IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY /AUGUST 1989 667

A Survey on the Design of Multiprocessing
Systems for Artificial Intelligence
Applications

BENJAMIN W. WAH, SENIOR MEMBER, 1EEE, AND GUO JIE LI, MEMBER, IEEE

Abstract — Some important issues in designing computers for artificial
intelligence (A1) processing are discussed. The issues discussed are divided
into three Jevels: the representation level, the control level, and the
processor bevel. The representation level deals with the knowledge and
methods used (o solve the problem and the means to represent it. The
control level is concerned with the detection of dependencies and paral-
lelism in the algorithmic and program representations of the problem, and
with the synchronization and scheduling of concurvent tasks. The proces-
sor level addresses the hardware and archil al p ded to
evaluate the algorithmic and program representations. Solutions in each
level are illustrated by 2 number of representative systems. Design deci-
sions in existing projects on Al computers are classical into the top-down,
bottom-up, and middle-out approaches.

1. INTRODUCTION

N RECENT YEARS, artificial intelligence (AI) tech-

niques have been widely used in various applications,
such as natural-language understanding, computer vision,
and robotics. As Al applications move from the laborato-
ries 10 the real world and as Al software grows in complex-
ity, the computational throughput and cost are increas-
ingly important concerns. The conventional von Neumann
computers are not suitable for Al applications because
they were designed mainly for sequential and deterministic
numeric computations. Extensive efforts have been de-
voted to investigate and develop efficient Al architectures
(188). This paper provides a state-of-the-art assessment of
Al-oriented systems and discusses the major issues in-
volved in such designs.

A. Characieristics of Al Computations

To develop a special-purpose computer to support Al

applications, the requirements of these applications must
be fully understood. Many conventional numeric algo-
rithms are well analyzed, and bounds on their computa-

Manuscript received June 24, 1987: revised September. 8, 1987 and
January 29, 1989. This work was supported by the National Acronautics
and Space Administration under Contract NCC2-481.

B. W. Wah is with the Coordinated Science Laboratory, University of
lilinois. Urbana. IL 61801.

G. 1. Lj was with the University of 1llinois. Urbana. IL, He is now with
the institute of Computing Technology. Academia Sinica, P.O. Box 2701,
Beijing. People’s Republic of China,

IEEE Log Number §927232.

tional performance have been established. In contrast,
many Al applications are characterized by symbolic pro-
cessing, nondeterministic computations, dynamic execu-
tion, large potential for parallel and distributed processing,
management of extensive knowledge, and an open system.

Symbolic Processing: Data are generally processed in
symbolic form in Al applications. Primitive symbolic oper-
ations, such as comparison, selection, sorting, matching,
logic set operations (union, intersection, and negation),
contexts and partitions, transitive closure, and pattern
retrieval and recognition, are frequently used. At a higher
level, symbolic operations on patterns such as sentences,
speech, graphics, and images may be needed.

Nondeterministic Computations: Many Al algorithms are
nondeterministic, that is, planning in advance the proce-
dures to execute and to terminate with the available infor-
mation is impossible. This is attributed to a lack of knowl-
edge and a complete understanding of the problem; it may
result in exhaustively enumerating all possibilities when
the problem is solved or in a controlled search through a
solution space.

Dynamic Execution: With a lack of compiete knowledge
and anticipation of the solution process, the capabilitics
and features of existing data structures and functions may
be defined and new data structures and functions created
while the problem is actually being solved. Further. the
maximum size for a given structure may be so large that it
ts impossible to allocate the necessary memory space ahead
of time. As a result, when the problem is solved, memory
space and other resources may have to be dynamically
allocated and deallocated, tasks may be dynamically cre-
ated, and the communication topology may be dynami-
cally changing.

Large Potential for Parallel and Distributed Processing:
In parallel processing of deterministic algorithms, a set of
necessary and independent tasks must be identified and
processed concurrently. This class of parallelism is called
AND parallelism. In Al processing, the large degree of
nondeterminism offers an additional source of parallel
processing. Tasks at a nondeterministic decision point can
be processed in parallel. This latter class is called OR
parallelism.

0018-9472 /89 /0700-0667501.00 ©1989 IEEE

{. In contrast,
symbolic pro-
ynamic execu-
ited processing,
‘N open system,
y processed in
symbolic oper-
ting, matching,
and negation),
e, and pattern
ied. At a higher
-h as sentences,
xd.
1 algorithms are
ance the proce-
available infor-
a lack of knowl-
problem: it may
ssibilities when
carch through a

plete knowiedge
the capabilities
1 functions may
inctions created
d. Further, the
: 50 large that it
ory space ahead
solved, memory
be dynamically
ynamically cre-
ay be dynami-

sted Processing:
rithms, a set of
identified and
Helism s called
arge degree of
ree of parallel
ision point can
s 1s called OR

668 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY/AUGUST 1939

Knowledge Management: Knowledge is an important
component in reducing the complexity of solving a given
problem: more useful knowledge means less exhaustive
searching. However, many Al problems may have very
high inherent complexity, hence the amount of useful
knowledge may also be exceedingly large. Further, the
knowledge acquired may be fuzzy, heuristic, and uncertain
in nature. The representation, management, manipulation,
and learning of knowledge are, thercfore, important prob-
lems to be addressed.

Open System: In many Al applications, the knowledge
needed to solve the problem may be incomplete because
the source of the knowledge is unknown at the time the
solution is devised, or the environment may be changing
and cannot be anticipated at design time. Al systems
should be designed with an open concept and allow con-
tinuous refinement and acquisition of new knowledge.

In general, two basic approaches are available for im-
proving the computational efficiency of processing Al
tasks: having heuristic knowledge to guide searches and
using faster computers. In the following sections, these
approaches will be discussed.

B. Heuristic Searches

The key performance-related feature of Al computations
is their nondeterminism, which results from a lack of
complete understanding of the solution process. In other
words, when a problem becomes well understood and can
be solved by a deterministic algorithm, we usually cease to
consider it “intelligent,” although the problem may still be
symbolic [155]. '

The starting point of conventional computations is de-
terministic algorithms, whereas efficient deterministic algo-
rithms to solve a given AI problem is result from the
knowledge accumulated and the gradual refinement of the
computations. This involves the succinct choice of an
appropriate knowledge-representation scheme, learning
mechanisms to acquire the related knowledge, and a suit-
able architecture to support the computations. Good
heuristics designed from previous experience may allow a
complex problem to be solved efficiently, even on a serial
processor.

Since the mid-1960’s, the Al community has realized
that inference alone was often inadequate to solve real-life
problems. To enhance the performance of Al algorithms,
they must be augmented with knowledge and metaknowl-
edge of the problem domain in addition to formal reason-
ing methods, Metaknowledge refers to the control informa-
tion 10 guide the secarch. This realization gave birth to
knowledge engineering and knowledge-based systems, the
field of applied Al [54]. Since the knowledge stored in any
knowledge-based system may be incomplete and inaccu-
rate, combinatorial scarches are still needed.

C. Faster Technologies and Parallel Processing

An Al computer system must support both knowledge-
base management and heuristic searches. Faster technolo-

gies and parallel processing are means to improve the
computational efficiency. For many applications, such as
natural-language understanding and computer vision. the
current achievable performance is much lower than that
needed. For example, according to DARPA’s Strategic
Computing proposal, it was estimated that an_equivalent
of one trillion von Neumann computer operations per
second were required to perform the vehicle-vision task at
a level that would satisfy the long-range objective of the
Autonomous Vehicle Project {1]. At best, current sequen-
tial computers of reasonable cost achieve processing rates
below 100 million operations per second. which implies at
least 10* times improvement in performance are required.
- Newer technologies can help in designing faster comput-
ers. For example, using GaAs high-electron-mobility tran-
sistors (HEMT's), it was estimated for a computer with
over 500000 gates operating at 77 K and 15 levels per
pipeline stage, the cycles times were predicted to be 2.7 ns
with 5 W and 3200 gates per chip, and 2.0 ns with 20 W
and 5200 gates per chip, respectively {10]. In contrast, a
liquid-cooled Cray 2 supercomputer built using ECL tech-
nologies has eight levels per pipeline stage, more than
500000 gates, and operate at 300 K and 4.1 ns/cycle. The
delay of one ECL gate level is approximately translated
into 1.5 GaAs HEMT gate levels; hence correcting the
cycle time of the Cray 2 supercomputer into HEMT tech-
nologies and 15 levels results in 5.1-ns cycle time for the
Cray 2 computer. In short, there is a factor of two in using
the newer technologies available today.

Another way 10 reduce the cycle time is 10 teduce the
interconnect delay. It was estimated that with GaAs HEMT
operating at 2-ns cycle time, the switching, fan-out, and
interconnect delays were approximately 2, 10.5, and 87.5
percent of the cycle time, respectively {10}. Although su-
perconductivity can be used to reduce the interconnect
delays, it is less desirable with GaAs technologies due to0
the high impedance in the gates, and more desirable with
ECL technologies. When combined, these newer technolo-
gies available today may allow improvement in the cycle
times of one to two orders of magnitude.

The trend in design Al computers has been toward
applying faster technologies and paralliclism tc process
computation-intensive Al tasks. Examples of parallel Al
systems currently available or under research/develop-
ment include Alice, Aquarius, Butterfly, Concurrent Lisp
machine, Connection Machine, Dado, Faim-1, FFP, iPSC,
Japanese Fifth Generation Computer System (FGCS),
NETL, Non-Von, Rediflow, Soar, Spur, and ZMOB (188}.
Some of these computers, such as the Aquarius, Butterfly,
iPSC, and ZMOB, were designed for both numeric and
symbolic processing.

Recently, there is another trend to design small-grain
massively parallel architectures for Al applications. These
architectures are sometimes called connectionist systems;
they are composed of a very large number of simple
processing clements. Knowledge of a given enlity in such
systems ‘are distributed on a number of processing ele-
ments and links, and each processor or link may be shared

A S

WAH AND LI: SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS , 669

. TABLE I
RELATIVE PROBLEM SiZES SOLVABLE IN A FIXED AMOUNT OF TIME ASSUMING
LINEAR SPEEDUP®.

Complexity to

find Optimal Number of Processors
Sotution 1 N N? N? N 3l
N N N? N? N4 NED N2V
~} N Nl.i N: ~15 Nl/lbl NzNﬂ
N? N N 147 “N? NEPYSL NaND
~L N Nlol/k Nlb}/l Nlol/t N! Nzﬂ/k
b N N+logN N+2logN N+3logN N+klogN 2N

“Problem size, when sequential processing is used, is N.

by multiple entities. The use of connections rather than
memory cells as the principal means to store information
leads to the name “connectionism” [53]. The resemblance
to neurons in a brain also results in the name *neural
networks.” Many computers can simulate connectionist
systems, An example is the Connection Machine devel-
oped by Thinking Machines Inc., which can perform neu-
ral-network simulations two to three orders of magnitude
faster than serial machines of comparable cost [87], [189).

The high performance in many parallel Al computers is
achieved through associative processing and *“data-level
parallelism.” This approach is suitable for operations on
large databases, such as sorting, set operations, statistical
analysis, and associative pattern matching. Yet data-level
paraliclism alone is not enough. For general Al applica-
tions involving heuristic searches, control-level paraliclism
should be involved. Unfortunately, early experience with
multiprocessor architectures for Hearsay-II [55], Eurisko
{111], OPS-5 [60]. and others have led to a belief that
parallel Al programs will not have a speedup of more than
one order of magnitude. A possibly revolutionary ap-
proach to designing parallel languages and systems for Al
processing may be needed.

QOne misconception in parallel processing is to use the
total computing power of a parallel system to charactenze
the rate at which a given Al application is processed. Due
to the nondeterminism in Al computations, a high comput-
ing power does not always imply a shorter completion
time. Since most Al applications involve heuristic searches,
resources may be devoted to fruitless searches, which use
more computing power but do not help to decrease the
time to find a solution. In fact anomalies may happen such
that increasing the degree of parallelism may even increase
the completion time in nondeterministic scarches [116],
{187). What is important is how to allocate resources so
only useful tasks are performed. The question of solving an
Al problem in a parallel processing environment is still
largely unanswered.

Another misconception about parallel processing is that
it can be used to extend the solvable problem size of Al
problems. Due to the high complexity of Al problems,
parallel processing is useful in improving the computational
efficiency. but not in extending the solvable problem size
{187]. For example, a problem of size N and complexity
N* can be solved in N* time units by a sequential proces-
sor. Assuming that N processors are used. the new prob-

lem size X that can be solved in the same amount of time
satisfies

NeNk = XK,
The left side of the equation represents the total comput-
ing power in N* units of time with N processors, and the
right size represents the number of operations to be per-

formed in solving a problem of size X. Solving the previ-
ous equation yields

X= Nl*l/k'

Table 1 summarizes the results for other cases. It is as-
sumed that the size of the problem solved by a sequential
processor is N, that the number of parallel processors
ranges from 1 to 2%, that linear speedup is achievable, and
that the same amourt of time is allocated to both sequen-
tial and parallel processing. The first column shows the
complexities of solving the problem optimally, and the
other columns show the corresponding sizes of the same
problem that can be evaluated in the same amount of time
for various number of processors. The extension in prob-
lem size is minimal when the problem involved is complex.
This is evident in the last row in which the problem solved
has exponential complexity. In this case only a logarithmic
increase in problem size is achieved when a polynomial
number of processors are used, and a lincar increase is
resulted with exponential number of processors.

In essence, parallel processing alone cannot circumvent
the difficulty of combinatorial explosion. The power of
multiprocessing should not be overemphasized and must
be combined with heuristic information to solve complex
Al problems. Currently methods for combining heuristic
information and massive parallelism are still largely un-
known. The publication in 1985 of the Sixth Generation
Computing System development proposal shows a serious
intention in Japan to go beyond the current FGCS activi-
ties and address the Al aspects of computations {4).

