
IH£ TR.M•.;SACTIONS ON SYSTEMS. MAN, AND CY8EkNETIC.S. \'OL 19, NO.4, JtJlV/ AllGtJST 1989 667

A Survey on the Design of Multiprocessing
Systems for Artificial Iritelligence

Applications
BENJAMIN W. WAH, SENIOR MEMBER, IEEE. Ai-m GUO JIE Ll, MEMBER, IEEE

AhJtrtut -Some- imporUnt i~SIIe'S in Hsigning ron1pu1ers for anifid•l
inl<lli~n«! (AI) ~nc an discuswd. 1lw Issues discuswd are dhiclecl
inlo 1~ Se .. k: IM ~nlalion 1e .. 1, IM ronlrOI te .. t, and IM

~- k•d. 1lw ~nrallon le•d deal• "ilh rhe kno,.ledge and
""''hods used lo sol•• IM probltm and IM -an• lo represtnl il. 1lw
ronlrOI lett! is ron<ft'l>td ,.;,b IM deltdion ol deptndencies and parol·
lelism in 1he algorilhmic and program ~nlations ol the problem. and
"ith tlw syndvoniurion and scheduling ol concutrenl tasks. 1lw ~
..,. Inti addrftses lhe h.ard,...,.., and archittetunl components ntedecl to
ttlluale !he aljlO<irhmic and program ~larions. Solutions In each
k•d are iUustraled b)' a number ol ~nlatl•• S)'Sitms. Design d«i·
siGns In ulstinc projects on AI compultn are classical into the top-doon~,
botlom-up, and middlt-oul approadots.

I. INTRODUCTION

I N RECENT YEARS, artificial intelligence (AI) tech
niques have been widely used in various applications,

such as natural-language understanding. computer vision,
and robotics. As AI applications move from the laborato
ries to the real world and as AI software grows in complex
ity, the romputational throughput and cost are increas
ingly important concerns. The conventional von Neumann
computers arc not suitable for AI applications because
they were designed mainly for sequential and deterministic
numeric computations. Extensive efforts have been de
voted to investigate and develop efficient AI architectures
[18!\j. This paper provides a state-of-the-art assessment or
At-oriented systems and discusses the major issues in
vol\'ed in such designs.

A. Clwracraisric·s •if A I Compurations

T,, de\'clop a special-purpose computer to support AI
applications, the requirements of these applications must
be fully understood. Many conventional numeric algo
rithms are well analyzed, and bounds on their computa-

Manu.cript rcttived June 24, 1987: re'i"'d September 8, 1987 and
Janu.ry 29, 1989. This work v.·as suppotled by the National Aeronautic'
•nd Sp•ce AdminiSiution under Con1ract SCC2-481.

B. W W:&h is v.ith the Coordinated Science Laborator•, Uni,·ersitv ol
lllinoi;. Urbana. IL 61801. - -

G. I. u was v.ith the Univcrsitv of Illinois. Urbana. IL. He is now "ith
the lmtitute ol Ct'mputing Tcch~ol<'g~. Academia Sinica. P.O. Bo• :701.
1\c'J'"!-· People's R<public nl China.

lEE£ L<'g Numt-er S9nD2

tiona! performance have been established. In contrast,
many AI applications are characterized by symbolic pro
cessing, nondeterministic computations, dynamic execu
tion, large potential for parallel and distributed processing,
management of extensive knowledge, and an open system.

Symbolic Processing: Data are generally processed in
symbolic form in AI applications. Primitive symbolic oper
ations, such as comparison, selection, sorting, matching,
logic set operations (union, intersection, and negation),
contexts and partitions, transitive closure, and pattern
retrieval and recognition, are frequently used. At a higher
level, symbolic operations on patterns such as sentences,
speech, graphics, and images may be needed.

Nondeterministic Computations: Many AI algorithms are
nondeterministic, that is, planning in advance the proce
dures to execute and to terminate with the available infor
mation is impossible. This is attributed to a lack or knowl
edge and a complete understanding of the problem: it may
result in exhaustively enumerating all possibilities when
the problem is solved or in a controlled search through a
solution space.

Dynamic Execution: With a lack of complete knowledge
and anticipation or the soluti'on process, the capabilities
and features of existing d:lla structures and functions may
be defined and new data structures and functions created
while the problem is actually being solved. Further. the
maximum size for a given structure may be so large that it
is impossible to allocate the necessary memory space ahead
or time. As a result, when the problem is solved, memory
space and other resources may have to be dynamically
allocated and deallocated, tasks may be dynamically cre
ated. and the communication topology may be dynami
cally changing.

Large Potential for Parallel and Distributed Processing:
In parallel processing of deterministic algorithms. a set of
necessary and independent tasks must be identified and
processed concurrently. This class of parallelism is called
A!'U parallelism. In AI processing, the large degree or
nondeterminism offers an additional source of parallel
processing. Tasks at a nondeterministic decision point can
be processed in parallel. This latter class is called OR
parallelism.

001 S-9472/89 j0700-0667SOI.OO tD1989 IEEE

667

ng

I. In contrast,
symbolic pro

ynamic exccu
•ted processing.
.n open system.
y processed in
symbolic oper

ting, matching,
and negation),

e, and pattern
;ed. At a higher
: h as sentences,
!d.
I algorithms are
ance the proce
available infor-

a lack of knowl
problem: it may
mibilities when
;carch through a

1plete knowledge
the capabilities

1d functions may
·unctions created
·cd. Further. the
1c so large that it
nory spucc ahead
; solved, memory
, he dynamically
dynamically cr.:
may be dynami-

huted Processing:
gorithms. a set of
he identified and
rallclism is called
· larg,c degree of
ource of parallel
iccision point can
ass is called 0 R

668 IEEE TP.ANSACT10N5 ON SYSTEMS. MAN, A.ND CYBERNET1CS, VOL 19. NO.4. Jt.:tY/AUGUST !';I."'.Y

Knowledge Management: Knowledge is an important
component in reducing the complexity of solving a given
problem: more useful knowledge means less exhaustive
searching. However, many AI problems may have very
high inherent c0mplexity, hence the amount of useful
knowledge may also be exceedingly large. Further, the
knowledge acquired may be fuzzy, heuristic, and uncertain
in nature. The representation, management, manipulation;
and learning of knowledge are, therefore, important prob
lems to be addressed.

Open System: In many AI applications, the knowledge
needed to solve the problem may be incomplete because
the source of the knowledge is unknown at the time the
solution is devised, or the environment may be changing
and cannot be anticipated at design time. AI systems
should be designed with an open concept and allow con
tinuous refinement and acquisition of new knowledge.

In general, two basic approaches are available for im
proving the computational efficiency of processing AI
tasks: having heuristic knowledge to guide searches and
using faster computers. In the following sections, these
approaches will be discussed.

B. Heuristic Searches

The key performance-related feature of AI computations
is their nondetenninism, which results from a lack of
complete understanding of the solution process. In other
words, when a problem becomes well understood and can
be solved by a detenninistic algorithm, we usually cease to
consider it "intelligent," although the problem may still be
symbolic [155].

The starting point of conventional computations is de
terministic algorithms, whereas efficient deterministic alga-'
rithms to solve a given AI problem is result from the
knowledge accumulated and the gradual refinement of the
computations. This involves the succinct choice of an
appropriate knowledge-representation scheme, learning
mechanisms to acquire the related knowledge, and a suit
able architecture to support the computations. Good
heuristics designed from previous experience may allow a
complex problem to be solved efficiently, even on a serial
processor.

Since the mid-1960's, the AI community has realized
that inference alone was often inadequate to solve real-life
problems. To enhance the performance of AI algorithms,
they must lx: augmented with knowledge and metaknowl
edge of the problem domain in addition to formal reason
ing methods. Metaknowledge refers to the control informa
tion to guide the search. This realization gave birth to
knowledge engineering and knowledge-based systems, the
field of applied AI [54]. Since the knowledge stored in any
knowledge-based system may be incomplete and inaccu
rate, combinatorial searches are still needed.

C. Fasur Technologies and Parallel Processing

An AI computer system must support both knowledge
base management and heuristic searches. Faster technolo-

gies and parallel processing are means to improve th~

computational efficiency. For many applications. such ;1,;

natural-language understanding and computer vision. th<
current achievable performance is much lower than th:H
needed. For example, according to DARPA's Stratq~ic

Computing proposal, it was estimated that an .:quivaknt
of one trillion von Neumann computer operations per
second were required to perform the vehicle-vision task at
a level that would satisfy the long-range objective of the
Autonomous Vehicle Project (1]. At best, current sequ<n
tial computers of reasonable cost achieve processing rat<s
below 100 million operations per second. which implies at
least 10• times improvement in performance are rc:quiwl-

Newer technologies can help in designing faster comput
ers. For example, using GaAs high-electron-mobility tran·
sistors (HEMTs), it was estimated for a computer "ith
over 500000 gates operating at 77 K and 15 levels per
pipeline stage, the cycles times were predicted to be 2.7 ns
with S W and 3200 gates per chip, and 2_0 ns with 20 W
and 5200 gates per chip, respectively {10]. In contrast, a
liquid-cooled Cray 2 supercomputer built using ECL tech
nologies has eight levels per pipeline stage, more than
500000 gates, and operate at 300 K and 4.1 nsjcyclc:. The
delay of one ECL gate level is approximately translated
into 1.5 GaAs HEMT gate levels; hence correcting the
cycle time of the Cray 2 supercomputer into HEMT tech
nologies and 15 levels results in 5.1-ns cycle time for the
Cray 2 computer. In short, there is a factor of two in using
the newer technologies available today.

Another way to reduce the cycle time is to teduce the
interconnect delay. It was estimated that with GaAs HE!'.IT
operating at 2-ns cycle time, the switching, fan-out. and
interconnect delays were approximately 2. 10.5, and 87.5
percent of the cycle time, respectively [10]. Although su
perconductivity can be used to reduce the interconnect
delays, it is less desirable with GaAs technologies due to
the high impedance in the gates, and more desirable v.ith
ECL technologies. When combined, these newer technolo
gies available today may allow improvement in the cycle
times of one to two orders of magnitude.

The trend in design AI computers has been toward
applying faster technologies and parallelism to process
computation-intensive AI tasks. Examples of parallel AI
systems currently available or under research/develop
ment include Alice, Aquarius, Butterfly, Concurrent lisp
machine, Connection Machine, Dado, Faim-1, FFP, iPSC,
Japanese Fifth Generation Computer System (FGCS),
NETL, Non-Von, Rediflow, Soar, Spur, and ZMOB [188]
Some of these computers. such as the Aquarius, Butterfly.
iPSC, and ZMOB, were designed for both numeric and
symbolic processing.

Recently, there is another trend to design small-grain
massively parallel architectures for AI applications. These
architectures are sometimes called connectionist n-stems;
they are comrosed of a very large number of. simple
processing elements. Knowledge of a given entity in such
systems· are distributed on a number of processing ele
ments and links, and each processor or link may be shared

w,,H AND U: SUJI.\'EY Of MULllPJI.OCESSI!<G SySUMS FOil AI APPUCAllOI'S 669

TABLE I
RELATIVE PII.OBLEM SIZES SoLVABLE II' A FIX£0 AMOUNT OF TIME ASsUMING

LINEAil SrEEour•.

Complexity to
Number o! Processors find Optimal

Solution N Nz N' N' 2N

N N Nl ,., N• Nl•l N2N
Nl N NI.S ,.. Nl.l N'll+l N2N/I
N' N

,.,,.)) N"'' . Nl N'll+l N2N/)
N' N NI+I/A N1+11• NI+J/l Nl NlN/l
2 •. N N+lo&N N+21o&N N+JiogN N+klor.N 2N

• Problem silc. when sequential proccs5iD& is used, is N.

by multiple entities. The use or connections rather than
memory cells as the principal means to store information
leads to the name "connectionism" (53). The resemblance
to neurons in a brain also results in the name "neural
networks." Many computers can simulate connectionist
systems. An example is the Connection Machine devel
oped by Thinking Machines Inc., which can perform neu
ral-network simulations two to three orders of magnitude
faster than serial machines of comparable cost (87), (189).

The high performance in many parallel AI computers is
achieved through associative processing and "data-level
parallelism." This approach is suitable for operations on
large databases, such as sorting. set operations, statistical
analysis, and associative pattern matching. Yet data-level
parallelism alone is not enough. For general AI applica
tions involving heuristic searches, control-level parallelism
should be involved. Unfonunately, early experience with
multiprocessor architectures for Hearsay-11 (55). Eurisko
[111). OPS-5 (60), and others have led to a belicC that
parallel AI programs will not have a speedup or more than
one order of magnitude. A possibly revolutionary ap
proach to designing parallel languages and systems for AI
processing may be needed.

One: mi~•·•mcc:ption in parallel processing is to usc the
total computing power of a parallel system to charactc:ri1.e
the rate at which a given AI application is processed. Due
to the nondeterminism in AI computations, a high comput
ing power does not always imply a shorter completion
time. Since most AI applications in\·olve heuristic searches,
resources may be devoted to fruitless searches, which use
more computing power but do not help to decrease the
time to find a solution. In fact anomalies may happen such
that increasing the degree of parallelism may even increase
the completion time in nondeterministic searches (116),
[187). What is imponant is how to allocate resources so
only u~ful tasks are performed. The question of solving an
AI problem in a parallel processing environment is still
largely unanswered.

Another misconception about parallel processing is that
it can be used to extend the sol\·able problem siz.e of AI
problems. Due to the high complexity of AI problems,
parallel processing is useful in improving the compJJtational
efficiency. but not in extending the solvable problem size
[187j. For example, a problem of siz.e ,v and complexity
s• can be solved in N" time units by a sequential proces
sN. Assuming. that N processors arc used. the new proh-

lem siz.e X that can be solved in the same amount of time
satisfies

N•N 4 - X4•

The left side of the equation represents the total comput·
ing power in N 4 units or time with N processors, and the
right size repreSents the number or operations to be per
formed in solving a problem of size X. Solving the previ
ous equation yields

x-Nl+tt•.

Table I summarizes the results for other cases. It is as·
sumed that the size or the problem solved by a sequential
processor is N, that the number of parallel processors
ranges from 1 to 2~~', that linear speedup is achievable. and
that the same amount of time is allocated to both sc:quen·
tial and parallel processing. The first column shows the
complexities of solving the problem optimally, and the
other columns show the corresponding sizes or the same
problem that can be evaluated in the same amount of time
for various number of processors. The extension in prob
lem siz.e is minimal when the problem involved is complex.
This is evident in the last row in which the problem solved
has exponential complexity. In this case only a logarithmic
incrense in problem size is achieved when a polynomial
number of processors are used, and a linear increase is
resulted with exponential number of processors.

In essence, parallel processing alone cannot circumvent
the difficulty of combinatorial explosion. The power of
multiprocessing should not be overemphasiz.ed and must
be combined with heuristic information to solve complex
AI problems. Currently methods for combining heuristic
information and massive parallelism are still largely un
known. The publication in 1985 of the Sixth Generation
Computing System development proposal shows a serious
intention in Japan to go beyond the current FGCS activi
ties and address the AI aspects of computations (4j.

D. Design Issues of Paraffel AI Architectures

The: essential issues in designing a computer system to
support a given AI application can be classified into the
representation level. the control level, and the processor
level. The representation level deals with the knowledge
and methods used to solve: a given AI problem and the
means to represent it. Design issues related to the repre
sentation level are discussed in Section 11. The control

--r

669

amount of time

he total comput
ocessors, and the
ations to be per
;olving the previ-

:r cases. It is as
d by a sequential
arallel processors
is achievable. and
d to both sequen·
·olumn shows the
ptimally, and the
sizes of the same

ne amount of time
:xtension in prob
volved is complex.
.he problem solved
only a logarithmic

:hen a polynomial
linear increase is

ocessors.
cannot circumvent

ion. The power of
phasizcd and must
n to solve complex
:ombining heuristic
are still largely un
re Sixth Generation
)Sal shows a serious
urrent FGCS activi
!putations [4J.

·ctures

computer system to
•e classified into the
'· and the processor
with the knowledge
·\I problem and the
related to the repre
t ion II. The control

it".t .•

670 IEEE TRANSACTlONS ON SYSTEMS. W.N. AND CYBERNETICS. VOL. 19. SO,~. JUL\"/AUGUST 19~9

level is concerned with the detection of dependencies and
parallelism in the algorithmic and program representations
of the problem. Design issues related to the control level
are presented in Section Ill. The. processor level addresses
the hardware and architectural components needed to
evaluate the algorithmic and program representations. Is
sues related to the processor level are discussed in Section
IV. Examples of issues in each l~el are shown in Table U.

Developing an AI architecture requires solutions to many
issues in each level. Yet some or these issues are still open
at this time. In this paper, we do not provide an exhaustive
survey of all reported projects and their relevant issues.
Instead, we discuss some important issues in the three
levels and illustrate the solutions by a number of represen
tative systems.

II. RI!Pil£SENTATION LEVEL

Since 1950, knowledge-representation schemes have been
widely discussed in the literature (20), (48). The representa·
tion level is an important element in the design process
and dictates whether or not the given problem can be
solved in a reasonable amount or time. Although various
paradigms have been "developed. most existing knowledge·
representation methods and AI languages were designed
for sequential computations, and the requirements of par·
allel processing were either not taken into account or
were only secondary considerations. Moreover, many de
signers of At computers start with a given language or
knowledge-representation scheme; hence the representa·
tion level is already fued. Research in designing AI com
puters has focused on automatic methods to detect paral·
lelism and providing hardware support for time-consuming
operations in a given representation but has not provided
much to aid users in collecting and organizing knowledge
or in designing efficient algorithms.

A. Domain Knowledge Representations

Domain knowledge refers to objects, events, and actions.
From an implementation point of view, the criteria to
evaluate a representation scheme for a multiprocessing
system are its declarative power,· the degree of knowledge
distribution, and its structuralization.

Declarative versus Procedural Representations: The rna·
jor knowledge-representation paradigms used today can
roughly be classified into declarative and procedural ones,
although most practical representation schemes combine
features from both: Declarative representations specify
static knowledge, while procedural ones specify static
knowledge as well as the control information that operates
on this static knowledge. Horn clauses (or even first-order
logic), semantic networks, and rule-based production sys
tems are examples of declarative representations, while
Lisp programs are procedural representations. Frames
combine both declarative and procedural information to
represent structured knowledge. Attached to each frame is

Tt\BLE II
E.'(A>IPW OF ISSUES IN DESIGNING AI COMPUTHS

Rcpr<.sentation Level
Choosing an appropriate knowledge repr=nt>~ion
Ropresenting metll·kno .. ·lcdge
Acquiring and le.tming domain knowledge and .,.,ta·knowlcdgc
Roprcsenting knowledge in a distributed lashion
D<claring parallelism in AI languages

Control Lc>'<l
Analyzing data-dependencies
Synchroniz.ation
Maintaining coasisteoq
Partitioning AI problems
Deciding granularity of parallelism
Dynamic scheduling :md lo:1d balancing
E.lficient search strat~es
Trade-offs on using heuristic information
Predicting performance and linear scaling

Processor Level
Defining computational models
Developing methods to pass information
Oesi~ng bMdware for O\"erhead·intensive operations
Oesi~ng intercoonection structure for load balancing

:md communieation of guiding and pruning information
Mana&in& large memory spa«

various heuristic information, such as a procedure on using
the information in the frame.

A declarative approach allows the hiding of pr!X:Wural
control-flow information, thereby resulting in an easily
created, mOdified, and understood knowledge representa
tion. Declarative representations arc referentially transpar
ent; that is, the meaning of a whole can be derived solely
from the meaning of its parts and is independent of its
historical behavior. This may significantly increase pro
gram productivity because of its user orientation and user
friendliness.

Declarative representations offer higher potential for
parallelism than procedural ones for the same problem.
because a declarative representation specifies tasks as a set.
while a procedural representation may overconstrain the
order of execution by the implicit order of statements.
Parallel versions of procedural representations, such as
parallel lisp programs, achieve a limited amount of con
currency, while relying on programmers to specify the
parallel tasks (76), (80}. However, parallelism in a declara
tive representation may be restricted by the implementa·
tion of the language translators. For example, interpreters
for rule-based production systems can be viewed as pat
tern-directed procedure invocations. Although pattern
matching may provide a rich source of parallelism. the
match-select-act cycle is a bottleneck and restricts the
potential parallelism. Less restrictions are seen in the im
plementation of logic programming and semantic net
works. This is the key reason for the Japanese FGCS
project to choose logic as the basic representation. It has
also been reponed that if 256000 processing units were
used, the Connection Machine. using a semantic network
representation, can execute four orders of magnitude faster
than a sequential lisp machine with respect to a number
of object-recognition problems [59].

w.•lt ASD U: SURVEY Of MULTIPROCESSING SYSTIMS FOR AI APPUCATIONS

r\ disadvantage of declarative representations is that
their nondeterminism is usually associated with a large
search space that may partly counteract the gains of paral
ld processing: whereas procedural schemes allow the spec
ific;llion and direct interaction of facts and heuristic infor
mation. hence eliminating wasteful searches. A trade-off
between the degree of parallelism and the size of the
search must be made in designing a representation scheme.

Disrribuu:d Knowledge Reprcunrarions: A second crite
rion to evaluate a representation scheme is its degree of
distribution. In a local representation, each concept is
stored in a distinct physical device, and each device may
be shared among multiple concepts. Although this simpli
fies their management, the knowledge Y.ill be lost if the
device fails. Most current AI systems adopt the local
representations.

