Parallel Processing 

An AI computer system must support both knowledge­
base management and heuristic searches. Faster technolo-

gies and parallel processing are means to improve th~ 

computational efficiency. For many applications. such ;1,; 

natural-language understanding and computer vision. th< 
current achievable performance is much lower than th:H 
needed. For example, according to DARPA's Stratq~ic 

Computing proposal, it was estimated that an .:quivaknt 
of one trillion von Neumann computer operations per 
second were required to perform the vehicle-vision task at 
a level that would satisfy the long-range objective of the 
Autonomous Vehicle Project (1]. At best, current sequ<n­
tial computers of reasonable cost achieve processing rat<s 
below 100 million operations per second. which implies at 
least 10• times improvement in performance are rc:quiwl-

Newer technologies can help in designing faster comput­
ers. For example, using GaAs high-electron-mobility tran· 
sistors (HEMTs), it was estimated for a computer "ith 
over 500000 gates operating at 77 K and 15 levels per 
pipeline stage, the cycles times were predicted to be 2.7 ns 
with S W and 3200 gates per chip, and 2_0 ns with 20 W 
and 5200 gates per chip, respectively {10]. In contrast, a 
liquid-cooled Cray 2 supercomputer built using ECL tech­
nologies has eight levels per pipeline stage, more than 
500000 gates, and operate at 300 K and 4.1 nsjcyclc:. The 
delay of one ECL gate level is approximately translated 
into 1.5 GaAs HEMT gate levels; hence correcting the 
cycle time of the Cray 2 supercomputer into HEMT tech­
nologies and 15 levels results in 5.1-ns cycle time for the 
Cray 2 computer. In short, there is a factor of two in using 
the newer technologies available today. 

Another way to reduce the cycle time is to teduce the 
interconnect delay. It was estimated that with GaAs HE!'.IT 
operating at 2-ns cycle time, the switching, fan-out. and 
interconnect delays were approximately 2. 10.5, and 87.5 
percent of the cycle time, respectively [10]. Although su­
perconductivity can be used to reduce the interconnect 
delays, it is less desirable with GaAs technologies due to 
the high impedance in the gates, and more desirable v.ith 
ECL technologies. When combined, these newer technolo­
gies available today may allow improvement in the cycle 
times of one to two orders of magnitude. 

The trend in design AI computers has been toward 
applying faster technologies and parallelism to process 
computation-intensive AI tasks. Examples of parallel AI 
systems currently available or under research/develop­
ment include Alice, Aquarius, Butterfly, Concurrent lisp 
machine, Connection Machine, Dado, Faim-1, FFP, iPSC, 
Japanese Fifth Generation Computer System (FGCS), 
NETL, Non-Von, Rediflow, Soar, Spur, and ZMOB [188]­
Some of these computers. such as the Aquarius, Butterfly. 
iPSC, and ZMOB, were designed for both numeric and 
symbolic processing. 

Recently, there is another trend to design small-grain 
massively parallel architectures for AI applications. These 
architectures are sometimes called connectionist n-stems; 
they are comrosed of a very large number of. simple 
processing elements. Knowledge of a given entity in such 
systems· are distributed on a number of processing ele­
ments and links, and each processor or link may be shared 
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TABLE I 
RELATIVE PII.OBLEM SIZES SoLVABLE II' A FIX£0 AMOUNT OF TIME ASsUMING 

LINEAil SrEEour•. 

Complexity to 
Number o! Processors find Optimal 

Solution N Nz N' N' 2N 

N N Nl ,., N• Nl•l N2N 
Nl N NI.S ,.. Nl.l N'll+l N2N/I 
N' N 

,.,,.)) N"'' . Nl N'll+l N2N/) 
N' N NI+I/A N1+11• NI+J/l Nl NlN/l 
2 •. N N+lo&N N+21o&N N+JiogN N+klor.N 2N 

• Problem silc. when sequential proccs5iD& is used, is N. 

by multiple entities. The use or connections rather than 
memory cells as the principal means to store information 
leads to the name "connectionism" (53). The resemblance 
to neurons in a brain also results in the name "neural 
networks." Many computers can simulate connectionist 
systems. An example is the Connection Machine devel­
oped by Thinking Machines Inc., which can perform neu­
ral-network simulations two to three orders of magnitude 
faster than serial machines of comparable cost (87), (189). 

The high performance in many parallel AI computers is 
achieved through associative processing and "data-level 
parallelism." This approach is suitable for operations on 
large databases, such as sorting. set operations, statistical 
analysis, and associative pattern matching. Yet data-level 
parallelism alone is not enough. For general AI applica­
tions involving heuristic searches, control-level parallelism 
should be involved. Unfonunately, early experience with 
multiprocessor architectures for Hearsay-11 (55). Eurisko 
[111). OPS-5 (60), and others have led to a belicC that 
parallel AI programs will not have a speedup or more than 
one order of magnitude. A possibly revolutionary ap­
proach to designing parallel languages and systems for AI 
processing may be needed. 

One: mi~•·•mcc:ption in parallel processing is to usc the 
total computing power of a parallel system to charactc:ri1.e 
the rate at which a given AI application is processed. Due 
to the nondeterminism in AI computations, a high comput­
ing power does not always imply a shorter completion 
time. Since most AI applications in\·olve heuristic searches, 
resources may be devoted to fruitless searches, which use 
more computing power but do not help to decrease the 
time to find a solution. In fact anomalies may happen such 
that increasing the degree of parallelism may even increase 
the completion time in nondeterministic searches (116), 
[187). What is imponant is how to allocate resources so 
only u~ful tasks are performed. The question of solving an 
AI problem in a parallel processing environment is still 
largely unanswered. 

Another misconception about parallel processing is that 
it can be used to extend the sol\·able problem siz.e of AI 
problems. Due to the high complexity of AI problems, 
parallel processing is useful in improving the compJJtational 
efficiency. but not in extending the solvable problem size 
[ 187j. For example, a problem of siz.e ,v and complexity 
s• can be solved in N" time units by a sequential proces­
sN. Assuming. that N processors arc used. the new proh-

lem siz.e X that can be solved in the same amount of time 
satisfies 

N•N 4 - X4• 

The left side of the equation represents the total comput· 
ing power in N 4 units or time with N processors, and the 
right size repreSents the number or operations to be per­
formed in solving a problem of size X. Solving the previ­
ous equation yields 

x-Nl+tt•. 

Table I summarizes the results for other cases. It is as· 
sumed that the size or the problem solved by a sequential 
processor is N, that the number of parallel processors 
ranges from 1 to 2~~', that linear speedup is achievable. and 
that the same amount of time is allocated to both sc:quen· 
tial and parallel processing. The first column shows the 
complexities of solving the problem optimally, and the 
other columns show the corresponding sizes or the same 
problem that can be evaluated in the same amount of time 
for various number of processors. The extension in prob­
lem siz.e is minimal when the problem involved is complex. 
This is evident in the last row in which the problem solved 
has exponential complexity. In this case only a logarithmic 
incrense in problem size is achieved when a polynomial 
number of processors are used, and a linear increase is 
resulted with exponential number of processors. 

In essence, parallel processing alone cannot circumvent 
the difficulty of combinatorial explosion. The power of 
multiprocessing should not be overemphasiz.ed and must 
be combined with heuristic information to solve complex 
AI problems. Currently methods for combining heuristic 
information and massive parallelism are still largely un­
known. The publication in 1985 of the Sixth Generation 
Computing System development proposal shows a serious 
intention in Japan to go beyond the current FGCS activi­
ties and address the AI aspects of computations (4j. 

D. Design Issues of Paraffel AI Architectures 

The: essential issues in designing a computer system to 
support a given AI application can be classified into the 
representation level. the control level, and the processor 
level. The representation level deals with the knowledge 
and methods used to solve: a given AI problem and the 
means to represent it. Design issues related to the repre­
sentation level are discussed in Section 11. The control 
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level is concerned with the detection of dependencies and 
parallelism in the algorithmic and program representations 
of the problem. Design issues related to the control level 
are presented in Section Ill. The. processor level addresses 
the hardware and architectural components needed to 
evaluate the algorithmic and program representations. Is­
sues related to the processor level are discussed in Section 
IV. Examples of issues in each l~el are shown in Table U. 

Developing an AI architecture requires solutions to many 
issues in each level. Yet some or these issues are still open 
at this time. In this paper, we do not provide an exhaustive 
survey of all reported projects and their relevant issues. 
Instead, we discuss some important issues in the three 
levels and illustrate the solutions by a number of represen­
tative systems. 

II. RI!Pil£SENTATION LEVEL 

Since 1950, knowledge-representation schemes have been 
widely discussed in the literature (20), (48). The representa· 
tion level is an important element in the design process 
and dictates whether or not the given problem can be 
solved in a reasonable amount or time. Although various 
paradigms have been "developed. most existing knowledge· 
representation methods and AI languages were designed 
for sequential computations, and the requirements of par· 
allel processing were either not taken into account or 
were only secondary considerations. Moreover, many de­
signers of At computers start with a given language or 
knowledge-representation scheme; hence the representa· 
tion level is already fued. Research in designing AI com­
puters has focused on automatic methods to detect paral· 
lelism and providing hardware support for time-consuming 
operations in a given representation but has not provided 
much to aid users in collecting and organizing knowledge 
or in designing efficient algorithms. 

A. Domain Knowledge Representations 

Domain knowledge refers to objects, events, and actions. 
From an implementation point of view, the criteria to 
evaluate a representation scheme for a multiprocessing 
system are its declarative power,· the degree of knowledge 
distribution, and its structuralization. 

Declarative versus Procedural Representations: The rna· 
jor knowledge-representation paradigms used today can 
roughly be classified into declarative and procedural ones, 
although most practical representation schemes combine 
features from both: Declarative representations specify 
static knowledge, while procedural ones specify static 
knowledge as well as the control information that operates 
on this static knowledge. Horn clauses (or even first-order 
logic), semantic networks, and rule-based production sys­
tems are examples of declarative representations, while 
Lisp programs are procedural representations. Frames 
combine both declarative and procedural information to 
represent structured knowledge. Attached to each frame is 

Tt\BLE II 
E.'(A>IPW OF ISSUES IN DESIGNING AI COMPUTHS 

Rcpr<.sentation Level 
Choosing an appropriate knowledge repr=nt>~ion 
Ropresenting metll·kno .. ·lcdge 
Acquiring and le.tming domain knowledge and .,.,ta·knowlcdgc 
Roprcsenting knowledge in a distributed lashion 
D<claring parallelism in AI languages 

Control Lc>'<l 
Analyzing data-dependencies 
Synchroniz.ation 
Maintaining coasisteoq 
Partitioning AI problems 
Deciding granularity of parallelism 
Dynamic scheduling :md lo:1d balancing 
E.lficient search strat~es 
Trade-offs on using heuristic information 
Predicting performance and linear scaling 

Processor Level 
Defining computational models 
Developing methods to pass information 
Oesi~ng bMdware for O\"erhead·intensive operations 
Oesi~ng intercoonection structure for load balancing 

:md communieation of guiding and pruning information 
Mana&in& large memory spa« 

various heuristic information, such as a procedure on using 
the information in the frame. 

A declarative approach allows the hiding of pr!X:Wural 
control-flow information, thereby resulting in an easily 
created, mOdified, and understood knowledge representa­
tion. Declarative representations arc referentially transpar­
ent; that is, the meaning of a whole can be derived solely 
from the meaning of its parts and is independent of its 
historical behavior. This may significantly increase pro­
gram productivity because of its user orientation and user 
friendliness. 

Declarative representations offer higher potential for 
parallelism than procedural ones for the same problem. 
because a declarative representation specifies tasks as a set. 
while a procedural representation may overconstrain the 
order of execution by the implicit order of statements. 
Parallel versions of procedural representations, such as 
parallel lisp programs, achieve a limited amount of con­
currency, while relying on programmers to specify the 
parallel tasks (76), (80}. However, parallelism in a declara­
tive representation may be restricted by the implementa· 
tion of the language translators. For example, interpreters 
for rule-based production systems can be viewed as pat­
tern-directed procedure invocations. Although pattern 
matching may provide a rich source of parallelism. the 
match-select-act cycle is a bottleneck and restricts the 
potential parallelism. Less restrictions are seen in the im­
plementation of logic programming and semantic net­
works. This is the key reason for the Japanese FGCS 
project to choose logic as the basic representation. It has 
also been reponed that if 256000 processing units were 
used, the Connection Machine. using a semantic network 
representation, can execute four orders of magnitude faster 
than a sequential lisp machine with respect to a number 
of object-recognition problems [59]. 
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r\ disadvantage of declarative representations is that 
their nondeterminism is usually associated with a large 
search space that may partly counteract the gains of paral­
ld processing: whereas procedural schemes allow the spec­
ific;llion and direct interaction of facts and heuristic infor­
mation. hence eliminating wasteful searches. A trade-off 
between the degree of parallelism and the size of the 
search must be made in designing a representation scheme. 

Disrribuu:d Knowledge Reprcunrarions: A second crite­
rion to evaluate a representation scheme is its degree of 
distribution. In a local representation, each concept is 
stored in a distinct physical device, and each device may 
be shared among multiple concepts. Although this simpli­
fies their management, the knowledge Y.ill be lost if the 
device fails. Most current AI systems adopt the local 
representations. 