D. Design Issues of Parallel Al Architectures

The essential issues in designing a computer system to
support a given Al application can be classified into the
representation level, the control level, and the processor
level. The representation level deals with the knowledge
and methods used to solve a given Al problem and the
means to represent it. Design issues related to the repre-
sentation level are discussed in Section 1. The control

669

amount of time

he total comput-
ocessors, and the
ations to be per-
solving the previ-

't cases. It is as-
d by a sequential
arallel processors
is achievable, and
d to both sequen-
olumn shows the
rtimally, and the
sizes of the same
¢ amount of time
xtension in prob-
olved is complex.
1e problem solved
nly a logarithmic
icn a polynomial
linear increase is
¢SSOrS.

annot circumvent
n. The power of
asized and must
to solve complex
mbining heuristic
: still largely un-
Sixth Generation
I shows a serious
ent FGCS activi-
tations [4].

res

iputer system to
assified into the
wd the processor
1 the knowledge
woblem and the
ed to the repre-
1. The control

670 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19. NO. 4. JULY/AUGUST 1939

level is concerned with the detection of dependencies and
parallelism in the algorithmic and program representations
of the problem. Design issues related to the control level
are presented in Section IIl. The. processor level addresses
the hardware and architectural components needed to
evaluate the algorithmic and program representations. Is-
sues related to the processor level are discussed in Section
IV. Examples of issues in cach level are shown in Table 11.

Developing an Al architecture requires solutions 1o many
issues in each level. Yet some of these issues are still open
at this time. In this paper, we do not provide an exhaustive
survey of all reported projects and their relevant issues.
Instead, we discuss some important issues in the three
levels and illustrate the solutions by a number of represen-
tative systems.

II. REPRESENTATION LEVEL

Since 1950, knowledge-representation schemes have been
widely discussed in the literature {20}, [48]. The representa-
tion level is an important element in the design process
and dictates whether or not the given problem can be
solved in a reasonable amount of time. Although various
paradigms have been 'developed, most existing knowledge-
representation methods and Al languages were designed
for sequential computations, and the requirements of par-
allel processing were cither not taken into account or
were only secondary considerations. Moreover, many de-
signers of Al computers start with a given language or
knowledge-representation scheme; hence the representa-
tion level is already fixed. Research in designing Al com-
puters has focused on automatic methods to detect paral-
lelism and providing hardware support for time-consuming
operations in a given representation but has not provided
much to aid users in collecting and organizing knowledge
or in designing efficient algorithms.

A. Domain Knowledge Representations

Domain knowledge refers to objects, events, and actions.
From an implementation point of view, the criteria 10
evaluate a representation scheme for a multiprocessing
system are its declarative power, the degree of knowledge
distribution, and its structuralization,

Declarative versus Procedural Representations: The ma-
jor knowledge-representation paradigms used today can
roughly be classified into declarative and procedural ones,
although most practical representation schemes combine
features from both? Declarative representations specify
static knowledge, while procedural ones specify static
knowledge as well as the control information that operates
on this static knowledge. Hom clauses {or even first-order
logic), semantic networks, and rule-based production sys-
tems are examples of declarative representations, while
Lisp programs are procedural representations. Frames
combine both declarative and procedural information to
represent structured knowledge. Attached to each frame is

TABLE 11
EXAMPLES OF ISSUES IN DESIGNING Al COMPUTERS

Representation Level
Choosing an appropnate knowledge representation
Representing meta-knowledge
Acquiring and learning domain knowledge and meta-knowledge
Representing knowledge in a distributed [ashioa
Declaring paralielism in Al languages

Control Level
Analyvzing data-dependencies
Synchronization
Maintaining consistency
Partitioning Al problems
Deciding granularity of parallelism
Dynamic scheduling and load balancing
Efficient search strategics
Trade-offs on using heuristic information
Predicting performance and linear scaling

Processor Level
Dcﬁnmg computational models
hods 0 pass inl i
Desz;mng ‘hardware for overhead-intensive operations
Designing interconnection structure for load balancing
and of guiding and pruning information

Managing large memory spacc

various heuristic information, such as a proccdurc on usmg
the information in the frame. =~ - -

A declarative approach allows the hiding of proccdural
control-flow information, thercby resulting in an easily
created, modified, and understood knowledge representa-
tion. Declarative representations are referentially transpar-
ent; that is, the meaning of a whole can be derived solely
from the meaning of its parts and is independent of its
historical behavior. This may significantly increase pro-
gram productivity because of its user orientation and user
friendliness.

Declarative representations offer higher potential for
parallelism than procedural ones for the same problem,
because a declarative representation specifies tasks as a set,
while a procedural representation may overconstrain the
order of execution by the implicit order of statements.
Parallel versions of procedural representations, such as
parallel Lisp programs, achieve a limited amount of con-
currency, while relying on programmers to specify the
parallel tasks [76), {80]. However, parallelism in a declara-
tive representation may be restricted by the implementa-
tion of the language translators. For example, interpreters
for rule-based production systems can be viewed as pat-
tern-directed procedure invocations. Although pattern
maiching may provide a rich source of parallelism, the
match-select-act cycle is a bottleneck and restricts the
potential parallelism. Less restrictions are seen in the im-
plementation of logic programming and semantic net-
works. This is the key reason for the Japamese FGCS
project to choose logic as the basic representation. It has
also been reported that if 256000 processing units werce
used, the Connection Machine, using a semantic network
representation, can execute four orders of magnitude faster
than a sequential Lisp machine with respect to a number
of object-recognition problems (59).

WaH AND LI: SURYVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

A disadvantage of declarative representations is that
their nondeterminism is usually associated with a large
search space that may partly counteract the gains of paral-
lel processing: whereas procedural schemes allow the spec-
ification and direct interaction of facts and heuristic infor-
mation, hence eliminating wasteful searches, A trade-off
between the degree of parallelism and the size of the
search must be made in designing a representation scheme.

Distributed Knowledge Representations: A second crite-
rion to evaluate a representation scheme is its degree of
distribution. In a local representation, each concept is
stored in a distinct physical device, and each device may
be shared among multiple concepts. Although this simpli-
fies their management, the knowledge will be lost if the
device [fails. Most current Al systems adopt the local
representations.

Recently, distributed representations have been pro-
posed. In this scheme, a piece of knowledge is represented
by a large number of units and distributed among multiple
physical devices, and each device is shared among multiple
knowledge entities. The resulting system is more robust
because the failure of one physical device may cause some
but not all information to be lost in multiple knowledge
entities. Neural networks [90] and the Boltzmann
Machine [89] are examples in this class. The proposed
Boltzmann Machine consists of a very large network of
binary-valued clements that are connected to one another
by bidirectional links with real-value weights. The weight
on a link represents a weak pairwise constraint between
two hypotheses. A positive weight indicates that the two
hypotheses tend to support one another, while a negative
weight suggests that the two hypotheses should not both
be accepted. The quality of a solution is then determined
by the total cost of all constraints it violates.

Another interesting distributed knowledge-representa-
ton scheme, called Sparse Distributed Memory (SDM),
has been proposed by Kanerva [98]. The SDM has a
1000-bit address 10 model a random sample of 2% physical
locations. Given a 1000-bit read /write address, the loca-
tions in the SDM that are within 450 bits of this address
are selected associatively. Statistically, nearly 1000 mem-
ory locations will be sclected. The word read is a statistical
reconstruction by a majority rule. The SDM model was
designed with an analogy to the human brain and can
perform pattern computations such as looking up patterns
similar to a given pattern and generating a pattern that is
an abstraction of a given set of similar patterns {42].
Although it is much simplified with respect to the human
brain, its concept may lead to a new class of computers
suitable for pattern computations.

Distributed representations are generally fault-tolerant
in that, within a large parallel network with a few faulty
units, the remaining pattern is still usabie. This property is
very attractive for wafer-scale integration. The disadvan-
tage of distributed representations is that they are hard for
an outside observer to understand and modify. so auto-
matic learning schemes must be employed. An open prob-
lemy at this ime is to combine local and distributed repre-

671

sentations by decomposing a large knowledge base into
partitions and using a local representation for each.

Structuralization of Knowledge: A third criterion to cval-
uate knowledge-representation schemes is their structural-
ization; this is related to the inference time and the amount
of memory space required to store the knowledge. In
general, the more structured a knowledge representation s,
the less inference time and the more memory space are
needed. An experimental comparison of efficiency has
been reported for four kinds of knowledge-representation
schemes for a pilot expert system, namely, a simple pro-
duction system, structured production system, frame, and
logic [132]. It was found that the volume of knowledge
bases for the four schemes were different. In one case,
both production systems have 263 rules and 15000 charac-
ters, the frame system has 213 frames and 29000 charac-
ters, and the logic system has 348 clauses and 17000
characters. The memory space required by the frame sys-
tem is the largest because some related pieces of knowl-
edge have to be replicated in different frames. Since at
most one conclusion is allowed in each Hom clause, the
space of the logic system is larger than that of the produc-
tion systems. The experimental results also show that, with
respect to forward and backward reasoning, the frame
system is the fastest, while the logic system is the slowest.
The efficiency of the frame system is relatively insensitive
to the size of the knowledge base becausc related pieces of
knowledge are connected to one another by pointers,
thereby limiting searches. The inference time of the simple
production system is moderately sensitive to changes in the
size of the knowledge base, while that of the logic system is
markedly sensitive to changes in size.

Structured knowledge representations are usually desir-
able as long as the memory space necded is reasonable. To
achieve this end, metaknowledge may be included in the
knowledge base to reduce the search overhead needed.
There are two problems in using metaknowledge. First, it
consumes more memory space and may increase the over-
heads in memory management and communication. Sec-
ond, metaknowledge in a poorly understood domain may
be fallible and may lead the search in the wrong direction.
thereby increasing the total search time. Theoretical stud-
ies and experimental comparisons are urgently needed to
address this space-time trade-off.

B. Metaknowledge Represemations

Metaknowledge includes the extent and origin of domain
knowledge of a particular object, the reliability of certain
information. the possibility that an event will occur, and
the precedence constraints. In other words. metaknowledge
is knowledge about domain knowledge. Metaknowledge
can be considered to exist in a single level or in a hierarchy
[19]. In a hierarchical form. metaknowledge is used to
decide which domain-dependent actions to perform. while
meta-metaknowledge is the control knowledge about meta-
knowledge. Higher level metaknowledge is common-sense
knowledge known to humans.

ige base into
r each.
.erion to eval-
eir structural-
«d the amount
nowledge. In
resentation is,
ory space are
Hficiency has
‘epresentation
a simple pro-
n, frame, and
of knowledge
In one case,
15000 charac-
19000 charac-
s and 17000
he frame sys-
ces of knowl-
mes. Since at
m clause, the
> the produc-
1ow that, with
18, the frame
is the slowest.
ely insensitive
ated pieces of
by pointers,
of the simple
“hanges in the
ogic system is

usually desir-
casonable. To
cluded in the
head needed.
cdge. First, it
:ase the over-
rication. Sec-
domain may
ng direction,
oretical stud-
v needed to

in of domain
ty of certain
| occur. and
taknowledge
taknowledge
1 a hierarchy
- is used to
rform. while
about meta-
Mmmon-sense

672 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 19, NO. 4, JULY /AUGUST 1989

The use of metaknowledge allows one to express the
partial specification of program behavior in a declarative
language, hence making programs more aesthetic, simpler
to build, and easier to modify. It facilitates incremental
system development; that is, one can start {rom a search-
intensive program and incrementally add control informa-
tion until a possibly search-free program is obtained.
Lastly, many knowledge-representation schemes and pro-
gramming paradigms, such as logic, frames, scmantic
networks, and object-oriented programming, can be inte-
grated with the aid of metaknowledge {19}, {64]. Meta-
knowledge can be classified as deterministic and statistical
according to the correctness and efficiency considerations.

Deterministic Metaknowledge: Deterministic metaknowl-
edge is related to the correct execution of the algorithm.
Metaknowledge about precedence relationships results
from a better understanding of the problem; this helps
reduce the resource and time complexities. For instance, to
solve the problem of sorting a list, it is necessary to
analyze the problem, find the appropriate representation,
and evaluate the necessary tasks. A list of n elements can
be sorted by searching in parallel in O(log n!) average time
(= O(n-logn)) one of the n! permutations that contain
the sorted elements; however, an algorithm such as Quick-
sort contains functionally dependent subtasks and can sort
the list in O(n-log n) average time using one processor. In
general, the deeper we understand the problem to be
solved, the larger is the set of necessary precedence con-
straints and Lhe more efficient is the solution to the prob-
lem,

Many Al languages allow programmers to spccxfy the
sequence of executions in a serial computer, but the meta-
knowledge to specify the correct execution in a multipro-
cessing environment is incomplete or missing. In programs
written in pure declarative languages, the static aspects of
the represented knowledge are stressed, while the controls
are left to the compiler/interpeter. For instance, in a logic
program, a clause a: -~ a,, a,, a,, means that a is implied
by a;, a;, and a,, but nothing about their functional
dependencies is represented. The sequence of executions in
a serial computer is correct because a definite search order
is imposed, but the precedence relationships among sub-
goals are unknown to the scheduler in a multiprocessor.

In a number of Al languages such as Prolog, the type
and meaning of variables and functions are dynamic and
query dependent and cannot be completely specified at
compile time. To use metaknowledge in this regard, the
semantic meaning of subgoals and operations can be speci-
fied, which can be interpreted as precedence relationships
by the scheduler at run time. In logic programming, the
method to represent semantic information in a general and
efficient way is still open.

The metarules used must be sufficient and precise such
that all precedence relationships can be derived unambigu-
ously and easily. An important consideration is the scope
within which metarules can be applied. Common-sense
‘metarules should be included to operate on more specific
metarules specified by the programmers. Using the

metarules, the interpreter/complier generates the neces-
sary synchronization primitives.