Recently. distributed representations have been pro
posed. In this scheme. a piece of knowledge is represented
by a large number of units and distributed among multiple
physical devices, and each device is shared among multiple
knowledge entilies. The resulting system is more robust
because the failure of one physical device may cause some
but not all information to be lost in multiple knowledge
enttttes. Neural networks [90) and the Boltzmann
Machine [89) are examples in this class. The proposed
Boltzmann Machine consists of a very large network of
binary-valued dements that are connected to one another
by bidirectional links Yoith real-value weights. The weight
on a link represents a weak pairwise constraint between
two hypotheses. A positive weight indicates that the two
hypothese.~ tend to support one another, while a negative
weight suggests that the two hypotheses should not both
be accepted. The quality of a solution is then determined
hy the total cost of all constraints it violates.

Another interc..~ting distributed knowledge-rcprcsenta
tinn sd1cmc. called Sparse Distributed Memory (SOli!).
has been proposed hy Kancrva (9!11. The SDM has a
1000-hit address to model a random sample of 2ltl physical
locations. Given a 1000-bit read/write address, the loca
tions in the SDM that arc "ithin 450 bits of this address
arc selecte-d associatively. Statistically. nearly 1000 mem
nry locations will be selected. The word read is a statistical
reconstruction by a majority rule. The SDM model was
designed "'ith an analogy to the human brain and can
pcrforn1 pattern computations such as looking up patterns
similar to a given pattern and generating a pattern that is
an abstraction of a given set of similar palterns [42).
Although it is much simplified Yoith respect to the human
brain. its concept may lead to a new class of computers
suitable for paltern computations.

Distributed reprc..~ntations are generally fault-tolerant
m that. "'ithin a large parallel network with a few faulty
units. the remaining pallern is still usable. This property is
very attractive for wafer-scale integration. The disadvan
tage of distributed represemations is that they are hard for
an outside observer to understand and modify. so autO·
matic learning schem.:s must he employed. An open proh
km ~~ this time is to combine local and distrihuted rcpre-

671

sentations by decomposing a large knowledge base into
partitions and using a local representation for each.

Structurali:ation of Knowledge: A third criterion to eval
uate knowledge-representation schemes is their structural
ization; this is related to the inference time and the amount
of memory space required to store the knowledge. In
general, the more structured a knowledge representation is,
the less inference time and the more memory space arc
needed. An experimental comparison of efficiency has
been reported for four kinds of knowledge-representation
schemes for a pilot expert system, namely. a simple pro
duction system, structured production system. frame. and
logic [132). It was found that the volume of knowledge
bases for the four schemes were different. In one case,
both production systems have 263 rules and 15000 charac
ters, the frame system has 213 frames and 29000 charac
ters, and the logic system has 348 clauses and 17000
characters. The memory space required by the frame sys
tem is the largest because some related pieces of knowl
edge have to be replicated in different frames. Since at
most one conclusion is allowed in each Hom clause. the
space of the logic system is larger than that of the produc
tion systems. The experimental results also show that. with
respect to forward and backward reasoning, the frame
system is the fastest, white the logic system is the slowest.
The efficiency of the frame system is relatively insensitive
to the size of the knowledge base because related pieces of
knowledge are connected to one another by pointers.
thereby limiting searches. The inference time of the simple
production system is moderately sensitive to changes in the
size of the knowledge base, while that of the logic system is
markedly sensitive to changes in si7.e.

Structured knowledge representations are usually dcsir·
able as long as the memory space needed is reasonable. To
achieve this end. metaknowlcdgc may be included in the
knowledge ba~c to reduce the ~carch overhead needed.
There arc two problems in using metaknowlcdgc. First. it
consumes more memory space and may increase the ov•~r
hcads in memory management and communication. Sec
ond, metaknowledge in a poorly understood domain may
be fallible and may lead the search in the wrong direction.
thereby increasing the total search tim~. Theoretical stud
ies and experimental comparisons are urgently needed to
address this space- time trade-off.

B. Metaknow{edge Representarions

Metaknowledge includes the extent and origin of domain
knowledge of a particular object. the reliability of certain
information. the possibility that an event will occur. and
the precedence constraints. In other words. metaknowledge
is knowledge about domain knowledge. Mctaknowledge
can be considered to exist in a single level or in a hierarchy
(19). In a hierarchical form. metaknowledgc is used to
decide which domain-dependent actions to perform. while
mera-mctaknowledp.e is the control knowledge about meta·
knowledge. Higher level mctaknowledge is comlnon-sense
knowledge known to humans.

671

lge base into
·reach.
.erion to eval
~ir structural
,d the amount
nowlcdgc. In
rcscntation is.
xy space an:
:fficicncy has
·cprcscntation
a simple pro
n. frame. and
of knowledge
In one case,

15 000 charac
!9000 charac
s and 17000
he frame sys
ccs of knowl
mes. Since at
m clause. the
)f the produc
Jow that, with
1g, the frame
is the slowest.
ely insensitive
atcd pieces of
by pointers.

of the simple
changes in the
logic system is

usually dcsir
·easonable. To
1cludcd in the
·head needed.
kdgc. First. it
·case the OV<~r
'nication. Sec
! domain may
ong direction.
eorctical stud
lllv needed to

g.in of domain
ility of certain
:ill occur. and
leta knowledge
ktaknowlcd!!.e
in l hierarchy

gc is used to
perform. while
·c ahout meta
c't)lnmon~sc!nsc

I .
I\

672 IEEE TRANSACTIONS ON SYITDU. MAN. AND CYBERNmcs. VOL t9, NO.4, JUlY/ AUGUST I 91\9

The use of metaknowledge allows one to express the
partial specification of program behavior in a declarative
language, hence making programs more aesthetic, simpler
to build. and easier to modify. It facilitates incremental
system development; that is, one can stan from a search
intensive program and incrementally add control informa
tion until a possibly search-free program is obtained.
Lastly, many knowledge-representation schemes and pro
gramming paradigms, such as logic, frames, semantic
networks, and object-oriented programming, can be inte
grated with the aid of metaknowledge [19), [64). Meta
knowledge can be classified as deterministic and statistical
according to the correctness and efficiency considerations.

Deterministic Metaknowledge: Deterministic metaknowl
edge is related to the correct execution of the algorithm.
Metaknowledge about precedence relationships results
from a better understanding or the problem; this helps
reduce the resource and time complexities. For instance, to
solve the problem of sorting a list, it is necessary to
analyze the problem, find the appropriate representation,
and evaluate the necessary tasks. A list of n elements can
be sorted by searching in parallel in O(logn!) average time
(= 0(n ·log n)) one of the n! permutations that contain
the sorted elements; however, an algorithm such as Quick
sort contains functionally dependent subtasks and can Sorl
the list in 0(n ·log n) average time using one processor. In
general, the deeper we understand the problem to be
solved, the larger is the set of necessary precedence con
straints and the more efficient is the solution to the prob
lem.

Many AI languages allow programmers to specify the
sequence of exeCutions in a serial computer, but tbe meta
knowledge to specify the correct execution in a multipro
cessing environment is incomplete or missing. In programs
written in pure declarative languages, the static aspects of
the represented knowledge arc stressed, while the controls
are left to the compilerjinterpcter. For instance, in a logic
program, a clause a:- a1, a 2 , a 3, means that a is implied
by a1, a 2, and a 3, but nothing about their functional
dependencies is represented. The sequence of executions in
a serial computer is correct because a definite search order
is imposed, but the precedence relationships among sub
goals are unknown to the scheduler in a multiprocessor.

In a number of AI languages such as Prolog, the type
and meaning of variables' and functions are dynamic and
query dependent and cannot be completely specified at
compile time. To use metaknowledge in this regard, the
semantic meaning of subgoals and operations can be speci
fied, which can be interpreted as precedence relationships
by the scheduler at run time. In logic programming, the
method to represent semantic information in a general and
efficient way is still open.

The metarules used must be sufficient and precise such
that all precedence relationships can be derived unambigu
ously and easily. An important consideration is the scqpe
within which metarules can be applied. Common-sense
.metarules should be included to operate on more specific
metarules specified by the programmers. Using the

metarules, the interpreter/complier generates the neces·
sary synchronization primitives.

Several researchers have addressed this problem.
Gallaire and Lasserre used metaknowledge expressed as a
general or special control strategy in a Prologlike inter
preter [63J. In their approach, metaknowlc:dge is made
explicit through metarules, each of which describes an
action to ·be undertaken by the interpreter whenever the
interpreter focuses its attention on an object involved in
the metarule. In LP, a Prolog equation-solver learning
system [154}, control information is expressed in a declara
tive representation. and inference is performed at the met
alevel. Search at the object level is replaced by St"..arch :u
the "meta" level. Research is necessary to provide a practi
cal method to specify unambiguously the needed synchro
nization through metaknowledge.

Statistical Metaknow/edge: Statistical metaknowledge
can be used to enhance the computational efficiency of an
AI program. Warren used a simple heuristic and reordered
only the goals of compound queries written in pure Prolog
[190); e-.·en so, he typically obtained query speedups of an
order of magnitude. The probability of success of a sub-
goal and the associated search cost have been found to be
useful in guiding the search or logic programs [69], [114].
In general, clauses in Prolog with the same head should be
ordered such that those likely to succeed with a smaller
expected search cost are searched ftrst. In contrast, sub
goals within a clause should be ordered such that those
likely to fail with a smaller expected search cost are
searched ftrst.

In many expert systems, the belief and other measure
ments of accuracy of the information have been widely
used. For example, in MYCIN, the confidence factor (CF)
is used to decide among alternatives during a consultation
session [21). The CF of a rule is a measurement of the
association between premises and actions. A positive CF
indicates that the evidence confirm~ the hypothesis, while a
negative CF indicates disconfirming evidence.

The representation of meta.knowledge about uncertainty
is an active topic in AI research. Several methods, such as
fuzzy logic and Dempster-Shafer theory, are being studied
currently. The proper choice is still unclear.

C. A/lAnguages and Programming

Conventional imperative languages are inefficient and
complex to program for symbolic and pattern processing;
hence the design of AI programming languages bas had a
central role in the history of AI research. Frequently, new
ideas in AI were accompanied by a new language that was
natural for expressing the ideas.

To enhance programmer productivity and take full ad
vantage of parallel processing, declarative languages have
been designed for AI programming. Function-, logic-, and
object-oriented languages are the major programming
paradigms today. Lisp is an early and widely .used func
tional language; it is characterized by symbolic computa
tionS, representation of information by lists,o,and recursion

I
I

WAll AND U: SUPSE\' Of loiULllP•OCESSINO SYSTOCi FOR AI APPUCAtlONS

as the only control mechanism. Numerous imperative rea·
lures have been incorporated into different dialects or
Lisp. so most Lisp programs are not actually declarative.
but a large enough subset allows declarative programming
to t>c done.

llybrids of programming paradigms have been dcvel·
<'ped. One simple approach to combining features from
two languages is to pro,ide an interface between the two.
Examples include Loglisp (142), Funlog [39), and Oil [36).
The provision or features from multiple languages within a
single unified framework, such as Lambda Prolog. has also
been proposed. A different approach called narrowing
involves replacing pattern matching in functional Jan·
guages by unification (140). Logic programs can then be
expressed as {unctions. Recently, three commercial pro
gramming tools Kee, Art, and Loops have been intro
duced, which pro,ide a mechanism to allow multiple
paradigms to be used in a program.

New AI languages feature large declarative power, sym·
bolic processing constructs, representing information by
lists, and using recursion as the only control mechanism.
These languages difCer in their expressive power, their ease
or implementation, their ability to specify parallelism. and
their ability to include heuristic knowledge. A language·
oriented AI computer will inherit all the features and
limitations of the language it implements. Note that no
single paradigm is appropriate for all problems, as one
language may be more "natural" than another, depending
on the requirements and the personal view. Hence intelli·
gent systems should allow multiple styles, including Cunc·
tion. object·, and logic-oriented paradigms.

Expressive Power versus Ease of Implementation: Func·
tiona! languages, such as pure Lisp [122). Backus' FP [13),
Hope (14). and Val!l23). share many features with logic
languages, including the declarative nature, reliance on
tc,·ursi<ln, :md P<'tcntial for execution pamllclism. Yet they
h:l\'l" vitnl iutlivi.lunl kmures liS well, Fir~t. in fuuctillll:ll
pw~rams. input and output v;uiahles are fixed, while in
logic programs, the modes of variables arc query depen·
dent. For example, the statement z =plus (x, y) in a
functional program implie..~ that x and y are inputs and z
i.~ output. In contrast, in a logic program. the goal sum
(X. r. Z) has eight possible combinations or modes of
variables X, Y. and Z. For instance (in, out, in) means
that Y = Z- X. Second, in a functional program, only
constant and constructor functions can appear in the out·
put; while in a logic program, logic variables can be used
as output. Third. pure functional programs are determinis·
tic. and no search is needed, while logic programs are
inherently nondeterministic and require searches. Finally,
functional programming pro,ides the ability to write
high-order functions; that is. a function can be passed as
an argument. In contrast. Prolog is a first-order language.
although some logic programming languages are not.

The first three properties. especially the nondirectional
ity. make logic l:1nguages more expressive in the sense that
a s1ngle logic program corresponds to SC\'eral functional
l'r<'~rams. Mor.:,wc:r lo)!iC and functional programs arc

673

executed using resolution and reduction (or term rewriting),
respectively. Note that resolution can use input informa
tion implicit in the patterns to cut down the size of the set
to be examined. For example, to solve the append subgoal,
append ([P). [Q. R), [1,2,3)), resolution makes no distinc,
tion between inputs and outputs and uses the input infor
mation (length of the lists) to select the appropriate clauses
and produce bindings for the variables involved. However,
in the corresponding functional formulation ([P), [Q. R))
-split ([1,2,3)), all possible splits of [1,2,3) are produced,
and the one that splits the list into [P) and {Q, Rl will be
selected. The previous example illustrates that reduction
can lead to overcomputation as compared to resolution.

The crucial disadvantage or functional programming lies
in the difficulty to represent the inherent nondeterminism
in AI problems. Although the recursive formulation and
the leftmost-outermost reduction of functional programs
enable depth-first searches naturally, it is difficult to write
a heuristic search program by a pure functional language
since heuristic searches are inherently history-sensitive. In
fact, best-first-search programs written in Lisp include a
lot of "setq" and "prog" statements, which are not pure
functional primitives [195). Due to their less expressive
power Cor representing nondeterrninism and their ineffi
ciency in dealing with large data structures, pure func
tional languages are unsuitable for general AI applications.

Although logic languages are more expressive, their im
plementations, especially in a parallel processing environ
ment, are more difficult due to the nondirectionality of
variables. The dynamic nature of modes requires run-time
analysis. In contrast, the run-time behavior of functional
programs is much simpler to control than that of logic
programs, particular in a parallel context. Techniques such
as graph reduction and data now have been developed for
the parallel evaluation of functional languages. Further,
Lisp has only a few primitive operators and provides
unique list structures to compound data llhjccts. Thesc
features simplify the implementation of Lisp compilers/in
terpreters. In fact, Scheme, a dialect of Lisp. has been
implemented in a single chip (166). The implementation,
however, may be complicated by the dynamic nature and
primitives with side-effects introduced in practical func
tional languages. Dynamic features, such as random ac
cesses to linked lists, garbage collection. frequent function
calls, and dynamic binding of functions, incur extensive
run-time overheads.

Obviously, it would be advantageous if the.simple con
trols of functional languages could be implemented in the
more expressive logic languages. Considerable efforts have
been devoted to combining functional and logic program
ming [39). One approach to simplifying logic languages is
to introduce directionality of modes of variables (140).
This method degrades its expressive power to that of
first-order functional languages. Others attempt to extend
functional languages to achieve the expressive power of
logic languages but retain most of the underlying func
tional simplicity. An e:<ample is Hope with unification
(34]. Unfortunately. up to now, no language exists that has

----------------------------·---------- .. -------· i .

674

gooc
pan

s.
was
sud
rest
be •
lan1
pri1

I
me:
cor
exr
fur
exi
na1
Fo
s, (
COl

co
re1
pa
0~

fu
m•
re:
al:

ill
ill
C1

P•
p
C•

r,
v

h

673

·ewriting),
inform a

of the set
d subgoal,
10 distinc,
>put infor
atc clauses
. However,
f'), [Q.RJ)
produced,
Rl will be
reduction

solution.
mming lies
~terminism

•lation and
I programs
ultto write
11 language
ensitive. In
J include a
re not pure

expressive
their ineffi
pure func

.pplications.
1e, their im
mg environ
:tionality of
res run-time
,f functional
hat of logic
miques such
cveloped for
~es. Further,
nd provides
•i•Tts. ThcsL'
ompil~rsjin

'1'· has been
•kmentation.
c nature and
:actical func
, random ac
uent function
cur extensive

c simple con
tnentcd in the
.c efforts have
ogic program
c languages is
ariables (140).
cr to that of
mpt to extend
sive power of
tkrlying rune
' th unification
exists that has

i '

67~ IEEE TI<ANSACTIONS ON SYSITMS. MAN. ASD CYRERJ<ETICS. VOL \9. NO. 4.JVLY/AUGUST tn9

good expressive power while being flexible enough for
parallel execution. Efforts are needed in this direction.

Specification of Parallelism: Since parallel processing
was not a consideration when most existing AI languages,
such as Lisp and Prolog, were designed, the precedence
restrictions implicit in a sequential execution order cannot
be detected easily in a parallel execution. To extend these
languages in a parallel processing environment, explicit
primitives may have to be included.

In a pure functional language (data-flow language), the
meaning of an expression is independent of the history of
computations performed prior to the evaluation of this
expression. Precedence restrictions occur as a result of
function application. Notions such as side effects do not
exist, hence all arguments and distinct elements in a dy
namically created structure can be evaluated concurrently.
For example, to compute the average of numbers in a list
s. (1.(2.(3.nil))), using the function average(s) • div(sum(s),
count(s)). the computations of sum(1.(2.(3.nil))) and
count(l.(2.(3.nil))) can proceed concurrently. It has been
reported that implementations of functional languages on
parallel computers seems easier than that on sequential
ones [33).

Note that Lisp and many of its dialects are not pure
functional languages. Referential transparency is lost in
most lisp languages due to side effects. The precedence
restrictions are represented not only in function calls but
also in procedures.

Several parallel Lisp languages have been proposed and
implemented. Multilisp, developed by Halstead, has been
implemented on a 128-processor Butterfly computer. Con·
currency in Multilisp can be specified by means of the
peal/ and future constructs {77]. pea/1 embodies an im·
plicit fork join. For examplt!, (peal/ ABC) results in the
concurrent evahration of expressions A, B, and C. The
form (/tltun• X) immediately returns future (a pseudo
value) for X and creates a task to evaluate X concurrently,
hence allowing concurrency between the computation and
the use of X. When the evaluation of X yields a value, it
replaces the future. The futu.re construct is good in ex
pressing mandatory parallelism but is quite expensive in
the current Multilisp implementation.

Another parallel Lisp language, Concurrent Lisp (163},
is extended from Lisp 1.5 and has three additional primi·
tive functions to specify concurrency: STARTEVAL for
process activation, and CR (critical region function), and
CCR (conditional critical region function) for mutual ex
clusion. A multiprocessing program written in Concurrent
Lisp is a set of cooperating sequential processes, each of
which evaluates its given form. Similar to P jV primitives,
CR and CCR have enough power to express process inter
actions.

In Parlog, a parallel logic programming language (27},
every argument has a mode declaration that states whether
the argument is input (1) or output<} For example, in the
following statements, mode merge(??).

merge([UjXJ, y,[UjZj) merge(X, Y, Z).

the first two lists are merged to form the result. In Concur·
rent Prolog (150). a read-only annotation (?) is used. For
example,

merge([U!X). Y.[U!Z)) <-merge(X?, Y, Z).

. indicates that X must have a value before merge (X?, Y, Z) .
can be iovoked. Another way to specify the concurrency is
to use different symbols to distinguish between "paralic:!
AND" and "sequential AND" such as"," and"&" in Parlog.
Guarded clauses are used in Parlog and Concurrent Prolog
partly to specify parallelism. A guarded clause has a for
mat, h:- g!b .. where g is the guard of the clause and b is
its body. Subgoals in the body can only be evaluated when
all subgoals in the guard have succeeded, and values
bound have been committed to the body.

Clearly, the previous approach of specifying parallelism
by users detracts from the objective of declarative pro
gramming, which separates logic from control, or "what"
from "how." Both mode declarations in Parlog and read
only annotations in Concurrent Prolog impose a fL-.:ed
execution order on subgoals, which may be inefficiem in
parallel processing. On the other hand, distinguishing the
guard from the body cannot completely specify the prece
dence relationships because subgoals in the guard and
body may be dependent. The use of guards is also compli
cated by. a lack of general methodology to select subgoals
in the guard. Moreover, precedence relationships are a
partial order, so the distinction between "sequential AND"

and "parallel AND.'' which are linear orders, is insufficient
to specify all precedence relationships. Lastly, owing to the
nondeterministic behavior of AI programs, users cannot
always specify the parallelism perfectly. A desirable paral
lel AI language should allow its compiler to detect the
parallelism and schedule parallel executions as efficiently
as possible.

Object-OriMtcd l..anguagl'.t: Ohj"ct·orientt'd program·
ming hold5 promise as a framework for concurrent
programming that can be extended to data bases and
knowledge bases. It is expected that "object-oriented pro
gramming will be in the 1980's what structured program
ming was in the 1970's" [141). A variety of object-oriented
languages include Smalltalk (68), Loops {161). Actor [61.
CommonObjects {158). and many others [191J. Recently.
CommonLoops was suggested as a standard for object-ori
ented extensions to Common Lisp by the Lisp community
[16}.