Recently. distributed representations have been pro­
posed. In this scheme. a piece of knowledge is represented 
by a large number of units and distributed among multiple 
physical devices, and each device is shared among multiple 
knowledge entilies. The resulting system is more robust 
because the failure of one physical device may cause some 
but not all information to be lost in multiple knowledge 
enttttes. Neural networks [90) and the Boltzmann 
Machine [89) are examples in this class. The proposed 
Boltzmann Machine consists of a very large network of 
binary-valued dements that are connected to one another 
by bidirectional links Yoith real-value weights. The weight 
on a link represents a weak pairwise constraint between 
two hypotheses. A positive weight indicates that the two 
hypothese.~ tend to support one another, while a negative 
weight suggests that the two hypotheses should not both 
be accepted. The quality of a solution is then determined 
hy the total cost of all constraints it violates. 

Another interc..~ting distributed knowledge-rcprcsenta­
tinn sd1cmc. called Sparse Distributed Memory (SOli!). 
has been proposed hy Kancrva (9!11. The SDM has a 
1000-hit address to model a random sample of 2ltl physical 
locations. Given a 1000-bit read/write address, the loca­
tions in the SDM that arc "ithin 450 bits of this address 
arc selecte-d associatively. Statistically. nearly 1000 mem­
nry locations will be selected. The word read is a statistical 
reconstruction by a majority rule. The SDM model was 
designed "'ith an analogy to the human brain and can 
pcrforn1 pattern computations such as looking up patterns 
similar to a given pattern and generating a pattern that is 
an abstraction of a given set of similar palterns [42). 
Although it is much simplified Yoith respect to the human 
brain. its concept may lead to a new class of computers 
suitable for paltern computations. 

Distributed reprc..~ntations are generally fault-tolerant 
m that. "'ithin a large parallel network with a few faulty 
units. the remaining pallern is still usable. This property is 
very attractive for wafer-scale integration. The disadvan­
tage of distributed represemations is that they are hard for 
an outside observer to understand and modify. so autO· 
matic learning schem.:s must he employed. An open proh­
km ~~ this time is to combine local and distrihuted rcpre-
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sentations by decomposing a large knowledge base into 
partitions and using a local representation for each. 

Structurali:ation of Knowledge: A third criterion to eval­
uate knowledge-representation schemes is their structural­
ization; this is related to the inference time and the amount 
of memory space required to store the knowledge. In 
general, the more structured a knowledge representation is, 
the less inference time and the more memory space arc 
needed. An experimental comparison of efficiency has 
been reported for four kinds of knowledge-representation 
schemes for a pilot expert system, namely. a simple pro­
duction system, structured production system. frame. and 
logic [132). It was found that the volume of knowledge 
bases for the four schemes were different. In one case, 
both production systems have 263 rules and 15000 charac­
ters, the frame system has 213 frames and 29000 charac­
ters, and the logic system has 348 clauses and 17000 
characters. The memory space required by the frame sys­
tem is the largest because some related pieces of knowl­
edge have to be replicated in different frames. Since at 
most one conclusion is allowed in each Hom clause. the 
space of the logic system is larger than that of the produc­
tion systems. The experimental results also show that. with 
respect to forward and backward reasoning, the frame 
system is the fastest, white the logic system is the slowest. 
The efficiency of the frame system is relatively insensitive 
to the size of the knowledge base because related pieces of 
knowledge are connected to one another by pointers. 
thereby limiting searches. The inference time of the simple 
production system is moderately sensitive to changes in the 
size of the knowledge base, while that of the logic system is 
markedly sensitive to changes in si7.e. 

Structured knowledge representations are usually dcsir· 
able as long as the memory space needed is reasonable. To 
achieve this end. metaknowlcdgc may be included in the 
knowledge ba~c to reduce the ~carch overhead needed. 
There arc two problems in using metaknowlcdgc. First. it 
consumes more memory space and may increase the ov•~r­
hcads in memory management and communication. Sec­
ond, metaknowledge in a poorly understood domain may 
be fallible and may lead the search in the wrong direction. 
thereby increasing the total search tim~. Theoretical stud­
ies and experimental comparisons are urgently needed to 
address this space- time trade-off. 

B. Metaknow{edge Representarions 

Metaknowledge includes the extent and origin of domain 
knowledge of a particular object. the reliability of certain 
information. the possibility that an event will occur. and 
the precedence constraints. In other words. metaknowledge 
is knowledge about domain knowledge. Mctaknowledge 
can be considered to exist in a single level or in a hierarchy 
(19). In a hierarchical form. metaknowledgc is used to 
decide which domain-dependent actions to perform. while 
mera-mctaknowledp.e is the control knowledge about meta· 
knowledge. Higher level mctaknowledge is comlnon-sense 
knowledge known to humans. 
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The use of metaknowledge allows one to express the 
partial specification of program behavior in a declarative 
language, hence making programs more aesthetic, simpler 
to build. and easier to modify. It facilitates incremental 
system development; that is, one can stan from a search­
intensive program and incrementally add control informa­
tion until a possibly search-free program is obtained. 
Lastly, many knowledge-representation schemes and pro­
gramming paradigms, such as logic, frames, semantic 
networks, and object-oriented programming, can be inte­
grated with the aid of metaknowledge [19), [64). Meta­
knowledge can be classified as deterministic and statistical 
according to the correctness and efficiency considerations. 

Deterministic Metaknowledge: Deterministic metaknowl­
edge is related to the correct execution of the algorithm. 
Metaknowledge about precedence relationships results 
from a better understanding or the problem; this helps 
reduce the resource and time complexities. For instance, to 
solve the problem of sorting a list, it is necessary to 
analyze the problem, find the appropriate representation, 
and evaluate the necessary tasks. A list of n elements can 
be sorted by searching in parallel in O(logn!) average time 
( = 0( n ·log n )) one of the n! permutations that contain 
the sorted elements; however, an algorithm such as Quick­
sort contains functionally dependent subtasks and can Sorl 
the list in 0( n ·log n) average time using one processor. In 
general, the deeper we understand the problem to be 
solved, the larger is the set of necessary precedence con­
straints and the more efficient is the solution to the prob­
lem. 

Many AI languages allow programmers to specify the 
sequence of exeCutions in a serial computer, but tbe meta­
knowledge to specify the correct execution in a multipro­
cessing environment is incomplete or missing. In programs 
written in pure declarative languages, the static aspects of 
the represented knowledge arc stressed, while the controls 
are left to the compilerjinterpcter. For instance, in a logic 
program, a clause a:- a1, a 2 , a 3, means that a is implied 
by a1, a 2, and a 3, but nothing about their functional 
dependencies is represented. The sequence of executions in 
a serial computer is correct because a definite search order 
is imposed, but the precedence relationships among sub­
goals are unknown to the scheduler in a multiprocessor. 

In a number of AI languages such as Prolog, the type 
and meaning of variables' and functions are dynamic and 
query dependent and cannot be completely specified at 
compile time. To use metaknowledge in this regard, the 
semantic meaning of subgoals and operations can be speci­
fied, which can be interpreted as precedence relationships 
by the scheduler at run time. In logic programming, the 
method to represent semantic information in a general and 
efficient way is still open. 

The metarules used must be sufficient and precise such 
that all precedence relationships can be derived unambigu­
ously and easily. An important consideration is the scqpe 
within which metarules can be applied. Common-sense 
.metarules should be included to operate on more specific 
metarules specified by the programmers. Using the 

metarules, the interpreter/complier generates the neces· 
sary synchronization primitives. 

Several researchers have addressed this problem. 
Gallaire and Lasserre used metaknowledge expressed as a 
general or special control strategy in a Prologlike inter­
preter [63J. In their approach, metaknowlc:dge is made 
explicit through metarules, each of which describes an 
action to ·be undertaken by the interpreter whenever the 
interpreter focuses its attention on an object involved in 
the metarule. In LP, a Prolog equation-solver learning 
system [154}, control information is expressed in a declara­
tive representation. and inference is performed at the met­
alevel. Search at the object level is replaced by St"..arch :u 
the "meta" level. Research is necessary to provide a practi­
cal method to specify unambiguously the needed synchro­
nization through metaknowledge. 

Statistical Metaknow/edge: Statistical metaknowledge 
can be used to enhance the computational efficiency of an 
AI program. Warren used a simple heuristic and reordered 
only the goals of compound queries written in pure Prolog 
[190); e-.·en so, he typically obtained query speedups of an 
order of magnitude. The probability of success of a sub-­
goal and the associated search cost have been found to be 
useful in guiding the search or logic programs [69], [114]. 
In general, clauses in Prolog with the same head should be 
ordered such that those likely to succeed with a smaller 
expected search cost are searched ftrst. In contrast, sub­
goals within a clause should be ordered such that those 
likely to fail with a smaller expected search cost are 
searched ftrst. 

In many expert systems, the belief and other measure­
ments of accuracy of the information have been widely 
used. For example, in MYCIN, the confidence factor (CF) 
is used to decide among alternatives during a consultation 
session [21). The CF of a rule is a measurement of the 
association between premises and actions. A positive CF 
indicates that the evidence confirm~ the hypothesis, while a 
negative CF indicates disconfirming evidence. 

The representation of meta.knowledge about uncertainty 
is an active topic in AI research. Several methods, such as 
fuzzy logic and Dempster-Shafer theory, are being studied 
currently. The proper choice is still unclear. 

C. A/lAnguages and Programming 

Conventional imperative languages are inefficient and 
complex to program for symbolic and pattern processing; 
hence the design of AI programming languages bas had a 
central role in the history of AI research. Frequently, new 
ideas in AI were accompanied by a new language that was 
natural for expressing the ideas. 

To enhance programmer productivity and take full ad­
vantage of parallel processing, declarative languages have 
been designed for AI programming. Function-, logic-, and 
object-oriented languages are the major programming 
paradigms today. Lisp is an early and widely .used func­
tional language; it is characterized by symbolic computa­
tionS, representation of information by lists,o,and recursion 

I 
I 



WAll AND U: SUPSE\' Of loiULllP•OCESSINO SYSTOCi FOR AI APPUCAtlONS 

as the only control mechanism. Numerous imperative rea· 
lures have been incorporated into different dialects or 
Lisp. so most Lisp programs are not actually declarative. 
but a large enough subset allows declarative programming 
to t>c done. 

llybrids of programming paradigms have been dcvel· 
<'ped. One simple approach to combining features from 
two languages is to pro,ide an interface between the two. 
Examples include Loglisp (142), Funlog [39), and Oil [36). 
The provision or features from multiple languages within a 
single unified framework, such as Lambda Prolog. has also 
been proposed. A different approach called narrowing 
involves replacing pattern matching in functional Jan· 
guages by unification (140). Logic programs can then be 
expressed as {unctions. Recently, three commercial pro­
gramming tools Kee, Art, and Loops have been intro­
duced, which pro,ide a mechanism to allow multiple 
paradigms to be used in a program. 

New AI languages feature large declarative power, sym· 
bolic processing constructs, representing information by 
lists, and using recursion as the only control mechanism. 
These languages difCer in their expressive power, their ease 
or implementation, their ability to specify parallelism. and 
their ability to include heuristic knowledge. A language· 
oriented AI computer will inherit all the features and 
limitations of the language it implements. Note that no 
single paradigm is appropriate for all problems, as one 
language may be more "natural" than another, depending 
on the requirements and the personal view. Hence intelli· 
gent systems should allow multiple styles, including Cunc· 
tion. object·, and logic-oriented paradigms. 

Expressive Power versus Ease of Implementation: Func· 
tiona! languages, such as pure Lisp [122). Backus' FP [13), 
Hope (14). and Val!l23). share many features with logic 
languages, including the declarative nature, reliance on 
tc,·ursi<ln, :md P<'tcntial for execution pamllclism. Yet they 
h:l\'l" vitnl iutlivi.lunl kmures liS well, Fir~t. in fuuctillll:ll 
pw~rams. input and output v;uiahles are fixed, while in 
logic programs, the modes of variables arc query depen· 
dent. For example, the statement z =plus (x, y) in a 
functional program implie..~ that x and y are inputs and z 
i.~ output. In contrast, in a logic program. the goal sum 
(X. r. Z) has eight possible combinations or modes of 
variables X, Y. and Z. For instance (in, out, in) means 
that Y = Z- X. Second, in a functional program, only 
constant and constructor functions can appear in the out· 
put; while in a logic program, logic variables can be used 
as output. Third. pure functional programs are determinis· 
tic. and no search is needed, while logic programs are 
inherently nondeterministic and require searches. Finally, 
functional programming pro,ides the ability to write 
high-order functions; that is. a function can be passed as 
an argument. In contrast. Prolog is a first-order language. 
although some logic programming languages are not. 

The first three properties. especially the nondirectional­
ity. make logic l:1nguages more expressive in the sense that 
a s1ngle logic program corresponds to SC\'eral functional 
l'r<'~rams. Mor.:,wc:r lo)!iC and functional programs arc 
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executed using resolution and reduction (or term rewriting), 
respectively. Note that resolution can use input informa­
tion implicit in the patterns to cut down the size of the set 
to be examined. For example, to solve the append subgoal, 
append ([P). [Q. R), [1,2,3)), resolution makes no distinc, 
tion between inputs and outputs and uses the input infor­
mation (length of the lists) to select the appropriate clauses 
and produce bindings for the variables involved. However, 
in the corresponding functional formulation ([ P), [ Q. R)) 
-split ([1,2,3)), all possible splits of [1,2,3) are produced, 
and the one that splits the list into [P) and {Q, Rl will be 
selected. The previous example illustrates that reduction 
can lead to overcomputation as compared to resolution. 