Several researchers have addressed this problem.
Gallaire and Lasserre used metaknowledge expressed as a
general or special control strategy in a Prologlike inter-
preter {63]. In their approach, metaknowledge is made
explicit through metarules, each of which describes an
action to ‘be undertaken by the interpreter whenever the
interpreter focuses its attention on an object involved in
the metarule. In LP, a Prolog equation-solver learning '
system [154}, control information is expressed in a declara-
tive representation, and inference is performed at the met-
alevel. Search at the object level is replaced by search at
the *“meta” level. Research is necessary to provide a practi-
cal method to specify unambiguously the needed synchro-
nization through metaknowledge.

Statistical Metaknowledge: Statistical metaknowledge
can be used to enhance the computational efficiency of an
Al program. Warren used a simple heuristic and reordered
only the goals of compound queries written in pure Prolog
[190]; even so, he typically obtained query speedups of an
order of magnitude. The probability of success of a sub-
goal and the associated search cost have been found to be
useful in guiding the search of logic programs {69}, {114].
In gencral, clauses in Prolog with the same head should be
ordered such that those likely to succeed with a smaller
expected search cost are searched first. In contrast, sub-
goals within a clause should be ordered such that those
likely to fail with a smaller expected search cost are
searched first.

In many expert systcms the behe[and oLhcr measure-
ments of accuracy of the information have been widely
used. For example, in MYCIN, the confidence factor (CF)
is used to decide among alternatives during a consultation
session [21]. The CF of a rule is a measurement of the
association between premises and actions. A positive CF
indicates that the evidence confirms the hypothesis, while a
negative CF indicates disconfirming evidence.

The representation of metaknowledge about uncertainty
is an active topic in Al research. Several methods, such as
fuzzy logic and Dempster—Shafer theory, are being studied
currently. The proper choice is still unclear.

C. Al Languages and Programming

Conventional imperative languages are inefficient and
complex to program for symbolic and pattern processing;
hence the design of Al programming languages has had a
central role in the history of Al research. Frequently, new
ideas in Al were accompanied by a new language that was
natural for expressing the ideas.

To enhance programmer productvity and take full ad-
vantage of parallel processing, declarative languages have
been designed for Al programming. Function-, logic-, and
object-oriented languages are the major: programming
paradigms today. Lisp is an early and widely used func-
tional language; it is characterized by symbolic computa-
uons, rcprmmauon of information by lists; and recursion

WAH AND L1 SURVEY Of MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

as the only control mechanism. Numerous imperative fea-
tures have been incorporated into different dialects of
Lisp, so most Lisp programs are not actually declarative,
but a large enough subset allows declarative programming
1o be done.

Hybrids of programming paradigms have been devel-
oped. One simple approach to combining features from
two languages is to provide an interface between the two.
Examples include Loglisp (142}, Funlog [39), and Oil [36].
The provision of features from multiple languages within a
single unified framework, such as Lambda Prolog, has also
been proposed. A different approach called narrowing
involves replacing pattern matching in functional lan-
guages by unification {140). Logic programs can then be
expressed as functions. Recently, three commercial pro-
gramming tools Kee, Art, and Loops have been intro-
duced, which provide a mechanism to allow multiple
paradigms to be used in a program.

New Al languages feature large declarative power, sym-
bolic processing constructs, representing information by
lists, and using recursion as the only control mechanism.
These languages differ in their expressive power, their case
of implementation, their ability to specify parallelism, and
their ability to include heuristic knowledge. A language-
oriented Al computer will inherit all the features and
limitations of the language it implements. Note that no
single paradigm is appropriate for all problems, as one
language may be more “natural” than another, depending
on the requirements and the personal view. Hence intelli-
gent systems should allow multiple styles, including func-
tion. object-, and logic-oriented paradigms.

Expressive Power versus Ease of Implementation: Func-
tional languages, such as pure Lisp {122]. Backus’ FP [13],
Hope {14), and Val [123}, share many features with logic
languages, including the declarative nature, reliance on
recursion, and potential for exceution parallelism. Yet they
have vital individual features as well, First, in functional
programs, input and output variables are fixed, while in
logic programs, the modes of variables are query depen-
dent. For example, the statement z=plus (x, y) in a
functional program implies that x and y are inputs and 2
is output. In contrast, in a logic program. the goal sum
(X, Y. 2Z) has cight possible combinations of modes of
variables X, Y. and Z. For instance (in, out, in) means
that Y= Z~ X. Second, in a functional program, only
constant and constructor functions can appear in the out-
put; while in a logic program, logic variables can be used
as output, Third, pure {unctional programs are determinis-
tic, and no search is needed, while logic programs are
inherently nondeterministic and require searches. Finally,
functional programming provides the ability to write
high-order functions; that is, a function can be passed as
an argument. In contrast. Prolog is a first-order language.
although some logic programming languages are not.

The first three properties, ¢specially the nondirectional-
iy, make logic languages more expressive in the sense that
a single logic program corresponds 1o several functional
programs. Moreover logic and functional programs are

673

executed using resolution and reduction (or term rewriting),
respectively. Note that resolution can use input informa-
tion implicit in the patterns to cut down the size of the set
to be examined. For example, to solve the append subgoal,
append ({ P1. [Q. R), [1,2,3]). resolution makes no distinc-
tion between inputs and outputs and uscs the input infor-
mation (length of the lists) to select the appropriate clauses
and produce bindings for the variables involved. However,
in the corresponding functional formulation ([P}, [Q. R})
= split ({1,2,3]), all possible splits of {1,2,3] are produced,
and the one that splits the list into (P) and {Q, R} will be
selected. The previous example illustrates that reduction
can lead to overcomputation as compared to resolution.

The crucial disadvantage of functional programming lies
in the difficulty to represent the inherent nondeterminism
in Al problems. Although the recursive formulation and
the leftmost—outermost reduction of functional programs
enable depth-{irst searches naturally, it is difficult to write
a heuristic search program by a pure functional language
since heuristic searches are inherently history-sensitive. In
fact, best-first-search programs written in Lisp include a
lot of “setq” and “prog” statements, which are not pure
functional primitives {195]. Due to their less expressive
power for representing nondeterminism and their ineffi-
ciency in dealing with large data structures, pure func-
tional languages are unsuitable for general Al applications.

Although logic languages are more expressive, their im-
plementations, especially in a parallel processing environ-
ment, are more difficult due to the nondirectionality of
variables. The dynamic nature of modes requires run-time
analysis. In contrast, the run-time behavior of functional
programs is much simpler to control than that of logic
programs, particular in a parallel context. Techniques such
as graph reduction and data flow have been developed for
the parallel evaluation of functional languages. Further,
Lisp has only a few primitive operators and provides
unique list structures to compound data objects. These
features simplify the implementation of Lisp compiters/in-
terpreters. In fact, Scheme, a dialect of Lisp, has been
implemented in a single chip {166]. The implementation,
however, may be complicated by the dynamic nature and
primitives with side-effects introduced in practical func-
tional languages. Dynamic features, such as random ac-
cesses to linked lists, garbage collection, [requent function
calls, and dynamic binding of functions, incur extensive
run-time overheads.

Obviously, it would be advantageous if the simple con-
trols of functional languages could be implemented in the
more expressive logic languages. Considerable efforts have
been devoted to combining functional and logic program-
ming [39]. One approach to simplifying logic languages is
to introduce dircctionality of modes of variables [140].
This method degrades its expressive power to that of
first-order functional languages. Others attempt to extend
functional languages 1o achieve the expressive power of
logic languages but retain most of the underlying func-
tional simplicity. An example is Hope with unification
[34]. Unfortunately. up to now, no language exists that has

ok

673

‘ewriting),
informa-
of the set
d subgoal,
10 distinc:
iput infor-
ate clauses
. However,
PLIQ.RD
produced,
R} will be
reduction
solution,
mming lies
2terminism
lation and
I programs
ult to write
al language
ensitive. In
> include a
re not pure
. expressive
their ineffi-
pure func-
pplications,
re, their im-
ng environ-
tionality of
res run-time
[functional
1at of logic
niques such
veloped for
es. Further,
W provides
cets, These
mpilers/in-
. has been
ementation,
nature and
ctical func-
andom ac-
nt function
r exlensive

simple con-
nted in the
:fforts have
c program-
anguages is
ibles {140).
to that of
t to extend
> power of
lving func-
unification
sts that has

674 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY/AUGUST 1989

good expressive power while being flexible enough for
paralle! execution. Efforts are needed in this direction.

Specification of Parallelism: Since parallel processing
was not a consideration when most existing Al languages,
such as Lisp and Prolog, were designed, the precedence
restrictions implicit in a sequential execution order cannot
be detected easily in a parallel execution. To extend these
languages in a parallel processing environment, explicit
primitives may have to be included.

In a pure functional language (data-flow language), the
meaning of an expression is independent of the history of
computations performed prior to the evaluation of this
expression. Precedence restrictions occur as a result of
function application. Notions such as side effects do not
exist, hence all arguments and distinct elements in a dy-
namically created structure can be evaluated concurrently.
For example, to compute the average of numbers in a list
5. (1.(2.(3.nil))), using the function average(s) = div(sum(s),
count(s)). the computations of sum(1.(2.(3.nil))) and
count(1.(2.(3.nil))) can proceed concurrently. It has been
reported that implementations of functional languages on
parallel computers seems easier than that on sequential
ones [33].

Note that Lisp and many of its dialects are not pure
functional languages. Referential transparency is lost in
most Lisp languages due 10 side effects. The precedence
restrictions are represented not only in function calls but
also in procedures.

Several parallel Lisp languages have been proposed and
implemented. Multilisp, developed by Halstead, has been
implemented on a 128-processor Butterfly computer. Con-
currency in Multilisp can be specified by means of the
peall and future constructs [77). pcall embodies an im-
plicit fork join. For exampld, (pcall ABC) results in the
concurrent evaluation of expressions A, B, and C. The
form (furure X) immediately returns future (a pscudo
value) for X and creates a task to evaluate X concurrently,
hence allowing concurrency between the computation and
the use of X. When the evaluation of X yields a value, it
replaces the future. The future construct is good in ex-
pressing mandatory parallelism but is quite expensive in
the current Multilisp implementation.

Another paralle! Lisp language, Concurrent Lisp {163},
is extended from Lisp 1.5 and has three additional primi-
tive functions 10 specify concurrency: STARTEVAL for
process activation, and CR (critical region function), and
CCR (conditional critical region function) for mutual ex-
clusion. A multiprocessing program written in Concurrent
Lisp is a set of cooperating sequential processes, each of
which evaluates its given form. Similar 10 P/V primitives,
CR and CCR have enough power to express process inter-
actions. .

In Parlog, a parallel logic programming language [27],
every argument has a mode declaration that states whether
the argument is input {?) ot output (A). For example, in the
following statements, mode merge(7?).

‘nric;rg»c»(-[»UIX], y.[U)Z.]).w merge(X, Y, Z).

the first two lists are merged to form the result. In Concur-
rent Prolog {150}, a read-only annotation (?) is used. For
example,

merge([U1X]. Y.[U|Z]) « merge(X7, Y, Z).

.indicates that X must have a value before merge (X7, Y, Z).

can be invoked. Another way to specify the concurrency is
to use different symbols to distinguish between *paraliel
AND” and “sequential AND” such as “,” and “&" in Parlog.
Guarded clauses are used in Parlog and Concurrent Prolog
parily to specify parallelism. A guarded clause has a for-
mat, h:- gib., where g is the guard of the clause and b is
its bodv. Subgoals in the body can only be evaluated when
all subgoals in the guard have succeeded, and values
bound have been committed to the body.

Clearly, the previous approach of specifying parallelism
by users detracts from the objective of declarative pro-
gramming, which separates logic from control, or *what”
from “how.” Both mode declarations in Parlog and read-
only annotations in Concurrent Prolog impose a fixed
execution order on subgoals, which may be inefficient in
parallel processing. On the other hand, distinguishing the
guard from the body cannot completely specify the prece-
dence relationships because subgoals in the guard and
body may be dependent. The use of guards is also compli-
cated by a lack of general methodology to select subgoals
in the guard. Moreover, precedence relationships are a
partial order, so the distinction between “sequential AND”
and “parallel aND,” which are linear orders, is insufficient
to specify all precedence relationships. Lastly, owing to the
nondeterministic behavior of Al programs, users cannot
always specify the parallelism perfectly. A desirable paral-
lel Al language should allow its compiler to detect the
parallelism and schedule parallel executions as efficiently
as possible.

Object-Oriented Languages: (Qbject-oriented program-
ming holds promise as a framework for concurrent
programming that can be extended to data bases and
knowledge bases. It is expected that “object-oriented pro-
gramming will be in the 1980°s what structured program-
ming was in the 1970°s™ [141). A variety of object-odented
languages include Smalitalk [68], Loops {161}, Actor {6},

CommonObjects [158], and many others [191). Recently,

CommonLoops was suggested as a standard for object-ori-
ented extensions to Common Lisp by the Lisp community
[16]. : :
Object-oriented programming has been used to express
different concepts, but the concept of an object is the
common feature in these languages. Objects are entities
that combine the properties of procedures and data. Ob-
ject-oriented programming replaces the conventional oper-
ator-operand concept by messages and objects. All actions
in an object-oriented program result from sending mes-
sages among objects. A selector in the message specifics
the operation to be performed. An object responds to
messages using its own procedures (cailed methods) for
performing operations. Message sending supports data ab-
stractions, a concept that is necessary but not sufficient for

A S

WAH AND LI SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

the language to be object-oriented. Object-oriented lan-
guages must additionally support the management of data
abstractions using abstract data types and the composition
of abstract data types through inheritance. Inheritance is
used to define objects that are almost like other objects. Tn
fact, object-oriented programming should be characterized
by the nature of its type mechanisms rather than the
nature of its communication mechanisms; that is, object-
oriented programming can be defined as

object-oriented = data abstraction + data types
+ type inheritance.