Object-oriented programming has been used to express
different concepts, but the concept ~f an object is the
common feature in these languages. Objects are entities
that combine the properties of procedures and data. Ob·
ject-oriented programming replaces the conventional oper.
ator-operand concept by messages and objects. All actions
in an object-oriented program result from sending mes
sages among objects. A selector in the message specifics
the operation to be performed. An object responds to
messages using its own procedures {called methods) for
performing operations. Message sending supports data ab·
stractions, a concept that is necessary but not sufficient for

r
['.
I·

i
l

i

WAH AND U: SUIO.VEY Of MULTIFkoct.SSINO SYSTEMS FOil AI AP.PLICAnOSS

the language to be object-orientc:d. Object-oriented lan
guagc:s must additionally support the management or data
abstractions using abstract data types and the composition
of abstract data types through inheritance. Inheritance is
used to define: object~ that are almost like other objects. In
(;~ct. object-orientc:d programming should be chamctcri1.cd
by the nature of its type m~-chanisms rather than the
nature of its communication mechanisms; that is. object
oriented programming can be defined as

object-oriented - data abstraction+ data types

+type inheritance.

Object-oriented programming is a paradigm for org:miz.
ing knowledge domains while allowing communications.
Concurrent models. operating systems. and coordination
tools are built from low-level objects, such as processes,
queues, and semaphores. Hewitt's Actor model is a formal
ization or the ideas or object-oriented languages: an actor
in his model is the analogue of a class or type instance but
considers the added effects of parallelism (83]. Computa
tions in the Actor model arc partial orders of inherently
parallel events having no assignment commands. The lan
guage Act3, based on the Actor model, combines the
advantages of both object-oriented and functional pro
gramming (5). To support object-oriented programming.
appropriate objects representing data structures should
exist at the hardware level as objects of "machine data·
structure type." This gives birth to the data-type architec·
ture (67}. The Apiary network architecture is based on the
Actor model (84). [85].

D. SummaiJ'

A major problem in the representation level lies in the
large amount or knowledge needed to define a good repre·
sentation and the imprecise nature of this knowledge.
Efforts have been directed toward the automatic acquisi·
tion or domain knowledge and metaknowledge to lead to a
good n:presentation and the design of a language that is
more ellpressive and yet easy to implement in a parallel
processing environment. The design or a systematic method
to generate alternate representations is particularly desir
able. The methodology should start with the problem
specification, use automated tools to transform the prob·
lem specifications into problem representations. compare
alternate representations. and use metaknowledge to guide
the generation or different representations.

111. CO!'o'l"KOI. LEVEl.

There arc four basic issues in the control level of com·
puter-system design. Maintaining consistency or knowlc:dge
is important, as incomplete and inconsistent knowledge is
often dealt with in AI computations. As multiproce.~sing is
widely used in AI computations. related issues include the
dccompo~ition of a problem (or program) into subprob·
!ems. the synchroni1.:1tion of cooperating procc:sses. and
the: scheduling of processes for efficient ellecution. AI·
though the: design issues in the control lc:vd are similar to

675

those in traditionJI multiprl">Cessing systems. AI problems
often start with diffc:rc:nt n:presentations. hc:ncc: their solu
tions in the control levc:l may be vc:ry diffc:rc:nt from
traditional ones.

A. Con.tisft'll<)' ,\(ainfl!lltllla

Traditional lo~c is monotonic because new :ixioms :ue
only added to the list or provable: theorems and nc:vc:r
cause any to be -...ithdrawn. Howe,·c:r, knowledge-based
systems on changing real-world domains have to cop.: with
the maintenance or consistent deduction. Classical sym
bolic logic lacks the tools to de:ll \\ith inconsistc:ncies
caused by new information. Nonmonotonic reasoning has
been develop.:d to oeal with this problem {19~J.

Early attempts at consistency maintenance: evolved
around ellplicit manipulation of statements. The: major
system developed was Strips. which dealt -...ith the manipu·
lation of blocks of various sizes. shapers. colors. and
locations by a robot {56). In Strips. the entire data base is
searched for inconsistencies when the robot moves a block.
System applied inference refers to a system in which the
architecture pro\ides a mechanism to automatically main
tain the consistency of the data base. The -...idely publi
cized system of this nature was Microplanner {1651. In
Microplanner, the operators or Strips are replaced by
Ktheorems." There is no automatic inference mechanism.
and the programmer is required to encode all possible
implications of a theorem. An improvement to Strips is
Doyle's Truth Maintenance System (TMS) in which the
reasons for beliefs are recorded and maintained. and these
beliefs can be re,ised when discoveries contradict assump
tions (47J. To attach a justification to a fact. a T:-.IS is
designed with a goal that efficiently links consequences
and their underl]ing assumptions. In TMS. each relation
has an associated IN and OL'T nodes. The statement at 1hi\
node is true if the statements in the IS list arc known to he
true and the statements in the OUT list arc not tru.:.

A different approach to consistency maintenance wa;

adopted in designing the IBM Yes;:-.tVS expert system
that operates on a System 370 computer undc:r the ~1\'S
operating system (149). This ellpen system is usc:d to
schedule a real-time system in which contradiction occurs
between the changed facts and the pre,·iou~ consequences.
The system removes inconsistent deductions and computes
new consequences in accordance -...ith the changed facts.
The consistency maintenance mechani~m has three parts;
recognition of inconsistencies. modification of the re~ul

tant state to remove inconsistencie$ and rededucc consi~
tent consequence. and hidden control to en$urc: that Jil
inconsistencies are detected and corrected properly.

Experience on the: design of Y esj~!VS show$ a pitfJII in
which correcting an inconsistency may cau'c anolhcr in
consistency. which in the process of being corrcc1cd rein
troduces the first inconsistency. It was :~lso founJ tllll
knowledge represented in a style: for consis1cncy mJint<=·
nance turned out to be quite modular. and nuintaining it
has been easier than initially expected.

\:".:

't

615

stt•ms . .-\1 prohlt:ms
rts. hence their solu·
•c:ry diff.:rcnt from

1use ne"· axioms are
theorems and never

·a, knowledgc:-based
,ins have to cope with
ction. Classical sym-
v.ith inconsistencies

•notonic reasoning has
•blem (194].
maintenance evolved

tatements. The major
dealt v.ith the manipu·

shapers, colors, and
the entire: data base is

1e robot movc:s a block.
a system in which the
to automatically main·

>ase. The v.idc:ly publi·
Microplanner {165). In
Strips are replaced by
rc inference mechanism.
to encode all possible

nprovement to Strips is
:m (TMS) in v•hich the:
1d maintained. and these
-'Cries contradict assump
ion to a fact. a T:O.fS is
cntly links consequences
s. In TMS. each relation
des. The statement at thi~
he rs list arc known to he

UT list arc not tru.:.
;istency maintenance wa;
Yesj~IVS e.,pen system

computer under the: :1.1\"S
:!\pert system is used to
,.·hich contradiction occurs
the pre,·ious consequences.
1 deductions and computes
ce "ith the changed facts.
nechanism has three parts:
modific.3tion of the: rc:~ul·

~ncic:s and redc:ducc: consi~-
control to ensure: that ail

J com:ctcd properly.
Yc:sj~IVS shows a pitf~ll in

cncy may cau'e another in
:css of being corrected rein·
1cy. It ><·as also found tiJJr
.tylc for consistcncv m~intc·
modular. and rnaint:1ining ir
npecteJ.

------------- 't

tur tliANSACTIONs os snlt:Ms. M.<N • .-:-10 cnERNrttcs. vor. l'J. NO.4. JULY /AUGUST t'JR9

:"\ ,>nmonotonic logic has been dc:monstr:uc:d to be fcasi·
H.: hut indfici<!nt to implement in a large systc:111. To allow
th,· ''"'c"' '''be u.<cd in realtime. hardw:1rc ~urport h:1s to
t,c: pr.widcd •'11 the time-consuming opc:r;ui,•ns. fumla
:ncntJI <•pcr;~tions such as standard data bas.: functions
mJv have to be: implemented in hardware. The manage:·
me:;,, of a ,;nual memory system to support frequent
JJditions and deletions in a TMS is an important design
issue. The maintenance of the appropriate storage organi
z.ation such that locality is maintained among relations
affecting each other is a nontrivial problem. FinaUy, paral·
h:l processing may introduce addition;tl prohlems of con·
sistency: eCficient parallel architectures to process concur
rent queries have to be investigated.

B. Partitioning

In parallel computations. determining the granularity or
the minimum si~e of a subproblem that should be com
puted by a single processor depends on the inherent para!·
lc:lism in the problem to be solved. Partitioning can be
implemented in different levels. In the higher levels. a
complex AI problem is partitioned into se\·eral functional
tasks. each o(which is processed by a functionally dis·
tributed computer system. In the lower levels. the: control
graph or the program is partitioned into atomic operations,
each or which can be processed independently.

Partitioning can be perfonned by users at design time or
compilers at compile time or schedulers at run time. In the
first method, programmers u.se a parallel language to spec
ify and partition problems. These languages can define
raratlel tasks -and the associated data communications.
Desif:n imrc:.~ of parallel languages were discussed in Sec·
ti,,n 11-C. In thi~ section, we discu~• sutic anti dynamic
partitioning.

lnlu:r.:nt Parall.:lisnr and Granularity: The proper granu·
l:uity of parallelism should be determined from the inher
ent parallelism in the problem and the communication
owrhc.lds involved in synchronization and scheduling. In
g~neral. fin..Jing the optimal smnularity is diCficuh: how
ever. the degree of parallelism inherent in the problem may
pro,ide useful infonnation to guide the design of the
Jrchitecture.

An example to illustrate the choice of the proper granu
larity is shown in the design or parallc:l rule-base systems.
FNgy .:t al. observed that each OPS-5 production. when it
fires. manipulates a few (usually two or three) working
memory clements and affects only a small number (20-30)
nf productions (60). According to this analysis. it appears
that only limited speedups are avail3blc: and that massiv~
parallelism may not be needed. To improve the degree of
parallelism, further efforts should be devoted to a) investi·
gating parallel match algorithms, b) designing efficient
partitioning strategies, and c) de"doping techniques to
rewrite sequential OPS.S programs into versions more suit
able for parallel prOCC$$ing.

Gupta estimated that the hardware utilization will b.:
.lround two percent if the Rete match algorithm is mapped
directly onto the D.ado architecture {74]. He recommended

partitioning OPS5 production rules into 32 subsets to
c:xploit the modest amount of production-level parallelism.

Based on Gupta's ;llgorithm. Hillyer and Shaw studied
the cxccuti<•n of production systems on the: Non-Von
computer. a hctct~'gcnc<>us system with J2 large processor
elements (LI'E.s) and 161000 small processor den1ents
(SPE.s) (88). E:lch SPE has 64 bytes of Ram to store a
condition-element tenn. The large number of SPE's, which
can be viewc:d as an active memory or LPE·s. perform
intraproduction tests in a massively associative Cashion.
The performance is predicted at a rate of more than 850
productions fired per second using hardware comparable
in cost to a VAX 11/780. This shows th:ll two orders of
magnitude of speedup is achievable by properly partition
ing production systems.

The partitioning algorithm used may have significant
effects on perfonnance. If a majority or node activations
occur within a single partition. then the perfonnance will
not be good. Some researchers have reported heuristics for
partitioning production systems. such as assigning produc
tions that are sensitive to the: same context. goal. or task to
diUerent processors in a round-robin fashion. However,
preliminary results have shown that these strategies do not
bring significant improvement as compared to random
partitioning (134). Intelligent partitioning strategies, using
knowledge previously known. remain to be developed.

In a multiprocessing system. it is hoped that equal-sized
tasks are distributed evenly to all processing units. The
above example, however, has shown that this may be
impractical because the problems to be solved m~y have
irregularly structured control· and data-now graphs and
data-dependent workloads. In practice, efficient heuristic
methods may have to be used to partition the task graph
into granules that can be executed in parallel. Important
related issues to he: studied in this ease are the design of
heterogeneous archit<.'\:tures ami the dynamic distribution
of workload.
. Compilu Deuction of Porollelism: Based on the data

dependencies in a program, a compiler may be able to
detect the parallel modules in it .and partition the program
at compile: time. An example is the post-compiler of Faim·
1. called an a/locutor. that performs data-now analysis on
the procedural code and inference connecthity analysis on
the logic beha\ior to statically distribute the fragments to
the processing elements {11). Similar '-'"Orlc has been done
on partitioning progr.ams for numeric applications (108).

Detection of parallelism in logic programs has centered
on detecting AND parallelism and OR parallelism. AND

parallelism in logic programs involves the simultaneous
e"c:cution of subgoals in a clause. Due to shared variablc:s,
concurrent execution of two or more subgoals in a clause
may re~ult in binding connicts. TI1e detection of A:O:O

parallelism is based on the analysis of input-output modes
or arguments in a subgoal. The input and output variables
in a logic program denote the direction or binding trans
fers during unification, in a way similar to the input and
output arguments in procedure calls. However, .an argu
ment in a logic program can be in the input mode: in one
instance and in the output mode in another. or may

WAH A:-10 U: SUPSEY OF MULnPROCESSJNG SYmMS FOR AI APPUCAnONS

remain unbound. This dynamic behavior prohibits a com
plete static analysis. Previous research, therefore, devel
oped methods either to pro\ide primitives for users to
specify the modes or to assign. modes automatically to
arguments that can be analyzed a1 compile time and leave
the rest to be resolved at run time. Automatic detection of
A~D parallelism at compile time can be classified into two
types.

a) Detection of restricted AND- parallelism: DeGroot
proposed a typing algorithm to detect restricted AND paral
lelism (38]. The essential concept is to monitor all poten
tially executable subgoals and ensure that no two subgoals
v.ill share one or more unbound variables if they execute in
parallel. A term in a clause can be in one of three types: 1)
grounded (or constant), 2) nongrounded nonvariable (an
input variable), or 3) variable (an uninstantiated variable).
To tower the run-time overhead of checking the contents
of terms, a partial check is made at compile time; only
terms of type 1 and that of type 3 with different variable
names are detected to be independent. All other possibili
ties remain to be detected at run time. A consequence of
this partial check is that a term may occasionally be typed
too strongly.

b) Detection of coupled data-dependencies: Chang.
Despain, and DeGroot updated the above typing algo
rithm by testing for coupled data dependencies at compile
time to reduce the run-time overhead (24], (40]. In this
scheme, variables in a clause are classified into three
groups: grounded, coupled, and independent. (An inde
pendent variable is neither grounded nor coupled with
other variables.) Two terms are said to be coupled if they
share at least a common unbound variable. Two variables
are in the same coupled group if the compiler detects that
there is a chance for them to be coupled. To find the group
a variable belongs to, a programmer has to supply the
activation mode of the query and the entry points of the
program. The compiler then classifies the variables in the
subgoals from left to right and derives the execution graphs
and backtracking based on the worse case activation mode
of each variable. Multiple execution graphs may be gener
ated at compile time and the appropriate one selt-cted at
mn time. This scheme has been adopted in the PLM of the
Aquarius project (43].

Other heuristic methods of checking types at compile
time are also possible. Tung and Moldovan have also
investigated a number of heuristics to infer the modes of a
given variable and mark all possible input-output modes
of arguments in the clauses [178].

Compiler detection of parallelism has the advantages of
reduced run-time overhead and programming efforts. Its
disadvantage is that it may not be able to detect all the
inherent parallelism in a highly expressive AI language and
may have to be combined \\ith user declaration and dy
namic detection. The restrictions of compiler detection arc
brieny summarized below.

Special cases: The extraction of parallelism from
JJta-dcpcndency analysis is based on the assumption that
tf two s11h,::.oals d,, ll<'t share any unbound variable. then
tlln '"n he: c~cnJtt•d .:oncunt•ntly. This assumption i' not

677

true in some special features of the language, such as
outputs in Prolog. A solution to this problem is proposed
by DeGroot (41]. ·

Procedural dependencies: A procedural dependency
exists between two subgoals if their execution order is
fixed by their semantics. For example, in the following
clause,

a(X): -tesLfor_ok(X), worLon(X}

the subgoal "test_for _ok(X)" must be execute<! first.
Note that the subgoals in this example cannot be executed
concurrently even if X is grounded, because the second
subgoal may contain meaningless. inaccurate, or unbound
work unless the first subgoal is true. In declarative lan
guages such as Prolog, it is difficult to specify the seman
tics of subgoals without specif)ing its explicit control for
parallelism. A solution to this problem is proposed by
DeGroot [41).

Exponential complexity: It may be difficult to define
all possible combinations of modes at compile time as they
grow exponentially with the number of potential output
variables.

Dynamic Detection of Parallelism: Many data dependen
cies in a higllly expressive AI language cannot be resolved
until run time. For example, a subgoal p(X, Y) in a logic
program may be called as p(X, X), which is a coupling
dependency on a query with coupled terms introduced at
run time. This dependency cannot be detected at compile
time. Due to the dynamic nature of AI computations, an
AI computer should provide a mechanism to map the
program and data onto hardware dynamically.

In general, the computational model can be represented
as a token-flow graph with four kinds of nodes: and-de
composition. or-decomposition. and-join. and or-join. The
tokens passed along the edges can be demand tokens, data
tokens, or control tokens. Conery and Kibler described an
AND/OR process system based on a producer-consumer
model that dynamically monitors variables and continually
develops data-dependency networks to control the order of
execution of subgoals. never allowing two potential proce
dures with the same variable to be executed in parallel (31).
An ordering algorithm. called a connection rule. is used
dynamically to determine a generator for each unbound
variable. When a subgoal is completed, it is checked to
ensure that it did produce all variable bindings it was
supposed to; otherwise, the ordering algorithm is evaluated
again. Improvements were made to the above scheme to
reduce further the run-time overhead and extract more
parallelism (103). (118).

Since dynamic partitioning must be repeatedly executed
at run time. it may reduce the performance gains and
could even produce negative gains. The trade-off between
static partitioning by an intelligent compiler and dynamic
partitioning by a sophisticated operating system is an
important issue to be addressed in parallel AI processing.
Dynamic partitioning is closely related to dynamic
scheduling. and related issues will he discussc."d in a suhsc·
<jliCnt sec-tion.

f.
i: j
i I

I

i
!

1

i
I

I I
I

I

';I

677

anguage, such as
>blem is proposed

lura) dependency
.,ccution order is

in the following

_on(X)

1e executeq first.
an not be executed
?cause the second
.1rate, or unbound
n declarative lan
pecify the seman
xplicit control for
n is proposed by

difficult to define
mpile time as they
: potential output

1y data dependen
:annot be resolved
p(X, Y) in a logic
1ich is a coupling
rms introduced at
~tected at compile
computations, an

nism to map the
1ically.
:an be represented
of nodes: and-de
'· and or-join. The
rnand tokens, data
.iblcr described an
roducer-consumer
cs and continually
l1ntrol the order of
·o potential proce
ted in parallel (31).
:tion rule, is used
for each unbound
., it is checked to
e bindings it was
>rithm is evaluated
: above scheme to
and extract more

:peatcdly executed
rrnancc gains and
trade-off between

pilcr and dynamic
1ng system i.~ an
!lei AI processing.
•ted to dynamic
~l·ussc:d in a suhsc~

':.1 ..

.... -·----·--·----------
67~ lf.H TltANSACTIONS ON S\'STE~IS, ~IAN. AND C\'BERSET\CS. VOL. 19. ~0. 4, Jl!L\'hUGUST \~>'I

Bouleneck Ana(1·sis: An important issue in partitioning
is to decompose the problem evenly, so bottlenecks in
performance do not exist. It is easy to see that if a
bottleneck requires a fraction of the total computations.
then the speedup cannot be more than the reciprocal of
this fraction. regardless of how the rest is partitioned. It is
well-known that the performance bottleneck of an applica
tion executing on a vector computer is its scalar code.
Similarly, the performance bottleneck of a parallel AI
computation is its sequential part (sequential inference or
1/0). An important problem is to find the bottleneck in
the problem to be solved .

Experience with designing the Fido vision system at
Carnegie-Mellon University has shown that an unbal
anced partitioning algorithm can substantially degrade the
performance (104]. Adding Warp, a systolic system with
peak processing rate of 100 mflops. to a host (a Sun
computer and three "standalone processors") seems only
to double or triple the speed of the Fido loop. This means
that Warp is definitely underutilized; functions on the
standalone processors, either in preprocessing or post
processing in using the Warp array, take up a substantial
amount of time. It is expected that proper partitioning of
vision algorithms will improve its performance signifi
cantly.

C. Synchronization

Synchronization refers to the control of deterministic
aspects of computations, while scheduling handles mainly
the nondeterministic aspects. The objective of synchroniza
tion is to guarantee the correctness of parallel computa
tions such that the results of execution in parallel are the
same as those of a sequential execution. That is, the
parallel execution is serializable. In some nondeterministic
problems, the generation or the same set of results as a
sequential execution may not be necessary. For example, a
user may wish to obtain a small subset of answers from a
large set; the particular answers obtained do not have to
be the same in the serial and parallel cases. In this case
requirements on synchronization can be relaxed in parallel
processing. ·

Many synchronization primitives used in AI processing
are the same as those used in conventional computers.
Examples include semaphores, test-and·set, fulljempty
bits, fetch-and-add, and synchronization-keys. Addition
ally, new or extended concepts related to synchronization
have been introduced by AI researchers. such as the black·
board and actors. In this section, we will survey the
synchronization of AI computations in the control and
data levels and mechanisms using shared memory and
message passing.

Two Levels of Synchronization; In procedural languages,
if a statement precedes another statement in the program,
the implication is that this statement should be executed
before the second statement if the two statements share
common vnriahles; that is. control-levd synchronization is
implicit when data-level synchronization is needed. This

implicit execution order may ovcrspecify the necessary
precedence constraints in the problem.