The crucial disadvantage or functional programming lies 
in the difficulty to represent the inherent nondeterminism 
in AI problems. Although the recursive formulation and 
the leftmost-outermost reduction of functional programs 
enable depth-first searches naturally, it is difficult to write 
a heuristic search program by a pure functional language 
since heuristic searches are inherently history-sensitive. In 
fact, best-first-search programs written in Lisp include a 
lot of "setq" and "prog" statements, which are not pure 
functional primitives [195). Due to their less expressive 
power Cor representing nondeterrninism and their ineffi­
ciency in dealing with large data structures, pure func­
tional languages are unsuitable for general AI applications. 

Although logic languages are more expressive, their im­
plementations, especially in a parallel processing environ­
ment, are more difficult due to the nondirectionality of 
variables. The dynamic nature of modes requires run-time 
analysis. In contrast, the run-time behavior of functional 
programs is much simpler to control than that of logic 
programs, particular in a parallel context. Techniques such 
as graph reduction and data now have been developed for 
the parallel evaluation of functional languages. Further, 
Lisp has only a few primitive operators and provides 
unique list structures to compound data llhjccts. Thesc 
features simplify the implementation of Lisp compilers/in­
terpreters. In fact, Scheme, a dialect of Lisp. has been 
implemented in a single chip (166). The implementation, 
however, may be complicated by the dynamic nature and 
primitives with side-effects introduced in practical func­
tional languages. Dynamic features, such as random ac­
cesses to linked lists, garbage collection. frequent function 
calls, and dynamic binding of functions, incur extensive 
run-time overheads. 

Obviously, it would be advantageous if the.simple con­
trols of functional languages could be implemented in the 
more expressive logic languages. Considerable efforts have 
been devoted to combining functional and logic program­
ming [39). One approach to simplifying logic languages is 
to introduce directionality of modes of variables (140). 
This method degrades its expressive power to that of 
first-order functional languages. Others attempt to extend 
functional languages to achieve the expressive power of 
logic languages but retain most of the underlying func­
tional simplicity. An e:<ample is Hope with unification 
(34]. Unfortunately. up to now, no language exists that has 

----------------------------·---------- .. -------· i . 

674 

gooc 
pan 

s. 
was 
sud 
rest 
be • 
lan1 
pri1 

I 
me: 
cor 
exr 
fur 
exi 
na1 
Fo 
s, ( 
COl 

co 
re1 
pa 
0~ 

fu 
m• 
re: 
al: 

ill 
ill 
C1 

P• 
p 
C• 

r, 
v 

h 



673 

·ewriting), 
inform a­

of the set 
d subgoal, 
10 distinc, 
>put infor­
atc clauses 
. However, 
f'), [Q.RJ) 
produced, 
Rl will be 
reduction 

solution. 
mming lies 
~terminism 

•lation and 
I programs 
ultto write 
11 language 
ensitive. In 
J include a 
re not pure 

expressive 
their ineffi­
pure func­

.pplications. 
1e, their im­
mg environ­
:tionality of 
res run-time 
,f functional 
hat of logic 
miques such 
cveloped for 
~es. Further, 
nd provides 
•i•Tts. ThcsL' 
ompil~rsjin­

'1'· has been 
•kmentation. 
c nature and 
:actical func­
, random ac­
uent function 
cur extensive 

c simple con­
tnentcd in the 
.c efforts have 
ogic program­
c languages is 
ariables (140). 
cr to that of 
mpt to extend 
sive power of 
tkrlying rune­
' th unification 
exists that has 

i ' 

67~ IEEE TI<ANSACTIONS ON SYSITMS. MAN. ASD CYRERJ<ETICS. VOL \9. NO. 4.JVLY/AUGUST tn9 

good expressive power while being flexible enough for 
parallel execution. Efforts are needed in this direction. 

Specification of Parallelism: Since parallel processing 
was not a consideration when most existing AI languages, 
such as Lisp and Prolog, were designed, the precedence 
restrictions implicit in a sequential execution order cannot 
be detected easily in a parallel execution. To extend these 
languages in a parallel processing environment, explicit 
primitives may have to be included. 

In a pure functional language (data-flow language), the 
meaning of an expression is independent of the history of 
computations performed prior to the evaluation of this 
expression. Precedence restrictions occur as a result of 
function application. Notions such as side effects do not 
exist, hence all arguments and distinct elements in a dy­
namically created structure can be evaluated concurrently. 
For example, to compute the average of numbers in a list 
s. (1.(2.(3.nil))), using the function average(s) • div(sum(s), 
count(s)). the computations of sum(1.(2.(3.nil))) and 
count(l.(2.(3.nil))) can proceed concurrently. It has been 
reported that implementations of functional languages on 
parallel computers seems easier than that on sequential 
ones [33). 

Note that Lisp and many of its dialects are not pure 
functional languages. Referential transparency is lost in 
most lisp languages due to side effects. The precedence 
restrictions are represented not only in function calls but 
also in procedures. 

Several parallel Lisp languages have been proposed and 
implemented. Multilisp, developed by Halstead, has been 
implemented on a 128-processor Butterfly computer. Con· 
currency in Multilisp can be specified by means of the 
peal/ and future constructs {77]. pea/1 embodies an im· 
plicit fork join. For examplt!, (peal/ ABC) results in the 
concurrent evahration of expressions A, B, and C. The 
form ( /tltun• X) immediately returns future (a pseudo 
value) for X and creates a task to evaluate X concurrently, 
hence allowing concurrency between the computation and 
the use of X. When the evaluation of X yields a value, it 
replaces the future. The futu.re construct is good in ex­
pressing mandatory parallelism but is quite expensive in 
the current Multilisp implementation. 

Another parallel Lisp language, Concurrent Lisp (163}, 
is extended from Lisp 1.5 and has three additional primi· 
tive functions to specify concurrency: STARTEVAL for 
process activation, and CR (critical region function), and 
CCR (conditional critical region function) for mutual ex­
clusion. A multiprocessing program written in Concurrent 
Lisp is a set of cooperating sequential processes, each of 
which evaluates its given form. Similar to P jV primitives, 
CR and CCR have enough power to express process inter­
actions. 

In Parlog, a parallel logic programming language (27}, 
every argument has a mode declaration that states whether 
the argument is input (1) or output<} For example, in the 
following statements, mode merge(?? ). 

merge([ UjXJ, y,[ UjZj) .... merge( X, Y, Z). 

the first two lists are merged to form the result. In Concur· 
rent Prolog (150). a read-only annotation (?) is used. For 
example, 

merge([U!X). Y.[U!Z)) <-merge( X?, Y, Z). 

. indicates that X must have a value before merge (X?, Y, Z ) . 
can be iovoked. Another way to specify the concurrency is 
to use different symbols to distinguish between "paralic:! 
AND" and "sequential AND" such as"," and"&" in Parlog. 
Guarded clauses are used in Parlog and Concurrent Prolog 
partly to specify parallelism. A guarded clause has a for­
mat, h:- g!b .. where g is the guard of the clause and b is 
its body. Subgoals in the body can only be evaluated when 
all subgoals in the guard have succeeded, and values 
bound have been committed to the body. 

Clearly, the previous approach of specifying parallelism 
by users detracts from the objective of declarative pro­
gramming, which separates logic from control, or "what" 
from "how." Both mode declarations in Parlog and read­
only annotations in Concurrent Prolog impose a fL-.:ed 
execution order on subgoals, which may be inefficiem in 
parallel processing. On the other hand, distinguishing the 
guard from the body cannot completely specify the prece­
dence relationships because subgoals in the guard and 
body may be dependent. The use of guards is also compli­
cated by. a lack of general methodology to select subgoals 
in the guard. Moreover, precedence relationships are a 
partial order, so the distinction between "sequential AND" 

and "parallel AND.'' which are linear orders, is insufficient 
to specify all precedence relationships. Lastly, owing to the 
nondeterministic behavior of AI programs, users cannot 
always specify the parallelism perfectly. A desirable paral­
lel AI language should allow its compiler to detect the 
parallelism and schedule parallel executions as efficiently 
as possible. 

Object-OriMtcd l..anguagl'.t: Ohj"ct·orientt'd program· 
ming hold5 promise as a framework for concurrent 
programming that can be extended to data bases and 
knowledge bases. It is expected that "object-oriented pro­
gramming will be in the 1980's what structured program­
ming was in the 1970's" [141). A variety of object-oriented 
languages include Smalltalk (68), Loops {161). Actor [61. 
CommonObjects {158). and many others [191J. Recently. 
CommonLoops was suggested as a standard for object-ori­
ented extensions to Common Lisp by the Lisp community 
[16}. 

Object-oriented programming has been used to express 
different concepts, but the concept ~f an object is the 
common feature in these languages. Objects are entities 
that combine the properties of procedures and data. Ob· 
ject-oriented programming replaces the conventional oper. 
ator-operand concept by messages and objects. All actions 
in an object-oriented program result from sending mes­
sages among objects. A selector in the message specifics 
the operation to be performed. An object responds to 
messages using its own procedures {called methods) for 
performing operations. Message sending supports data ab· 
stractions, a concept that is necessary but not sufficient for 
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the language to be object-orientc:d. Object-oriented lan­
guagc:s must additionally support the management or data 
abstractions using abstract data types and the composition 
of abstract data types through inheritance. Inheritance is 
used to define: object~ that are almost like other objects. In 
(;~ct. object-orientc:d programming should be chamctcri1.cd 
by the nature of its type m~-chanisms rather than the 
nature of its communication mechanisms; that is. object­
oriented programming can be defined as 

object-oriented - data abstraction+ data types 

+type inheritance. 

Object-oriented programming is a paradigm for org:miz.­
ing knowledge domains while allowing communications. 
Concurrent models. operating systems. and coordination 
tools are built from low-level objects, such as processes, 
queues, and semaphores. Hewitt's Actor model is a formal­
ization or the ideas or object-oriented languages: an actor 
in his model is the analogue of a class or type instance but 
considers the added effects of parallelism (83]. Computa­
tions in the Actor model arc partial orders of inherently 
parallel events having no assignment commands. The lan­
guage Act3, based on the Actor model, combines the 
advantages of both object-oriented and functional pro­
gramming (5). To support object-oriented programming. 
appropriate objects representing data structures should 
exist at the hardware level as objects of "machine data· 
structure type." This gives birth to the data-type architec· 
ture (67}. The Apiary network architecture is based on the 
Actor model (84). [85]. 

D. SummaiJ' 

A major problem in the representation level lies in the 
large amount or knowledge needed to define a good repre· 
sentation and the imprecise nature of this knowledge. 
Efforts have been directed toward the automatic acquisi· 
tion or domain knowledge and metaknowledge to lead to a 
good n:presentation and the design of a language that is 
more ellpressive and yet easy to implement in a parallel 
processing environment. The design or a systematic method 
to generate alternate representations is particularly desir­
able. The methodology should start with the problem 
specification, use automated tools to transform the prob· 
lem specifications into problem representations. compare 
alternate representations. and use metaknowledge to guide 
the generation or different representations. 

111. CO!'o'l"KOI. LEVEl. 

There arc four basic issues in the control level of com· 
puter-system design. Maintaining consistency or knowlc:dge 
is important, as incomplete and inconsistent knowledge is 
often dealt with in AI computations. As multiproce.~sing is 
widely used in AI computations. related issues include the 
dccompo~ition of a problem (or program) into subprob· 
!ems. the synchroni1.:1tion of cooperating procc:sses. and 
the: scheduling of processes for efficient ellecution. AI· 
though the: design issues in the control lc:vd are similar to 
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those in traditionJI multiprl">Cessing systems. AI problems 
often start with diffc:rc:nt n:presentations. hc:ncc: their solu­
tions in the control levc:l may be vc:ry diffc:rc:nt from 
traditional ones. 

A. Con.tisft'll<)' ,\(ainfl!lltllla 

Traditional lo~c is monotonic because new :ixioms :ue 
only added to the list or provable: theorems and nc:vc:r 
cause any to be -...ithdrawn. Howe,·c:r, knowledge-based 
systems on changing real-world domains have to cop.: with 
the maintenance or consistent deduction. Classical sym­
bolic logic lacks the tools to de:ll \\ith inconsistc:ncies 
caused by new information. Nonmonotonic reasoning has 
been develop.:d to oeal with this problem {19~J. 

Early attempts at consistency maintenance: evolved 
around ellplicit manipulation of statements. The: major 
system developed was Strips. which dealt -...ith the manipu· 
lation of blocks of various sizes. shapers. colors. and 
locations by a robot {56). In Strips. the entire data base is 
searched for inconsistencies when the robot moves a block. 
System applied inference refers to a system in which the 
architecture pro\ides a mechanism to automatically main­
tain the consistency of the data base. The -...idely publi­
cized system of this nature was Microplanner {1651. In 
Microplanner, the operators or Strips are replaced by 
Ktheorems." There is no automatic inference mechanism. 
and the programmer is required to encode all possible 
implications of a theorem. An improvement to Strips is 
Doyle's Truth Maintenance System (TMS) in which the 
reasons for beliefs are recorded and maintained. and these 
beliefs can be re,ised when discoveries contradict assump­
tions (47J. To attach a justification to a fact. a T:-.IS is 
designed with a goal that efficiently links consequences 
and their underl]ing assumptions. In TMS. each relation 
has an associated IN and OL'T nodes. The statement at 1hi\ 
node is true if the statements in the IS list arc known to he 
true and the statements in the OUT list arc not tru.:. 