Object-oriented programming is a paradigm for organiz-
ing knowledge domains while allowing communications.
Concurrent models, operating systems, and coordination
tools are built from low-level objects, such as processes,
queues, and semaphores. Hewitt's Actor model is a formal-
ization of the ideas of object-oriented languages: an actor
in his model is the analogue of a class or type instance but
considers the added effects of parallelism {83]. Computa-
tions in the Actor model are partial orders of inherently
parallel events having no assignment commands. The lan-
guage Act3, based on the Actor model, combines the
advantages of both object-oriented and functional pro-
gramming {5}. To support object-oriented programming,
appropriate objects representing data structures should
exist at the hardware level as objects of “machine data-
structure type.” This gives birth to the data-type architec-
ture [67). The Apiary network architecture is based on the
Actor model [84), [85).

D. Summary

A major problem in the representation level lies in the
large amount of knowledge needed to define a good repre-
sentation and the imprecise nature of this knowledge.
Efforts have been directed toward the automatic acquisi-
tion of domain knowledge and metaknowledge to lead 10 a
good representation and the design of a language that is
more expressive and yet easy to implement in a parallel
processing environment. The design of a systematic method
to generate alternate representations is particularly desir-
able. The methodology should start with the problem
specification, use automated tools 1o transform the prob-
lem specifications into problem representations, compare
alternate representations, and use metaknowledge to guide
the generation of different representations.

111, CoxtrOL LEVEL

There are four basic issues in the control level of com-
puter-system design. Maintaining consistency of knowledge
is important, as incomplete and inconsistent knowledge is
often dealt with in Al computations. As multiprocessing is
widely used in Al computations, related issues include the
decomposition of a problem (or program) into subprob-
lems, the synchronization of cooperating processes, and
the scheduling of processes for elficient execution. Al
though the design issues in the control level are similar to

673

those in traditional multiprocessing svstems. Al problems
often start with di{ferent representations, hence their solu-
tions in the conuol level may be very different from
traditional ones.

A. Consistency Maintenance

Traditional logic is monotonic because new zxioms are
only added to the list of provable theorems and never
cause any to be withdrawn., However, knowledge-based
systems on changing real-world domains have to cope with
the maintenance of consisient deduction. Classical sym-
bolic logic lacks the tools to deal with inconsistencies
caused by new information. Nonntonotonic reasoning has
been developed 1o deal with this problem {194].

Early attempts at consistency maintenance evolved
around explicit manipulation of statements. The major
system developed was Strips, which dealt with the manipu-
lation of blocks of various sizes. shapers, colors, and
locations by a robot {56]. In Strips, the entire data base is
searched for inconsistencies when the robot moves a block.
System applied inference refers to a sysiem in which the
architecture provides a mechanism to automatically main-
tain the consistency of the data base. The widely publi-
cized system of this nature was Microplanner {165]. In
Microplanner, the operators of Strips are replaced by
“theorems.” There is no automatic inference mechanism,
and the programmer is required to encode all possible
implications of a theorem. An improvement to Strips is
Doyle’s Truth Maintenance System (TMS) in which the
reasons for beliels are recorded and maintained. and these
beliefs can be revised when discoveries contradict assump-
tions {47]. To attach a justification 10 a fact. 3 TMS is
designed with a goal that efficiently links consequences
and their underlying assumptions. In TMS, each relation
has an associated 1N and OUT nodes. The statement at this
node is true if the statements in the 1N list are known to he
true and the statements in the OUT list are not true.

A different approach to consistency maintenance was
adopted in designing the IBM Yes/MVS expert system
that operates on a System 370 computer under the MVS
operating system {149} This expert system is used to
schedule a real-time system in which contradiction occurs
between the changed facts and the previous consequences.
The system removes inconsistent deductions and computes
new consequences in accordance with the changed facts.
The consistency maintenance mechanism has three parts:
recognition of inconsistencies, modification of the resul-
tant state to remove inconsistencies and rededuce consis-
tent consequence, and hidden control to ensure that ail
inconsistencies are detected and correcied properly.

Experience on the design of Yes/MVS shows a pitfall in
which correcting an inconsistency may cause another in-
consistency, which in the process of being corrected rein-
troduces the first inconsistency. It was also found that
knowledge represented in a stvle for consistency mainte-
nance turned out to be quite modular. and maintaining 1t
has been easier than initially expected.

873

stems. Al problems
as, hence their solu-
very different from

1use new axioms are
theorems and never
ser, knowledge-based
ins have to cope with
ction. Classical sym-
with inconsistencies
notonic recasoning has
sblem [194).
maintenance evolved
tatements. The major
dealt with the manipu-
shapers, colors, and
the entire data base is
12 robot moves a block.
a system in which the
to automatically main.
1ase. The widely publi-
Microplanner {165}, In
Strips are replaced by
c inference mechanism.
1o encode all possible
provement to Strips is
m (TMS) in which the
d maintained. and these
eries contradict assump-
n o a fact, a TMS is
nly links consequences
In TMS. each relation
s. The statement at this
N list are known to be
list are not true.
ency maintenance was
s/ MVS expert system
nputer under the MVS
ert system is used 1o
ch contradiction occurs
previous consequences.
ductions and computes
vith the changed facts.
anism has three parts:
dification of the resul-
s and rededuce consis-
trol to ensure that ail
Tected properiy.
MVS shows a pitfalt in
may cause another in-
[being corrected rein-
- was also found thu
Of CONSISICACY muinte-
lar. and mainwining
ed.

AT LEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY /AUGUST LYR9

Nonmonotonic logic has been demonstrated to be feasi-
tle but incflicient to implement in a large system. To allow
the avstem to be used in real time, hardware support has 1o
be provided on the titie-consuming operanions. Funda-
mental operations such as standard data base functions
may have to be implemented in hardware. The manage-
ment of a virtual memory system to support frequent
additions and deletions in 2 TMS is an important design
issue. The maintenance of the appropriate storage organi-
zation such that locality is maintained among relations
affecting each other is a nontrivial problem. Finally, paral-
lel processing may introduce additional problems of con-
sistency: efficient parallel architectures 10 process concur-
rent queries have 1o be investigated.

8. Purtitioning

In parailel computations, determining the granularity or
the minimum size of a subproblem that should be com-
puted by a single processor depends on the inherent paral-
lelism in the problem 1o be solved. Partitioning can be
implemented in different levels. In the higher levels, a
complex Al problem is partitioned into several functional
tasks, cach of which is processed by a functionally dis-
tributed computer system. In the lower levels, the control
graph of the program is partitioned into atomic operations,
each of which can be processed independently.

Partitioning can be performed by users at design time or
compilers at compile time or schedulers at run time. In the
first method, programmers use a paraile! language to spec-
ify and partition problems. These languages can define
parallel tasks .and the associated data communications,
Design issucs of parallel fanguages were discussed in Sec-
tion H-C. In this section, we discuss static and dynamic
partitioning. .

Inherent Paralielism and Granularity: The proper granu-
lanity of parallelism should be determined from the inher-
ent parallelism in the problem and the communication
oversheads involved in synchronization and scheduling. In
general, finding the optimal granularity is difficult; how-
ever, the degree of parallelism inherent in the problem may
provide useful information to guide the design of the
architecture,

An example to illustrate the choice of the proper granu-

larity is shown in the design of paralle! rule-base systems.
Forgy er al. observed that each OPS.5 production, when it
fires, manipulates a few (usually two or three) working
memory elements and affects only a small number (20-30)
of productions {60]. According 1o this analysis, it appears
that only limited speedups are available and that massive
parallelism may not be needed. To improve the degree of
parallelism, further efforts should be devoted to a) investi-
gating parallel match algorithms, b) designing efficient
partitioning strategics, and c) developing techniques to
rewrite sequential OPSS programs into versions more suit-
able for parallel processing,

Gupta estimated that the hardware utilization will be
around two pereent if the Rete match algorithm is mapped
dircctly onto the Dado architecture {74). He recommended

partitioning OPSS production rules into 32 subscts to
exploit the modest amount of production-level paralielism.

Based on Gupta's algorithm. Hillyer and Shaw studied
the exccution of production systems on the Non-Von
computer, a heterogencous system with 32 large processor
elements (LPE's) and 161000 small processor clements
(SPE’s) {88). Each SPE has 64 bytes of Ram to store a
condition-clement term. The large number of SPE’s, which
can be viewed as an active memory of LPE’s, perform
intraproduction tests in a massively associative fashion.
The performance is predicted at a rate of more than 850
productions fired per second using hardware comparable
in cost to a VAX 11,/780. This shows that two orders of
magnitude of speedup is achievable by properly partition-
ing production systems.

The partitioning algorithm wsed may have significant
effects on performance. If a majority of node activations
occur within a single partition. then the performance will
not be good. Some researchers have reported heuristics for
partitioning production systems, such as assigning produc-
tions that are sensitive to the same context. goal, or task to
different processors in a round-robin fashion. However,
preliminary results have shown that these strategies do not
bring significant improvement as compared to random
partitioning {134]. Intelligent partitioning strategies, using
knowledge previously known, remain to be developed.

In a multiprocessing system, it is hoped that equal-sized

tasks are distributed evenly to all processing units. The
above example, however, has shown that this may be
impractical because the problems to be solved may have
irregulasly structured control- and data-flow graphs and
data-dependent workloads. In practice, efficient heuristic
methods may have to be used to partition the task graph
into granules that can be executed in parallel. Important
refated issues 1o be studied in this case are the design of
heterogencous architectures and the dynamic distribution
of workload.
- Compiler Detection of Parallelism: Based on the data
dependencics in a program, a compiler may be able 10
detect the paralle! modules in it and panition the program
at compile time. An example is the post-compiler of Faim-
1. called an allocator, that performs data-flow analysis on
the procedural code and inference connectivity analysis on
the logic behavior 10 statically distribute the fragments 1o
the processing elements {11}, Similar work has been done
on partitioning programs for numeric applications {108].

Detection of parallelism in logic programs has centered
on detecting AND parallelism and Or parallelism. aND
parallelism in logic programs involves the simultancous
execution of subgoals in a clause. Due o shared variables,
concurrent execution of two or more subgoals in a clause
may result in binding conflicts. The detection of ann
parallelism is based on the analysis of input-output modes
of arguments in a subgoal. The input and output variablcs
in a logic program denote the direction-of binding trans-
fers during unification, in a way similar 1o the input and
output arguments in procedure calls. However, an argu-
ment in a logic program can be in the input mode in one
instance and in the oulput mode in another, or may

WAH AND LI SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

remain unbound. This dynamic behavior prohibits a com-
plete static analysis. Previous research, therefore, devel-
oped methods cither to provide primitives for users to
specify the modes or to assign. modes automatically to
arguments that can be analyzed at compile time and leave
the rest to be resolved at run time. Automatic detection of
AND parallelism at compile time can be classified into two
types.

a} Detection of restricted AND- parallelism: DeGroot
proposed a typing algorithm to detect restricted AND paral-
lelism {38). The essential concept is to monitor all poten-
tially executable subgoals and ensure that no two subgoals
will share one or more unbound variables if they execute in
parallel. A term in a clause can be in one of three types: 1)
grounded (or constant), 2) nongrounded nonvariable (an
input variable), or 3) variable (an uninstantiated variable).
To lower the run-time overhead of checking the contents
of terms, a partial check is made at compile time; only
terms of type 1 and that of type 3 with different variable
names are detected to be independent. All other possibili-
ties remain to be detected at run time. A consequence of
this partial check is that a term may occasionally be typed
100 strongly. :

b) Detection of coupled data-dependencies: Chang,
Despain, and DeGroot updated the above typing algo-
rithm by testing for coupled data dependencies at compile
time to reduce the run-time overhead [24), [40]. In this
scheme, variables in a clause are classified into three
groups: grounded, coupled, and independent. (An inde-
pendent variable is acither grounded nor coupled with
other vanables.) Two terms are said to be coupled if they
share at least a common unbound variable. Two variables
are in the same coupled group if the compiler detects that
there is a chance for them to be coupled. To find the group
a variable belongs to, a programmer has to supply the
activation mode of the query and the entry points of the
program. The compiler then classifics the variables in the
subgoals from left to right and derives the execution graphs
and backtracking based on the worse case activation mode
of each variable. Multiple execution graphs may be gener-
ated at compile time and the appropriate one selected at
run time. This scheme has been adopted in the PLM of the
Aquarius project [43].

Other heuristic methods of checking types at compile
time are also possible. Tung and Moldovan have also
investigated a number of heuristics 1o infer the modes of a
given variable and mark all possible input-output modes
of arguments in the clauses [178].

Compiler detection of parallelism has the advantages of
reduced run-time overhead and programming efforts. Its
disadvantage is that it may not be able to detect all the
inherent parallelism in a highly expressive Al language and
may have to be combined with user declaration and dy-
namic detection. The restrictions of compiler detection are
briefly summarized below.

Special cases: The extraction of parallelism from
data-dependency analysis is based on the assumption that
i two subgeals do not share any unbound variable, then
they can be exceuted concurrently, This assumption is not

677

true in some special features of the language, such as
outputs in Prolog. A solution to this problem is proposed
by DeGroot [41). -

Procedural dependencies: A procedural dependency
exists between two subgoals if their execution order is
fixed by their semantics. For example, in the following
clause,

a(X):—test_for_ok(.Y), work_on(X)

the subgoal “test_for_ok(X)" must be executed first,
Note that the subgoals in this example cannot be executed
concurrently even if X is grounded, because the second
subgoal may contain meaningless, inaccurate, or unbound
work unless the first subgoal is true. In declarative lan-
guages such as Prolog, it is difficult to specify the seman-
tics of subgoals without specifying its explicit control for
parallelism. A solution to this problem is proposed by
DeGroot {41} .

Exponential complexity: It may be difficult to define
all possible combinations of modes at compile time as they
grow exponentially with the number of potential output
variables.