On the other hand. if the tasks are specifted as a set
using a declarative language, then control-level synchro
nization is absent. and they can be proce~sed concurrently
if they do not share common variables. If they have
common variables but are semantically independent. then
they can be processed sequentially in an arbitrary order to
maintain data-level synchronization.

The difficulty of specifying control-level synchronization
when tasks are semantically dependent is a major problem
in declarative languages such as Prolog. For example. the
decomposition of a set into two subsets in Quicksort must
be performed before the subsets are sorted. Hence the
tasks for decomposition and for sorting are both semanti
cally and data dependent. To overcome this problem.
programmers are provided with additional tools, such as
specifying the inputjoutput modes of variables in a Prolog
program, to specify control-level synchronization. These
primitives may have side effects and may not be able to
specify completely all control-level synchronization in all
situations. These problems may have to be dealt with at
run time until sufficient information is available.

In general, process activations and deactivations can be
considered as control-level synchronization, while passing
arguments in procedure calls can be considered as data
level synchronization. Both methods can be implemented
through a shared memory or by message transfers.

Shared Memory: In tightly coupled multiprocessor sys
tems, synchronization is done through a shared memory.
Examples of such existing and proposed AI computers
include Aquarius (43!. Concurrent Lisp machine [164).
Concert Multilisp machine (79). and Parallel Inference
Engine (70J. In what follows. we will discuss synchroniza
tion using blackboards and show methods using shared
variables in logic programs.

a) Blackboard: Historically, the blackboard model was
developed for abstracting features of the Hearsay-11
speech-understanding system (50J. The model is usually
viewed as a problem-solving framework; however, we dis
cuss only its control aspect here. The model consists of
three major components: a knowledge source, a black
board data structure. and control. The knowledge to solve
the problem is partitioned into knowledge sources that are
kept independently. The data needed to solve the problem
concerned include input data, partial solutions, alterna
tives, and final solutions, which are kept in a global data
base. the blackboard. The blackboard can be divided into
multiple blackboard panels that correspond to the hierar
chy of solution space. Knowledge sources result in changes
in the blackboard, which lead to a solution to the problem.
Communications and interactions among knowledge:
sources take place solely through the blackboard. A moni
tor is needed to ensure that no more than one knowledge
source can change the blackboard at one time. There are a
set of control modules that monitor changes in the black
board and decide the appropriate action to take next. The
sequence of knowledge-source invocations is dynamic.

W'H 'SOU: SURVH OF MULnPROCUSING SYSTE>(S FOR AI APPUCAnONS

The blackboard model provides a useful framework for
diverse types of knowledge to cooperate in solving a prob
lem and has lx-.!n used to many AI applications. Its
impkmentation is similar to that of a critical section in
''!'crating systems. In the pure model, the solution is built
,me step at a time. Currently, extensive research on con
currc:nt access to blackboards is conducted.

Hayes-Roth has proposed a more powerful blackboard
control architecture in which control information (meta
knowledge) is also stored and updated on a separated
control blackboard [82). This approach adapts to complex
control plans as a whole. Operational strategies, heuristic,
and scheduling rules can change repeatedly in the course
of problem-solving.

b) Synchrnni:ation via shared memory l'ariables: AI·
though Lisp contains a "pure function" subset, it also
supports many functions with side effects, such as rplaca,
rplacd, set,. and inputjoutput functions. These side effects
result from procedural dependencies and global (or free)
variables and resemble problems in conventional parallel
languages. In fact, some shared-memory multiprocessors,
such as Concert and Butterfly, support both Multilisp,
Simultaneous Pascal, and other parallel languages (79].
M ultilisp provides a simple method to wait for values
generated in the future. However, as in other languages,
procedure activations in Multilisp may not be well nested,
and an activation can terminate before another activation
it contains. This exception-handing problem has to be
addressed in programming the system [78).

Pure Prolog is a single-assignment language. Under this
restriction, the distinction between a shared-memory vari
able and a communication channel vanishes. Since a logic
variable is not allowed to be rewritten through side effects.
conventional hardware-synchronization mechanisms, such
as test-and-set. full/empty-bit method and fetch-and-add,
:m: no longer needed in multiprocessing of pure logic
programs (119]. 1l1e popular strategy taken now is to
pro,ide the programmer with a mechanism to delay pro
cess reduction until enough information is available so that
a correct decision can be made. Currently, the Concurrent
Pro log group is concentrating their efforts on Flat Concur
rent Prolog. a subset of Concurrent Prolog. In Guarded
Hom Clause (GHC) (181), !COTs current choice for Ker
nel Language 1. OR parallelism was eliminated from Con
current Prolog. and a strict synchronization rule that sus
pends a subgoal if it tries to write in the parent environ
ment is adhered. This rule made the read-only annotation
somewhat superfluous. Although it simplifies the imple·
mentation of GHC. some expressive power is lost due to a
weaker notion of unification (168).

c) Joins: As similar to conventional fork-join primi·
tives. static joins can be used for synchronization in paral
lel AI processing. For example. in multiprocessing of logic
programs. a patent node can activate its children in paral
lel. and each child begins producing all possible answers.
The parent waits for each child to complete. collects their
answers, computes the '"join" of their answers. and passes
the cntitc set of results as its answer. This approach

679

uncovers the greatest AND parallelism in a logic program
but is efficient only if the program consists mostly of
deterministic procedures and clauses; that is, most vari
ablc:s have only a single binding. For nondctcrministic AI
problems, Joins are impractical because the nondctcrmin
ism increases the uncertainty whether a given ANU node
should be evaluated. Note that if joins arc computed
dynamically, that is, a parent node collects separate an
swers from each child as they are produced, then the
data-level synchronization employed forms a pipelined
computation called dynamic joins. This scheme will be
discussed later with respect to synchronization in semantic
networks.

Mt•ssage Passing: In passing messages, a communica
tion channel between the sender and receiver processes is
required. Synchronization via messages can be achieved
througll software protocols or specialized hardware. Many
existing and proposed AI computers pass around messages
of arbitrary complexity and perform complex operations
on them. The computing elements are complex, and the
communication costs are high. Alternatives to passing mes
sages are discussed in this section.

a) Massage passing in production systems: Reasoning
using forward chaining in production systems has different
behavior from reasoning using backward chaining. The
behavior in forward chaining is illustrated in OPS5, whose
interpreter repeatedly executes a match-select-act cycle.
In the match phase, all rules whose conditions are satisfied
by the current content of the working memory are selected.
lbis set is called the conflict set. In the select phase,
conflict resolution is performed to select one of the pro·
ductions in the conflict set. In the act phase, the working
memory is modified according to the action part of the
selected rule. Although the three phases can overlap in a
multiprocessing environment, synchronization must be
performed to ensure that the result is consistent with that
<>f a sequential execution; that is. all changes in the con
flict sc:t must be known prior to the completion of conflict
resolution in the next cycle.

Synchronization in the efficient Rete interpreter for
OPS5 is based on a data-flow graph. which can be viewed
as a collection of tests that progressively determine the
productions ready to fire. Inputs to the graph consist of
changes to the working memory encoded in tokens. Output
tokens specify changes that must be made to the conflict
set. Tokens are sent via messages in a multiprocessing
system.

b) Maker passing and value passing: Marker passing
has been studied as an alternative to message passing. In
such systems, communications among processors arc in the
form of single-bit markers. An important characteristic is
that there is never any contention: if many copies of the
same marker arrive at a node at once, they are simply
OR'ed together. The order of markers to be passed is
determined by an external host.

Marker passing is suitable for systems implementing
semantic networks. Nodes in the semantic network arc
mapped to procc:ssors in the system. An example of such a

----------------------------------·---·- -·· -· -··-

679

ogic program
as mostly of
s, most vari
crministic AI
noru.lctcrmin·
en ANU node
1re computed
separate an

:ed. then the
: a pipelined
heme will be
m in semantic

1 communica
:r processes is
1 be achieved
rdware. Many
1und messages
lex operations
tplex, and the
J passing mes-

•lS: Reasoning
s has different
chaining. The
1 OPS5, whose
lect-act cycle.
1s are satisfied
ry are selected.

select phase,
ne of the pro
e. the working
.m part of the
n overlap in a
tion must be
stcnt with that
!CS in the COO·

lion of connict

interpreter for
can be viewed
determine the

·aph consist of
tokens. Output
to the connict

nultiprocessing

'larker passing
age passing. In
:ssors are in the
:haracteristic is
y copies of the
hey are simply
J be passed is

; implementing
ic network are
.tmplc nf such :1

680 IEEE TRANSACTIONS ON SYSTDIS. ~IAN, AND C\11ERNE11CS. VOL 19. SO. 4. Jlli.Y/AUGUST 19S9

system is NETL [51]. A basic inference operation in se
mantic networks is set intersection. Analogous to dynamic
joins in data bases, set intersections are implemented using
data-level synchronit.ation. If an object with n properties
is se:uchcd, then n commands are sequentially broadcast
to all corresponding links, the associated nodes are marked,
and the node with n markers reports its identity to the
controller. Marker passing is adequate for many recogni-.
tion problems; however, it may not be sufficient to handle
general AI problems. The Connection Machine was origi
nally developed to implement marker passing to retrieve
data from semantic networks, but its current version has
more powerful processing units that can manipulate ad·
dress pointers and send arbitrary messages.

In value passing, continuous quantities or numbers are
passed around the system, and simple arithmetic opera
tions are performed on these values. Like marker-passing
systems, there is no contention in value passing: if severa.l
values arrive at a node via different links, they are com
bined arithmetically, and only one combined value is re
ceived. In this sense, value passing systems can be consid
ered as an analog computer. Examples or value-passing
system are the Boltzmann machine {52} and other "neural"
computation systems {91).-. -·.-- ... --.

Marker-passing systems do not gracefully handle recog·
ni~ion problems in which the incoming features may be
noisy. These problems can be better handled by value
passing system in which each connection has an associated
scalar weight that represents the confidence on the incom
ing values. Many iterative relaxation algorithms that have
been proposed for solving low-level vision and speech-un
derstanding problems are ideally suited to yalue-passing
architectures. ·

c) Object-Oriented and Actor Approaches: In the ob
ject-oriented approach, and in particular, the Actor model,
an actor is a virtual computing unit defined by its behavior
when messages are received. Actors communicate via
point-to-point mess.1ges that are buffered by a mail sys
tem. The behavior of an actor consists of three kinds of
actions: 1) communicate with specific actors of known
mail addresses; 2) create new actors; and 3) specify a
replacement that will accept the next message. Actor lan
guages avoid the assignment command but a.llow actors to
specify a replacemenL Replacements can capture history
sensitive information, while allowing concurrent evaluation
of data-independent expressions {6). Message passing in
actors, which can be viewed as a parameter-passing mecha
nism, differs from both ca.ll-by-va\ue and call-by-reference.

D. Scheduling

· Scheduling is the assignment of ready tasks to a~ailable
processors. It is especially important when there is nonde
terminism in the algorithm. Scheduling can be static or
dynamic. Static scheduling is performed before the tasks
are executed, while dynamic scheduling is carried out as
the tasks are executed. · .. The actions to be performed in
scheduling include 1) determination of dependent tasks, 2)

static reordering of. tasks at compile time. 3) dynamic
selection of tasks at run time when free processors arc
available, and 4) determination of the number of proces
sors to solve a given class of problems mst·dfectively. All
schedules can be considered as a search ~tratcgy based on

a search tree or search graph [136].
Identifying Dependencies: Parallel scheduling of AI pro

grams is complicated by their dynamic functiona.l and
shared-variable dependencies and the high expressi\·e
power of many AI languages. Due to high expressive
power, the same program can be used to represent many
different dependencies. each of which may be scheduled
diUerently. Identifying dependencies at compile time is
also difficult due to the dynamic and nondeterministic
nature of executions.

If functional dependencies exist among tasks, then the
scheduler must find ~ese dependencies dynamically; if
there are no functiona.l dependencies but on.Jy shared-vari
able dependencies, then the scheduler has to compare the
merits of a.ll possible schedules. Both cases are nol practi
cal because of the high dynamic overhead. As discussed
earlier, solutions to detect dependencies are not satisfac
tory at this time.
_ A viable approach is to identify the possible dependen
cies at compile time, statica.lly order all siblirig-nodes in a
search tree for each case, and schedule them according to a
parallel depth-ftrst strategy. A simple method was pro
posed by Warren {190}, which orders the subgoa.ls in a
clause according to the number of possible solutions gener
ated under the given subgoal. Our experimental simula
tions indicated that the worst case eva.luation time result
ing from this method can be worse than the case without
reordering, but the best case time can be 2-30 times better.
Warren's method does not consider the effects of back
tracking, the possible dependencies among subgoals and
clauses, and the overhead or finding the solutions. We have
proposed a method to represent the effects of backtracking
as an absorbing Markov chain [1171. By assuming that
sibling nodes are independent. they are reordered to mini
mize the total expected search cost of the program. Heuris
tics have been developed to reorder subgoals when they are
dependent and have side effects. Our preliminary simula
tions indicated that the performance is substantially beller
than that of Warren's method.

Selection Strategies: Suppose in the course of evaluating
an AI. program n active tasks and m processors are
available, 1 < m < n. The ideal scheduling algorithm should
select m active tasks such that this decision will minimize
the expected computational time. It is difficult to design
such an optimal selection algorithm because 1) the metrics
to guide the search are estimated heuristica.lly and may be
fallible, 2) the metrics may be dynamica.l.ly changing dur
ing the search, and 3) problem-dependent precedence re
strictions may exist that cannot be detected at compile
time. As a result, unexpected anoma.lies may 6ccur when
parallel processing is applied. .. _,,. '.:.T!-·' -, :

:.The potential parallelism in an AI computation can be
classified into two types:· deterministic p~ll~lism and

!

i
d
I

WAH A~O U: SlJRVIY Of MULTIPROCESSING SYSTUIS fOR AI AI'PUCATIONS

TABLE Ill
Sr.U:CTINO THE nt S.\CAI.UST NUMBERS FROM n NUMBERS

Time Complexity Spac.;/llardwa~ Accuracy
in E.1ch C<>mplcxity l<>r of

t\pproach Iteration Selection Selection

Mullis& age
O(n·log1 m) scl('('tion ()(log m ·l<>g n) 1.0

nct,.·ork
Si nglc-stagc O(m) O(n) 1.0

nct.,.·ork
No-"·ait 0(1) O(m) 0.63

poticy

nondeterministic parallelism. Deterministic parallelism
refers to the concurrent execution of two or more units of
computations, all of which are necessary for the comple·
tion of the given job. The computational units can be
tasks, processes. and/or instructions. Since all units of
computation, which are performed concurrently, have AND
relations, this kind of parallelism is traditionally called
AND·parallelism. Nondeterministic parallelism refers to the
search of multiple potential solutions in parallel. Since all
potential solutions have OR relations, this kind of para!·
lelism is traditionally called OR parallelism.

Although AND parallelism is treated as deterministic and
OR parallelism as nondeterministic in conventional studies,
the selection of dc.~ccndents of an ANI> task to evaluate is
also nondeterministic, as the aim is to select one that fails
as soon as possible. Hence scheduling is important for·
tasks that are nondeterministic but may not be specific
with respect to AND or OR parallelism.

In nondeterministic searches, heuristic information to
guide the scheduler in selecting nondeterministic tasks is
more important than the design of parallel processors, as
the number of processors is almost always smaller than the
number of processable tasks.

As an example. in selecting nodes to evaluate in a
branch-and-bound search tree, which is an OR tree \\ith
lower bound \'alues to guide the search. the problem is
reduced to finding the m smallest numbers from n num·
bers. Table 111 shows the results obtained by three archi·
tectural approaches. In the first approach. a multistage
selection network was designed to perform the selection
exactly (185). In the second approach, a single-stage ring
network was used to shufne the nodes until a complete
selection was obtained (I86]. In the third approach. a
no-wait policy was applied. It was recognized that the
heuristic information to guide the search might not always
be accurate. Hence the "most promising" task in local
memory was always evaluated in each cycle. while the
fetch of the "more promising" tasks from other processors
was initiated. It was found that, on the average. a mini
mum of 63 percent of the desirable tasks to be selected
were selected by the no-wait policy without any additional
overhead on selection. assuming hat the m most promising
tasks were randomly distributed among the processors
1186]. [187].

The management of the large memory space to store the
hcunstic information and the large number of intermediate

68t

nodes in the search tree is another difficult problem to
solve. A trade-off must be made to decide for a given
amount of heuristic information and a given architectural
model whether the amount of heuristic information should
be increased or dt.'Creased, and how effective should the
new heuristic information be.

The memory space required to store enough heuristic .
information to avoid backtracking is often prohibitive. For
example, assume that all solution trees of a complete
binary AND/OR tree \\ith n levels are equally likely. The
leaves are assumed to be OR nodes and are at level 0. while
the root is an AND node and is a level n. We have that
f(n), the total number of solution 'trees, satisfy the follow
ing recurrence.

n=Oorn=l
n;?;2

For n = 0, there is only one node, hence there is one
solution tree. For n •1, the root is an AND node \\ith two
descendents (see Fig. l(a)). Again, this represents one
solution tree. For the general case, each node in level n -2
has f(n -2) solution trees (see Fig. l(b)). A solution tree
for the root at level n consists of picking two nodes in
level n - 2, a total of four combinations. Each pair of
nodes selected in level n -2 represent two solution trees,
all possible combinations of which will yield a new solu
tion tree. This case is depicted in Fig. l(b).

Since all solution trees are equally likely, the entropy of
the heuristic information to guide the search at the root
such that a correct decision is always made \\ithout back
tracking is

/1•1 1
1- L -(n) logd(n)=2(2"12 -l),

,-tf

which is exponential with respect to the height of the tree.
To manage the large memory space incurred by the

storage of intermediate subproblems that may lead to
solutions, we have investigated three alternatives to sup·
port branch-and-bound algorithms with a best-first search.
the results of which are displayed in Table IV. In a direct
implementation, the best-first search was implemented on
an existing virtual-memory system. a VAX 11/780 com
puter running 4.2 BSD Unix. In the second approach. a
modified virtual memory with specialized fetch and re
placement policies was designed to adapt to the character
istics of the search algorithm. In the third approach. the
no-wait policy discussed earlier was used to select subprob
lems in the main memory without waiting for the "most
promising" subproblem to be accessed from the secondary
memory.· Again the no-wait policy is superior in perfor
mance (199J.

The nondeterministic nature of computations and the
fallibility of heuristic guiding may lead to anomalies of

---)

681

problem to
for a given
uchitectural
ation should
: should the

1gh heuristic
•hibitive. For

a complete
y likely. The
level 0, while

'!Ve have that
fy the follow-

'I= 1

there is one
node with two
·epresents one
e in level n - 2
~ solution tree
. two nodes in

Each pair of
solution trees,

:ld a new solu-

, the entropy of
reb at the root
e without back-

, -I).

~ight or the tree.
incurred by the
at may lead to
:rnatives to sup
best-first search,

le IV. In a direct
implemented on

\X 11/780 com
:ond approach, a
~d fetch and rc-
to the character

ird approach, the
to select subprob

ing for the "most
rom the secondarv
uperior in pcrfo(-

putations and the
d to anomalies of

____________________)

I
l

t.

682 IEEE TI\ANSACTIONS ON SYSTEMS, W.N. AND CYBERNFnCS, VOL 19, SO. 4, HlLY/ AlJGllH t9K9

Fis. 1. Binary MID/OK trees. (a) With two lc\<ct.. (b) Wilh 11 levet.. (Circles represent AND nodes: box.os r"Pr<scnt o~ codes.)

TABLE IV
R.£LA11VE Tll4S TO COMPUTE A 81\AI'ICK-ANO-BoUND ALOOIUTIIM FOil. VARIOUS

MfwOKY·MAI'IAODIENT TtcKNIQUES

0/11nlCScr 0/1 Knapsack
Approach Prosrammin& Problems Problems

Oirec;t
· implc111Cnlatioo

Modified
virtual
memory

No-wait .. policy

parallelism. When n processors are usCd to solve the
problem, the resulting speedup as compared to a single
processor may be less than one, greater than n, or l?etween
one and n. The reasons for this anomalous behavior are
due to 1) ambiguity in the heuristi.c hlformation;. 7> more
than one solution !lode, and.3) approximation and domi
nance tests (113). As a result, subtr~. sear<;hed under
serial processing will be terminated, and the .search will ~
misled into a different part of the search t~ ..

In summary, scheduling is important when there-is non
determinism in the problem; Good .heuristic metrics to
guide the search are usually. difficult to design and depenl;f
on statistics such as success probabi~ties, search costs,. and
problem-dependent parameters. Trade-offs must be made
among the dynamic overhead incurred in. communicating
the heuristic-guiding information, the benefits that would
be gained if this information led the search in. the right
direction, and the granularity of tasks. In practice, the
merits of heuristic guiding are not clear, since the ~euristic
information may. be fallible. As a result, some AI archi
tects do not schedule nondeterministic tasks in parallel.
The excessive overhead coupled . with the fallibility of
heuristic information also leads some designers to apply
only static scheduling to AI programs.

Pruning: Pruning C:an be considered as a negative form
of heuristic guiding which guides the search to avoid
subproblems that will never lead to better or feasible
solutions. Pruning is.useful in both backward and forward
chaining. In backward reasoning. problems. are. d~m
posed into smaller subproblemS and evaluated indepen
dently. There are usually redundant evaluations of the
same task in diCCerent parts of the search tree when the

0.6 0.1

0.1 0.001

search trees are recursive. Likewise, in forward reasoning.
·the more primitive facis are reduced to form more general
facts until the query is satisfied. Unnecessary results are
generated because it is not clear which reduction will lead
to ·a solution of the problem. .
. Pruning in.search problems can be carried out by domi

nance relations. When a node P; dominates another node
!j. it implies that the subtree rooted at P; contains a
solution with a value no more (or no less) than the mini
mum (or maximum) solution value of the subtree rooted
at P1 ..