A different approach to consistency maintenance wa; 

adopted in designing the IBM Yes;:-.tVS expert system 
that operates on a System 370 computer undc:r the ~1\'S 
operating system (149). This ellpen system is usc:d to 
schedule a real-time system in which contradiction occurs 
between the changed facts and the pre,·iou~ consequences. 
The system removes inconsistent deductions and computes 
new consequences in accordance -...ith the changed facts. 
The consistency maintenance mechani~m has three parts; 
recognition of inconsistencies. modification of the re~ul­

tant state to remove inconsistencie$ and rededucc consi~­
tent consequence. and hidden control to en$urc: that Jil 
inconsistencies are detected and corrected properly. 

Experience on the: design of Y esj~!VS show$ a pitfJII in 
which correcting an inconsistency may cau'c anolhcr in­
consistency. which in the process of being corrcc1cd rein­
troduces the first inconsistency. It was :~lso founJ tllll 
knowledge represented in a style: for consis1cncy mJint<=· 
nance turned out to be quite modular. and nuintaining it 
has been easier than initially expected. 
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:"\ ,>nmonotonic logic has been dc:monstr:uc:d to be fcasi· 
H.: hut indfici<!nt to implement in a large systc:111. To allow 
th,· ''"'c"' '''be u.<cd in realtime. hardw:1rc ~urport h:1s to 
t,c: pr.widcd •'11 the time-consuming opc:r;ui,•ns. fumla­
:ncntJI <•pcr;~tions such as standard data bas.: functions 
mJv have to be: implemented in hardware. The manage:· 
me:;,, of a ,;nual memory system to support frequent 
JJditions and deletions in a TMS is an important design 
issue. The maintenance of the appropriate storage organi­
z.ation such that locality is maintained among relations 
affecting each other is a nontrivial problem. FinaUy, paral· 
h:l processing may introduce addition;tl prohlems of con· 
sistency: eCficient parallel architectures to process concur­
rent queries have to be investigated. 

B. Partitioning 

In parallel computations. determining the granularity or 
the minimum si~e of a subproblem that should be com­
puted by a single processor depends on the inherent para!· 
lc:lism in the problem to be solved. Partitioning can be 
implemented in different levels. In the higher levels. a 
complex AI problem is partitioned into se\·eral functional 
tasks. each o( which is processed by a functionally dis· 
tributed computer system. In the lower levels. the: control 
graph or the program is partitioned into atomic operations, 
each or which can be processed independently. 

Partitioning can be perfonned by users at design time or 
compilers at compile time or schedulers at run time. In the 
first method, programmers u.se a parallel language to spec­
ify and partition problems. These languages can define 
raratlel tasks -and the associated data communications. 
Desif:n imrc:.~ of parallel languages were discussed in Sec· 
ti,,n 11-C. In thi~ section, we discu~• sutic anti dynamic 
partitioning. 

lnlu:r.:nt Parall.:lisnr and Granularity: The proper granu· 
l:uity of parallelism should be determined from the inher­
ent parallelism in the problem and the communication 
owrhc.lds involved in synchronization and scheduling. In 
g~neral. fin..Jing the optimal smnularity is diCficuh: how­
ever. the degree of parallelism inherent in the problem may 
pro,ide useful infonnation to guide the design of the 
Jrchitecture. 

An example to illustrate the choice of the proper granu­
larity is shown in the design or parallc:l rule-base systems. 
FNgy .:t al. observed that each OPS-5 production. when it 
fires. manipulates a few (usually two or three) working 
memory clements and affects only a small number (20-30) 
nf productions (60). According to this analysis. it appears 
that only limited speedups are avail3blc: and that massiv~ 
parallelism may not be needed. To improve the degree of 
parallelism, further efforts should be devoted to a) investi· 
gating parallel match algorithms, b) designing efficient 
partitioning strategies, and c) de"doping techniques to 
rewrite sequential OPS.S programs into versions more suit­
able for parallel prOCC$$ing. 

Gupta estimated that the hardware utilization will b.: 
.lround two percent if the Rete match algorithm is mapped 
directly onto the D.ado architecture {74]. He recommended 

partitioning OPS5 production rules into 32 subsets to 
c:xploit the modest amount of production-level parallelism. 

Based on Gupta's ;llgorithm. Hillyer and Shaw studied 
the cxccuti<•n of production systems on the: Non-Von 
computer. a hctct~'gcnc<>us system with J2 large processor 
elements (LI'E.s) and 161000 small processor den1ents 
(SPE.s) (88). E:lch SPE has 64 bytes of Ram to store a 
condition-element tenn. The large number of SPE's, which 
can be viewc:d as an active memory or LPE·s. perform 
intraproduction tests in a massively associative Cashion. 
The performance is predicted at a rate of more than 850 
productions fired per second using hardware comparable 
in cost to a VAX 11/780. This shows th:ll two orders of 
magnitude of speedup is achievable by properly partition­
ing production systems. 

The partitioning algorithm used may have significant 
effects on perfonnance. If a majority or node activations 
occur within a single partition. then the perfonnance will 
not be good. Some researchers have reported heuristics for 
partitioning production systems. such as assigning produc­
tions that are sensitive to the: same context. goal. or task to 
diUerent processors in a round-robin fashion. However, 
preliminary results have shown that these strategies do not 
bring significant improvement as compared to random 
partitioning (134). Intelligent partitioning strategies, using 
knowledge previously known. remain to be developed. 

In a multiprocessing system. it is hoped that equal-sized 
tasks are distributed evenly to all processing units. The 
above example, however, has shown that this may be 
impractical because the problems to be solved m~y have 
irregularly structured control· and data-now graphs and 
data-dependent workloads. In practice, efficient heuristic 
methods may have to be used to partition the task graph 
into granules that can be executed in parallel. Important 
related issues to he: studied in this ease are the design of 
heterogeneous archit<.'\:tures ami the dynamic distribution 
of workload. 
. Compilu Deuction of Porollelism: Based on the data 

dependencies in a program, a compiler may be able to 
detect the parallel modules in it .and partition the program 
at compile: time. An example is the post-compiler of Faim· 
1. called an a/locutor. that performs data-now analysis on 
the procedural code and inference connecthity analysis on 
the logic beha\ior to statically distribute the fragments to 
the processing elements {11). Similar '-'"Orlc has been done 
on partitioning progr.ams for numeric applications (108). 

Detection of parallelism in logic programs has centered 
on detecting AND parallelism and OR parallelism. AND 

parallelism in logic programs involves the simultaneous 
e"c:cution of subgoals in a clause. Due to shared variablc:s, 
concurrent execution of two or more subgoals in a clause 
may re~ult in binding connicts. TI1e detection of A:O:O 

parallelism is based on the analysis of input-output modes 
or arguments in a subgoal. The input and output variables 
in a logic program denote the direction or binding trans­
fers during unification, in a way similar to the input and 
output arguments in procedure calls. However, .an argu­
ment in a logic program can be in the input mode: in one 
instance and in the output mode in another. or may 
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remain unbound. This dynamic behavior prohibits a com­
plete static analysis. Previous research, therefore, devel­
oped methods either to pro\ide primitives for users to 
specify the modes or to assign. modes automatically to 
arguments that can be analyzed a1 compile time and leave 
the rest to be resolved at run time. Automatic detection of 
A~D parallelism at compile time can be classified into two 
types. 

a) Detection of restricted AND- parallelism: DeGroot 
proposed a typing algorithm to detect restricted AND paral­
lelism (38]. The essential concept is to monitor all poten­
tially executable subgoals and ensure that no two subgoals 
v.ill share one or more unbound variables if they execute in 
parallel. A term in a clause can be in one of three types: 1) 
grounded (or constant), 2) nongrounded nonvariable (an 
input variable), or 3) variable (an uninstantiated variable). 
To tower the run-time overhead of checking the contents 
of terms, a partial check is made at compile time; only 
terms of type 1 and that of type 3 with different variable 
names are detected to be independent. All other possibili­
ties remain to be detected at run time. A consequence of 
this partial check is that a term may occasionally be typed 
too strongly. 

b) Detection of coupled data-dependencies: Chang. 
Despain, and DeGroot updated the above typing algo­
rithm by testing for coupled data dependencies at compile 
time to reduce the run-time overhead (24], (40]. In this 
scheme, variables in a clause are classified into three 
groups: grounded, coupled, and independent. (An inde­
pendent variable is neither grounded nor coupled with 
other variables.) Two terms are said to be coupled if they 
share at least a common unbound variable. Two variables 
are in the same coupled group if the compiler detects that 
there is a chance for them to be coupled. To find the group 
a variable belongs to, a programmer has to supply the 
activation mode of the query and the entry points of the 
program. The compiler then classifies the variables in the 
subgoals from left to right and derives the execution graphs 
and backtracking based on the worse case activation mode 
of each variable. Multiple execution graphs may be gener­
ated at compile time and the appropriate one selt-cted at 
mn time. This scheme has been adopted in the PLM of the 
Aquarius project (43]. 

Other heuristic methods of checking types at compile 
time are also possible. Tung and Moldovan have also 
investigated a number of heuristics to infer the modes of a 
given variable and mark all possible input-output modes 
of arguments in the clauses [178]. 

Compiler detection of parallelism has the advantages of 
reduced run-time overhead and programming efforts. Its 
disadvantage is that it may not be able to detect all the 
inherent parallelism in a highly expressive AI language and 
may have to be combined \\ith user declaration and dy­
namic detection. The restrictions of compiler detection arc 
brieny summarized below. 

Special cases: The extraction of parallelism from 
JJta-dcpcndency analysis is based on the assumption that 
tf two s11h,::.oals d,, ll<'t share any unbound variable. then 
tlln '"n he: c~cnJtt•d .:oncunt•ntly. This assumption i' not 
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true in some special features of the language, such as 
outputs in Prolog. A solution to this problem is proposed 
by DeGroot (41]. · 

Procedural dependencies: A procedural dependency 
exists between two subgoals if their execution order is 
fixed by their semantics. For example, in the following 
clause, 

a( X): -tesLfor_ok( X), worLon( X} 

the subgoal "test_for _ok( X)" must be execute<! first. 
Note that the subgoals in this example cannot be executed 
concurrently even if X is grounded, because the second 
subgoal may contain meaningless. inaccurate, or unbound 
work unless the first subgoal is true. In declarative lan­
guages such as Prolog, it is difficult to specify the seman­
tics of subgoals without specif)ing its explicit control for 
parallelism. A solution to this problem is proposed by 
DeGroot [41). 

Exponential complexity: It may be difficult to define 
all possible combinations of modes at compile time as they 
grow exponentially with the number of potential output 
variables. 

Dynamic Detection of Parallelism: Many data dependen­
cies in a higllly expressive AI language cannot be resolved 
until run time. For example, a subgoal p(X, Y) in a logic 
program may be called as p( X, X), which is a coupling 
dependency on a query with coupled terms introduced at 
run time. This dependency cannot be detected at compile 
time. Due to the dynamic nature of AI computations, an 
AI computer should provide a mechanism to map the 
program and data onto hardware dynamically. 

In general, the computational model can be represented 
as a token-flow graph with four kinds of nodes: and-de­
composition. or-decomposition. and-join. and or-join. The 
tokens passed along the edges can be demand tokens, data 
tokens, or control tokens. Conery and Kibler described an 
AND/OR process system based on a producer-consumer 
model that dynamically monitors variables and continually 
develops data-dependency networks to control the order of 
execution of subgoals. never allowing two potential proce­
dures with the same variable to be executed in parallel (31). 
An ordering algorithm. called a connection rule. is used 
dynamically to determine a generator for each unbound 
variable. When a subgoal is completed, it is checked to 
ensure that it did produce all variable bindings it was 
supposed to; otherwise, the ordering algorithm is evaluated 
again. Improvements were made to the above scheme to 
reduce further the run-time overhead and extract more 
parallelism (103). (118). 

Since dynamic partitioning must be repeatedly executed 
at run time. it may reduce the performance gains and 
could even produce negative gains. The trade-off between 
static partitioning by an intelligent compiler and dynamic 
partitioning by a sophisticated operating system is an 
important issue to be addressed in parallel AI processing. 
Dynamic partitioning is closely related to dynamic 
scheduling. and related issues will he discussc."d in a suhsc· 
<jliCnt sec-tion. 
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Bouleneck Ana(1·sis: An important issue in partitioning 
is to decompose the problem evenly, so bottlenecks in 
performance do not exist. It is easy to see that if a 
bottleneck requires a fraction of the total computations. 
then the speedup cannot be more than the reciprocal of 
this fraction. regardless of how the rest is partitioned. It is 
well-known that the performance bottleneck of an applica­
tion executing on a vector computer is its scalar code. 
Similarly, the performance bottleneck of a parallel AI 
computation is its sequential part (sequential inference or 
1/0). An important problem is to find the bottleneck in 
the problem to be solved . 

Experience with designing the Fido vision system at 
Carnegie-Mellon University has shown that an unbal­
anced partitioning algorithm can substantially degrade the 
performance (104]. Adding Warp, a systolic system with 
peak processing rate of 100 mflops. to a host (a Sun 
computer and three "standalone processors") seems only 
to double or triple the speed of the Fido loop. This means 
that Warp is definitely underutilized; functions on the 
standalone processors, either in preprocessing or post­
processing in using the Warp array, take up a substantial 
amount of time. It is expected that proper partitioning of 
vision algorithms will improve its performance signifi­
cantly. 