Dynamic Detection of Parallelism: Many data dependen-
cies in a highly expressive Al language cannot be resolved
until run time. For example, a subgoal p(X,Y) in a logic
program may be called as p(X, X), which is a coupling
dependency on a query with coupled terms introduced at
run time. This dependency cannot be detected at compile
time. Due to the dynamic nature of Al computations, an
Al computer should provide a mechanism to map the
program and data onto hardware dynamically.

In general, the computational model can be represented
as a token-flow graph with four kinds of nodes: and-de-
composition, or-decomposition, and-join, and or-join. The
tokens passed along the edges can be demand 1okens, data
tokens, or control tokens. Conery and Kibler described an
AND/OR process system based on a producer-consumer
model that dynamically monitors variables and continually
develops data-dependency networks to control the order of
execution of subgoals, never allowing two potential proce-
dures with the same variable to be executed in parallel {31}
An ordering algorithm, called a connection rule, is used
dynamically to determine a generator for each unbound
variable. When a subgoal is completed, it is checked to
ensure that it did produce all variable bindings it was
supposed to; otherwise, the ordering algorithm is evaluated
again. Improvements were made 1o the above scheme to
reduce further the run-time overhead and extract more
paralielism [103], {118].

Since dynamic partitioning must be repeatedly executed
at run time, it may reduce the performance gains and
could even produce negative gains. The trade-off between
static partitioning by an intelligent compiler and dynamic
partitioning by a sophisticated operating system is an
important issue 1o be addressed in parallel Al processing.
Dynamic partitioning is closely related to dynamic
scheduling. and rehited issues will be discussed in i subse-
quent section,

677

anguage, such as
blem is proposed

lural dependency
xecution order s
m the following

~on(X)

e executed first,
annot be executed
cause the second
arate, or unbound
n declarative lan.
pecify the seman-
xplicit control for
n is proposed by

difficult to define
mpile time as they
" potential output

ny data dependen-
‘annot be resolved
p(X,Y) in a logic
lich is a coupling
rms introduced at
tected a1 compile
computations, an
nism to map the
ically.

an be represented
f nodes: and-de-
_and or-join. The
nand tokens, data
bler described an
oducer-consumer
s and continually
ntrol the order of
» potential proce-

d in parallet [31).

ion rule, is used

r each unbound

it is checked to

bindings it was

ithm is evaluated

ibove scheme to

d extract more

catedly executed
ance gains and
ade-off between
ler and dynamic
g system is an
I Al processing.
d to dynamic
ssed in o subse-

678 1EEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS. VOL. 19. NO. 4, JULY /AUGUST 1989

Bouleneck Analysis: An important issue in partitioning
is to decompose the problem evenly, so bottlenecks in
performance do not exist. It is easy to see that if a
bottleneck requires a fraction of the total computations,

then the speedup cannot be more than the reciprocal of

this fraction, regardless of how the rest is partitioned. It is
well-known that the performance bottleneck of an applica-
tion executing on a vector compuler is its scalar code.
Similarly, the performance bottleneck of a parallel Al
computation is its sequential part (sequential inference or
1/0). An important problem is to find the bottleneck in
the problem to be solved. .

Experience with designing the Fido vision system at
Carnegie~Mellon University has shown that an unbal-
anced partitioning algorithm can substantiaily degrade the
performance {104]. Adding Warp, a systolic system with
peak processing rate of 100 mflops, to a host (a Sun
computer and three “standalone processors”) seems only
10 double or triple the speed of the Fido loop. This means
that Warp is definitely underutilized; functions on the
standalone processors, either in preprocessing or post-
processing in using the Warp array, take up a substantial
amount of time. It is expected that proper partitioning of
vision algorithms will improve 'its performance signifi-
cantly.

C. Synchronization

Synchronization refers to the control of deterministic
aspects of computations, while scheduling handles mainly
the nondeterministic aspects. The objective of synchroniza-
tion is to guarantee the correctness of parallel computa-
tions such that the results of execution in parallel are the
same as those of a sequential execution. That is, the
parallel execution is serializable. In some nondeterministic
problems, the generation of the same set of results as a
sequential execution may not be necessary. For example, a
user may wish to obtain a small subset of answers from a
large set; the particular answers obtained do not have to
be the same in the serial and parallel cases. In this case
requirements on synchronization can be relaxed in parallel
processing. '

Many synchronization primitives used in Al processing
are the same as those used in conventional computers.
Examples include semaphores, test-and-set, full/empty
bits, fetch-and-add, and synchronization-keys. Addition-
ally, new or extended concepts related to synchronization
have been introduced by Al researchers, such as the black-
board and actors. In this section, we will survey the
synchronization of Al computations in the control and
data levels and mechanisms using shared memory and
message passing.

Two Levels of Synchronization: In procedural languages,
if a statement precedes another statement in the program,
the implication is that this statement should be executed
before the second statement if the two statements share
common variables; that is, control-level synchronization is
implicit when data-level synchronization is needed. This

implicit execution order may overspecify the necessary
precedence constraints in the problem.

On the other hand. if the tasks are specified as a set
using a declarative language, then control-level synchro-
nization is absent, and they can be processed concurrently
if they do not share common variables. If they have
common variables but are semantically independent, then
they can be processed sequentially in an arbitrary order to
maintain data-level synchronization.

The difficulty of specifying control-level synchronization
when tasks are semantically dependent is a major problem
in declarative languages such as Prolog. For example. the
decomposition of a set into two subsets in Quicksort must
be performed before the subsets are sorted. Hence the
tasks for decomposition and for sorting are both semanti-
cally and data dependent. To overcome this problem,
programmers are provided with additional tools, such as
specifying the input/output modes of variables in a Prolog
program, to specily control-level synchronization. These
primitives may have side effects and may not be able 10
specify completely all control-level synchronization in all
situations. These problems may have to be dealt with at
run time until sufficient information is available.

In general, process activations and deactivations can be
considered as control-level synchronization, while passing
arguments in procedure calls can be considered as data-
level synchronization. Both methods can be implemented
through a shared memory or by message transfers.

Shared Memory: In tightly coupled multiprocessor sys-
tems, synchronization is done through a shared memory.
Examples of such existing and proposed Al computers
include Aquarius [43], Concurrent Lisp machine {164}
Concert Multilisp machine {79}, and Parallel Inference

Engine (70]. In what follows, we will discuss synchroniza-
tion using blackboards and show methods using shared
variables in logic programs.

a) Blackboard: BHistorically, the blackboard model was
developed for abstracting features of the Hearsay-Il
speech-understanding system [50]. The model is usually
viewed as a problem-solving framework; however, we dis-
cuss only its control aspect here. The model consists of
three major components: a knowledge source, a black-
board data structure, and control. The knowledge 10 solve
the problem is partitioned into knowledge sources that are
kept independently. The data needed to solve the problem
concerned include input data, partial solutions, aliemna-
tives, and final solutions, which are kept in a global data
base. the blackboard. The blackboard can be divided into
multiple blackboard panels that correspond to the hierar-
chy of solution space. Knowledge sources result in changes
in the blackboard, which lead 10 a solution to the problem.
Communications and interactions among knowledge
sources take place solely through the blackboard. A moni-
tor is needed to ensure that no more than one knowledge
source can change the blackboard at one time. There are a
set of control modules that monitor changes in the black-
board and decidc the appropriate action 1o take next. The
sequence of knowledge-source invocations is dynamic.

WAH AND 11! SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

The blackboard model provides a useful framework for
diverse types of knowledge to cooperate in solving a prob-
lem and has been used to many Al applications. Its
implementation is similar to that of a critical section in
operating systems. In the pure model, the solution is buiit
one step at a time. Currently, extensive research on con-
current access to blackboards is conducted.

Hayes-Roth has proposed a more powerful blackboard
control architecture in which control information (meta-
knowledge) is also stored and updated on a separated
control blackboard {82). This approach adapts to complex
control plans as a whole. Operational strategies, heuristic,
and scheduling rules can change repeatedly in the course
of problem-solving.

b) Synchronization via shared memory variables: Al-
though Lisp contains a “pure function” subset, it also
supports many functions with side effects, such as rplaca,
rplacd, set, and input/output functions. These side effects
result from procedural dependencies and global (or free)
variables and resemble problems in conventional paraliel
languages. In fact, some shared-memory multiprocessors,
such as Concert and Butterfly, support both Muttilisp,
Simultaneous Pascal, and other parallel languages (79).
Muliilisp provides a simple method to wait for values
generated in the future. However, as in other languages,
procedure activations in Multilisp may not be well nested,
and an activation can terminate before another activation
it contains. This exception-handing problem has to be
addressed in programming the system [78].

Pure Prolog is a single-assignment language. Under this
restriction, the distinction between a shared-memory vari-
able and a communication channel vanishes. Since a logic
variable is not allowed to be rewritten through side effects,
conventional hardware-synchronization mechanisms, such
as test-and-set. full /empty-bit method and fetch-and-add,
are no longer needed in multiprocessing of pure logic
programs (119} The popular strategy taken now is to
provide the programmer with a mechanism to delay pro-
cess reduction until enough information is available so that
a correct decision can be made. Currently, the Concurrent
Prolog group is concentrating their efforts on Flat Concur-
rent Prolog. a subset of Concurrent Prolog. In Guarded
Horn Clause (GHC) {181}, ICOT's current choice for Ker-
nel Language 1, OR parallelism was eliminated from Con-
current Prolog, and a strict synchronization rule that sus-
pends a subgoal if it tries to write in the parent environ-
ment is adhered. This rule made the read-only annotation
somewhat superfluous. Although it simplifies the imple-
mentation of GHC, some expressive power is lost due to a
weaker notion of unification [168].

c) Joins: As similar to conventional fork-join primi-
tives, static joins can be used for synchronization in paral-
lel Al processing. For example, in multiprocessing of logic
programs, a parent node can activate its children in paral-
lel. and each child begins producing all possible answers.
The parent waits for each child to complete, collects their
answers, computes the “join™ of their answers, and passes
the entire set of results as its answer. This approach

679

uncovers the greatest AND parallelism in a logic program
but is efficient only if the program consists mostly of
deterministic procedures and clauses; that is, most vari-
ables have only a single binding. For nondeterministic Al
problems; joins are impractical because the nondetermin-
ism increases the uncertainty whether a given AND node
should be evaluated. Note that il joins are computed
dynamically, that is, a parent node collects separate an-
swers from each child as they are produced, then the
data-level synchronization employed forms a pipelined
computation called dynamic joins. This scheme will be
discussed later with respect to synchronization in semantic
networks.

Message Passing: In passing messages, a communica-
tion channel between the sender and receiver processes is
required. Synchronization via messages can be achieved
through software protocols or specialized hardware. Many
existing and proposed Al computers pass around messages
of arbitrary complexity and perform ¢omplex operations
on them. The computing elements are complex, and the
communication costs are high. Alternatives to passing mes-
sages are discussed in this section.

a) Massage passing in production systems: Reasoning
using forward chaining in production systems has different
behavior from reasoning using backward chaining. The
behavior in forward chaining is illustrated in OPSS, whose
interpreter repeatedly executes a match-select—act cycle.
In the match phase, all rules whose conditions are satisfied
by the current content of the working memory are selected.
This set is called the conflict set. In the select phase,
conflict resolution is performed to select one of the pro-
ductions in the conflict set. In the act phase, the working
memory is modified according to the action part of the
selected rule. Although the three phases can overlap in a
multiprocessing environment, synchronization must be
performed to ensure that the result is consistent with that
of a sequential execution: that is, all changes in the con-
flict set must be known prior to the completion of conflict
resolution in the next cycle.

Synchronization in the efficient Rete interpreter for
OPSS is based on a data-flow graph, which can be viewed
as a collection of tests that progressively determine the
productions ready to fire. Inputs 1o the graph consist of
changes to the working memory encoded in tokens. Qutput
tokens specify changes that must be made to the conflict
set. Tokens are sent via messages in a multiprocessing
system.

b) Maker passing and value passing: Marker passing
has been studied as an alternative to message passing. In
such systems, communications among processors are in the
form of single-bit markers. An important characteristic is
that there is never any contention: if many copies of the
same marker arrive at a node at once, they are simply
oRr’ed together. The order of markers to be passed is
determined by an external host,

Marker passing is suitable for systems implementing
semantic networks. Nodes in the semantic network are
mapped to processors in the system. An example of such a

6719

ogic program
its mostly of
S, most vari-
erministic Al
nondetermin-
en AND nodc
ire. computed
separate an-
ced, then the
i a pipelined
heme will be
n in semantic

I communica-
T ProCcesses is
1 be achieved
rdware. Many
und messages
lex operations
plex, and the
3 passing mes-

ns: Reasoning
s has different
chaining. The
1 OPSS, whose
ect-act cycle.
s are satisfied
Yy are selected.
select phase,
e of the pro-
, the working
n part of the
overlap in a
ion must be
lent with that
s in the con-
on of conflict

terpreter for
an be viewed
etermine the
ph consist of
kens. Qutput
) the conflict
ltiprocessing

rker passing
e passing. In
ofs are in the
racteristic is
opies of the
¢ are simply
¢ passed is

nplementing
network are
e of such a

680 LEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNEYICS. VOL. 19, NO. 4, JULY /AUGUST 1989

system is NETL (51]. A basic inference operation in se-
mantic networks is set intersection. Analogous to dynamic
joins in data bases, set intersections are implemented using
data-level synchronization. If an object with n properties
is searched, then n commands are sequentially broadcast
to all corresponding links, the associated nodes are marked,
and the node with n markers reports its identity to the
controller. Marker passing is adequate for many recogni-.
tion problems; however, it may not be sufficient to handle
general Al problems. The Connection Machine was origi-
nally developed to implement marker passing to retrieve
data from semantic networks, but its current version has
more powerful processing units that can manipulate ad-
dress pointers and send arbitrary messages.