As an example, consider two assignments P1 and P1 on
the same sub~t of objects to be packed into a knapSack in
the 0/llcnapsack problem. If the total profit of the objects
assigned to the knapsack Cor Pt exceeds that of P1 and the
total weight of the objects assigned in P1 is less than that
of. P1, then the best solution expanded from P1 domi
nates P1•

. When parallel processing is used, it is necessary to keep
the set of current dominating nodes (denoted by N4) in
memory [187). These are nodes that have been generated
but not yet dominated. In general, /'14 can be larger than
the set of active nodes. A newly generated.node, P; has to
be compared with all nodes in /'14 to see whether P; or any
nodes in N4 are dominated.

If N4 is small, it can be stored in a bank of global data
registers. However, centralized comparisons are inefficient
when NJ is large. A large /'14 should then be partitioned
into.m subsets, NJ, .. ·,NJ'"-: 1, and distributed among the
local memories of the m processors. A subproblem P,,
generated in processor i, is first compared with N~; any
subproblems in Nj, dominated by P

11
are r:moved. If P11

"'·'"AND U: SUR\'H OF MULTIP~OCE.SSINC SYSTEMS FOR AI AfPUCATIONS

is not dominated by a subproblem in Nj, it is sent to a
neighboring processor and the process repeats. If it has not
been dominated by any node in N4 , P;1 eventually returns
to processor i and is inserted into Nj.

There are several problems associated with the use of
d,,minancc tests in AI applications. First, dominance rela
tions are very problem-dependent and cannot be derived
by a general methodology. Most of the dominance rela
tions have been developed for dynamic programming
problems. To derive a dominance relation in a search
process, a dominance relation is hypothesized, and a proof
is developed to show that the dominance relation is cor·
rect. Some progress has been made on using learning-by
experimentation to derive dominance relations for dy
namic programming problems [200]. However, automatic
proof techniques are largely missing. Moreover, learning·
by-e.~perimentation is applicable if there are a very small
number of dominance relations that are used frequently in
the problem. In many AI applications coded in Prolog,
there is a large number of dominance relations, each of
which is used infrequently in the program. Some special
cases can be solved, such as finding redundant computa
tions in recurrences [25). For the general case, it is some
times difficult to find these dominance relations without
human ingenuity. Second. many dominance relations are
related to the semantics of the applications. A good lan
guage to represent semantics is missing at this time. Lastly,
the overhead of applying dominance relations is usually
very high, and sequential and parallel implementations will
incur prohibitive overhead.

Granularity of Parallelism: When a parallel computer
system with a large number of processors is available, it is
necessary to determine the granularity of parallelism, that
is, the size of tasks that \\ill be executed as an indivisible
unit in a processor. Since many AI problems can he
r<"prcscntcd by AND/OR trees, some pn~cssors have 10 be
idle when nodes close to the root are evaluated. TI1e proper
number of processors should be chosen to match the
inherent parallelism in the problem to be solved.

TI1e proper granularity is a function of the problem
wmplexity, the shape of the AND/OR tree, and the distri·
but ion of processing times o(tasks. Many of these parame
ters are dynamically changing and data-dependent, and
only special cases can be analyzed illS). An important
functional requirement for parallel processing of AI pro
grams is the ability to dynamically distribute the workload.
For a system with a small granularity, an efficient inter
connection network is required to transfer data and con
trol information. In a loosely coupled system with a coarse
grain. an effective load balancing mechanism is also
needed.

IV. PROCESSOR lEVEl

The V LSI technology that has nourished in the past ten
years has resulted in the development of many special-pur
pusc c,Hllputco. f<>r AI processing. Architectures for AI
pnxessin~ '-"'an he d~ts~ific-d inln lhc 1nkn)~. n1acn.l~. and

683

system-level architectures. Microlevel and macrolevel ar
chitectures are discussed in the next two sections. Sections
IY-C-IV-G brieny discuss the system-level architectures.
A taxonomy of architectures implementing AI systems
have also been discussed by Hwang et a/. [93).

A. Micro/eve/ Architectures

The microlcvel architectures consist of architectural de
signs that are fundamental to applications in AI. In the
design of massively parallel AI machines (52), some of the
basic computational problems recognized are set intersec
tion, transitive closure, contexts and partitions, best-match
recognition, Gestalt recognition, and recognition under
transformation. These operations may not be unique to AI,
and many exist in other applications as well. Due to the
simplicity of some of these operations, they are usually
implemented directly in hardware, especially in systolic
arrays. Many other basic operations can also be imp!<:·
mented in VLSI. Examples include sorting and selection,
computing transitive closure, string and pattern matching,
selection from secondary memories, dynamic programming
evaluations, prmdmity searches, and unification.

Some AI languages such as Lisp differ from traditional
machine languages in that the program/data storage is
conceptually an unordered set of linked record structures
of various sizes, rather than an ordered indexable vector of
numbers or bit fields of a fixed size. The instruction set
must be designed according to the storage structure [160].
Additional concepts that are well-suited for list processing
arc the tagged memory (1 ~7) and stack architectures.

B. Macro/eve/ Architectures

The macrolevcl is an intermediate level between the
micrnlcvcl and the system level. In contras1 to the mi
crolevcl architectures, nwcrolevel architectures arc (possi
bly) made up of a variety of microlevel architectures and
perform more complex operations. However. they are not
considered as a complete AI system but can be taken as
more complex supporting mechanisms for the system level.
The architectures can be classified into those that manage
data. such as dictionary machines. data base machines and
structures for garbage collection, and those for searching.

A dictionary machine is an architecture that supports
the insertion, delelion, and searching for membership,
extremum, and proximity of keys in a data base (148).
Most designs are based on binary-tree architectures: how
ever, designs using radix trees and a small number of
processors have been found to be preferable when keys are
long and clustered [57).

Data base machines depend on an architectural ap
proach th:ll distributes the search intelligence into the
secondary and mass storagl! and relieves the workload of
the central processor. Extensive research has been carried
ou1 in the past dt-cadc on optical and mass Slorage, back
end slon•gc systems. and data base machines. Earlier dat:1
hasc m;~chincs developed were m:~inly directed toward

683

macrolevel ar
·tions. Sections
I architectures.
tg AI systems
)Jj.

·chitectural de-
in AI. In the

2j. some of the
re set intersec
ms, best-match
)gnition under
e unique to AI,
dl. Due to the
1ey are usually
lily in systolic
also be imple-
and selection,

ttern matching,
c programming
1tion.
rom traditional
Ja ta storage is
cord structures
:xable vector of
instruction set
structure (160).
· list processing
1itectures.

.:1 hctween the
ast \() the mi
urcs arc (possi
•·hi lectures and
:r. they are not
an he taken as
he system level.
•SC that manage
c machines and
~ for searching.
: that supports
1f membership,
ata base (148).
titcctures: how
Jail number of
:: when keys are

·chitcctural ap
gcncc into the
he workload of
as been <:arried
s storage, bad:
ICS. Earlier data
lircctcd toward

684 IEEE TRANSACTIONS ON SYSTL\tS, ~IAN, AND CYBERStTICS. VOL l 9. SO. 4. JlJ1. Y /AUGUST 1989

general-purpose relational data base management systems.
Examples include the DBC, Direct, Rap, CASSM, associa
tive array processors, text retrieval systems, and CAFS
[121. (92). {109). Nearly all current research on data base
machines to support knowledge data bases assume that the
knowledge data base is relational, hence research is di
rected toward solving the disk paradox (17) and enhancing
previous relational data base machines by extensive paral
lelism (128), (143), [153), [173). Commercially available
data base and backend machines have also been applied in
knowledge management [102), (131).

Searching is essential to many applications, although
unnecessary combinatorial searches should be avoided.
The suitability of parallel processing to searching depends
on the problem complexity, the problem representation,
and the corresponding search algorithms. Parallel algo
rithms and architectures to support divide-and-conquer.
branch-and-bound; and AND/OR-graph search have been
developed {187).

Extensive research has been carried out in supporting
dynamic data structures in a computer with a limited
memory space. Garbage collection is an algorithm that
periodically reclaims memory space no longer needed by
the users {30). This is usually transparent to the users and
could be implemented in hardware, software, or a combi
nation of both. For efficiency reasons, additional hardware
such as stacks and reference counters are usually provided.

C. Functional-Programming-Oriented
System-Level Architectures

The objective of writing a functional program is to
define a set of (possibly recursive) equations for each
function (33). Data structures are handled by introducing a
spccinl clas.~ of functions called constructor functions. This
view allows functional languages to deal directly with
structures that would be termed "abstract" in more con
ventional languages. Moreover, functions themselves can
be passed around as data objects. The design of the
necessary computer architecture to support functional Ian·
guages thus centers around the parallel evaluation of fum:
tional programs (function-oriented architectures) and the
mechanisms of efficient manipulation of data structures
(list-oriented architectures).

In function-oriented architectures, the ·design issues cen
ter on the physical interconnection of processors, the
method used to "drive" the computation, the representa
tion of programs and data, the method to invoke and
control parallelism, and the optimization techniques (184}.
Desirable features of such architectures should include a
multiprocessor system with a rich interconnection struc
ture, the representation of list structures by balanced trees,
and hardware supports for demand-driven execution, low
overhead pr~ss creation, and storage management.

Architectures to support fun<:tional-prograrnming lan
guages can be classified as uniprocessor architectures,
tree-structured machines,." data-driven machines, and de
mand-driven machines. In a uniprocessor architecture, be-

sides the me<:hanisms to handle lists. additional stacks to
handle function calls and optimization for redundant calls
and array operations may be implemented [231. [159].
(179(. Tree-structured machines usually employ lazy evalu
ations, but suffer from the bottleneck at the root of the
tree {35), (120], (133]. Data-now machines are also natural
~:andidates for executing functional programs and have
tremendous potential for parallelism. However, the issue of
controlling parallelism remains unresolved. A lot of the
recent work has concentrated on demand-driven machines
which are based on reduction machines on a set of load
balanced (possibly virtual) processors (28J, {32). (100). (101),

. (105(, (175), (176}.
Ust-oriented architectures are architectures designed to

support the manipulation of data structures and objects
e((icienlly. Lisp, a mnemonic for list processing language,
is a well-known language to support symbolic processing.
There are several reasons why Lisp and list-oriented com
puters are really needed. First, to relieve the burden on the
programmers, Lisp was designed as an untyped language.
The computer must be able to identify the types of data.
which involves an enormous amount of data-type checking
and the use of long strings of instructions at compile and
run times. Conventional computers cannot do these effi
ciently i11 software. Second, the system must periodically
perform garbage collection and reclaim unused memory at
run time. This amounts to around 10-30 percent of the
total processing time in a conventional computer. Hard
ware implementation of garbage collection is thus essen
tial. Third, due to the nature of recursion, a stack-oriented
architecture is more suitable for list processing. Lastly, list
processing usually requires an enormous amount of space,
and the .data structures are so dynamic that the compiler
cannot predict how much space to allocate at compile
time. Special hardware to manage the data st.ructures and
the large memory space would make the system more
efficient (37), (58).

The earliest implementation of Lisp machines were the
PDP-6 computer and its successors the PDP-10 and PDP-
20 made by the Digital Equipment Corporation (DEC)
(122). The half-word instructions and the stack instructions
of these machines were developed with Lisp's requirements
in mind. Extensive work has been done for the DEC-sys
tem 10's and 20's on garbage collection to manage and
reclaim the memory space used. ·. ,
· The design of Lisp machines was started at M!Ts AI

Laboratory in 1974. Cons, designed in 1976 [106). was
superseded in 1978 by a second generation Lisp machine,
the CADR. This machine was a model for the first com
mercially available Lisp machines. including the S)mbolics
LM2, the Xerox 1100 lnterlisp workstation, and the Lisp
Machine Inc. Series III CADR, all of them delivered in
1981. The third-generation machines were based on addi·
tiona! hardware to support data tagging and garbage col·
Jection. They are characteri:z.ed by the Lisp Machines Inc.
Lambda supporting Zetalisp and LMLisp, the Symbolics
3600 supporting Zetalisp, Flavors, and Fortran 77, the
Xero,.; 1108 and 1132 supporting lnterlisp-D and Small talk,

;

t
t

l

li

I!
I
I
I•

I
!
I

WAH AND U: SUR.VIY Of lo!ULTlPIO.OCE.SSINO SYSTOIS fOR AI APPUCATlONS

and the Fujitsu FACOM Alpha Machine, a backend lisp
processor supporting Maclisp. Most of the Lisp machines
support networking using Ethernet. The LMI Lambda has
a NuBus developed at MIT to produce a modular, expand
able Lisp machine with multiprocessor architecture.

A single-chip processor to support Lisp has been imple
mented in the MIT Scheme-79 chip (166]. Other experi:
mental computers to support Lisp and list-oriented pro
cessing have been reported (44], (71]-(73]. (130]. (139],
[1441-1 146), [170]. TI1ese machines usually have addi tiona!
hardware tables, hashing hardware, tag machanisms, and
list processing hardware, or are microprogrammed to pro
,;de macroinstructions for list processing. A Lisp chip
built by Texas Instruments implements over half a million
transistors on a 1-cm2 chip for 60 percent or the functions
in a Tl Explorer. The implementation on a single chip
results in five times improvement in performance (121].
Experimental multiprocessoring systems have been pro
posed . to execute Lisp programs concurrently [75], (86).
(124), (125), (163]. (164], (193]. Data-now processing is
suitable Cor Lisp as these programs are generally data
driven (7), (8], (196), (197). Other multiprocessing architec
tures to support list processing have been proposed and
developed (29), (45), (66), (84), (176).

Architectures have also been developed to support ob
ject-oriented programming languages. Smalltalk, first de·
vdoped in 1972 by the Xerox Corporation, is recognized as
a simple but powerful way of communicating with com·
puters. At MIT, the concept was extended to become.the
Flavors system. Special hardware and multiprocessors have
hc:en proposed to directly support the processing or
object-oriented languages (96], (138). (167), (183).

0\\ing to the dirferent motivations and objectives
or various functional-programming-oriented architectures.
each machine ha.~ its own distinct features. For example,
the Symholi<'S 3(1tl0 f127J was dc.~igned for an interactive
pwgr;rm tle•·dopment environment wlu:re compilation is
very frequent and ought to appear instantaneous to the
user. This requirement simplified the design of the: com·
pilcr and results in only a single-address instruction for
mat, no indexed and indirect addre.~~ing modes. and other
mechanisms to minimize the number of nontrivial choice~
to be: made. On the other hand. the aim in developing Soar
1183] was to demonstrate that a reduced instruction set
romputer (RISC) could provide high performance in an
exploratory programming environment. Instead of mi·
crcx:ode. Soar relied on software to provide complicated
operations. As a result, more sophisticated software tech·
nique..~ were used.

D. Logic· and Produerion-Oricnted
Sy.rtem-Let•ef ArchitC'etures

Substantial research has been carried out on parallel
wmputational models of utilizing AND parallelism. OR

parallelism. and stream parallc.:lism in logical inference
"stems. pr.-...luction systems and others. The hasic proh-

685

lem on their exponential complexity remains open at this
time.

Sequential Prolog machines using software interprcta·
tion, emulation, and additional hardware support such as
hardware unification and backtracking (174) have been
reported. Single-processor systems for production systems
using additional data memories [110) and a RISC architec·
ture (60) have been studied.

New logic programming languages suitable for parallel
processing have been investigated. In particular. the usc of
predicate logic [49), extensions of Prolog to become Con
current Prolog [150), Parlog (26), and Delta-Prolog (137],
and parallc:i production systems (182) have been devel
oped. One interesting parallel language is that of systolic
programming, which is useful as an algorithm design and
programming methodology for high-level-language parallel
computers (151).

Several prototype multiprocessor systems for processing
inference programs and Prolog have been proposed, some
of which are currently under construction. These systems
include multiprocessors with a shared memory (18). ZMOB,
a multiprocessor of Z80's connected by a ring network
(192), Aquarius, a heterogeneous multiprocessor with a
crossbar switch (43). and Mago, a cellular machine imple
menting a Prolog compiler that translates a Prolog pro
gram into a formal functional program (107). Techniques
for analyzing Prolog programs such that they can be
processed on a data-now architecture have been derived
(9). (15), (81], (95), (97). An associative processor has been
proposed to carry out propositional and first-order predi·
eate calculus (46).

Dado is a multiprocessor system with a binary-tree
interconnection network that implements parallel produc
tion systems (162). Non-Von is another tree architecture
used to evaluate production systems at a lower level of
granul;trity (152).

E. Disrriburl'd /'rob/,•m-So/JJin,~ .\)'.ftc:m.,

Knowledge in an AI system can sometimes be: repre
sented in terms of semantic nets. Several proposed and
experimental archit~-cturcs have been developed. N ETL
(51) and its generalization to Thistle [52) consist of an
array of simple cells with marker-passing capability to
perform searches, set-intersections. inheritance of proper·
ties and descriptions, and multiple-context operations on
semantic nets. Thinking Machine Inc.'s Connection Ma
chine is a cellular machine with 65 536 processing ele·
ments. It implements marker passing and virtually recon
figures the processing elements to match the topology of
the application semantic nets (87). Associative processors
for processing semantic nets ha\'e also been proposed
(126).

Some AI architectures are based on frame represenl:l·
tions and may be called object-oriented architectures. For
example. the: Apiary de,•cloped at MIT is a multiprocessor
actor system (84). An efficient AI architecture m;~y also
depend on the prohlcm-solving strategy. A gcneral form of

I !

i
! i

6&5

ins op~n at this

ware int~rpreta·
support such as

.174) have been
•duction systems
a RlSC architec-

able for parallel
icular. the usc of
to become Con

:lla-Prolog (137),
1ave been devel·
s that of systolic
rithm design and
language parallel

ns for processing
1 proposed, some
•n. These systems
nory [18). ZMOB,
1 a ring network
processor with a
•r machine imple
tes a Prolog pro
[107). Techniques
hat they can be
1av~ been derived
rocessor has been
first-order predi-

·ith a binary-tree
:s parallel produc·
r tree architecture
t a lower level of

mctimes be rcprc
cr;tl proposed and
Jew loped. N ETL
152) consist of an
;sing capability to
~ritance of proper
•tcxt operations on
's Connection Ma
' 36 processing ele
•nd virtually recon
ch the topology of
;ociativc proc~ssors
lso been proposed

1 r ramc represent a
d architectures. For
i~ a multiprocessor

.·hitecturc m<ty also
'· 1\)!<:ncral form of

I ,

ii.l

~

686 lEU TRANSACTIONS ON' SYSTEMS, MAl", Al"D CY8ERN£TlCS. VOL. l ~.SO.~. lt:lY /.\UGUST 19~9

architectures called connectionist architectures evolve from
implementing neurons in brains [53J. The basic idea of the
Boltzmann machine is the application of statistical mechan
ics to constrained searches in a parallel network [89). The
most interesting aspect of this machine lies in its domain·
independent learning algorithm [3).

With the inclusion of control into stored knowledge, the
resulting system becomes a distributed problem-solving
system. These systems are characterized by the relative
autonomy of the problem-solving nodes, a direct conse
quence of the limited communication capability. With the
proposed formalism of the contract net, contracts are used
to express the control of problem solving in a distributed
processor architecture {157). Related work in this area
include Petri-net modeling (135), distributed vehicle-moni
toring testbed (112], distributed air-traffic control system
(22), and modeling the brain as a distributed system [61),
(65].

F. Hybrid Systems

It has been suggested that a combination of Lisp,· Pro
tog, and an object-oriented language such as Smalltalk
may be a betterJanguage forAI applications [169). This
approach can be carried out in two ways. First, multiple
AI languages can be implemented using microprogram
ming on the same computer, so programs written in these
languages can be executed independently. For example,

. Prolog is available as a secondary language on some Lisp
machines. A version of a Prolog interpreter with a speed of
4.5 KLIPS (kilo lines of interpreted statements) has been
developed for Lisp Machine's Lambda. A second approach
is to design a language that combines the desirable features
from several AI languages into a new language. Some of
the prototype multiprocessors, such as ZMOB and Mago,
were developed with a flexible architecture that can imple
ment object-oriented, functional, and logic languages.
FAIM-1, a multiprocessor connected in the form of a
twisted hex-topology, wai designed to implement the fea
tures of object-oriented, functional, and logic program
ming in the Oil programming language (11). Currently, a
parallel version of Scheme similar to MultiLisp is being
implemented. Hope, a hybrid functional and logic lan
guage, is currently being implemented on Alice [156).

G. Fifth Generation Computer Projects

The fifth generation comput~r system (FGCS) project
was started in Japan in 1982 to further the research and
development of the next generation of computers. It was
conjectured that computers of the next decade will be used
increasingly for nonnumeric data processing such as sym
bolic manipulation and applied AI. The goals of the FGCS

· project are . ..

a) to implement basic mechanisms for inference, asso
ciation, and learning in hardware;

b) to prepare basic AI software to utilize the full power
of the basic mechanisms implemented;

c) to implement the basic mechanisms for retrieving
and managing a knowledge base in hardware :lild
software;

d) to use pattern recognition and ~I research achieve
ments in developing user-oriented man-machine in
terfaces; and

e) to realiz.e supporting environments for resolving .the
"software crisis" and enhancing software produc·
tion.