C. Synchronization 

Synchronization refers to the control of deterministic 
aspects of computations, while scheduling handles mainly 
the nondeterministic aspects. The objective of synchroniza­
tion is to guarantee the correctness of parallel computa­
tions such that the results of execution in parallel are the 
same as those of a sequential execution. That is, the 
parallel execution is serializable. In some nondeterministic 
problems, the generation or the same set of results as a 
sequential execution may not be necessary. For example, a 
user may wish to obtain a small subset of answers from a 
large set; the particular answers obtained do not have to 
be the same in the serial and parallel cases. In this case 
requirements on synchronization can be relaxed in parallel 
processing. · 

Many synchronization primitives used in AI processing 
are the same as those used in conventional computers. 
Examples include semaphores, test-and·set, fulljempty 
bits, fetch-and-add, and synchronization-keys. Addition­
ally, new or extended concepts related to synchronization 
have been introduced by AI researchers. such as the black· 
board and actors. In this section, we will survey the 
synchronization of AI computations in the control and 
data levels and mechanisms using shared memory and 
message passing. 

Two Levels of Synchronization; In procedural languages, 
if a statement precedes another statement in the program, 
the implication is that this statement should be executed 
before the second statement if the two statements share 
common vnriahles; that is. control-levd synchronization is 
implicit when data-level synchronization is needed. This 

implicit execution order may ovcrspecify the necessary 
precedence constraints in the problem. 

On the other hand. if the tasks are specifted as a set 
using a declarative language, then control-level synchro­
nization is absent. and they can be proce~sed concurrently 
if they do not share common variables. If they have 
common variables but are semantically independent. then 
they can be processed sequentially in an arbitrary order to 
maintain data-level synchronization. 

The difficulty of specifying control-level synchronization 
when tasks are semantically dependent is a major problem 
in declarative languages such as Prolog. For example. the 
decomposition of a set into two subsets in Quicksort must 
be performed before the subsets are sorted. Hence the 
tasks for decomposition and for sorting are both semanti­
cally and data dependent. To overcome this problem. 
programmers are provided with additional tools, such as 
specifying the inputjoutput modes of variables in a Prolog 
program, to specify control-level synchronization. These 
primitives may have side effects and may not be able to 
specify completely all control-level synchronization in all 
situations. These problems may have to be dealt with at 
run time until sufficient information is available. 

In general, process activations and deactivations can be 
considered as control-level synchronization, while passing 
arguments in procedure calls can be considered as data­
level synchronization. Both methods can be implemented 
through a shared memory or by message transfers. 

Shared Memory: In tightly coupled multiprocessor sys­
tems, synchronization is done through a shared memory. 
Examples of such existing and proposed AI computers 
include Aquarius (43!. Concurrent Lisp machine [164). 
Concert Multilisp machine (79). and Parallel Inference 
Engine (70J. In what follows. we will discuss synchroniza­
tion using blackboards and show methods using shared 
variables in logic programs. 

a) Blackboard: Historically, the blackboard model was 
developed for abstracting features of the Hearsay-11 
speech-understanding system (50J. The model is usually 
viewed as a problem-solving framework; however, we dis­
cuss only its control aspect here. The model consists of 
three major components: a knowledge source, a black­
board data structure. and control. The knowledge to solve 
the problem is partitioned into knowledge sources that are 
kept independently. The data needed to solve the problem 
concerned include input data, partial solutions, alterna­
tives, and final solutions, which are kept in a global data 
base. the blackboard. The blackboard can be divided into 
multiple blackboard panels that correspond to the hierar­
chy of solution space. Knowledge sources result in changes 
in the blackboard, which lead to a solution to the problem. 
Communications and interactions among knowledge: 
sources take place solely through the blackboard. A moni­
tor is needed to ensure that no more than one knowledge 
source can change the blackboard at one time. There are a 
set of control modules that monitor changes in the black­
board and decide the appropriate action to take next. The 
sequence of knowledge-source invocations is dynamic. 
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The blackboard model provides a useful framework for 
diverse types of knowledge to cooperate in solving a prob­
lem and has lx-.!n used to many AI applications. Its 
impkmentation is similar to that of a critical section in 
''!'crating systems. In the pure model, the solution is built 
,me step at a time. Currently, extensive research on con­
currc:nt access to blackboards is conducted. 

Hayes-Roth has proposed a more powerful blackboard 
control architecture in which control information (meta­
knowledge) is also stored and updated on a separated 
control blackboard [82). This approach adapts to complex 
control plans as a whole. Operational strategies, heuristic, 
and scheduling rules can change repeatedly in the course 
of problem-solving. 

b) Synchrnni:ation via shared memory l'ariables: AI· 
though Lisp contains a "pure function" subset, it also 
supports many functions with side effects, such as rplaca, 
rplacd, set,. and inputjoutput functions. These side effects 
result from procedural dependencies and global (or free) 
variables and resemble problems in conventional parallel 
languages. In fact, some shared-memory multiprocessors, 
such as Concert and Butterfly, support both Multilisp, 
Simultaneous Pascal, and other parallel languages (79]. 
M ultilisp provides a simple method to wait for values 
generated in the future. However, as in other languages, 
procedure activations in Multilisp may not be well nested, 
and an activation can terminate before another activation 
it contains. This exception-handing problem has to be 
addressed in programming the system [78). 

Pure Prolog is a single-assignment language. Under this 
restriction, the distinction between a shared-memory vari­
able and a communication channel vanishes. Since a logic 
variable is not allowed to be rewritten through side effects. 
conventional hardware-synchronization mechanisms, such 
as test-and-set. full/empty-bit method and fetch-and-add, 
:m: no longer needed in multiprocessing of pure logic 
programs (119]. 1l1e popular strategy taken now is to 
pro,ide the programmer with a mechanism to delay pro­
cess reduction until enough information is available so that 
a correct decision can be made. Currently, the Concurrent 
Pro log group is concentrating their efforts on Flat Concur­
rent Prolog. a subset of Concurrent Prolog. In Guarded 
Hom Clause (GHC) (181), !COTs current choice for Ker­
nel Language 1. OR parallelism was eliminated from Con­
current Prolog. and a strict synchronization rule that sus­
pends a subgoal if it tries to write in the parent environ­
ment is adhered. This rule made the read-only annotation 
somewhat superfluous. Although it simplifies the imple· 
mentation of GHC. some expressive power is lost due to a 
weaker notion of unification (168). 

c) Joins: As similar to conventional fork-join primi· 
tives. static joins can be used for synchronization in paral­
lel AI processing. For example. in multiprocessing of logic 
programs. a patent node can activate its children in paral­
lel. and each child begins producing all possible answers. 
The parent waits for each child to complete. collects their 
answers, computes the '"join" of their answers. and passes 
the cntitc set of results as its answer. This approach 
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uncovers the greatest AND parallelism in a logic program 
but is efficient only if the program consists mostly of 
deterministic procedures and clauses; that is, most vari­
ablc:s have only a single binding. For nondctcrministic AI 
problems, Joins are impractical because the nondctcrmin­
ism increases the uncertainty whether a given ANU node 
should be evaluated. Note that if joins arc computed 
dynamically, that is, a parent node collects separate an­
swers from each child as they are produced, then the 
data-level synchronization employed forms a pipelined 
computation called dynamic joins. This scheme will be 
discussed later with respect to synchronization in semantic 
networks. 

Mt•ssage Passing: In passing messages, a communica­
tion channel between the sender and receiver processes is 
required. Synchronization via messages can be achieved 
througll software protocols or specialized hardware. Many 
existing and proposed AI computers pass around messages 
of arbitrary complexity and perform complex operations 
on them. The computing elements are complex, and the 
communication costs are high. Alternatives to passing mes­
sages are discussed in this section. 

a) Massage passing in production systems: Reasoning 
using forward chaining in production systems has different 
behavior from reasoning using backward chaining. The 
behavior in forward chaining is illustrated in OPS5, whose 
interpreter repeatedly executes a match-select-act cycle. 
In the match phase, all rules whose conditions are satisfied 
by the current content of the working memory are selected. 
lbis set is called the conflict set. In the select phase, 
conflict resolution is performed to select one of the pro· 
ductions in the conflict set. In the act phase, the working 
memory is modified according to the action part of the 
selected rule. Although the three phases can overlap in a 
multiprocessing environment, synchronization must be 
performed to ensure that the result is consistent with that 
<>f a sequential execution; that is. all changes in the con­
flict sc:t must be known prior to the completion of conflict 
resolution in the next cycle. 

Synchronization in the efficient Rete interpreter for 
OPS5 is based on a data-flow graph. which can be viewed 
as a collection of tests that progressively determine the 
productions ready to fire. Inputs to the graph consist of 
changes to the working memory encoded in tokens. Output 
tokens specify changes that must be made to the conflict 
set. Tokens are sent via messages in a multiprocessing 
system. 

b) Maker passing and value passing: Marker passing 
has been studied as an alternative to message passing. In 
such systems, communications among processors arc in the 
form of single-bit markers. An important characteristic is 
that there is never any contention: if many copies of the 
same marker arrive at a node at once, they are simply 
OR'ed together. The order of markers to be passed is 
determined by an external host. 

Marker passing is suitable for systems implementing 
semantic networks. Nodes in the semantic network arc 
mapped to procc:ssors in the system. An example of such a 

----------------------------------·---·- -·· -· -··-
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system is NETL [51]. A basic inference operation in se­
mantic networks is set intersection. Analogous to dynamic 
joins in data bases, set intersections are implemented using 
data-level synchronit.ation. If an object with n properties 
is se:uchcd, then n commands are sequentially broadcast 
to all corresponding links, the associated nodes are marked, 
and the node with n markers reports its identity to the 
controller. Marker passing is adequate for many recogni-. 
tion problems; however, it may not be sufficient to handle 
general AI problems. The Connection Machine was origi­
nally developed to implement marker passing to retrieve 
data from semantic networks, but its current version has 
more powerful processing units that can manipulate ad· 
dress pointers and send arbitrary messages. 

In value passing, continuous quantities or numbers are 
passed around the system, and simple arithmetic opera­
tions are performed on these values. Like marker-passing 
systems, there is no contention in value passing: if severa.l 
values arrive at a node via different links, they are com­
bined arithmetically, and only one combined value is re­
ceived. In this sense, value passing systems can be consid­
ered as an analog computer. Examples or value-passing 
system are the Boltzmann machine {52} and other "neural" 
computation systems {91).-. -·.-- ... --. 

Marker-passing systems do not gracefully handle recog· 
ni~ion problems in which the incoming features may be 
noisy. These problems can be better handled by value­
passing system in which each connection has an associated 
scalar weight that represents the confidence on the incom­
ing values. Many iterative relaxation algorithms that have 
been proposed for solving low-level vision and speech-un­
derstanding problems are ideally suited to yalue-passing 
architectures. · 

c) Object-Oriented and Actor Approaches: In the ob­
ject-oriented approach, and in particular, the Actor model, 
an actor is a virtual computing unit defined by its behavior 
when messages are received. Actors communicate via 
point-to-point mess.1ges that are buffered by a mail sys­
tem. The behavior of an actor consists of three kinds of 
actions: 1) communicate with specific actors of known 
mail addresses; 2) create new actors; and 3) specify a 
replacement that will accept the next message. Actor lan­
guages avoid the assignment command but a.llow actors to 
specify a replacemenL Replacements can capture history­
sensitive information, while allowing concurrent evaluation 
of data-independent expressions {6). Message passing in 
actors, which can be viewed as a parameter-passing mecha­
nism, differs from both ca.ll-by-va\ue and call-by-reference. 

D. Scheduling 

· Scheduling is the assignment of ready tasks to a~ailable 
processors. It is especially important when there is nonde­
terminism in the algorithm. Scheduling can be static or 
dynamic. Static scheduling is performed before the tasks 
are executed, while dynamic scheduling is carried out as 
the tasks are executed. · .. The actions to be performed in 
scheduling include 1) determination of dependent tasks, 2) 

static reordering of. tasks at compile time. 3) dynamic 
selection of tasks at run time when free processors arc 
available, and 4) determination of the number of proces­
sors to solve a given class of problems mst·dfectively. All 
schedules can be considered as a search ~tratcgy based on 

a search tree or search graph [136]. 
Identifying Dependencies: Parallel scheduling of AI pro­

grams is complicated by their dynamic functiona.l and 
shared-variable dependencies and the high expressi\·e 
power of many AI languages. Due to high expressive 
power, the same program can be used to represent many 
different dependencies. each of which may be scheduled 
diUerently. Identifying dependencies at compile time is 
also difficult due to the dynamic and nondeterministic 
nature of executions. 