In value passing, continuous quantities or numbers are
passed around the system, and simple arithmetic opera-
tions are performed on these values. Like marker-passing
systems, there is no contention in value passing: if several
values arrive at a node via different links, they are com-
bined arithmetically, and only one combined value is re-
ceived. In this sense, value passing systems can be consid-
ered as an analog computer. Examples of value-passing
system are the Boltzmann machine {52] and other “ neural”
computation systems [91).-.. - oo

Markcr-passmg systems do not graccfully handlc recog-
nition problems in which the incoming features may be
noisy. These problems can be better handled by value-
passing system in which each connection has an associated
scalar weight that represents the confidence on the incom-
ing values. Many iterative relaxation algorithms that have
been proposed for solving low-level vision and speech-un-
derstanding problems are ideally suited 10 value-passing
architectures.

¢} Object-Oriented and Actor Approaches: In the ob-
ject-oriented approach, and in particular, the Actor model,
an actor is a virtual computing unit defined by its behavior
when messages are received. Actors communicate via
point-to-point messages that are buffered by a mail sys-
tem. The behavior of an actor consists of three kinds of
actions: 1) communicate with specific actors of known
mail addresses; 2) create new actors; and 3) specify a
replacement that will accept the next message. Actor lan-
guages avoid the assignment command but allow actors to
specify a replacement. Replacements can capture history-
sensitive information, while allowing concurrent evaluation
of data-independent expressions [6). Message passing in
actors, which can be viewed as a parameter-passing mecha-
nism, differs from both call-by-value and call-by-reference.

D. Scheduling

- Scheduling is the assignment of ready tasks to available
processors. It is especially important when there is nonde-
terminism in the algorithm. Scheduling can be static or
dynamic. Static scheduling is performed before the tasks
are exccuted, while dynamic scheduling is carried out as
the tasks are executed.-The actions 10 be performed in
scheduling include 1) determination of dependent tasks, 2)

static reordering of tasks at compile time. 3) dynamic
selection of tasks at run time when free processors are
available, and 4) determination of the number of proces-
sors to solve a given class of problems cost-e{fectively. All
schedules can be considered as a search strategy based on
a search tree or search graph [136].

Identifying Dependencies: Parallel scheduling of Al pro-
grams is complicated by their dynamic functional and
shared-variable dependencies and the high expressive
power of many Al languages. Due to high expressive
power, the same program can be used to represent many
different dependencies, each of which may be scheduled
differently. Identifying dependencies at compile time is
also difficult due to the dynamic and nondeterministic
nature of executions. *

If functional dependencies exist among tasks, then the

scheduler must find these dependencies dynamically; if
there are no functional dependencies but only shared-vari-
able dependencies, then the scheduler has to compare the
merits of all possible schedules. Both cases are noi practi-
cal because of the high dynamic overhead. As discussed
carlier, solutions to detect dependencies are not satisfac-
tory at this time.
_- A viable approach is to identify the possible dependen-
cies at compile time, statically order all sibling nodes in a
search tree for each case, and schedule them according to 2
parallel depth-first strategy. A simple method was pro-
posed by Warren [190), which orders the subgoals in a
clause according to the number of possible solutions gener-
ated under the given subgoal. Our experimental simula-
tions indicated that the worst case evaluation time result-
ing from this method can be worse than the case without
reordering, but the best case time can be 2-30 times better.
Warren's method does not consider the effects of back-
tracking, the possible dependencies among subgoals and
clauses, and the overhead of finding the solutions. We have
proposed a method to represent the effects of backtracking
as an absorbing Markov chain {117]. By assuming that
sibling nodes are independent, they are reordered to mini-
mize the total expected search cost of the program. Heuris-
tics have been developed to reorder subgoals when they are
dependent and have side effects. Our preliminary simula-
tions indicated that the performance is substantially better
than that of Warren's method.

Selection Strategies: Suppose in the course of cvaluaung,
an Al program n active tasks and m processors are
available, 1 € m < n. The ideal scheduling algorithm should
select m active tasks such that this decision will minimize
the expected computational time. It is difficult to design
such an optimal selection algorithm because 1) the metrics
to guide the search are estimated heuristically and may be
fallible, 2) the metrics may be dynamically changing dur-
ing the search, and 3) problem-dependent precedence re-
strictions may exist that cannot be detected at compile
time. As a result, uncxpectcd anomalies may occur when
parallel processing is apphcd T IS

:The potential parallelism in an Al computation can be
classified mlo two “types: dclcrm:msuc pmllchsm and

WAH AND U1° SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

TABLE HI
SELECTING THE m SMALLEST NUMBERS FROM n NUMBERS

Time Complexity Space/Hardware Accuracy

in Each Complexity for of
Approach lteration Selection Sclection
Multistage :
selection Otlog m-log n) O(n-log?m) 1.0
network B
Single-stage O(m) O(n) 1.0
network :
No-wait o) Oo(m) 0.63
policy .

nondeterministic parallelism. Deterministic parallelism
refers to the concurrent execution of two or more units of
computations, all of which are necessary for the comple-
tion of the given job. The computational units can be
1asks, processes, and/or instructions. Since all units of
computation, which are performed concurrently, have AND
relations, this kind of parallelism is traditionally called
AND-parallelism. Nondeterministic parallelism refers to the
search of multiple potential solutions in parallel. Since all
potential solutions have oR relations, this kind of paral-
lelism is traditionally called or parallelism.

Although AND parallelism is treated as deterministic and
OR parallelism as nondeterministic in conventional studies,
the ‘selection of descendents of an AND task to evaluate is
also nondeterministic, as the aim is to select one that fails

as soon as possible. Hence scheduling is important for-

tasks that are nondeterministic but may not be specific
with respect 10 AND or OR paralielism.

In nondeterministic searches, heuristic information to
guide the scheduler in selecting nondeterministic tasks is
more important than the design of parallel processors, as
the number of processors is almost always smaller than the
number of proccssablc tasks.

As an cxample, in selecting nodes to evaluate in a
branch-and-bound search tree, which is an OR tree with
lower bound values to guide the search, the problem is
reduced to finding the m smallest numbers from n num-
bers. Table 111 shows the results obtained by three archi-
tectural approaches. In the first approach. a multistage
sclection network was designed to perform the sclection
exactly [185}). In the second approach, a single-stage ring
network was used to shuffle the nodes until a complete
selection was obtained {186]. In the third approach. a
no-wait policy was applied. It was recognized that the
heuristic information to guide the search might not always
be accurate. Hence the “most promising™ task in local
memory was always evaluated in each cycle, while the
fetch of the *“more promising™ tasks from other processors
was initiated. 1t was found that, on the average. a mini-
mum of 63 percent of the desirable 1asks to be sclected
were sclected by the no-wait policy without any additional
overhead on selection, assuming hat the m most promising
tasks were randomly distributed among the processors
[186). {187).

The management of the large memory space to store the
heurnistic information and the large number of intermediate

681

nodes in the search tree is another difficult problem to
solve. A trade-off must be made to decide for a given
amount of heuristic information and a given architectural
model whether the amount of heuristic information should
be increased or decreased, and how effective should the
new heuristic information be.

The memory space required to store enough heuristic -
information to avoid backtracking is often prohibitive. For
example, assume that all solution trees of a complete
binary AND/OR trec with n levels are equally likely. The
leaves are assumed to be OR nodes and are at level 0, while
the root is an AND node and is a level n. We have that
f(n), the total number of solution trees, satisfy the follow-
ing recurrence,

' 1, n=0orn=1
f(n) = {4/2(,:—2). n2

=270,

For n=0, there is only one node, hence there is one
solution tree. For n =1, the root is an AND node with two
descendents (see Fig. 1(a)). Again, this represents one
solution tree. For the general case, each node in level n -2
has f(n —2) solution trees (sec Fig. 1(b)). A solution tree
for the root at level n consists of picking two nodes in
level n—2, a total of four combinations. Each pair of
nodes selected in level n—2 represent two solution trees,
all possible combinations of which will yield a new solu-
tion tree. This case is depicted in Fig. 1(b).

Since all solution trees are equally likely, the entropy of
the heuristic information to guide the search at the root
such that a correct dccxsxon is always made without back-
tracking 1s

ftm)

I=Y

j=1

n) = 2(277%
7in)'ngf()=2(2 1),

which is exponential with respect to the height of the tree.

To manage the large memory space incurred by the
storage of intermediate subproblems that may lead to
solutions, we have investigated three alternatives to sup-
port branch-and-bound algorithms with a best-first search,
the results of which are displayed in Table IV. In a direct
implementation, the best-first search was implemented on
an existing virtual-memory system, a VAX 11/780 com-
puter running 4,2 BSD Unix. In the second approach, a
modified virtual memory with specialized fetch and re-
placement policies was designed to adapt to the character-
istics of the search algorithm. In the third approach, the
no-wait policy discussed earlier was used to select subprob-
lems in the main memory without waiting for the “most
promising™ subproblem to be accessed from the secondary
memory. Again the no-wait policy is superior in perfor-
mance [199).

The nondeterministic nature of computations and the
fallibility of heuristic guiding may lead to anomalies of

681

problem to
for a given
architectural
ation should
: should the

igh heuristic
shibitive. For

a complete
y likely. The
level 0, while
¥e have that
fy the follow-

1=1

there is one

node with two
‘epresents one
ein level n -2
A solution tree
two nodes in
Each pair of
solution trees,
{d a new solu-

the entropy of
ch at the root
without back-

-1),

ght of the tree,
curred by the
may lead to
atives to sup-
:st-first search,
IV. In a direct
plemented on
11/780 com-
d approach, a
fetch and re-
the character-
approach, the
select subprob-
for the *most
the secondary
rior in perfor-

tions and the
- anomalies of

682 _ 1EEE TRANSACTIONS ON SYSTEMS, AN, AND CYBERNETICS, VOL. 19, No. 4, juLy/AucusT 1989

K1)

1%9) 1«

(s}

1) Hn-1)

B g

Fig. 1. Binary AND/OR trees. (2) With two levels, (b) With n levels. {Circles represent AND nodes: boxes represent OR godes.)

TABLE IV
RELATIVE TIMES TO COMPLETE A BRANCH-AND-BOUND ALGORITHM FOR VARIOUS
MEMORY-MANAGEMENT TECHNIQUES

0/1 Integer 0/1 Knapsack

Approach Programming Problems Problems
Direct

-implementation 1 1
Modified

virtual 0.6 01

memory
No-wait
- policy 01 0.001

parallelism. When n processors are used to solve the
problem, the resulting speedup as compared to a single
processor may be less than one, greater than n, or between
one and n. The reasons for this anomalous behavior are
due to 1) ambiguity in the heuristic information; 2) more
than one solution node, and.3) approximation and domi-
nance tests [113]. As a result, subtrees. searched under
serial processing will be terminated, and the search will be
misled into a different part of the search tree.

In summary, scheduling is important when there.is non-
determinism in the problem. Good heuristic metrics to
guide the search are usually difficult to design and depend
on statistics such as success probabilities, search costs, and
problem-dependent parameters. Trade-offs must be made
among the dynamic overhead incurred in communicating
the heuristic-guiding information, the benefits that would
be gained il this information led the search in.the right
direction, and the granularity of tasks. In practice, the
merits of heuristic guiding are not clear, since the heuristic
information may.be fallible. As a result, some. Al archi-
tects do not schedule nondeterministic tasks in parallel.
The excessive overhead coupled . with the fallibility of
heuristic information also leads some designers to apply
only static scheduling to Al programs.

Pruning: Pruning can be considered as a negative form
of heuristic guiding which guides the search to avoid
subproblems that will never lead to better or feasible
solutions. Pruning is useful in both backward and forward
chaining. In backward reasoning, problems. are decom-
posed into smaller subproblems and evaluated indepen-
dently. There are usually redundant evaluations of -the
same task in different parts of the search tree when the

search trees are recursive. Likewise, in forward reasoning,

- the more primitive facts are reduced to form more gencral

facts until the query is satisfied. Unnecessary results are
generated because it is not clear which reduction will lead
to a solution of the problem.

. Pruning in search problems can be carried out by domi-
nanoc relations. When a node P, dominates another node
P, it implies that the subtree rooted at »; contains a
solution with a value no more (or no less) than the mini-
mum (or maximum) solution value of the sublrcc rooted
at P.

A£ an cxamplc cons:dcr two assignments P‘ and P, on
the same subset of objects to be packed into 2 knapsack in
the 0/1 knapsack problem. If the total profit of the objects
assigned to the knapsack for P, exceeds that of P, and the
total weight of the objects assigned in P, is less than that
of P,, then the best solution expandcd from P, domi-
nates P,

.When parallel processing is used, it is necessary to keep
the set of current dominating nodes (denoted by N,) in
memory [187]. These are nodes that have been generated
but not yet dominated. In general, N, can be larger than
the set of active nodes. A newly generated node, P, has to
bcoompared with all nodes in N, to see whether 2, or any
nodes in N, arc dominated.

If N, is small, it can be stored in a bank of global data
registers. However, centralized comparisons are inefficient
when N, is large. A large N, should then be partitioned
into m subsets, NJ,--+, N7}, and distributed among the
local memories of the m processors. A subproblem P
generated in processor {, is first compared with NJ; any
subproblems in N/, dominated by P, are removed. If P,

WAH AND LI SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

is not dominated by a subproblem in NJ, it is sent t0 a
neighboring processor and the process repeats. If it has not
been dominated by any node in N, P,; eventually returns
to processor { and is inserted into N

There are scveral problems associated with the use of
dominance tests in Al applications. First, dominance rela-
tions are very problem-dependent and cannot be derived
by a general methodology. Most of the dominance refa-
tions have been developed for dynamic programming
problems. To derive a dominance relation in a search
process, a dominance relation is hypothesized, and a proof
is developed to show that the dominance relation is cor-
rect. Some progress has been made on using learning-by-
experimentation to derive dominance relations for dy-
namic programming problems [200). However, automatic
proof techniques are largely missing. Moreover, leaming-
by-experimentation is applicable if there are a very small
number of dominance relations that are used frequently in
the problem. In many Al applications coded in Prolog,
there is a large number of dominance relations, each of
which is used infrequently in the program. Some special
cases can be solved, such as finding redundant computa-
tions in recurrences {25]. For the general case, it is some-
times difficult to find these dominance relations without
human ingenuity. Second. many dominance relations are
rclated to the semantics of the applications. A good lan-
guage o represent semantics is missing at this time. Lastly,
the overhead of applying dominance relations is usually
very high, and sequential and parallel implementations will
incur prohibitive overhead.