The FGCS project is a marriage between the implemen·
tation of a computer system and the rCCjuirements speci·
fied by applications in AI, such as natural-language under
standing and speech recognition. Specific issues studied
include the choice of logic programming over functional
programming. the design of the basic software systems to
support knowledge acquisition, management. learning. and
the intelligent interface to users. the design of highly
parallel architectures to support inferencing operations,
and the design of distributed-function architectures that
integrates VLSI technology to support knowledge data
bases (99), [177}, (180).

A first effort in the FGCS project is to implement a
sequentia,l inference machine, or Sim (198). Its ftrst imple
mentation are two medium-perfonriance machines for soft
ware development known as personal sequential inference
(PSI) machine and cooperative high-speed inference (CHI)
machine [171). The PSI and CHI machines have further
been implemented in custom LSI's into PSI-11 and CHI·II.
The PSl-11 has been found to have a performance that
ranges from 100 to 333 KLIPS for various benchmark
programs. Another architectural development is on the
knowledge-base machine, Delta [129).

The current efforts in the intermediate stage are on the
parallel inference machine, or PIM, and the multi-PSI
computers (129}. As an intermediate target. PIM-1 is being
built now. It consists of about 100 procc.\~ing elements,
.with a total speed of 10-20 MLIPS (mega lines of inter·
preted statements) including overhead caused by Pimos.
Eight processing elements with private caches in a cluster
are connected through a shared memory. and a switching
network is used to connect the clusters. Each processing
element will be implemented in standard-cell VLSI chips.
The machine language is KLl-B based on GHC (147).
Lastly, the development or the basic software system acts
as a bridge to fill the gap between a highly parallel
computer architecture and knowledge information process
ing [62). The Pimos was designed as a single unif1ed
operating system to control the parallel hardware {172). It
was built on the multi-PSI (version 2) system. Each PE
consists of a PSI-II, 16-MW main memory, and interfaces
to the mesh interconnection network. The KLl-B interpre
tor is implemented in firmware and attains a speed of
100-150 KLIPS (94).

In the final stage •. a parallel computer with about 1000
processing elements and attaining 100 mlips to 1 GLIPS
(gega lines of interpreted statements) is expected to be
built. Although the projects arc progressing well, there is a

f
I
I

WAK A1'0 ll: SURVEY Of MULTIPkOCUSINO SYSTtMS FOR AI APPliCATIONS

recognition that more research is needed on exploiting
intelligence rather than brute-force parallelism. The pro
posal of the sixth generation computer system project is an
indication of efforts in this direction (4).

The Japanese HICS proj.:ct has stirred intensive re
sponses from other countries. The British project is a
fi\'c-year $550 million cooperative program between gov
ernment and industry that concentrates on software en
gineering, intelligent knowledge-based systems, VLSl
circuitry, and man-machine: interfaces. Hardware develop
ment has focused on Alice, a Parlog machine using data·
flow architectures and implementing both Hope, Prolog,
and Lisp (156). The European Commission has started the
Sl.S billion five-year European Strategic Program for Re·
search in Information Technologies (Esprit) in 1984 (2).
The program focuses on microelectronics, software tech·
nology, advanced information processing. computer·
integrated manufacturing, and office automation. In the
U.S., the most direct response to the Japanese FGCS
project was the establishment of the Microelectronics and
Computer Technology Corporation in 1983 (1). The project
has an annual budget of S50-S80 million per year. It has a
more evolutionary approach than the revolutionary ap
proach of the Japanese and would yield technology that
the corporate sponsors can build into advanced products
in the next 10-12 years. Meanwhile, other research organi·
z.ations have formed to develop future computer technolo
gies of the U.S. in a broader sense. These include Darpa's
Strategic Computing and Survivability, the semiconductor
industry's Semiconductor Research Corporation, and the
Microelectronics Center of North Carolina (1).

V. DESIGN DECISIONS OF Al.ORIENTED COMPUTERS

The appropriate methodology to design an AI computer
should utilize a top-down design approach: functional
requirements should be developed from the problem re
quirements, which are mapped into hardware based on
technological constraints. Similar to the design of conven
tional computers, a bottom-up design approach is not
adequate since special requirements of the applications
may not be satisfied. Before a design is made, it is impor
tant to understand the applicability of the system to a class
of problems and then to strive for high performance in a
prototype implementation. Thus knowing that an m·
processor system gives a k-fold increase. in performance
over a single processor is more important than knowing
the maximum instruction rate of a prototype. Proper un·
derstanding and analysis of the problem is probably more
important than applying brute-force parallelism randomly
in the design.

The issues classified in Table 11 provide a view to the
sequence of design decisions made in developing a
>pecial-purpose computer to support AI processing. The
various approaches can b.: classified as top-down, bottom
up. and middle-out.

T,>p-Do><'ll J),._,·igll lkci.<imu: This approach starts hy
dd•n•ng.. sp<",·ifyin~. refining.. and \'alidating the rcquin·-

687

ments of the application, devising methods to collect the
necessary knowledge and metaknowledge, choosing an ap
propriate representation for the knowledge and meta·
knowledge, studying problems related to the control of

·correct and efficient execution with the given rcpresentil·
lion scheme, identifying functional n!<juircmcnts of com
ponents, and mapping these components into software and
microlevel, macrole\'el and system-level architectures sub
ject to technological and cost constraints. The process is
iterative. For example, the representation of knowledge
and the language features may be changed or restricted
when it is discovered that the ·functional requirements
found cannot be mapped into a desirable and realizable
system with the given technology and cost. In some pro
jects, the requirements may be very loose and span across
many different applications. As a result, the languages and
knowledge-representation schemes used may be oriented
towards general-purpose usage. The Japanese FGCS pro
ject is an attempt to use a top·dO\Io1l approach to design an
integrated user-oriented intelligent system for a wide spec
trum of applications.

Bottom-Up Design Decisions: In this approach, the de·
signers first design the computer system based on a com
putational model, such as data flow, reduction, and control
flow, and the technological and cost limitations. Possible
extensions of existing knowledge-representation schemes
and languages developed for AI applications are imple
mented. Finally, AI applications are coded using the repre·
sentation schemes and languages provided. This is proba
bly the most popular approach to apply a general-purpose
or existing system for AI processing. However, it may
result in inefficient processing, and the available represen·
tation schemes and languages may not satisfy the applica
tion requirements completely, ZMOB and Butterfly Multi·
processor are examples in this class.

Middle-Out Design Decisions: Titis approach is a short
cut to the top-down design approach. It starts from a
proven and well-established knowledge-representation
scheme or AI language (most likely developed for sequen
tial processing) and develops the architecture and the
necessary moditications to the language and representation
scheme to adapt to the application n:quirements and the
architecture. This is the approach taken by many designers
in designing special-purpose computers for AI processing.
It may be subdivided into top-first and bottom-first, al
though both may be iterative. In a top-first middle-out
approach, studies arc first performed to modify the lan
guage and representation scheme to make it more adapt
able to the architecture and computational model. Primi
tives may be added to the language to facilitate parallel
processing. Nice features from several languages may be
combined. The design of the architecture follows. Alice
and FAlM-1 arc: examples of architeciUres designed using
this approach. In the bottom-first middle-out approach,
the chosen language or representation scheme is mapped
directly into architecture by providing hardware support
for the o~·erhcad-intensivc operations. Applications are
implcm•·nted using the language and representation schcm<!

687

ds to collect the
choosing an ap

:dge and meta·
) the control or
r,ivcn reprcscntn·
rcmcnts of com·
nto software and
rchitectures sub
;. The process is
)IJ or knowledge
ged or restricted
1al requirements
le and realizable
>st. In some pro
' and span across
he languages and
may be oriented
mese FGCS pro
oach to design an
1 for a wide spec-

1pproach, the de
based on a com

ction, and control
1itations. Possible
entation schemes
ations are imple
·d using the repre
~d. lbis is proba
a general-purpose
However, it may
'vailable represen
atisfy the applica
d Butterfly Multi-

>proach is a short
It starts from a

lge-representation
:loped for sequen
hitecture and the
and representation
uirements and the
by many designers
for AI processing.
d bottom-first, al
>p·first middle-out
o modify the Ian
Ike it more adapt
Jnal model. Primi
' facilitate parallel
languages may be

:ure follows. Alice
1rcs designed using
ldle-out approach,
scheme is mapped
hardware support
Applications are

'rcscntntion scheme

II
! i

i;

688 IEEE TllM<SACTIONS ON SYSTE.\IS.l>IAN, o\1"1> CYBEIU'IETICS. VOL. 19. NO. 4. IUL Y /AUGUST 1939

provided. Lisp computers are examples designed with this
approach.

VI. CONCLUSioN

Although many AI computers h:ave been proposed or
built, Lisp computers are probably the on1y architecture
that have had widespread use for solving real AI problems.
This is probably due to the large investment in software
for many applications coded in Lisp. At present, there is
no comprehensive methodology Cor designing parallel AI
computers. Research on AI in the past three decades and
the recent experience in building AI computers have led to
a view that the key issue of an AI system lies in the
understanding of the problem rather than efficient soft·
ware and hardware. In fact, most underlying concepts in
AI computers are not new and have been used in conven
tional systems. For example, hardware stack and tagged'
memory were proposed before they were used in Usp
computers. However, the above argument does not imply
that research on hardware and architectures is not neces
sary.

To support efficient processing of AI applications, re·
search must be done in developing better AI algorithms,
better AI software management methods, and better AI
architectures. The development of better algorithms can
lead to significant improvements in performance. Many AI
algorithms are heuristic in nature, and upper bounds on
performance to solve these problems have not been estab
lished as in traditional combinatorial problems. As a con
sequence, the use of better heuristic information, based on
common-sense or high-level metaknowledge and better
representation of the knowledge, can have far greater
improvement in performance than improved computer ar
chitecture. Automatic learning methods to aid designers in
systematically acquiring and managing new knowledge to
be available in the future are very important.

Better AI software management methods are essential in
developing more efficient and reliable software for AI
processing. AI systems are usually open and cannot be
defined based on a closed-world model. The language must
be able to support the acquisition of new knowledge and
the validation of existing knowledge. Probabilistic reason
ing, fuzzy knowledge, and nonmonotonic logic may have
to be supported. The verification of the correctness of an
AI program is especially difficult due to the imprecise
knowledge involved and the disorganized way of managing
knowledge in a number of declarative languages and repre
sentation schemes. Traditional software engineering design
methodologies must be extended to become knowledge
engineering to accommodate the characteristics of knowl
edge in AI applications. Automatic programming is impor
tant to aid designers to generate the AI software from
specifications.

The role of parallel processing and innovative computer
architectures lies in improving the processing time of solv
ing a given AI problem. It is important to realize that
parallel processing and better computer architectures can-

not be used to overcome the exponential complexity of
exhaustive enumeration (unless an exponential amount of
hardware is used) and are not very useful to extend th.:
solvable problem space. For a problem with a siz.e that is
too large to be J~olvcd tod:ay by a sequential computer in a
reasonable amount of time. it i.~ unlikely that it cau be
solved.by parallel processing alone. even if a linear spc:c:dup
can be achieved. The decision to implement a given algo
rithm in hardware depends on the complexity of the prob
lem it solves and its frequency of occurrence. Problems of
low complexity can be solved by sequential processing or
in hardware if they are frequently encountered: problems
of moderate complexity should be solved by parallel pro
cessing; and problems of high complexity should be solved
by a combination of heuristics and parallel processing. In
many AI systems developed today, tasks and operations
implemented in hardware are those that are frequently
executed and have polynomial complexity. These tasks or
operations are identified from the languages or the knowl
edge-representation schemes supported. The architectural
concepts and parallel processing schemes applied may be
either well-known conventional concepts or new concepts
for nondeterministic and dynamic processing. The role of
the computer architects lies in choosing a good representa
tion, recognizing overhead-intensive taSks to maintain and
learn metaknowledge, identifying primitive operations in
the languages and knowledge-representation schemes, and
supporting these tasks in hardware and software.

REFERENCES

Ill Special Issue on TodiOtl'ow's Computers. IEEE Sp«tnmt. mL !0.
no. 11. pp. Sl-SS. 69, Nov. 1983.

[2) MESPRlT: Europe challenges U.S. and lap.ll>dt competitoe>.
Futur< G<n<rotion C""'f'ul<r Syll .• vol. 1. no. 1. pp. 61-69. 1984.

[3) D. H. Ackley, G. E. Hinton. and T. 1. Scjnowski. M A learning
algorithm for Do1wnann machinc:s." Cogltiti<'< Sci., vol 9, no. I.
pp. 147-169, 198S.

(4] Science and Technology Ar,ency. Promotion of Res~arch and lk
IJ<'Iopmmt on El«ti'OIIic and lnformollon Systmu rlt4t May C""'f'lt
mmt or Sub.rritut~ for ll11m0n lm~lligenct. Tol<yo,Japan: Scict~<c
and Tcdulol Asency. Tokyo. 1985.

[S] G. Agha and C Hewitt. M Concurrent pror,ratnming usif!! actor.:
Exploiting large-scale parallelism.~ Lteturt Notes in C""'f'ul. Sci ..
na. 206, pp. 19-41. Dec. 198S.

(6) G. Ar,ha. Acror: A M«kl of Concurrent C""'f'watioo 1n Dis·
tribtltn/ S,1·stmu. C:unbridr,c. 1\.fA: ;l.t!T Prt55. 1986.

111 M. Amamiya, R. Hasqawa. 0. N:akamura, and ll Milumi. ·A
list-proccssinr.-orientcd data now machine arcb.itcCturc. .. in Proc.
Not. Compuur Con/ .. pp. 144-ISt. AflPS Press. 1982.

(8) M. Amamiya and R. Hasqawa, MOataflow computing and eager
and lazy evaluations." N~ Gm<rorion Computing, vol. 2. no. 2.
pp. 10S-129, 1984.

(91 M. Am.uniya, M. T:akcsue. R. Hasegawa. and H. :Mikarni. -lmpk·
mcnlation and cvalu.ation or a li.>l·proccssing-oricnted d>ta no"
machine." in /'roc. I Jth Annu. Int. s,·mp. Compwl~r Arclut«IWTt'.
Tol<yo, Japan. lune 19116. pp. 10-19.

(10) G. M. Amdahl. MTampercd expectations in ~vcly p•ullcl
processin& and .emiconduc10r induury." pre.entcd at th< 2n<l Int.
Conf. Supercomputing. S.uua CLtra. CA. :May 1987.

(11] l. M. Anderson a of .• -The archi1ccture of fAlM·1," IEEE
Comput<r, vol. 20, no. 1. pp. 55-65. lan. 1987. .

(12) E. Babb, "Joined normal lonn: A >torage encoding lor relation•!
databa>es," Auoc. Comput. Ma<h. Trans. Darobast S.v>t .• 'ol. i.
no. ~. pp. 588-614. llcc. 1982.

'. ! '
I

WAH AI<D U: SUaVEY Of loiULTIPaoctsSINO SYSTEMS FOa AI APPUCATIONS

[1 J]

[14]

[I>]

[161

[171

{181

{19)

[~OJ

[21)

[22)

{23)

{24)

{15)

{26)

(27)

[30)

(31)

/JJ)

[341

[35)

{371

[3~]

[J91

J4()J

I. Backus. "Function·le•d computing."/£££ Sptctrum, \'Ol. 19,
no. 8. pp. 22-27, Aug. 1982.
R. Bailey, "A Hope IUiorial," Bytt, \'Ol. 10. no. 8, pp. 235-258,
Au~. 1985.
L. Bic. •· E.tecution oC logic programs on a daranow archi1ec1ure,"
in Pn>c. lith IEEEjACM Annu. Int. ·s_l'mp. Computtr Archittc:
turr, June 19114, pp. 290-296.
D. G. llobrow, tt al .• "Commonloops: Merging common IJsp
and obj<et·orientcd prQ&rammin&." Xerox Palo Alto Research
Center. Tech. Rep. 1Sl·8S·8, Aug. 198S.
II. BoraJ and D. DeWitt, "Daub;uc machine: An idea whose time
has passed~" DataiNut Macltin,., pp. 166-167, 1983.
P. Borswudt, "Patallel Prole>& using stack segments on shatcd·
memory multiprocessors," in Pnx. IEEE Int. Symp. Logic Pro
gramming. pp. 2-11. Feb. 1984.
K. Bowen, "Mela·1cvcl programming and knowledge reprcscnta·
tion.'' N.-.· Gttttratian Computi"l· \'OI. 3. no. 4, pp. 359-383, 198S.
R. Brachman and H. Levesque. Ed .. RN<iings in Kn()14•1Higt Rrpr~
unrarion. los Altos, CA: Morgan Kaufmann. 198S.
B. G. Buchanan and E. H. Shortlirle. Rui~BaJH/ E.tp.rts Pro
grams: 71rt Ml'CIN E.tpmmtnU of tht StaltfarJ Hturistic Pro
gramming Projtct. Reading,. M.A: Addison-Wesley, 1984.
S. Cammasal.._ D. McArthur, and R. Steeb, "Strategies ol cooper·
ation in distributed problem solving," in Prot:. 8th Int. Joint CDtlf.
Artificial lnrdligtnct, Aug. 1983. Los Altos, CA: Kaufmann.
pp. 767-710.
M. Castan and E. I. Organick, "Mll: An Hll·RISC Processor
for Patallel Execution ol FP-Language Programs," in Prot:. 9th
Annu. IEEE/ACM S,1·mp. Computer Arcltittcturt, 1982, pp.
239-247.
J. H. Chang. A. M. Despain. and D. DeGroot." AND-patallelism
ol logic ptO&rams based on a sratic data dependency analysis." in
Proc. IE££ COMPCON Spring, 1985, pp. 218-225.
H.·Y. Chen and B. W. Wah, "The RID-REDUNDANT p~
dure in C-Prolo&." in Pnx. Int. Symp. M~rhodolo&in for lnttlli·
~nt Symms. Chatloue. NC, Oct. 1987, pp. 71-75.
K. Oatk and S. Gregory. "PARlOG: Pat~lel programmin& in
logi~.· lm~rial Collesc.london. England, Res. Rep. DOC 84/4,
19114.
K. Oark and S. Gregory. "Nore on syslcm programmin& in
PARLOG.- in Proc. Int. Con{. 5th Grn~rati~n Computer System,
I Q~. pp. 299-306.
T. Clarke. P. Gladsrone. C. Maclean. and A. Norman,
"SKIM- The S. K. I reduction machine," in Catrf. Rtc. Lisp
C mf., Stanfnrd Univ., Menlo Park, C: A, 1980.
G. C'ntthi\1 and K. Hann.._ "PLEIADES: A multimicroprocnsor
in1cuctivc kno-.·ltd&t ha5C MiCTPpNK'ruon MicroJ)'It .. \"01. 3.
"''· 2. pp. 77-82. Mar. 1979.
J. Cohen. "Garbase ooll«rion of linked dara srructures," Compur
in~ Sun><:~·s. •·ol. 13. no. 3. pp. 341-367. Sept. 1981.
J. S. Conery and D. F. Kibler, "AND pat~lelism and nondcrer·
minism in lof.i~ PIO&rams," Nn· G~nrr<ttion Computing. vol. 3,
nn. I. pp. 43-70, 198S.
J. DArlingtnn and M. Rcc•~. "AliCE and rhe Parallel E\'a(uation
,,r l<•~ic l'n•srams," Dq>r. Compuling. Imperial Colle~< ol lki
'""" and T<d'""~·. london, England. Prelimina~· Draft. June
198).
I. Duling ton, "Funcrion~ pra&ramming." in DistributHI Comput
••g. F. B. Chambers, D. A. Ducc. and G. P. Jones. &ls. london:
Academic. 19114. ch. 5.
I. Darlington, A. J. Field, and H. Pull. "The unification ol
functional and logic languages." lm~ri~ College, london.
England, Tech. Rep .• Feb. 1985.
A. L. D.-i>. •• A dara no,.. e\'~uation system based on the concept
of rccur>i,·c locality," in Proc. Nat. Computtr CM/. AFIPS
Prm. 1979.pp. 1079-10!16.
:\. 1.. Davis and S. V. Robison. "The FAIM·I symbolic multipro
""'"S system." in Pre-.:. IEF.F. CO.\fPCOS Spring. 198S. 1'1'·
)70-375.
~1. F. [)«ring. "Archilcctures for AI," By~<, pp. 193-206. Apr.
19S5.
D. DeGroot. "Restricrcd A:-D-Parallelism." in Proc. Int. Conf.
.'rh G•n.-atr"" Comput<rs. Nov. 19114, pp. 471-478.
D. DcGrool and G. Lindstrom. &ls. l.ogic Programming. Engl<·
"<'<'<l Cliffs. NJ: Pronti~Hall. 19RS.
P. lkGr<'OI .tnd J. II. Ch.tn~. "A comparison of two AND·J"'ral·
kl C'\C'\.."uti-.'n 11\t,i("h .. " in /'n"·· "'"''"'flU atJd Soft'k·ar~ Cnnr~,..