If functional dependencies exist among tasks, then the 
scheduler must find ~ese dependencies dynamically; if 
there are no functiona.l dependencies but on.Jy shared-vari­
able dependencies, then the scheduler has to compare the 
merits of a.ll possible schedules. Both cases are nol practi­
cal because of the high dynamic overhead. As discussed 
earlier, solutions to detect dependencies are not satisfac­
tory at this time. 
_ A viable approach is to identify the possible dependen­
cies at compile time, statica.lly order all siblirig-nodes in a 
search tree for each case, and schedule them according to a 
parallel depth-ftrst strategy. A simple method was pro­
posed by Warren {190}, which orders the subgoa.ls in a 
clause according to the number of possible solutions gener­
ated under the given subgoal. Our experimental simula­
tions indicated that the worst case eva.luation time result­
ing from this method can be worse than the case without 
reordering, but the best case time can be 2-30 times better. 
Warren's method does not consider the effects of back­
tracking, the possible dependencies among subgoals and 
clauses, and the overhead or finding the solutions. We have 
proposed a method to represent the effects of backtracking 
as an absorbing Markov chain [1171. By assuming that 
sibling nodes are independent. they are reordered to mini­
mize the total expected search cost of the program. Heuris­
tics have been developed to reorder subgoals when they are 
dependent and have side effects. Our preliminary simula­
tions indicated that the performance is substantially beller 
than that of Warren's method. 

Selection Strategies: Suppose in the course of evaluating 
an AI. program n active tasks and m processors are 
available, 1 < m < n. The ideal scheduling algorithm should 
select m active tasks such that this decision will minimize 
the expected computational time. It is difficult to design 
such an optimal selection algorithm because 1) the metrics 
to guide the search are estimated heuristica.lly and may be 
fallible, 2) the metrics may be dynamica.l.ly changing dur­
ing the search, and 3) problem-dependent precedence re­
strictions may exist that cannot be detected at compile 
time. As a result, unexpected anoma.lies may 6ccur when 
parallel processing is applied. .. _,,. '.:.T!-·' -, : 

:.The potential parallelism in an AI computation can be 
classified into two types:· deterministic p~ll~lism and 
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TABLE Ill 
Sr.U:CTINO THE nt S.\CAI.UST NUMBERS FROM n NUMBERS 

Time Complexity Spac.;/llardwa~ Accuracy 
in E.1ch C<>mplcxity l<>r of 

t\pproach Iteration Selection Selection 

Mullis& age 
O(n·log1 m) scl('('tion ()(log m ·l<>g n) 1.0 

nct,.·ork 
Si nglc-stagc O(m) O(n) 1.0 

nct.,.·ork 
No-"·ait 0(1) O(m) 0.63 

poticy 

nondeterministic parallelism. Deterministic parallelism 
refers to the concurrent execution of two or more units of 
computations, all of which are necessary for the comple· 
tion of the given job. The computational units can be 
tasks, processes. and/or instructions. Since all units of 
computation, which are performed concurrently, have AND 
relations, this kind of parallelism is traditionally called 
AND·parallelism. Nondeterministic parallelism refers to the 
search of multiple potential solutions in parallel. Since all 
potential solutions have OR relations, this kind of para!· 
lelism is traditionally called OR parallelism. 

Although AND parallelism is treated as deterministic and 
OR parallelism as nondeterministic in conventional studies, 
the selection of dc.~ccndents of an ANI> task to evaluate is 
also nondeterministic, as the aim is to select one that fails 
as soon as possible. Hence scheduling is important for· 
tasks that are nondeterministic but may not be specific 
with respect to AND or OR parallelism. 

In nondeterministic searches, heuristic information to 
guide the scheduler in selecting nondeterministic tasks is 
more important than the design of parallel processors, as 
the number of processors is almost always smaller than the 
number of processable tasks. 

As an example. in selecting nodes to evaluate in a 
branch-and-bound search tree, which is an OR tree \\ith 
lower bound \'alues to guide the search. the problem is 
reduced to finding the m smallest numbers from n num· 
bers. Table 111 shows the results obtained by three archi· 
tectural approaches. In the first approach. a multistage 
selection network was designed to perform the selection 
exactly (185). In the second approach, a single-stage ring 
network was used to shufne the nodes until a complete 
selection was obtained (I86]. In the third approach. a 
no-wait policy was applied. It was recognized that the 
heuristic information to guide the search might not always 
be accurate. Hence the "most promising" task in local 
memory was always evaluated in each cycle. while the 
fetch of the "more promising" tasks from other processors 
was initiated. It was found that, on the average. a mini­
mum of 63 percent of the desirable tasks to be selected 
were selected by the no-wait policy without any additional 
overhead on selection. assuming hat the m most promising 
tasks were randomly distributed among the processors 
1186]. [187]. 

The management of the large memory space to store the 
hcunstic information and the large number of intermediate 
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nodes in the search tree is another difficult problem to 
solve. A trade-off must be made to decide for a given 
amount of heuristic information and a given architectural 
model whether the amount of heuristic information should 
be increased or dt.'Creased, and how effective should the 
new heuristic information be. 

The memory space required to store enough heuristic . 
information to avoid backtracking is often prohibitive. For 
example, assume that all solution trees of a complete 
binary AND/OR tree \\ith n levels are equally likely. The 
leaves are assumed to be OR nodes and are at level 0. while 
the root is an AND node and is a level n. We have that 
f(n), the total number of solution 'trees, satisfy the follow­
ing recurrence. 

n=Oorn=l 
n;?;2 

For n = 0, there is only one node, hence there is one 
solution tree. For n •1, the root is an AND node \\ith two 
descendents (see Fig. l(a)). Again, this represents one 
solution tree. For the general case, each node in level n -2 
has f(n -2) solution trees (see Fig. l(b)). A solution tree 
for the root at level n consists of picking two nodes in 
level n - 2, a total of four combinations. Each pair of 
nodes selected in level n -2 represent two solution trees, 
all possible combinations of which will yield a new solu­
tion tree. This case is depicted in Fig. l(b). 

Since all solution trees are equally likely, the entropy of 
the heuristic information to guide the search at the root 
such that a correct decision is always made \\ithout back­
tracking is 

/1•1 1 
1- L -(n) logd(n)=2(2"12 -l), 

,-tf 

which is exponential with respect to the height of the tree. 
To manage the large memory space incurred by the 

storage of intermediate subproblems that may lead to 
solutions, we have investigated three alternatives to sup· 
port branch-and-bound algorithms with a best-first search. 
the results of which are displayed in Table IV. In a direct 
implementation, the best-first search was implemented on 
an existing virtual-memory system. a VAX 11/780 com­
puter running 4.2 BSD Unix. In the second approach. a 
modified virtual memory with specialized fetch and re­
placement policies was designed to adapt to the character­
istics of the search algorithm. In the third approach. the 
no-wait policy discussed earlier was used to select subprob­
lems in the main memory without waiting for the "most 
promising" subproblem to be accessed from the secondary 
memory.· Again the no-wait policy is superior in perfor­
mance (199J. 

The nondeterministic nature of computations and the 
fallibility of heuristic guiding may lead to anomalies of 

---------------------------------------------------------------------------------------------------) 
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Fis. 1. Binary MID/OK trees. (a) With two lc\<ct.. (b) Wilh 11 levet.. (Circles represent AND nodes: box.os r"Pr<scnt o~ codes.) 

TABLE IV 
R.£LA11VE Tll4S TO COMPUTE A 81\AI'ICK-ANO-BoUND ALOOIUTIIM FOil. VARIOUS 

MfwOKY·MAI'IAODIENT TtcKNIQUES 

0/11nlCScr 0/1 Knapsack 
Approach Prosrammin& Problems Problems 

Oirec;t 
· implc111Cnlatioo 

Modified 
virtual 
memory 

No-wait .. policy 

parallelism. When n processors are usCd to solve the 
problem, the resulting speedup as compared to a single 
processor may be less than one, greater than n, or l?etween 
one and n. The reasons for this anomalous behavior are 
due to 1) ambiguity in the heuristi.c hlformation;. 7> more 
than one solution !lode, and.3) approximation and domi­
nance tests (113). As a result, subtr~. sear<;hed under 
serial processing will be terminated, and the .search will ~ 
misled into a different part of the search t~ .. 

In summary, scheduling is important when there-is non­
determinism in the problem; Good .heuristic metrics to 
guide the search are usually. difficult to design and depenl;f 
on statistics such as success probabi~ties, search costs,. and 
problem-dependent parameters. Trade-offs must be made 
among the dynamic overhead incurred in. communicating 
the heuristic-guiding information, the benefits that would 
be gained if this information led the search in. the right 
direction, and the granularity of tasks. In practice, the 
merits of heuristic guiding are not clear, since the ~euristic 
information may. be fallible. As a result, some AI archi­
tects do not schedule nondeterministic tasks in parallel. 
The excessive overhead coupled . with the fallibility of 
heuristic information also leads some designers to apply 
only static scheduling to AI programs. 

Pruning: Pruning C:an be considered as a negative form 
of heuristic guiding which guides the search to avoid 
subproblems that will never lead to better or feasible 
solutions. Pruning is.useful in both backward and forward 
chaining. In backward reasoning. problems. are. d~m­
posed into smaller subproblemS and evaluated indepen­
dently. There are usually redundant evaluations of the 
same task in diCCerent parts of the search tree when the 

0.6 0.1 

0.1 0.001 

search trees are recursive. Likewise, in forward reasoning. 
·the more primitive facis are reduced to form more general 
facts until the query is satisfied. Unnecessary results are 
generated because it is not clear which reduction will lead 
to ·a solution of the problem. . 
. Pruning in.search problems can be carried out by domi­

nance relations. When a node P; dominates another node 
!j. it implies that the subtree rooted at P; contains a 
solution with a value no more (or no less) than the mini­
mum (or maximum) solution value of the subtree rooted 
at P1 .. 

As an example, consider two assignments P1 and P1 on 
the same sub~t of objects to be packed into a knapSack in 
the 0/llcnapsack problem. If the total profit of the objects 
assigned to the knapsack Cor Pt exceeds that of P1 and the 
total weight of the objects assigned in P1 is less than that 
of. P1, then the best solution expanded from P1 domi­
nates P1• 

. When parallel processing is used, it is necessary to keep 
the set of current dominating nodes (denoted by N4 ) in 
memory [187). These are nodes that have been generated 
but not yet dominated. In general, /'14 can be larger than 
the set of active nodes. A newly generated.node, P; has to 
be compared with all nodes in /'14 to see whether P; or any 
nodes in N4 are dominated. 

If N4 is small, it can be stored in a bank of global data 
registers. However, centralized comparisons are inefficient 
when NJ is large. A large /'14 should then be partitioned 
into.m subsets, NJ, .. ·,NJ'"-: 1, and distributed among the 
local memories of the m processors. A subproblem P,, 
generated in processor i, is first compared with N~; any 
subproblems in Nj, dominated by P

11 
are r:moved. If P11 
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is not dominated by a subproblem in Nj, it is sent to a 
neighboring processor and the process repeats. If it has not 
been dominated by any node in N4 , P;1 eventually returns 
to processor i and is inserted into Nj. 

There are several problems associated with the use of 
d,,minancc tests in AI applications. First, dominance rela­
tions are very problem-dependent and cannot be derived 
by a general methodology. Most of the dominance rela­
tions have been developed for dynamic programming 
problems. To derive a dominance relation in a search 
process, a dominance relation is hypothesized, and a proof 
is developed to show that the dominance relation is cor· 
rect. Some progress has been made on using learning-by­
experimentation to derive dominance relations for dy­
namic programming problems [200]. However, automatic 
proof techniques are largely missing. Moreover, learning· 
by-e.~perimentation is applicable if there are a very small 
number of dominance relations that are used frequently in 
the problem. In many AI applications coded in Prolog, 
there is a large number of dominance relations, each of 
which is used infrequently in the program. Some special 
cases can be solved, such as finding redundant computa­
tions in recurrences [25). For the general case, it is some­
times difficult to find these dominance relations without 
human ingenuity. Second. many dominance relations are 
related to the semantics of the applications. A good lan­
guage to represent semantics is missing at this time. Lastly, 
the overhead of applying dominance relations is usually 
very high, and sequential and parallel implementations will 
incur prohibitive overhead. 

Granularity of Parallelism: When a parallel computer 
system with a large number of processors is available, it is 
necessary to determine the granularity of parallelism, that 
is, the size of tasks that \\ill be executed as an indivisible 
unit in a processor. Since many AI problems can he 
r<"prcscntcd by AND/OR trees, some pn~cssors have 10 be 
idle when nodes close to the root are evaluated. TI1e proper 
number of processors should be chosen to match the 
inherent parallelism in the problem to be solved. 

TI1e proper granularity is a function of the problem 
wmplexity, the shape of the AND/OR tree, and the distri· 
but ion of processing times o( tasks. Many of these parame­
ters are dynamically changing and data-dependent, and 
only special cases can be analyzed illS). An important 
functional requirement for parallel processing of AI pro­
grams is the ability to dynamically distribute the workload. 
For a system with a small granularity, an efficient inter­
connection network is required to transfer data and con­
trol information. In a loosely coupled system with a coarse 
grain. an effective load balancing mechanism is also 
needed. 

IV. PROCESSOR lEVEl 

The V LSI technology that has nourished in the past ten 
years has resulted in the development of many special-pur­
pusc c,Hllputco. f<>r AI processing. Architectures for AI 
pnxessin~ '-"'an he d~ts~ific-d inln lhc 1nkn)~. n1acn.l~. and 
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system-level architectures. Microlevel and macrolevel ar­
chitectures are discussed in the next two sections. Sections 
IY-C-IV-G brieny discuss the system-level architectures. 
A taxonomy of architectures implementing AI systems 
have also been discussed by Hwang et a/. [93). 