Granularity of Parallelism: When a parallel computer
system with a large number of processors is available, it is
necessary to determine the granularity of parallelism, that
is, the size of tasks that will be executed as an indivisible
unit in a processor. Since many Al problems can be
represented by AND/OR trees, some processors have (o be
idle when nodes close to the root are evaluated. The proper
number of processors should be chosen to match the
inherent parallelism in the problem to be solved.

The proper granularity is a function of the problem
complexity, the shape of the AND/OR tree, and the distri-
bution of processing times of tasks. Many of these parame-
ters are dynamically changing and data-dependent, and
only special cases can be analyzed {115]. An important
functional requirement for parallel processing of Al pro-
grams is the ability to dynamically distribute the workload.
For a system with a small granularity, an efficient inter-
connection network is required to transfer data and con-
trol information. In a loosely coupled system with a coarse
grain. an effective load balancing mechanism is also
needed.

IV. PROCESSOR LEVEL

The VLSI technology that has flourished in the past ten
vears has resulted in the development of many special-pur-
pose computers for Al processing, Architectures for Al
processing can be classified into the micro-, macro-, and

683

system-level architectures. Microlevel and macrolevel ar-
chitectures are discussed in the next two sections. Sections
IV-C-1V-G briefly discuss the system-level architectures.
A taxonomy of architectures implementing Al systems
have also been discussed by Hwang er al. [93].

A. Microlevel Architectures

The microlevel architectures consist of architectural de-
signs that are fundamental to applications in Al In the
design of massively parallel Al machines [52], some of the
basic computational problems recognized are set intersec-
tion, transitive closure, contexts and partitions, best-match
recognition, Gestalt recognition, and recognition under
transformation. These operations may not be unique to Al,
and many exist in other applications as well. Due to the
simplicity of some of these operations, they are usually
implemented directly in hardware, especially in systolic
arrays. Many other basic operations can also be imple-
mented in VLSI. Examples include sorting and selection,
computing transitive closure, string and pattern matching,
selection from secondary memories, dynamic programming
evaluations, proximity searches, and unification. _

Some Al languages such as Lisp differ from traditional
machine languages in that the program/data storage is
conceptually an unordered set of linked record structures
of various sizes, rather than an ordered indexable vector of
numbers or bit fields of a fixed size. The instruction set
must be designed according to the storage structure [160].
Additional concepts that are well-suited for list processing
are the tagged memory [127] and stack architectures.

B. Macrolevel Architectures

The macrolevel is an intermediate level between the
microlevel and the system level. In contrast to the mi-
crolevel architectures, macrolevel architectures are (possi-
bly) made up of a variety of microlevel architectures and
perform more complex operations. However, they are not
considered as a complete Al system but can be taken as
more complex supporting mechanisms for the system level.
The architectures can be classified into those that manage
data, such as dictionary machines. data base machines and
structures for garbage collection, and those for searching.

A dictionary machine is an architecture that supports
the insertion, deletion, and searching for membership,
extremum, and proximity of keys in a data base [148].
Most designs are based on binary-tree architectures: how-
ever, designs using radix trees and a small number of
processors have been found to be preferable when keys are
long and clustered [57).

Data base machines depend on an architectural ap-
proach that distributes the scarch intelligence into the
secondary and mass storage and relieves the workload of
the central processor. Extensive research has been carried
out in the past decade on optical and mass storage, back-
end storage systems, and data base machines. Earlier data
base machines developed were mainly directed toward

683

macrolevel ar-
‘tions. Sections
I architectures.
18 Al systems
3.

chitectural de-
in AL In the
2], some of the
re set intersec-
s, best-match
gnition under
¢ unique to Al,
¢ll. Due to the
iey are usually
illy in systolic
also be imple-
. and selection,
ttern matching,
¢ programming,
itton.
rom traditional
Jata storage is
cord structures
xable vector of
instruction set
structure [160].
list processing
itectures.

| between the
ISt to the mi-
res are (possi-
hitectures and
. they are not
n be taken as
e system level,
s that manage
machines and
for searching,
that supports
membership,
a base {148).
ectures; how-
| number of
vhen keys are

itectural ap-
nce into the
workload of
been carried
orage, back-
Earlier data
cted toward

gy s rea e -

684 \EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY/AUGUST 1989

general-purpose relational data base management systems.
Examples include the DBC, Direct, Rap, CASSM, associa-
tive array processors, text retrieval systems, and CAFS
{12], {92}, {109}. Nearly all current research on data base
machines to support knowledge data bases assume that the
knowledge data base is relational, hence research is di-
rected toward solving the disk paradox [17] and enhancing
previous relational data base machines by extensive paral-
lelism {128}, {143}, [153]. [173). Commercially "available
data base and backend machines have also been applied in
knowledge management (102}, {131].

Searching is essential to many applications, although
unnecessary combinatorial searches should be - avoided.
The suitability of parallel processing to searching depends
on the problem complexity, the problem representation,
and the corresponding search algorithms. Parallel algo-
rithms and architectures to support divide-and-conquer,
branch-and-bound, and AND/OR-graph search have been
developed {187}.

Extensive research has been carried out in supporting
dynamic data structures in a computer with a limited
memory space. Garbage collection is an algorithm that
periodically reclaims memory space no longer needed by
the users {30]. This is usually transparent to the users and
could be implemented in hardware, software, or a combi-
nation of both. For efficiency reasons, additional hardware
such as stacks and reference counters are usually provided.

C. Functional- Progra;nming-Orienxed
System-Level Archnectures

The objective of writing a functional prog,ram is to
define a set of (possibly recursive) equations for each
function [33). Data structures are handled by introducing a
special class of functions called constructor functions. This
view allows functional languages to deal directly with
structures that would be termed “abstract” in more con-
ventional languages. Moreover, functions themselves can
be passed around as data objects. The design of the
necessary computer architecture to support functional lan-
guages thus centers around the parallel evaluation of func-
tional programs (function-oriented architectures) and the
mechanisms of efficient manipulation of data structures
(list-oriented architectures),

In function-oriented architectures, the design issues cen-
ter on the physical interconnection of processors, the
method used to “drive” the computation, the representa-
tion of programs and data, the method to invoke and
contro! parallelism, and the optimization techniques {184].
Desirable features of such. architectures should include a
multiprocessor system with a rich interconnection struc-
ture, the representation of list structures by balanced trees,
and hardware supports for demand-driven execution, low-
overhead process creation, and storage management.

Architectures to support functional-programming lan-
guages can be classified as uniprocessor architectures,
tree-structured machines,. data-driven. machines, and de-
mand-driven machines. In a uniprocessor architecture, be-

sides the mechanisms to handle lists. additional stacks to
handle function calls and optimization for redundant calls
and array operations may be implemented {23}, [159]

(179]. Tree-structured machines usually employ lazy evalu-

ations, but suffer from the bottleneck at the root of the
tree {35], [120), {133). Data-flow machines are also natural
candidates for executing functional programs and have
tremendous potential for parallelism. However, the issue of
controlling parallelism remains unresolved. A lot of the
recent work has concentrated on demand-driven machines
which are based on reduction machines on a set of load-
balanced (possibly virtual) processors {28], {32], (100}, {101),

. {105}, {175}, {176].

List-oriented architectures are architectures designed to
support the manipulation of data structures and objects
efficiently. Lisp, a mnemonic for list processing language,
is a well-known language to support symbolic processing.
There are several reasons why Lisp and list-oriented com-
puters are really needed. First, to relieve the burden on the
programmers, Lisp was designed as an untyped language.
The computer must be able to identify the types of data,
which involves an enormous amount of data-type checking
and the use of long strings of instructions at compile and
run times. Conventional computers cannot do these effi-
ciently in software. Second, the system must periodically
perform garbage collection and reclaim unused memory at
run time. This amounts to around 10-30 percent of the
total processing time in a conventional computer. Hard-
ware implementation of garbage collection is thus essen-
tial. Third, due to the nature of recursion, a stack-oriented
architecture is more suitable for list processing. Lastly, list
processing usually requires an enormous amount of space,
and the data structures are so dynamic that the compiler
cannot predict how much space to allocate at compile
time. Special hardware to manage the data structures and
the large memory space would make the syslcm more
efficient [37), [58].

The carliest implementation of Lisp machmd were the
PDP-6 computer and its successors the PDP-10 and PDP-
20 made by the Digital Equipment Corporation (DEC)
{122}. The half-word instructions and the stack instructions
of these machines were developed with Lisp's requirements
in mind. Extensive work has been done for the DEC-sys-
tem 10’s and 20's on garbage collection to managc and
reclaim the memory space used.

" The dcsxgn of Lisp machines was started at \(IT’s Al
Laboratory in 1974. Cons, designed in 1976 [106), was
superseded in 1978 by a second generation Lisp machine,
the CADR. This machine was a model for the first com-
mercially available Lisp machines. including the Symbolics
LM2, the Xerox 1100 Interlisp workstation, and the Lisp
Machine Inc. Series III CADR, all of them delivered in
1981. The third-generation machines were based on addi-
tional hardware to support data tagging and garbage col-
lection. They are characterized by the Lisp Machines Inc.
Lambda supporting Zetalisp and LMLisp, the Symbolics
3600 supporting Zetalisp, Flavors, and Foriran 77, the
Xerox 1108 and 1132 supperting Interlisp-D and Smalltaik,

—YTAETE T

Y

WaAH AND LI: SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

and the Fujitsu FACOM Alpha Machine, a backend Lisp
processor supporting Maclisp. Most of the Lisp machines
support networking using Ethernet. The LMI Lambda has
a NuBus developed at MIT to produce a modular, expand-
able Lisp machine with multiprocessor architecture,

A single-chip processor to support Lisp has been imple-
mented in the MIT Scheme-79 chip [166]. Other experi-
mental computers to support Lisp and list-oriented pro-
cessing have been reported [44], [71]-[73], [130). [139),
[144]-{146), {170]. These machines usually have additional
hardware tables, hashing hardware, tag machanisms, and
list processing hardware, or are microprogrammed to pro-
vide macroinstructions for list processing. A Lisp chip
built by Texas Instruments implements over half a million
transistors on a 1-cm? chip for 60 percent of the functions
in a TI Explorer. The implementation on a single chip
results in five times improvement in performance {121].
Experimental multiprocessoring systems have been pro-
posed .to execute Lisp programs concurrently [75], {86],
(124), (125}, {163}, {164}, {193). Data-flow processing is
suitable for Lisp as these programs are generally data
driven [7), [8], [196], [197). Other multiprocessing architec-
tures to support list processing have been proposed and
developed [29), [45), [66), [84], [176).

Architectures have also been developed to support ob-
ject-oriented programming languages. Smalitalk, first de-
veloped in 1972 by the Xerox Corporation, is recognized as
a simple but powerful way of communicating with com-
puters. At MIT, the concept was extended to become.the
Flavors system. Special hardware and multiprocessors have
been proposed to directly support the processing of
object-oriented languages [96}, [138], [167), {183).

Owing to the different motivations and objectives
of various functional-programming-oriented architectures.
cach machine has its own distinct features. For example,
the Symbolics 3600 {127] was designed for an interactive
program development environment where compilation is
very frequent and ought to appear instantancous to the
user. This requirement simplified the design of the com-
piler and results in only a single-address instruction for-
mat, no indexed and indirect addressing modes, and other
mechanisms to minimize the number of nontrivial choices
to be made. On the other hand., the aim in developing Soar
{183] was to demonstrate that a reduced instruction sct
computer (RISC) could provide high performance in an
exploratory programming environment. Instead of mi-
crocode. Soar relied on software 1o provide complicated
operations. As a result, more sophisticated software tech-
niques were used.

D. Logic- and Production-Oriented
Svstem-Level Architeciures

Substantial research has been carried out on parallel
computational models of utilizing AND parallelism. or
parallelism, and stream parallelism in logical inference
svstems, production svstems and others. The basic prob-

685

lem on their exponential complexity remains open at this
time. :
Sequential Prolog machines using software interpreta-

tion, emulation, and additional hardware support such as

hardware unification and backtracking [174] have been
reported. Single-processor systems for production systems
using additional data memories [110] and a RISC architec-
ture [60} have been studied.

New logic programming languages suitable for parallel
processing have been investigated. In particular, the use of
predicate logic {49}, extensions of Prolog to become Con-
current Prolog (150}, Parlog [26), and Delta-Prolog [137),
and parallel production systems [182] have been devel-
oped. One interesting parallel language is that of systolic
programming, which is useful as an algorithm design and
programming methodology for high-level-language parallel
computers {151].

Several prototype multiprocessor systems for processing
inference programs and Prolog have been proposed, some
of which are currently under construction. These systems
include multiprocessors with a shared memory {18]. ZMOB,
a multiprocessor of Z80's connected by a ring network
[192), Aquarius, a heterogencous multiprocessor with a
crossbar switch {43), and Mago, a cellular machine imple-
menting a Prolog compiler that translates a Prolog pro-
gram into a formal functional program {107}. Techniques
for analyzing Prolog programs such that they can be
processed on a data-flow architecture have been derived
19, [15], {81}, {95), [97). An associative processor has been
proposed to carry out propositional and first-order predi-
cate calculus [46).

Dado is a multiprocessor system with a binary-tree
interconnection network that implements parallel produc-
tion systems [162]. Non-Von is another tree architecture
used to evaluate production systems at a lower level of
granularity [152).