(41)

(42[

(43)

(441

[4SI

(46)

(471

(481

(49)

(SO)

{51(

(S2)

(S3J

[S41

[S5)

(56)

(S71

(SRI

(59)

(601

(61)

(6l)

(631

(6-1(

[651

(66)

(67)

689

nt!nts a11J Arfhit(!C'tur~.s for th~ 5th Gt'nc:rulion. A FCET /11/ormu·
tique, Paris, France, Mar. 1985, pp. 271-280.
D. DeGroot. "Resrricred AND-patallelism and sido-effccts in
logic programming.'' in Supercomputers and A I Machi""· !;..
Hwang and D. D<Groot. &ls. New York: McGraw-Hill. 198K.
P. Denning. "A •icw of Kancrva's sparse distributed memory."
NASA Ames Research Cenlcr. Molletl Field. CA. RI,\C'S Tech.
Rep. TR-86.14. June 19K6.
A. M. Oc•pain and Y. N. Pan, '"Aquarius-A high performance
compuling sysrem lor symbolicjnumcric application." in PrO<·.
IEEE COMPCON Spring, Feb. 1985, pp. 376-382.
P. Deutsch, "Ex~rience ,.;lh a microprogrunmed inrerlisp sys
rems,'' in Proc. MICRO, vol. 11. Nov. 1978.
H. Diet, "Concurrent dara access archilecture." in Proc. Int. Conf.
5th GtneratitHt Computtr S,I'Sirms, 1984, pp. 373-388.
W. Dilger and J. Muller, "An associative processor for thoorem
proving." in Proc. /FAC S.•·mp. Artificial /mel/., 1983, pp.
489-497.
J. Doylc, "A truth maintenance sysrem," Artificiallnr~/1.. vol. 12,
no. 3. pp. 231-272, 1979.
H. Dreyfus and S. Dreyfus, "Why ex pen systcrns do not exhibit
ex~ni.sc," IEEE E.tpert, vol. I. no. 2, Summer 1986.
M. H. van Emden and G. J. de lucena-Filho. "l'rrdicare logic as a
language lor pata)lel programming." in· Logic Progrumnring, S. A.
Tarnlund and K. Oatk, &ls. New York: Academic. 1982. pp.
189-198.
l. D. Erman. F. Hayes-Rolh, V. R. lesser. and D. R. Reddy.
"The Hearsay-11 spccch-undcrslanding system: Integrating knowl
edge ro rrsolve uncertainty, Assoc. Comput. Mach. Computing
SIJJ'W)'I, vol. 12, no. 2, pp. 213-253, June 1980.
S. E. Fahlman, NETL: A S.••stem for Rtprtsetrting unJ Using
Real-World Knowi~Jg•. Series on Arlilicial lntclligen~e. Cam·
bridge, MA: MIT Press. 1979.
S. E. Fahlman and G. E. Hintoa. "Massi.cly parallel Architcc·
lures fnr AI: NETL. THISTLE. and Boltzmann Machin<>." in
/'roc. AAAI Nat. Conf. Artifkial/nr~/1 .. 1983, pp. 109-113.
S. E. Fahlman and G. E. Hinton, "Connectionist architc:cture lor
arlilicial inrelligence," IEEE Computer. vol. 20. no. I, pp. 100-109.
Jan. 1987.
E. A. Feigenbaum," Knowledge engineering: The appliod side,'' in
Intelligent Systtms: 71re UnprtcHienttJ Opportuni(l', J. E. Hayt'S
and D. Michie. &ls. Chichester. England: Elli• Horwood l.rd ..
1983, pp. 31-SS.
R. D. Fonntll and V. R. l.c>..,r. "Parallelism in artificial intelli
gence problem solving: A ca>C study of llcarsay·ll." IEEE Trmu.
Compur~n. vol. C-26, no. 2. pp. 98-111, Fob. 1977.
R. E. Fikes and N. J. Nihson. "Suips: A new approach to rhc
application of thetlrcm provln& to pruhlcm St.,l,in~... ..f nifu·iul
Intel/., vol. 2. no. 3 & 4, pp. IK9-2UK. 1971.
A. l. Fisher. "Dictionary machines with a small number ol
pr~rs." in Proc. lith Annu. /EEE/AC.If lrrt. Symp. Computer
Archit«turt, June 19S4. pp. 151-156.
J. Fitch. "Do we really ,..ant a lisp machine~" pre>enlcd al the
ACM SEAS/SMC Annu. Meeting. Jan. 19RO.
A. M. l-1ynn and J. <i. llarri•. "Rcco~nirion algnrirhnh lnr I he
~o.·onn~c1ion ma.:hinc.·· in Pux·. Jm. Jmm Cmrf . ..Crrtfu.'iul /m,•/1 ..
19HS. PI'· 57-60.
C. l. Forgy, A. Gupta. A. Nc"~ll. and R. Wedig. "Initial ...,..,,._,.
ment ol architectures for production sy>tcms." in I'""'· AAA I
Nut. Conf. Artifidullntc/1. Aug. 1984, pp. 116-120.
W. Fritz. "The !nrclligent Splem," SIGART Ni!wslruer. no. 90.
pp. 34-JR. Oct. 19114.
K. Furukawa and T. Yokoi, "llasic software >\'Stem."' in /'roc. lm.
Conf .• lth Grn~ration Cunrputrr Sys/Cnrs. l<JX-1.' pp. 37-57.
H. Gallairc and C. lasscrrc. "Mctale\'e(conrrol for logic pm
grams." in l.<>gic Programming, K. l. Clark and S. A. Tarnlund.
&ls. New York: Acadomic. 19R1. pp. 173-IKS.
M. R. Ocnc~rcth. ··An 0\'l!'f\'ic:v.· or mcta-lc·,·cl an.:hitcctur ... ·:· in
Proc. A AAI Sm. Cmrf .. ~rtrficiull"t•·/1., I9K3. pp. II 'J-114.
A. S. Gc,ins, ''0\'ervicw or the human brain a~ a di!-lribuh:d
computing network." in Proc. II::£1:.' lm. Cu,j. Cmuputt•r Dt•.tt.t:n:
VI.SI in Computers. 19~3. pp. 13-16 .
W. K. Giloi and R. Gucth. "Concept> and rcalizo.1ion ,,f a
high· performance d>ta lvpe archii<Ciurc," Int. J. Comput. lt(f<~rm.
Sci., vol. II. no. I, pp. 25-54, 1981.
\V. K. Giloi, .. Ad,·anrt.'\.1 object oriented archih:ctun.·:· ruturt·
(;t'rt('raliotl Cnmput. s_, .. ,. .. \"ul. ::!. no. 1. pJl. 169-175. ltJSS.

..

689

"""· A FCET l11[urma·
>0.
m and sid<·<H.:cts in
anJ AI Machl11rs, K.
• ~lcGraw-Hill. 19SS.
· Jisuibut<d memo"',"
dd. CA. RIACS T<~h.

. -A high p<rfo<manc<
application." in l'rO<'.

J 76-382.
gramm<d int<rlisp sys·
'8.
ure." in l'roc. Int. Conf.
l. 373-388.
procasor for th<orem

cia/ 1m•//., 1983, pp.

j mficia/ /nt~/1., vol. 12.

:-ystcms do not cxhjbit
nm<r 1986.
'IL'. "Prcdic3le logic as a
•g1c Programming. S. A.
c Acad<mic. 1982. pp.

'cr. and D. R. Roddy,
«m: Integrating know!·
>put. Mach. Computing
1980.

Rtprtwlling and Using
1al lntcllig<nce. Cam·

<ivcly paralld Archil«:·
'ltzmann Machine),·· in
nJ. pp. 109-113.
·~.;"tionist architecture for
I. 20. no. I. pp. 100-109.

1g: The appli<d sidt," in
tpportullill', J. E. Haves
•d• Elli, itorw<><ld t.id ..

· 1i ~m in artifici;al intclti
car>ay-11," I£££ Trmu.
i'ch. 1977.
A new apprOal·h to the
>krn ~,l\in~;· Aniju·wl ,,

! th a ~mtall number or
C.\1 /111. Symp. Computer

:hine?" pre.entcd at the
9~0

1111on algorithm!t (t'lf 1hc
t Cwrf .. .frt1/loul br~t•ll .•

.. Wedig. "Initial a.sc.-.
·qcms." in 11rot:. AriA I
, 116-120.
ART x._..•slmer. no. 90.

Jrc ~ystcm:· in !•nJ<. 1m.
~)(.1. pp. 37-57.

·! control for logit.• prn·
ark and S. A. Tarnlund.
IJ-1 X5.
IJ·Ic\'c:l an.:hi1cc1un..·:· in
I 'IX). pp. II ~-114.
1 hrain a~ a di!-lributt!d
C(}ni. Cu,put..·r D~'.¢"'

h anJ rcotliUttion ,,r a

· '"'·). Compul. h~iorm.

td <lfl'hitt:C.:lUrc:· ruturt·
:• l6~-17~.l~X5

690

[681

[691

[701

[711

[721

(731

(741

[751

[761

!771

[781

[791

[80]

[811

(821

(831

(1141

[851

(86]

[871

[88]

(891

(90]

[91J

(921

(931

(941

1l

IEEE TltANSACTIONS ON SYSITMS, MAN, AND CYBERNETICS.. \'OL 19, SO. ~. lUl Y / . .UGUST)9g9

A. J. Goldborg and D. Robson. Sma/ltalk·I!O: The urnguage arrd
Irs Implementation. Rtadins. MA: Addison-Wesley. 1983.
M. M. Gooley and B. W. Wah. "Elficitnt «ordering of l'rolog
programs." in Proc. 4th 1£££ lm. Conf. Data Engrneerirrg, los
Angd<s. CA. Feb. 198&, pp. 71-75.
A. Goto. II. Tanaka. and T. Moto·oka. "Highly parallel infercnct
engine I'IU- Goal rewriting model and machine architecturo;·
Nn~ Gen.,ation Computing. vol. 2. no. I. pp. 37-58, 1984.
E. Goto, T. Ida. K. Hiraki. M. Stauki. and N. lnada. "FLATS. A
machin< for numerical. symbolic and associative computing," in
Proc. 6th Int. Joint Conf. Artificiallnt•ll.. Los Altos. CA: William
Kaufman. Aug. 1979, pp. 1058-1066.
N. Greenfeld and A. J<richo, "A professional's personal computer
system," in Prrx.. IEEE/ACM 8th Int. Symp. Compur.r Archil«·
lure. 1981. pp. 217-226. ·
M. Griss and M. s,.·anson. "!.fBALM/1700: A microprogrammed
Lisp machine lor lh< Burroughs Bl726," in l'rrx. ACM/IF.EE
MICRO·IO. 1977.
A. Gupta, "lmplernentin& OPS5 production systoms on DADO."
in Prrx. IEEE Int. Con[. Paralltl Processing, 1984. pp. 83-91.
A. Gtaman. "A het<rarchical multi-microprocessor Lup machin.,"
in Prnc:. I t:E£ WINkshop on Comput" Archit.ctuu {0< Pattern
Ana(•·sis and lma~ Datahas• Manag•ment, Nov. 1981, pp.
309-317.
R. H. Halstead. Jr .. "lmpl<menlation or MUL TILISP: LISP on
multiproc.:ssor," in Prrx. ACM Symp. LISP and Functional Pro
gramming, 1984.
R. Halstead. "Parallel symbolic computing." 1£££ Computer. vol.
19, no. 8. pp. 35-43, Aug. 1986.
R. Halstead, Jr., and J. l.oaiu. "Exception handling in multilisp,''
in Prrx. Int. Con[. Parallel Prrxnsing, Aug. 1985, pp. 822-830.
R. Halstead. Jr .. T. Aodenon, R. Osborne. and T. Storlig, "Con·
cert: Design or • multiprocessor devclopmcnl system.~ in l'roc.
IEEE/ACM Int. Synrp. Comput" Archit<ctu,., June 1986,
pp. 40-48.
R. Halstead, Jr .• "Design roquiromcniS of concurrent l.isp ma·
chines," in Supcrcamput<rs and AT Machines, K. Hwang and D.
D<Grool, Eds. New York: McGraw-HilL 1988.
R. Hasegawa and M. Amamiya, "Parallel oxccution of logic
programs based on datanow concept," in Prrx. Int. Conf. 5th
Gtntration Comput., Sysrmu, 1984, pp. 507-516.
B. Hayes· Roth," A blackboard archit«:turc lor control.~ Artificial
(llt</1., vol. 26, no. 3. pp. 251-321, July 1985.
c. Hewiu. M Viewing control structure as pallems of passing
mcuages," Artificial lnt<lt., vol. 8, no.), pp. 323-364, 1977,
C. Hewill, MThc apiary network archit.:cture for knowl<dgeable
systems.~ in Cut~/. Rtc. Usp Con[., Stanford Univ .• Menlo Park,
CA. 1980, pp. 107-117.
C. Hcwill and H. Liobcrman, "Design issues in parallel archil«:·
lures lor artiCic:ial intelligence, in Prrx. IEEE COMPCON Spring,
Feb. 1984, pp. 418-423.
M. Hill., a/., "O.sign decisions in SPUR.~ 1£££ Computer, vol.
19. no. II, pp. 8-22. Nov. 1986.
W. D. llillis. The Conntction Machin<. Cambridg<, MA: MIT
Press. 1985 .
B. K. Hillyer and D. E. Shaw, "Ex..:ution of OPS5 production
syst<ms on a massively parallel machine," J. Puro/lel Dutribut.d
Computing, vol 3. no. 2, pp. 236-268, 1986.
G. E. Hinton, T. J. s.jnowski, and D. H. Ackley. "Boltzmalln
machine: Conmaint satisfaction network thai karns," Cam<gi<·
MeUon Univ .. Pillsburgh, PA. 1984.
J. J. Hop field,~ Noural notworks and physical systems with em<r·
sent collective compuutional abilities." Prot:. Sat. Acad. Sci ..
vol. 79, pp. 2SS4-2558, 1982.
J. J. Hop field and D. W. Tank. "Neural computation or dccuions
in optimization probl<ms," Bioi. Cybtm .. vol. 52. no. 3, pp. 1-25.
Julv. 19M5.
D.· K. Hsiao, Ed., Spocial Issue on Databa.'\C Machines. I f.'EF.
ComputH, vol. 12. no. 3. Mar. 1979.
K. Hwans. R. Chowkwanyun. and J. Ghosh. "Comput<r archilec·
tures lor implemcntin& AI systems," in Suptrcomput.,s and A 1
Machirr.s, K. Hwan& and D. DeGroot, Eds. New York:
McGraw-Hill. 1988.
N. lchiyoshi, T. Miyazaki. and K. Taki. "A distributed implcmen·
tation of nat GIIC on the multi-PSI.'' prc.cnted at the Int. Coni.
Logic l'rogromrnin~. 1987.

[951

(961

[971

[981

(991

(1001

(IOIJ

(1021

[103)

[1041

(1051

[1061

(107)

(1081

(109)

[1101

(Ill I

11121

(113)

[1141

[II 5)

[1161

[1171

[1181

(1191

[1201

K. B. Irani andY. F. Shih. ''lmpk""'ntation of \er:-· larg< prol~·
bas<d knowkdsc bases on data now ar<hit<ctures." in Proc. I sr
1£1:.'1.-: Con[. Artificial Intel/. Applicatit>tu. D.:c. 198-l. pp. 454-459.
Y. Ishikawa and M. Tokoro. "The design of an obj.:ct·oricnt<J
archit«:ture," in Prrx. lith 1£££/ACM Int. S1mp. Comput<'1'
A rchit<CIU", 1984, pp. 178-187.
N. ho, II. Shimizu. M. Ki>hi. E. Kuno, and K. Rokuso">.
"Data-now based execution mechanums or parallel aod concur·
r<nt prolos. ~ Nn~ G•ntration ComputinJ. vol. 3, pp. 15-41. 1985.
P. K<ln<rva. MParallcl structuros in humall and computer memory."
NASA Ames Research Center, Moff<tt Field, CA. RIACS Tech.
Rep. TR-86.2. Jan. 1986.
K. Kawanobe. "Current status and future plaru of the fifth
gen<ration computer system project.~ in Prrx.. Int. Con/. Sth
G~.,ation Comput•r Sysr.ms, 1984, pp. 3-36.
R. M. K<lkr and F. C. H. Lin, "Simulat<d p.:fonnancc of a
roduclion·bued multiprocessor." 1£££ Comput•r. vol. l7, no. 7,
pp. 70-82, July 1984.
R. M. Koller, F. C. H. Lin. and J. Tanaka. "R<diflow multip~
cessing," in Prrx. IEEE COMPCO.V Sprtn!. 198-l. pp. 41o-£11.
C. Kellogg, "Intelligent assistaniS for knowl<dg< and information
resources management," in Proc. &h Int. Joint Conf. Artificial
lnu/1. Los Altos. CA: William Kaufman. 1983, pp. l?Q-172.
S. [(jm, S. Macng. and J. W. Cho. "A parallel execution DlOdcl o!
logic program bas<d on dcp<odency r<lationsbip graph.~ ;., Proc.
Int. Conf. l'arall•ll'rrxrssing, Aug. 1986. pp. 976-983.
G. Klinker. E. Oune. J. Crisman. and J. W<bb. "The implclDCDU·
lion oC a complex vision system on systolic array macbine." D<p.
Compul. Sci .. Carnegie-Mellon Uruv., PitiSbuf!.h. PA. Tech. Re;> ..
May 1986.
W. E. Kluge, "Cooperating reduction machines." IEEE Traru.
Computm, vol. C·32. no. ll. pp. 1002-1012, Nov. 1983._ .
T. Knight, "The CONS Microprocessor." Mus. lnsL T <ChnoL.
Cambridge. AI Working Paper 80, Nov. 1974.
A. Koslor. "Compiling Prolog prognm.s for parallel execution oo
a cellular Machine." in Prrx. AC.\1'84 Ann11. Con[.. OcL 19114.
pp. 167-178.
D. J. Kuck. E. S. Davidson. D. H. Lawrie, and A. H. Samci>.
"Parallel supercomputing today and the c<dar approach." S<i•nct.
pp. 967-974. Feb. 1986.
G. G. Langdon Jr., Ed.. Special issue on daubasc machin<>.
IE££ Trunt. Camput .. vol. C-28, no. 6, June 1979.
D. B. Lenal and J. McO.nnoll. "Los than gcn<ral production
system architectures." in Proc. 5th Int. Joint Conf. Artificial ln:t/1.
Los Altos, CA: William Kaufman. 1977. pp. 923-932.
D. B. Lena!. "Computer software lor intelligent s)"tems," Sa
Amu., vol. 251. no. 3, pp. 204-213. Sept. 1984.
V. R. Lesser and D. D. Corltill. "The distribut<d vehicle monitcr·
ing ICStbed: A tool lor investigating dutribut<d problem soh-in'
networks." AI Mag .. pp. IS-33, Falll983.
G. J. Li and B. W. Wah. "Compuutional efficiency of para11d
approximate btanch-and·bound algorithms." in l'roc. IE££ Int.
Con[. Pura/1~1 Prrx•uing, Aug. 1984. pp. 473-~80.
--· "MANIP-2: A multicomputer architocture for evaluatin~
logic programs," in l'rrx. IEEE Int. Con[. l'aralftf l'rocmrng.
Aug. 1985. pp. 123-130. (Also in Tutorial: Compuurs [0< Artlj'ioal
lnttll. Applkuriont, B. W, Wah, Ed., New York: IEEE Comput.er
Society, 1986, pp. 392-399.)

--·"Optimal granularity of parallel evaluation of AN[).ueo."
in l'rrx. Fall ACM/1£££ Joint Compllltr Con[. Nov. 1986.
pp. 297-306_
__ , "Coping -.ith anomalies in parallel branch-and·bound '-4<>
rithms," l£t:E Tram. Cumput~r. vol. C-3~. no. 6, pp. 568-573,
June 1986.

--· "How good arc parallel and ordered de;>th·fir>t ,,:;uchc>?
in Proc. IEEC 1111. Con[. l'arulld Proctssint. Aug. 1986. pp
992-999.
Y. J. Lin and V. Kumar, "A parallel execution $Ch¢me loc nploil·
in~ AND-parallelism or losic programs." Artificial lnttll. pp
972-975. Aug. 1986.
G. Lindstrom and P. Pananpden, "Stre.un-bascd ex.:cution of
lo~ic programs.- in !'roc. IE££ Int. Symp. Lbgic Prop"'""""!·
Feb. 19114, pp. 16R-176.
G. Mago. "Making parallel computation simple: The FFP rna·
chine," in /'rue /U:'f: C0.\1/'CON SprinK· 19&5, pp. 424-4c~.