A. Micro/eve/ Architectures 

The microlcvel architectures consist of architectural de­
signs that are fundamental to applications in AI. In the 
design of massively parallel AI machines (52), some of the 
basic computational problems recognized are set intersec­
tion, transitive closure, contexts and partitions, best-match 
recognition, Gestalt recognition, and recognition under 
transformation. These operations may not be unique to AI, 
and many exist in other applications as well. Due to the 
simplicity of some of these operations, they are usually 
implemented directly in hardware, especially in systolic 
arrays. Many other basic operations can also be imp!<:· 
mented in VLSI. Examples include sorting and selection, 
computing transitive closure, string and pattern matching, 
selection from secondary memories, dynamic programming 
evaluations, prmdmity searches, and unification. 

Some AI languages such as Lisp differ from traditional 
machine languages in that the program/data storage is 
conceptually an unordered set of linked record structures 
of various sizes, rather than an ordered indexable vector of 
numbers or bit fields of a fixed size. The instruction set 
must be designed according to the storage structure [160]. 
Additional concepts that are well-suited for list processing 
arc the tagged memory (1 ~7) and stack architectures. 

B. Macro/eve/ Architectures 

The macrolevcl is an intermediate level between the 
micrnlcvcl and the system level. In contras1 to the mi­
crolevcl architectures, nwcrolevel architectures arc (possi­
bly) made up of a variety of microlevel architectures and 
perform more complex operations. However. they are not 
considered as a complete AI system but can be taken as 
more complex supporting mechanisms for the system level. 
The architectures can be classified into those that manage 
data. such as dictionary machines. data base machines and 
structures for garbage collection, and those for searching. 

A dictionary machine is an architecture that supports 
the insertion, delelion, and searching for membership, 
extremum, and proximity of keys in a data base (148). 
Most designs are based on binary-tree architectures: how­
ever, designs using radix trees and a small number of 
processors have been found to be preferable when keys are 
long and clustered [57). 

Data base machines depend on an architectural ap­
proach th:ll distributes the search intelligence into the 
secondary and mass storagl! and relieves the workload of 
the central processor. Extensive research has been carried 
ou1 in the past dt-cadc on optical and mass Slorage, back­
end slon•gc systems. and data base machines. Earlier dat:1 
hasc m;~chincs developed were m:~inly directed toward 
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general-purpose relational data base management systems. 
Examples include the DBC, Direct, Rap, CASSM, associa­
tive array processors, text retrieval systems, and CAFS 
[121. (92). {109). Nearly all current research on data base 
machines to support knowledge data bases assume that the 
knowledge data base is relational, hence research is di­
rected toward solving the disk paradox (17) and enhancing 
previous relational data base machines by extensive paral­
lelism (128), (143), [153), [173). Commercially available 
data base and backend machines have also been applied in 
knowledge management [102), (131). 

Searching is essential to many applications, although 
unnecessary combinatorial searches should be avoided. 
The suitability of parallel processing to searching depends 
on the problem complexity, the problem representation, 
and the corresponding search algorithms. Parallel algo­
rithms and architectures to support divide-and-conquer. 
branch-and-bound; and AND/OR-graph search have been 
developed {187). 

Extensive research has been carried out in supporting 
dynamic data structures in a computer with a limited 
memory space. Garbage collection is an algorithm that 
periodically reclaims memory space no longer needed by 
the users {30). This is usually transparent to the users and 
could be implemented in hardware, software, or a combi­
nation of both. For efficiency reasons, additional hardware 
such as stacks and reference counters are usually provided. 

C. Functional-Programming-Oriented 
System-Level Architectures 

The objective of writing a functional program is to 
define a set of (possibly recursive) equations for each 
function (33). Data structures are handled by introducing a 
spccinl clas.~ of functions called constructor functions. This 
view allows functional languages to deal directly with 
structures that would be termed "abstract" in more con­
ventional languages. Moreover, functions themselves can 
be passed around as data objects. The design of the 
necessary computer architecture to support functional Ian· 
guages thus centers around the parallel evaluation of fum:­
tional programs (function-oriented architectures) and the 
mechanisms of efficient manipulation of data structures 
(list-oriented architectures). 

In function-oriented architectures, the ·design issues cen­
ter on the physical interconnection of processors, the 
method used to "drive" the computation, the representa­
tion of programs and data, the method to invoke and 
control parallelism, and the optimization techniques (184}. 
Desirable features of such architectures should include a 
multiprocessor system with a rich interconnection struc­
ture, the representation of list structures by balanced trees, 
and hardware supports for demand-driven execution, low­
overhead pr~ss creation, and storage management. 

Architectures to support fun<:tional-prograrnming lan­
guages can be classified as uniprocessor architectures, 
tree-structured machines,." data-driven machines, and de­
mand-driven machines. In a uniprocessor architecture, be-

sides the me<:hanisms to handle lists. additional stacks to 
handle function calls and optimization for redundant calls 
and array operations may be implemented [231. [159]. 
(179(. Tree-structured machines usually employ lazy evalu­
ations, but suffer from the bottleneck at the root of the 
tree {35), (120], (133]. Data-now machines are also natural 
~:andidates for executing functional programs and have 
tremendous potential for parallelism. However, the issue of 
controlling parallelism remains unresolved. A lot of the 
recent work has concentrated on demand-driven machines 
which are based on reduction machines on a set of load­
balanced (possibly virtual) processors (28J, {32). (100). (101), 

. (105(, (175), (176}. 
Ust-oriented architectures are architectures designed to 

support the manipulation of data structures and objects 
e((icienlly. Lisp, a mnemonic for list processing language, 
is a well-known language to support symbolic processing. 
There are several reasons why Lisp and list-oriented com­
puters are really needed. First, to relieve the burden on the 
programmers, Lisp was designed as an untyped language. 
The computer must be able to identify the types of data. 
which involves an enormous amount of data-type checking 
and the use of long strings of instructions at compile and 
run times. Conventional computers cannot do these effi­
ciently i11 software. Second, the system must periodically 
perform garbage collection and reclaim unused memory at 
run time. This amounts to around 10-30 percent of the 
total processing time in a conventional computer. Hard­
ware implementation of garbage collection is thus essen­
tial. Third, due to the nature of recursion, a stack-oriented 
architecture is more suitable for list processing. Lastly, list 
processing usually requires an enormous amount of space, 
and the .data structures are so dynamic that the compiler 
cannot predict how much space to allocate at compile 
time. Special hardware to manage the data st.ructures and 
the large memory space would make the system more 
efficient (37), (58). 

The earliest implementation of Lisp machines were the 
PDP-6 computer and its successors the PDP-10 and PDP-
20 made by the Digital Equipment Corporation (DEC) 
(122). The half-word instructions and the stack instructions 
of these machines were developed with Lisp's requirements 
in mind. Extensive work has been done for the DEC-sys­
tem 10's and 20's on garbage collection to manage and 
reclaim the memory space used. ·. .. .. , 
· The design of Lisp machines was started at M!Ts AI 

Laboratory in 1974. Cons, designed in 1976 [106). was 
superseded in 1978 by a second generation Lisp machine, 
the CADR. This machine was a model for the first com­
mercially available Lisp machines. including the S)mbolics 
LM2, the Xerox 1100 lnterlisp workstation, and the Lisp 
Machine Inc. Series III CADR, all of them delivered in 
1981. The third-generation machines were based on addi· 
tiona! hardware to support data tagging and garbage col· 
Jection. They are characteri:z.ed by the Lisp Machines Inc. 
Lambda supporting Zetalisp and LMLisp, the Symbolics 
3600 supporting Zetalisp, Flavors, and Fortran 77, the 
Xero,.; 1108 and 1132 supporting lnterlisp-D and Small talk, 
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and the Fujitsu FACOM Alpha Machine, a backend lisp 
processor supporting Maclisp. Most of the Lisp machines 
support networking using Ethernet. The LMI Lambda has 
a NuBus developed at MIT to produce a modular, expand­
able Lisp machine with multiprocessor architecture. 

A single-chip processor to support Lisp has been imple­
mented in the MIT Scheme-79 chip (166]. Other experi: 
mental computers to support Lisp and list-oriented pro­
cessing have been reported (44], (71 ]-(73]. (130]. (139], 
[1441-1 146 ), [ 170]. TI1ese machines usually have addi tiona! 
hardware tables, hashing hardware, tag machanisms, and 
list processing hardware, or are microprogrammed to pro­
,;de macroinstructions for list processing. A Lisp chip 
built by Texas Instruments implements over half a million 
transistors on a 1-cm2 chip for 60 percent or the functions 
in a Tl Explorer. The implementation on a single chip 
results in five times improvement in performance (121]. 
Experimental multiprocessoring systems have been pro­
posed . to execute Lisp programs concurrently [75], (86). 
(124), (125), (163]. (164], (193]. Data-now processing is 
suitable Cor Lisp as these programs are generally data 
driven (7), (8], (196), (197). Other multiprocessing architec­
tures to support list processing have been proposed and 
developed (29), (45), (66), (84), (176). 

Architectures have also been developed to support ob­
ject-oriented programming languages. Smalltalk, first de· 
vdoped in 1972 by the Xerox Corporation, is recognized as 
a simple but powerful way of communicating with com· 
puters. At MIT, the concept was extended to become.the 
Flavors system. Special hardware and multiprocessors have 
hc:en proposed to directly support the processing or 
object-oriented languages (96], (138). (167), (183). 

0\\ing to the dirferent motivations and objectives 
or various functional-programming-oriented architectures. 
each machine ha.~ its own distinct features. For example, 
the Symholi<'S 3(1tl0 f127J was dc.~igned for an interactive 
pwgr;rm tle•·dopment environment wlu:re compilation is 
very frequent and ought to appear instantaneous to the 
user. This requirement simplified the design of the: com· 
pilcr and results in only a single-address instruction for­
mat, no indexed and indirect addre.~~ing modes. and other 
mechanisms to minimize the number of nontrivial choice~ 
to be: made. On the other hand. the aim in developing Soar 
1183] was to demonstrate that a reduced instruction set 
romputer (RISC) could provide high performance in an 
exploratory programming environment. Instead of mi· 
crcx:ode. Soar relied on software to provide complicated 
operations. As a result, more sophisticated software tech· 
nique..~ were used. 

D. Logic· and Produerion-Oricnted 
Sy.rtem-Let•ef ArchitC'etures 

Substantial research has been carried out on parallel 
wmputational models of utilizing AND parallelism. OR 

parallelism. and stream parallc.:lism in logical inference 
"stems. pr.-...luction systems and others. The hasic proh-
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lem on their exponential complexity remains open at this 
time. 

Sequential Prolog machines using software interprcta· 
tion, emulation, and additional hardware support such as 
hardware unification and backtracking (174) have been 
reported. Single-processor systems for production systems 
using additional data memories [110) and a RISC architec· 
ture (60) have been studied. 

New logic programming languages suitable for parallel 
processing have been investigated. In particular. the usc of 
predicate logic [49), extensions of Prolog to become Con­
current Prolog [150), Parlog (26), and Delta-Prolog (137], 
and parallc:i production systems (182) have been devel­
oped. One interesting parallel language is that of systolic 
programming, which is useful as an algorithm design and 
programming methodology for high-level-language parallel 
computers (151). 

Several prototype multiprocessor systems for processing 
inference programs and Prolog have been proposed, some 
of which are currently under construction. These systems 
include multiprocessors with a shared memory (18). ZMOB, 
a multiprocessor of Z80's connected by a ring network 
(192), Aquarius, a heterogeneous multiprocessor with a 
crossbar switch (43). and Mago, a cellular machine imple­
menting a Prolog compiler that translates a Prolog pro­
gram into a formal functional program (107). Techniques 
for analyzing Prolog programs such that they can be 
processed on a data-now architecture have been derived 
(9). (15), (81], (95), (97). An associative processor has been 
proposed to carry out propositional and first-order predi· 
eate calculus (46). 

Dado is a multiprocessor system with a binary-tree 
interconnection network that implements parallel produc­
tion systems (162). Non-Von is another tree architecture 
used to evaluate production systems at a lower level of 
granul;trity ( 152). 

E. Disrriburl'd /'rob/,•m-So/JJin,~ .\)'.ftc:m., 

Knowledge in an AI system can sometimes be: repre­
sented in terms of semantic nets. Several proposed and 
experimental archit~-cturcs have been developed. N ETL 
(51) and its generalization to Thistle [52) consist of an 
array of simple cells with marker-passing capability to 
perform searches, set-intersections. inheritance of proper· 
ties and descriptions, and multiple-context operations on 
semantic nets. Thinking Machine Inc.'s Connection Ma­
chine is a cellular machine with 65 536 processing ele· 
ments. It implements marker passing and virtually recon­
figures the processing elements to match the topology of 
the application semantic nets (87). Associative processors 
for processing semantic nets ha\'e also been proposed 
(126). 

Some AI architectures are based on frame represenl:l· 
tions and may be called object-oriented architectures. For 
example. the: Apiary de,•cloped at MIT is a multiprocessor 
actor system (84). An efficient AI architecture m;~y also 
depend on the prohlcm-solving strategy. A gcneral form of 
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architectures called connectionist architectures evolve from 
implementing neurons in brains [53J. The basic idea of the 
Boltzmann machine is the application of statistical mechan­
ics to constrained searches in a parallel network [89). The 
most interesting aspect of this machine lies in its domain· 
independent learning algorithm [3). 

With the inclusion of control into stored knowledge, the 
resulting system becomes a distributed problem-solving 
system. These systems are characterized by the relative 
autonomy of the problem-solving nodes, a direct conse­
quence of the limited communication capability. With the 
proposed formalism of the contract net, contracts are used 
to express the control of problem solving in a distributed 
processor architecture {157). Related work in this area 
include Petri-net modeling (135), distributed vehicle-moni­
toring testbed (112], distributed air-traffic control system 
(22), and modeling the brain as a distributed system [61), 
(65]. 