I • ;!
I

t
i
l
l

\\'AH AND U: SU~VEY Of WUl.nPaOCESSJNO SYSTt.MS FOil AI API'UCATIONS

1121]

!Ill]

IL~J]

1124]

!1251

(1261

11271

11281

1129]

(1301

(131]

ll:l2J

!133]

!134]

(1351

!136]

!137]

11381

1139]

II JO]

!141]

!1421

ll43J

114-lJ

11451

!14o]

G. Matthews, R. Heo.o.·es, and S. Krueger, "Single-chip processor
runs Lisp environments," Comput. D~sign, pp. 69-76, May I,
1987.
J. McCarth)·, "History ol Lisp," SIGPUN HOlien, vol. 13. no. 8,
pp. 217-223, I ~78.
J. R. McGraw. "Data Oow computing: Soltw= development,"
IE££ Trans. Comput., vol. C-29. no. 12, pp. 1095-1103, 1980.
D. McKay and S. Shapiro, "MULTI-A lisp b>SN multiprocess
ing system," in C011[. R«. Lisp Conf., Stanlord Univ., Menlo
Puk, CA. 1980.
M. Model, "Multipmceuing via intercommunicating Lisp sys·
t<m<." in Conf. R«. lhp COflj., Stanford Univ., Menlo Park, CA,
1980.
0. I. Moldovan, "An associative atTay architecture intended lor
semantic network processing." in Pnx. AC/11'84 Annu. Conf., Oct
1984, pp. 212-221. .
D. A. Moon, "Symbolics architecture," IEEE c-puttr, vol. 20,
no. I, pp. 43-52, Jan. 1987.
K. Murakami, T. Kakuta. and R. Onai, "Architectures and Hard·
"·are Systems: Paral~l Inference Machine and Knowledge Base
Machine," in Proc. lnL C011f. Jtlt Gmm11i0t1 Comput~r Sysr~ms.
19!\4, pp. 18-36.
K. Muralcasni, T. Kakul.&, R. Onai, and N. llo, "Research on
parallel rnachine architecture for (&fib-generation computer sys
tems," IEEE Compuur, vol.18, no. 6, pp.76-92, June 1985.
M. Nagao, J. I. Tsujii. K. NaUjima. K. Mitamura. and H. llo,
"lisp machine NKJ and meaaumncnt of iu perlorrnance." in
Proc. 61/t Int. Joint Cmf. 0t1 Artifrdal lnt~ll .. los Altos, CA:
Wilti.t..m Kaufman, Au&- 1979, pp. 625-627.
P. M. Neches. "Hardware support for ldvanc:ed data manage~ I
systems." IEEE c-pwtr, vol. 17, no. 11, pp. 29-40, Nov. 1984.
K. Niwa. K. Sasaki. and H. 1b.va, "An experimental comparison
or knowledge rcprescntatioa schemes." A I Mag., pp. 29-36, Sum·
m<r 192W. ·
J: T. O"Donnell, • A systolic associati\'C lisp computer a.rchitec·
ture o.itb incremental parallel stotage management," Ph.D. disscr·
tation. Univ. of Iowa. Iowa City, 1981. ·
K. Oflazcr, • Panitionios ia paraJicl processing of production
systems.". in Proc. IEEE Int. Cmf. Poro/M Proauing, 1984,
pp. 92-100.
J. P.-·lin. "Prediclin& the performance of distributed knowledge·
b>SN systems: A modclin& approach." in Prac. Nat. Conf. Artifi·
cia//nrdligmo~, 1983. pp. 314-319.
J. Purl, H...rutics -lnt~lligntt S~orrlt Strrlttgin for CompllUr
Probl~"' Solt.;ng. R.eadin&. MA: Addison-We.~·. 1984.
L. M. Pereira and R. Nasr, "Ddta·Prolog, A distributed logic
prosrammin& language," in Pnx. Int. Cunf. 5th Gnt~ration Com·
put~r Systrms. 1984, pp. 283-291.
A. Plotkin and D. Tabak, "A tree structured architecture for
..-mantic gap reduetion." Compllte Arr:hit«r"'~ N~J. vol. 11,
no. 4, pp. 30-44, Sq>t. 1983.
E. von Pu11karner. "A miaoprovamrned Lisp machine." Mirro
pr«n.nng Microprorralflllting, vol. 11, no. I, pp. 9-14, Jan. 1983.
U. S. Reddy. "On the relationship bctWttll logic and runctiona.l
l•n~u.&&es." in J.oric Prorromming, ed. D. DeGroot and E. G.
Lindstron, Eds. Engl.,.nod Qiffs. NJ: Prentice-Hall, 1985.
T. Rentsch, "Object oriented proarammin&." SIGPUN Noticn,
vol. 17. no. 9, pp. Sl-51, Sq>t. 1982.
J. Robinson and E. Sibert. "LOG LISP: Motivation, design. and
implementation." in J.oric Pragramming, K. Clark and S.
Tarnlund, Eds. New York: Academic, 1982.
H. Sakai ~tat .• "Design and implementation of relational database
cn,;ne." in l'r<><. Jtlo Cm~i011 Comput~ Systrms, 1984, pp.
419~26.

J. Sansonne1. D. Botella. and J. Pc.rcz. "Function distribution in a
list-<lirected architecture," Microprocnsing Microprogramming,
vol. 9, no. 3, pp. 143-IS3, 1982.
J. P. Sansonncl. M. Castan, and C. Percebois, "M3l: A list·
dirt"Cted architecture," in Proc. 7th Annu. /EEE/ACM Symp.
Compur<r Archllt'CIIlr~. May 1980, pp. 105-112.
J. P. S..m•.,nnel, M. Castan. C'. Pera:bois. D. Bo1clla. and J. Pertt,
,, Dirccl C\C'CUtion or li~p on a li$t·dircctcd architecture:· in Proc.
~C.If Srmp. Arch•t«tllra/ Syport fdr Pro!(romming l.angwgrs
.md Opcraun~ s,-.,unu, M.:ar. 1982, pp. 132-139.
~L S.lt .. ,, II. Shimizu. A. M.atsumol<'. K. Rokuuw&. and A. Goh1,
·· K t 1 t"'n.·uti'''\ nSC1 hv l'IM chn.lcr with shared n\CIU<'Ir\':·
p•(·~,·nln.t .u lh(' Int. (.~,,nf. l.,~ic J•rn~ranunin~t,. 1QR7. ~

[148]

(149]

(1501

[151]

[1521

(IS31

(154]

(ISS]

[156]

(157]

(ISS)

[159]

[160)

[1611

(162]

(163]

(164)

(165)

(166)

[167]

(168)

(169)

(170]

(1711

11721

11731

691

H. Schmeck and H. Schroder, "Dictionary machines for different
models or VLSI," IEEE Trans. Comput., vol. C-34, no. 5. pp.
472-475, May 1985.
M. Schor, "De!:larative knowledge programming: Beller thm pro
cedural." IEEE Exp~rt. vol. I, no. 1, pp. 36-43, Spring 1986.
E. Shapiro and A. Ta.kcuchi, "Objecl oriented programming in
concurrent Prolot,." Nno~ G~n<ratilHI Compllring, vol. I. no. I.
pp. 25-48, 1983.
E. Shapiro, "Systotk programming: A paradigm or parallel pro
ce .. ins," in Proc. Int. 5th G~nmJtion Compur.r Syst~nu, 19114,
pp. 458-470 ..
D. E. Shaw, "On the range of appli~abilily of an artificial intelli·
&•nee machine," Artificiu/lnu/1., vol.)2, pp. ISI-172, 1987.
S. Shibayama, T. Kakuta, N. Miyu.aki. II. Yokota, md K.
Murakami, "A relational database machine with large scmicon·
duetor disk and hardware relational algebra processor," Nrw
G~nuatilHI Cnmpllting, vol. 2, no. 2. pp. 131-155, 1984.
B. Silver, M~ta·IANIInf~r.nu: R~prnntting and Lrarning Cuntmr
Information in Arrificiallnt~llig~nu. Studies in CS and AI. Am·
sterdam, The Netherlands: North-Holland, 1986.
H. A. Simon, "Wbctber software engineering needs to be artifi·
cially intelligent," IEEE Trans. Sof,...•arr Eng., vol. SE-12. no. 7,
July 1986.
K. Srnitb, "New computer breed uses transputers lor parallel
processins," ElmrOI!ics, pp. 67-68, Feb. 24, 1983.
R. G. Smitb and R. Davis, "Frameworks for cooperation in
distributed· problem solvins," IEEE Trans. Sysr. Man Cybrrn.,
vot SMC·Il, no. I, pp. 61-70, Jan. 1981.
A. Snyder, ~object-oriented programming for common Lisp,"
Software Technology lab., Hewleii·Packard lab., Palo Alto, CA.
Rep. ATC-85·1, 1985.
G.·Steel and G. Susaman, "Design or Lisp-b>SN procusor, or
SCHEME: A dielectric lisp or finite memories considered harm
ful, or lAMBDA: The ultimate oprode," Mass. 1nst. Techno!.,
Cambridge, Al Memo 514, March 1979.
G. L Steele, Jr., and G. J. Sussman, "Design or a lisp-based
microprocessor," Comm. Assoc. Comput, Mach., vol. 23, no. 11,
pp. 628-645, Nov. 1980.
M. Steflk and D. G. Bobrow, "Object-oriented programming:
Themes and variations," A I Mag., pp. 40-62, Spring 1986.
S. J. StoOo, "Initial perronnance of the DADOl prototype,"
IEEE Comp"t", vol. 20, no. I, pp. 75-84, Jan. 1987.
S. Sugimoto, K. Tabata. K. Agusa. and Y. Ohno, "Concurrent
lisp on a multi-micro-processor system," in Proc. 7th Int. Joint
Canf. Arrifidul lnr.ll. Los Altos, CA: William Kaufman, Aus,
1981. pp. 949-954.
S. Sugimoto, K. A&usa. K. Tabala. andY. Ohno, "A multi·micro
proccssor system ror concurrent Lisp," in Pr«. IEEE Int. C011[.
Parallel Procming, 1983, pp. 135-143 .
G. Sussman, T. Winograd, and E. Charniak, "1\.licro-planr.cr
reference manual." Mass. lnst. Techno!., Cambridge, Tech. Rep.
AIM-203, 1970.
G. J. Sussman, J. Holloway, G. L. Steel. Jr .. and II.. Bell, "Scheme·
79-lisp on a chip, IEEE Computu, vol. 14, no. 7. pp. 10-21,
July 1981.
N. Suzuki, K. Kubot&. and T. Aoki, "SWARD32: A b\·tecode
emulating microprocessor for object·oriented languages." in PrtJ<:.
lnL Conf. Jth Grneatim Computu S.t·stmu, pp. 389-397. 1984.
A. Takeuchi and K. Fukukawa. "Parallel logic prograrnminr,
languages." in Proc. Jrd Int. Conf. Logic Programmmg. New
York: Springer-Verlag. 1986.
1. Takeuchi, H. Okuno, and N. Ohsato, '"TAO-A harmonic
mean of lisp, prolog. and smalltalk." SIGPUN Nuricn. ,·ol. IK,
no. 7, pp. 65-74, July 1983.
K. Taki, Y. Kaneda. and S. Maeka,.·a. "The experimental lisp
machine." in /'roc. 6th Int. Joint Conf. Arti/iriallnttll., lo• 1\ltos,
CA: William Kaufman. Aug. 1979, pp.· 865-867.
K. Taki ~t at., "Hardware design and implementation or the
personal sequential inrc,.,nce machine (PSI), in l'rt.c. Int. C.mf.
5th G..,.rration Computtr ~''"'""· 19114. pp. 39&-409.
K. Taki. "ll1c parallel .oltwarc rew:arch and dcwlupmcnl tool:
Multi·l'SI syotcm." in /'roc. Frunu-Juf'<Jn Artif•ciul Int.//. """
C<>ntputrr Sc;,,,., Srntp., 1986, pp. 36S-3KI.
Y Tanaka. ""MI11>C·ma$~i\"c parallel aH:hiteciUrc: (ur \cry large
d;llahaMs:· in rroc. Int. Cmtf .. ~lh Grllt"FUIIOII Conr,utrr Sult'"l.\.

~~~4. PI'· IIJ .. fJ7 



691 

·hines for different 
C-34, no. 5. pp. 

g: Beller thm pro-
1, Spring 1986. 
d programming in 
'"8· vol. I. no. I, 

\"' of parallel pro
,,,., Sysr~ms. 19K4, 

an artificial inltlli· 
51-172. 1987. 

Y okou. md K. 
'ith large scmicon· 
• processor." Nrw 
55, 1984. 
nd l~arning C ontro/ 
' CS and AI. Am· 
86. 
, n.,.,ds to be artifi· 
., vol. SE·I2. no. 7, 

sputcrs for parallel 
983. 
for coopcration in 

Syst. Man Cybeno., 

for common Lisp," 
"ab., Palo Alto, CA. 

-based processor. or 
,es considcrcd harm
-lass. lost. Tccllnol., 

ign of a Lisp-based 
;ch., vol. 23. no. ll. 

cntl'<l pre&ramming: 
, Spring 1986. 
DAD02 prototype," 
'"· 1987. 
Ohno. "Concurrcnt 

' !'roc. 7th Int. Joint 
liam Kaufman. Au&-

hno, ··A multi-micro
roc. I f:F.E Int. CDIIf. 

1iak, "Micro-planr.cr 
:unhridgt, Tech. Rep. 

;nd /\. Bell, "Schcmc· 
14, no. 1, pp. 10-21. 

'ARD32: A b\tecodc 
J languagc•." i~ !'roc. 
pp. 389-397. 1984. 

·I l<>&ic pr<>&famming 
!•rogrammin!. New 

"T/1.0-A lwmonic 
'UN Nutius. vol. IK, 

rhe expcrilll<fltal Lisp 
'ICial lnt•ll .. L"' Altos. 
-R67. 
rnplcmcntation of th<: 
1). in l'mc. Int. C.mf 
J~K-409. 

Jnd Jc\'clupmcnl h'Kll: 
,,, Aniftriul lntt>/1. a11J 
I 

11\t'{"turc for \~ . .-ry lartt.: 
'"'" Cun'I'Uit',. .\ntc·,u. 

,, 

,, ., 

692 

(1741 

(1151 

{1161 

(1171 

{11!11 

(1191 

{1801 

(1811 

{1821 

(1831 

(184) 

(1851 

{1861 

{1871 

{1881 

[1891 

(1901 

(1911 

(192) 

(1931 

lf.n: TRANSA<..iiONS ON SYSlE.MS.. MAN, ANIJ CYBI:M.Nf.11CS, VOL 19, NO.4, JULY/ AUGL''.r t~K'J 

E. Tick and D. H. D. Warren, "Towards a pipclincd Prolog 
processor." New Genuation Computing, vol. 2. no. 4, pp. 323-345, 
1~84. 

P. Trclcaven and G. Mole, "A multi-processor reduction machine 
for user-defined reduction languages." in !'roc. 7th lt'EE/AC.\1 
Int. Synop: Compur.r Architecture, pp. 121-130, 1980. 
1'. C. Treleavcn and R. P. Hopkins, "A rccursive·computer arc hi· 
lecture for VLSI," in !'roc. 9th AnntL IEEE/ACM Symp. Cunr· 
purer Archittcture, Apr. 1982, pp. 229-23&. 
P. C. Treleavcn and I. G. lima. "Japan's fifth-generation com· 
putcr systcRU." lEt'£ Compur.r, vol. IS, no. 8, pp. 79-RS, Au&-
1982. 
Y. W. Tung and D. Moldovan, "Dctcction of AND-parallelism in 
logic progr:unmin&." in Proc. Int. Conf. Parallel Processing, 
pp. 9M-991. Au&- 1986. 
D. A. Turner, "A new implcmenlation lcchnique for applicative 
languages," Software - Practice and Experience. vol. 9, no. I, 
pp. 31-49. 1979. 
S. Uchida, "lnfercncc machines in FGCS projcct.," in Proc. 
VI.S/'87 Tnt C011J., Au&- 1985, IFIP TC·10, WG IO.S. 
K. Ueda, "Guardcd born clauses," !COT, Tokyo. Japan. Tcch.. 
Rep. TR·103, 1985. 
L. M. Uhr. "Parallel-serial production systcms." in Proc. 6th Int. 
Joint C011f. Arrifidal Intel/. Los Altos, CA: William Kaufman. 
Aug. 1979, pp. 911-916. 
D. Ungar, R. Blau, P. Foley, D. Samples. and D. II.. Patterson. 
"Archilccturc of SOAR: Smalltalk on RlSC," in !'roc. lith Annu. 
IEEE/ACM Int. Symp. Comparttr Architecture, 1984. pp. 18&-~97. 
S. ll. Vegdahl, "A survey o( proposed architccturcs for the Cl<CCU· 

lion of functional languages," IEEE Trans. Comput., vol. C·33. 
no. 12. pp. 1050-1071, Dec. 1984. 
B. W. Wah and K. L. Cbc:n. "A partitioning approach to the 
design of selec:tion nctworks," IEEE Trans. Comput., vot C-33, 
no. 3, pp. 261-268, March 1984. 
B. W. Wah andY. W. Ma, "MANIP-A multicomputer architcc· 
lure for solving combinatorialexlrcmum problems," IEEE Trans. 
Comp11t., vol. C-33, no. S, pp. 377-390, May 1984. (Also in 
Tutorial: Computer Ardtltecrurt, D. D. Gajski, V. M. Milutinovic. 
H. J. Sier,cl. and B. P. Furht., Eds. IEEE Computer Soc., 1987, pp. 
S78-S91 and Tutorial: Parallel Ardtittcturefor DatabaJe Systems, 
A. R. Hunon, L. L. Miller. and S. ll Pakud, Eds. IEEE Com· 
puter Soc., 1988.) 
B. W. Wah. G. J. Li. and C. F. Yu, "Multiprocessing or combina· 
torial search probkms," IEEE Computer, vol. 18, no. 6, pp. 
93-1011, June 198S. (Also in Ttllorial: Computers for Artlfidal 
Intel/. Appl., B. W. Wah Ed. IEEE Computer Soc .. 1986, pp. 
173-1118.) 
B. W. Wah and G. J. Li, Eds., Tlllorial"" COfttputen for Artificial 
lnte/1. Appl. New York: IEEE Computer Society Press,. May 
1986. 
D. L. Waltz. "Applications of thc connection machine." IEEE 
Computer, vol. 20, no. I, Jan. 19&7. 
D. H. D. W arrcn. "Efficient processinr. of intcraclivc relational 
database queries expn:soed in logic," in Proc. 7th Int. C011f. Very 
U.r~ Data Sllln,l981, pp. 272-281. 
P. Wcgncr and B. Shrivcr, Eds., MSpccial issue on objcct-oricntcd 
pre&rarnming worbhop," SIGPUN Noticn, vol. 21. no. 10, 
Oct. 1986. 
M. Wciscr " a/., "Status and performance of the ZMOB parallel 
processing systcm." in Proc. IEEE COMI'CON Spn'ng, Feb. 
1985, pp. 71-73. 
R. Williams. "A multiprocessing system for thc direct exccution of 
Usp.M in /'roc. ACM 4th Work.rhop Computer Ardtitecturt: for 
Nrm·Numeric l'rtx~ssing, Aug. 1978. 

(19-11 T. Winograd, "Extended inference modes in rca.oning b)· com
put~r systems," in Artt[icial /null .. vol. 13. pp. 5-26. 1980. 

(1951 P. H. Winston and B. Hom. lJJp, 2nd ed. Readin&. MA: Addi
son Wesley, 1984. 

(1961 Y. Yamaguchi, K. Toda, and T. Yuba. "A performance C\·aluation 
of a lisp-ba..cd data-driven machine (EM·))," in !'roc. lOth .~nnu. 
lEEE/ACM Int. Symp: Comput<r Architecture. June 1983. pp. 
363-369. 

(1971 Y. Yamaguchi. K. Toda. J. Herath. and T. Yuba. "E.."I-3: A 
Lisp-ba.scd data-driven machine." in !'roc. l nt. Conf. jth G<n<ro· 
ti0<1 Computtr Syl/emr, 1984. pp. 524-532. 

(1981 T. Yokoi, S. Uchida. "Scquaui~ inference machine: SIM-Iu 
pr<>&rammin& and operatin& •ystcm," in /'roc. Int. Cunf jth G<n· 
<ration Computtr Syl/emr, 1984, pp. 70-81. 

(1991 C. F. Yu and B. W. Wah, "Efficient branch-and-bound algorithms 
on a two-kvcl mcmory system," IEEE Tra.u. SoftwaTt Eng .. 
vol. SE-14, no. 9, Sept. 1988. 

(2001 __ , "Lcaming dominance rcl.ations in combinatorial search 
problems," IEEE Trans. Software Eng .• vot SE-14, oo. S, 
Au&- 1988. · 

Benjamin W. Wah (S'14-M'19-SM'85) rcceiffil 
the Ph.D. dcgrce in computer science from the 
University of California. Bcrl:dcy, C."-. in 1979. 

He was on the f3CUily oC the Scbool of Elec:tri· 
cal Engineering al Purdue University, West 
LaCayeuc, IN, betwccn 1979 and 1985. He is 
now a ProCessor in thc Dc:paruncn1 o( Elcctrical 
and Computer Enginemng and thc Coordinated 

-·-Science Laboratory oC the University. of Illinois 
at Urbana-Champaign. Between 1988 and 1989. 
be was on lcavc at the National ScicDcc Founda

tion as a Pra&ram Di=toc in the Microclccttonic W~tioa Pr<><:cuing 
Systems Division. His areas of r=arcb include computer architcctutc. 
parallel processing. artificial intclli&CftCC, distribulcd datllbasa, and com· 
putcr networks. For hi.. contributions 10 n:scan:h. be b.u b<>cn oominJ.ted 
as a University Scholar oC thc Univcuity or Illinois in 1989. 

Dr. Wah is the Associatc Editor·in·Chief of thc IEEE TMNSACTIONS 
ON I<NOWUDOE AND DATA E!<GINEUJNG, an area cditoc o( the JO<Iflf41 
of Parallel and Durriburttl Computing, and an cditor of Tnfo,.,•fQtiun 
Sd~ncn. He serves as a member of t.hc GoYmlinr; Board of the IEEE 
Computer Society and a program evaluator for ABET (computer cny
nc:cring) and CSAC (computer .science). Previously, be served as chairman 
and mcmbcr of pr<>&ram committee of a number oC international c:onf<r· 
cna:s. an Editor or the IE££ TltAI'SAcnONS ON SofTwAIU E."GINUJO.· 
lNG, and a Distinguished Visitor of the IEEE Computer 
Socicty. 

Cu.rjie U (S'83-M'86) r,radualcd from Pck.inr, University, Beijing. China. 
in I ~8. Hc rc:ccivcd thc M.S. de&f" in computer scicnc:c and engi"""ring 
from thc Univcrsity of Sdeaoe and Technology ol China md Institute of 
Computing Tc:clmology, Cbiucsc: Academy of Sdcncc. and the Ph.D. 
dcgrcc in elec:trical cnr,inc:cring from Purdue University in 1981 and 1985. 
rcspcctivcly. . 

He v.·as a Post·D«Ional Research Fellow at thc University of lllinoi.s. 
Urbana-Champaign. bc:twccn 1985 and 1986. Currently, be is an Associ· 
a tc Researcher al thc Academy of Scicncc. Beijing. China. His rcscarc:b 
intcresu include paralic! procc:ssin&. computer architecture. and artifioal 
intelligcncc:. 