F. Hybrid Systems 

It has been suggested that a combination of Lisp,· Pro­
tog, and an object-oriented language such as Smalltalk 
may be a betterJanguage forAI applications [169). This 
approach can be carried out in two ways. First, multiple 
AI languages can be implemented using microprogram­
ming on the same computer, so programs written in these 
languages can be executed independently. For example, 

. Prolog is available as a secondary language on some Lisp 
machines. A version of a Prolog interpreter with a speed of 
4.5 KLIPS (kilo lines of interpreted statements) has been 
developed for Lisp Machine's Lambda. A second approach 
is to design a language that combines the desirable features 
from several AI languages into a new language. Some of 
the prototype multiprocessors, such as ZMOB and Mago, 
were developed with a flexible architecture that can imple­
ment object-oriented, functional, and logic languages. 
FAIM-1, a multiprocessor connected in the form of a 
twisted hex-topology, wai designed to implement the fea­
tures of object-oriented, functional, and logic program­
ming in the Oil programming language (11). Currently, a 
parallel version of Scheme similar to MultiLisp is being 
implemented. Hope, a hybrid functional and logic lan­
guage, is currently being implemented on Alice [156). 

G. Fifth Generation Computer Projects 

The fifth generation comput~r system (FGCS) project 
was started in Japan in 1982 to further the research and 
development of the next generation of computers. It was 
conjectured that computers of the next decade will be used 
increasingly for nonnumeric data processing such as sym­
bolic manipulation and applied AI. The goals of the FGCS 

· project are . .. 

a) to implement basic mechanisms for inference, asso­
ciation, and learning in hardware; 

b) to prepare basic AI software to utilize the full power 
of the basic mechanisms implemented; 

c) to implement the basic mechanisms for retrieving 
and managing a knowledge base in hardware :lild 
software; 

d) to use pattern recognition and ~I research achieve­
ments in developing user-oriented man-machine in­
terfaces; and 

e) to realiz.e supporting environments for resolving .the 
"software crisis" and enhancing software produc· 
tion. 

The FGCS project is a marriage between the implemen· 
tation of a computer system and the rCCjuirements speci· 
fied by applications in AI, such as natural-language under­
standing and speech recognition. Specific issues studied 
include the choice of logic programming over functional 
programming. the design of the basic software systems to 
support knowledge acquisition, management. learning. and 
the intelligent interface to users. the design of highly 
parallel architectures to support inferencing operations, 
and the design of distributed-function architectures that 
integrates VLSI technology to support knowledge data 
bases (99), [177}, (180). 

A first effort in the FGCS project is to implement a 
sequentia,l inference machine, or Sim (198). Its ftrst imple­
mentation are two medium-perfonriance machines for soft­
ware development known as personal sequential inference 
(PSI) machine and cooperative high-speed inference (CHI) 
machine [171 ). The PSI and CHI machines have further 
been implemented in custom LSI's into PSI-11 and CHI·II. 
The PSl-11 has been found to have a performance that 
ranges from 100 to 333 KLIPS for various benchmark 
programs. Another architectural development is on the 
knowledge-base machine, Delta [129). 

The current efforts in the intermediate stage are on the 
parallel inference machine, or PIM, and the multi-PSI 
computers (129}. As an intermediate target. PIM-1 is being 
built now. It consists of about 100 procc.\~ing elements, 
.with a total speed of 10-20 MLIPS (mega lines of inter· 
preted statements) including overhead caused by Pimos. 
Eight processing elements with private caches in a cluster 
are connected through a shared memory. and a switching 
network is used to connect the clusters. Each processing 
element will be implemented in standard-cell VLSI chips. 
The machine language is KLl-B based on GHC (147). 
Lastly, the development or the basic software system acts 
as a bridge to fill the gap between a highly parallel 
computer architecture and knowledge information process­
ing [62). The Pimos was designed as a single unif1ed 
operating system to control the parallel hardware {172). It 
was built on the multi-PSI (version 2) system. Each PE 
consists of a PSI-II, 16-MW main memory, and interfaces 
to the mesh interconnection network. The KLl-B interpre­
tor is implemented in firmware and attains a speed of 
100-150 KLIPS (94). 

In the final stage •. a parallel computer with about 1000 
processing elements and attaining 100 mlips to 1 GLIPS 
(gega lines of interpreted statements) is expected to be 
built. Although the projects arc progressing well, there is a 
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recognition that more research is needed on exploiting 
intelligence rather than brute-force parallelism. The pro­
posal of the sixth generation computer system project is an 
indication of efforts in this direction (4). 

The Japanese HICS proj.:ct has stirred intensive re­
sponses from other countries. The British project is a 
fi\'c-year $550 million cooperative program between gov­
ernment and industry that concentrates on software en­
gineering, intelligent knowledge-based systems, VLSl 
circuitry, and man-machine: interfaces. Hardware develop­
ment has focused on Alice, a Parlog machine using data· 
flow architectures and implementing both Hope, Prolog, 
and Lisp (156). The European Commission has started the 
Sl.S billion five-year European Strategic Program for Re· 
search in Information Technologies (Esprit) in 1984 (2). 
The program focuses on microelectronics, software tech· 
nology, advanced information processing. computer· 
integrated manufacturing, and office automation. In the 
U.S., the most direct response to the Japanese FGCS 
project was the establishment of the Microelectronics and 
Computer Technology Corporation in 1983 (1). The project 
has an annual budget of S50-S80 million per year. It has a 
more evolutionary approach than the revolutionary ap­
proach of the Japanese and would yield technology that 
the corporate sponsors can build into advanced products 
in the next 10-12 years. Meanwhile, other research organi· 
z.ations have formed to develop future computer technolo­
gies of the U.S. in a broader sense. These include Darpa's 
Strategic Computing and Survivability, the semiconductor 
industry's Semiconductor Research Corporation, and the 
Microelectronics Center of North Carolina (1). 

V. DESIGN DECISIONS OF Al.ORIENTED COMPUTERS 

The appropriate methodology to design an AI computer 
should utilize a top-down design approach: functional 
requirements should be developed from the problem re­
quirements, which are mapped into hardware based on 
technological constraints. Similar to the design of conven­
tional computers, a bottom-up design approach is not 
adequate since special requirements of the applications 
may not be satisfied. Before a design is made, it is impor­
tant to understand the applicability of the system to a class 
of problems and then to strive for high performance in a 
prototype implementation. Thus knowing that an m· 
processor system gives a k-fold increase. in performance 
over a single processor is more important than knowing 
the maximum instruction rate of a prototype. Proper un· 
derstanding and analysis of the problem is probably more 
important than applying brute-force parallelism randomly 
in the design. 

The issues classified in Table 11 provide a view to the 
sequence of design decisions made in developing a 
>pecial-purpose computer to support AI processing. The 
various approaches can b.: classified as top-down, bottom­
up. and middle-out. 

T,>p-Do><'ll J),._,·igll lkci.<imu: This approach starts hy 
dd•n•ng.. sp<",·ifyin~. refining.. and \'alidating the rcquin·-

687 

ments of the application, devising methods to collect the 
necessary knowledge and metaknowledge, choosing an ap­
propriate representation for the knowledge and meta· 
knowledge, studying problems related to the control of 

·correct and efficient execution with the given rcpresentil· 
lion scheme, identifying functional n!<juircmcnts of com­
ponents, and mapping these components into software and 
microlevel, macrole\'el and system-level architectures sub­
ject to technological and cost constraints. The process is 
iterative. For example, the representation of knowledge 
and the language features may be changed or restricted 
when it is discovered that the ·functional requirements 
found cannot be mapped into a desirable and realizable 
system with the given technology and cost. In some pro­
jects, the requirements may be very loose and span across 
many different applications. As a result, the languages and 
knowledge-representation schemes used may be oriented 
towards general-purpose usage. The Japanese FGCS pro­
ject is an attempt to use a top·dO\Io1l approach to design an 
integrated user-oriented intelligent system for a wide spec­
trum of applications. 

Bottom-Up Design Decisions: In this approach, the de· 
signers first design the computer system based on a com­
putational model, such as data flow, reduction, and control 
flow, and the technological and cost limitations. Possible 
extensions of existing knowledge-representation schemes 
and languages developed for AI applications are imple­
mented. Finally, AI applications are coded using the repre· 
sentation schemes and languages provided. This is proba­
bly the most popular approach to apply a general-purpose 
or existing system for AI processing. However, it may 
result in inefficient processing, and the available represen· 
tation schemes and languages may not satisfy the applica­
tion requirements completely, ZMOB and Butterfly Multi· 
processor are examples in this class. 

Middle-Out Design Decisions: Titis approach is a short 
cut to the top-down design approach. It starts from a 
proven and well-established knowledge-representation 
scheme or AI language (most likely developed for sequen­
tial processing) and develops the architecture and the 
necessary moditications to the language and representation 
scheme to adapt to the application n:quirements and the 
architecture. This is the approach taken by many designers 
in designing special-purpose computers for AI processing. 
It may be subdivided into top-first and bottom-first, al­
though both may be iterative. In a top-first middle-out 
approach, studies arc first performed to modify the lan­
guage and representation scheme to make it more adapt­
able to the architecture and computational model. Primi­
tives may be added to the language to facilitate parallel 
processing. Nice features from several languages may be 
combined. The design of the architecture follows. Alice 
and FAlM-1 arc: examples of architeciUres designed using 
this approach. In the bottom-first middle-out approach, 
the chosen language or representation scheme is mapped 
directly into architecture by providing hardware support 
for the o~·erhcad-intensivc operations. Applications are 
implcm•·nted using the language and representation schcm<! 
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provided. Lisp computers are examples designed with this 
approach. 

VI. CONCLUSioN 

Although many AI computers h:ave been proposed or 
built, Lisp computers are probably the on1y architecture 
that have had widespread use for solving real AI problems. 
This is probably due to the large investment in software 
for many applications coded in Lisp. At present, there is 
no comprehensive methodology Cor designing parallel AI 
computers. Research on AI in the past three decades and 
the recent experience in building AI computers have led to 
a view that the key issue of an AI system lies in the 
understanding of the problem rather than efficient soft· 
ware and hardware. In fact, most underlying concepts in 
AI computers are not new and have been used in conven­
tional systems. For example, hardware stack and tagged' 
memory were proposed before they were used in Usp 
computers. However, the above argument does not imply 
that research on hardware and architectures is not neces­
sary. 

To support efficient processing of AI applications, re· 
search must be done in developing better AI algorithms, 
better AI software management methods, and better AI 
architectures. The development of better algorithms can 
lead to significant improvements in performance. Many AI 
algorithms are heuristic in nature, and upper bounds on 
performance to solve these problems have not been estab­
lished as in traditional combinatorial problems. As a con­
sequence, the use of better heuristic information, based on 
common-sense or high-level metaknowledge and better 
representation of the knowledge, can have far greater 
improvement in performance than improved computer ar­
chitecture. Automatic learning methods to aid designers in 
systematically acquiring and managing new knowledge to 
be available in the future are very important. 

Better AI software management methods are essential in 
developing more efficient and reliable software for AI 
processing. AI systems are usually open and cannot be 
defined based on a closed-world model. The language must 
be able to support the acquisition of new knowledge and 
the validation of existing knowledge. Probabilistic reason­
ing, fuzzy knowledge, and nonmonotonic logic may have 
to be supported. The verification of the correctness of an 
AI program is especially difficult due to the imprecise 
knowledge involved and the disorganized way of managing 
knowledge in a number of declarative languages and repre­
sentation schemes. Traditional software engineering design 
methodologies must be extended to become knowledge 
engineering to accommodate the characteristics of knowl­
edge in AI applications. Automatic programming is impor­
tant to aid designers to generate the AI software from 
specifications. 

The role of parallel processing and innovative computer 
architectures lies in improving the processing time of solv­
ing a given AI problem. It is important to realize that 
parallel processing and better computer architectures can-

not be used to overcome the exponential complexity of 
exhaustive enumeration (unless an exponential amount of 
hardware is used) and are not very useful to extend th.: 
solvable problem space. For a problem with a siz.e that is 
too large to be J~olvcd tod:ay by a sequential computer in a 
reasonable amount of time. it i.~ unlikely that it cau be 
solved.by parallel processing alone. even if a linear spc:c:dup 
can be achieved. The decision to implement a given algo­
rithm in hardware depends on the complexity of the prob­
lem it solves and its frequency of occurrence. Problems of 
low complexity can be solved by sequential processing or 
in hardware if they are frequently encountered: problems 
of moderate complexity should be solved by parallel pro­
cessing; and problems of high complexity should be solved 
by a combination of heuristics and parallel processing. In 
many AI systems developed today, tasks and operations 
implemented in hardware are those that are frequently 
executed and have polynomial complexity. These tasks or 
operations are identified from the languages or the knowl­
edge-representation schemes supported. The architectural 
concepts and parallel processing schemes applied may be 
either well-known conventional concepts or new concepts 
for nondeterministic and dynamic processing. The role of 
the computer architects lies in choosing a good representa­
tion, recognizing overhead-intensive taSks to maintain and 
learn metaknowledge, identifying primitive operations in 
the languages and knowledge-representation schemes, and 
supporting these tasks in hardware and software. 
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