E. Distributed Problem-Solving Systems

Knowledge in an Al system can sometimes be repre-
sented in terms of semantic nets. Several proposed and
experimental architectures have been developed. NETL
[51) and its generalization to Thisde [52] consist of an
array of simple cells with marker-passing capability to
perform searches, set-intersections. inheritance of proper-
ties and descriptions, and multiple-context operations on
semantic nets. Thinking Machine Inc.’s Connection Ma-
chine is a cellular machine with 65536 processing ele-
ments. It implements marker passing and virtually recon-
figures the processing elements to match the topology of
the application semantic nets [87]. Associative processors
for processing semantic nets have also been proposed
[126).

Some Al architectures are based on frame representa-
tions and may be called object-oriented architectures. For
example. the Apiary developed at MIT is a2 multiprocessor
actor svstem [84]). An efficient Al architecture may also
depend on the problem-solving strategy. A general form of

685
ins open at this

ware interpreta-
support such as
174} have been
Wuction systems
4 RISC architec-

able for parallel
icular, the use of
10 become Con-
:lta-Prolog {137},
ave been devel-
s that of systolic
rithm design and
language paraliel

ns for processing
1 proposed, some
0. These systems
nory [18]. ZMOB,
/ a ring petwork
processor with a
ir machine imple-
tes a Prolog pro-
[107]. Techniques
hat they can be
ave been derived
rocessor has been
first-order predi-

th a binary-tree
 paralle! produc-
tree architecture
a lower level of

etimes be repre-
al proposed and
eveloped. NETL
2} conmsist of an
ng capability to
tance of proper-
Xt operations on
Connection Ma-
processing ele-
virwally recon-
the 1opology of
ative processors
been proposed

ame representa-
rchitectures. For
1 multiprocessor
ccture may also
general form of

686 1EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULY/AUGUST 1939

architectures called connectionist architectures evolve from
implementing neurons in brains {53}. The basic idea of the
Boltzmann machine is the application of statistical mechan-

ics to constrained searches in a parallel network {89]. The |

most interesting aspect of this machine lies in its domain-
independent learning algorithm {3},

With the inclusion of control into stored knowledge, the
resulting system becomes a distributed problem-solving
system. These systems are characterized by the relative
autonomy of the problem-solving nodes, a direct conse-
quence of the limited communication capability. With the
proposed formalism of the contract net, contracts are used
to express the control of problem solving in a distributed
processor architecture {157). Related work in this area
include Petri-net modeling [135), distributed vehicle-moni-
toring testbed {112, distributed air-traffic control system
[22), and modeling the brain as a distributed system {61],
[65}).

F. Hybrid Systems

It has been suggested that a combination of Lisp, Pro-
log, and an object-oriented language such as Smalltalk
may be a better language for Al applications [169]. This
approach can be carried out in two ways. First, multiple
Al languages can be implemented using microprogram-
ming on the same computer, so programs written in these
languages can be executed independently. For example,

. Prolog is available as a secondary language on some Lisp

machines. A version of a Prolog interpreter with a speed of
4.5 KLIPS (kilo lines of interpreted statements) has been
developed for Lisp Machine’s Lambda. A second approach
is to design a language that combines the desirable features
from several Al languages into a new language. Some of
the prototype multiprocessors, such as ZMOB and Mago,
were developed with a flexible architecture that can imple-
ment object-oriented, functional, and logic languages.
FAIM-1, a multiprocessor connected in the form of a
twisted hex-topology, was designed to implement the fea-
tures of object-oriented, functional, and logic program-
ming in the Oil programming language {11]. Currently, a
parallel version of Scheme similar to MultiLisp is being
implemented. Hope, a hybrid functional and logic lan-
guage, is currently being implemented on Alice [156].

G. Fifth Generation Co)npulc} Projcm

The fifth generation computer system (FGCS) project
was started in Japan in 1982 to further the research and
development of the next generation of computers. It was
conjectured that computers of the next decade will be used
increasingly for nonnumeric data processing such as sym-
bolic manipulation and applied Al The goals of the FGCS

* project are

a) to implement basic mechanisms for inference, asso-
ciation, and learning in hardware;

b) to prepare basic Al software to utilize the full powcr
of the basic mechanisms implemented; .

¢) to implement the basic mechanisms for retrieving
and managing a knowledge base in hardware and
software;

d) to use pattern recognition and Al research achieve-
ments in developing user-oniented man—-machine in-
terfaces; and

€) 1o realize supporting environments for resolving the
“software crisis” and enhancing software produc-
tion,

The FGCS project is a marriage between the implemen-
tation of a computer system and the requirements speci-

“fied by applications in Al, such as natural-language under-

standing and speech recognition. Specific issues studied
include the choice of logic programming over functional
programming, the design of the basic software systems to
support knowledge acquisition, management. learning, and
the intelligent interface to users, the design of highly
parallel architectures to support inferencing operations,
and the design of distributed-function architectures that
integrates VLSI technology to support knowledge data
bases [99], {177], [180}.

A first effort in the FGCS project is to implement a
sequential inference machine, or Sim [198]. Its first imple-
mentation are two medium-performance rmachines for soft-
ware development known as personal sequential inference
(PSI) machine and cooperative high-speed inference (CHI)
machine [171). The PSI and CHI machines have further
been implemented in custom LSI's into PSI-11 and CHI-II.
The PSI-II has been found to have a performance that
ranges {rom 100 to 333 KLIPS for various benchmark
programs. Another architectural development is on the
knowledge-base machine, Delta {129].

The current efforts in the intermediate stage are on the
parallel inference machine, or PIM, and the multi-PSI
computers [129]. As an intermediate target. PIM-1 is being
built now. It consists of about 100 processing tlements,
with a total speed of 10-20 MLIPS (mega lines of inter-
preted statements) including overhead caused by Pimos.
Eight processing elements with private caches in a cluster
are connected through a shared memory, and a switching
network is used 1o connect the clusters. Each processing
element will be implemented in standard-cell VLSI chips.
The machine language is KL1-B based on GHC (147}
Lastly, the development of the basic software system acts
as a bridge to fill the gap between a highly parallel
computer architecture and knowledge information process-
ing [62]. The Pimos was designed as a single unified
operating system to control the parallel hardware [172). It
was built on the multi-PSI (version 2) system. Each PE
consists of a PSI-1I, 16-MW main memory, and interfaces
to the mesh interconnection network. The KL1-B interpre-
tor is implemented in firmware and attains a speed of
100-150 KLIPS [94].

In the final stage, a parallel computer with about 1000
processing elements and attaining 100 mlips to 1 GLIPS
(gega lincs of interpreted statements) is expected o be
built. Although the projects are progressing well, there is a

e e e gy,

WAH AND LI: SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

recognition that more research is needed on exploiting
intelligence rather than brute-force parallelism. The pro-
posal of the sixth generation computer system project is an
indication of efforts in this direction [4].

The Japanese FGCS project has stirred intensive re-
sponses from other countries. The British project is a
five-year $550 million cooperative program between gov-
ernment and industry that concentrates on software en-
ginecring, intelligent knowledge-based systems, VLSI
circuitry, and man-machine interfaces. Hardware develop-
ment has focused on Alice, a Parlog machine using data-
flow architectures and implementing both Hope, Prolog,
and Lisp [156]. The European Commission has started the
$1.5 billion five-year European Strategic Program for Re-
search in Information Technologies (Esprit) in 1984 (2].
The program focuses on microelectronics, software tech-
nology, advanced information processing, computer-
integrated manufacturing, and office automation. In the
U.S., the most direct response to the Japanese FGCS
project was the establishment of the Microelectronics and
Computer Technology Corporation in 1983 {1]. The project
has an annual budget of $50-$80 million per year. It has a
more evolutionary approach than the revolutionary ap-
proach of the Japanese and would yield technology that
the corporate sponsors can build into advanced products
in the next 10-12 years. Meanwhile, other research organi-
zations have formed to develop future computer technolo-
gies of the U.S. in a broader sense. These include Darpa’s
Strategic Computing and Survivability, the semiconductor
industry's Semiconductor Research Corporation, and the
Microelectronics Center of North Carolina (1]

Y. DesiGN Decistons oF Al-ORIENTED COMPUTERS

The appropriate methodology to design an Al computer
should utilize a top-down design approach: functional
requirements should be developed from the problem re-
quirements, which are mapped into hardware based on
technological constraints. Similar to the design of conven-
tional computers, a bottom-up design approach is not
adequate since special requirements of the applications
may not be satisfied. Before a design is made, it is impor-
tant to understand the applicability of the system to a class
of problems and then to strive for high performance in a
prototype implementation. Thus knowing that an m-
processor system gives a k-fold increase in performance
over a single processor is more important than knowing
the maximum instruction rate of a prototype. Proper un-
derstanding and analysis of the problem is probably more
important than applying brute-force parallelism randomly
in the design.

The issues classified in Table Il provide a view to the
sequence of design decisions made in developing a
special-purpose computer to support Al processing. The
various approaches can be classified as top-down, bottom-
up. and middie-out.

Top-Down Design Decisions: This approach starts by
defining, specifying, refining, and validating the require-

687

ments of the application, devising methods to collect the
necessary knowledge and metaknowledge, choosing an ap-
propriate representation for the knowledge and meta-
knowledge, studying problems related to the control of

“correct and clficient exceution with the given representi-

tion scheme, identifying functional requirements of com-
ponents, and mapping these components into software and
microlevel, macrolevel and system-level architectures sub-
ject to technological and cost constraints. The process is
iterative. For example, the representation of knowledge
and the language features may be changed or restricted
when it is discovered that the functional requirements
found cannot be mapped into a desirable and realizable
system with the given technology and cost. In some pro-
jects, the requirements may be very loose and span across
many different applications. As a result, the languages and
knowledge-representation schemes used may be oriented
towards general-purpose usage. The Japanese FGCS pro-
ject is an attempt to use a top-down approach to design an
integrated user-oriented intelligent system for a wide spec-
trum of applications.

Bottom-Up Design Decisions: In this approach, the de-
signers first design the computer system based on a com-
putationa] model, such as data flow, reduction, and control
flow, and the technological and cost limitations. Possible
extensions of existing knowledge-representation schemes
and languages developed for Al applications are imple-
mented. Finally, Al applications are coded using the repre-
sentation schemes and languages provided. This is proba-
bly the most popular approach to apply a general-purpose
or existing system for Al processing. However, it may
result in inefficient processing, and the available represen-

" tation schemes and languages may not satisfy the applica-

tion requirements completely, ZMOB and Butterfly Multi-
processor are examples in this class.

Middle-Owt Design Decisions: This approach is a short
cut to the top-down design approach. It starts from a
proven and well-established knowledge-representation
scheme or Al language (most likely developed for sequen-
tial processing) and develops the architecture and the
necessary modifications to the language and representation
scheme to adapt 1o the application requirements and the
architecture. This is the approach taken by many designers
in designing special-purpose computers for Al processing.
It may be subdivided into top-first and bottom-first, al-
though both may be iterative. In a top-first middle-out
approach, studies are first performed to modify the lan-
guage and representation scheme to make it more adapt-
able to the architecture and computational model. Primi-
tives may be added to the language 10 facilitate parallel
processing. Nice features from several languages may be
combined. The design of the architecture follows. Alice
and FAIM-1 are examples of architectures designed using
this approach. In the bottom-first middle-out approach,
the chosen language or representation scheme is mapped
directly into architecture by providing hardware support
for the overhead-intensive operations. Applications are
implemented using the language and representation scheme

687

ds to collect the
choosing an ap-
:dge and meta-
» the control of
uven representa-
rements of com-
nto software and
rchitectures sub-
5. The process is
m of knowledge
ged or restricted
nal requirements
le and realizable
»st. In some pro-
: and span across
he languages and
may be oriented
mese FGCS pro-
oach to design an
1 for a wide spec-

ipproach, the de-
based on a com-
ction, and control
itations. Possible
entation schemes
alions are imple-
d using the repre-
-d. This is proba.
a general-purpose
However, it may
vailable represen-
tisfy the applica-
| Butterfly Multi-

broach is a short
It stants from a
ge-representation
oped for sequen-
tecture and the
d representation
rements and the
y many designers
or Al processing,
bottom-first, al-
-first middle-out
modify the lan-
e it more adapt-
al model. Primi-
acilitate paraliel
nguages may be
e follows. Alice
s designed using
¢-out approach,
eme is mapped
irdware support
\pplications are
entation scheme

N

688 1EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19. NO. 4, JULY /AUGUST 1989

provided. Lisp computers are examples designed with this
approach.

Vi. CONCLUSION

Although many Al computers have been proposed or
built, Lisp computers are probably the only architecture
that have had widespread use for solving real Al problems.
This is probably due to the large investment in software
for many applications coded in Lisp. At present, there is
no comprehensive methodology for designing parallel Al
computers. Research on Al in the past three decades and
the recent experience in building Al computers have led to
a view that the key issue of an Al system lies in the
understanding of the problem rather than efficient soft-
ware and hardware. In fact, most underlying concepts in
Al computers are not new and have been used in conven-
tional systems. For example, hardware stack and tagged’
memory were proposed before they were used in Lisp
computers. However, the above argument does not imply
that research on hardware and architectures is not neces-
sary.

To support efficient processing of Al applications, re-
search must be done in developing better Al algorithms,
better Al software management methods, and better Al
architectures. The development of better algorithms can
lead to significant improvements in performance. Many Al
algorithms are heuristic in nature, and upper bounds on
performance to solve these problems have not been estab-
lished as in traditional combinatorial problems. As a con-
sequence, the use of better heuristic information, based on
common-sense or high-level metaknowledge and better
representation of the knowledge, can have far greater
improvement in performance than improved computer ar-
chitecture, Automatic learning methods to aid designers in
systematically acquiring and managing new knowledge to
be available in the future are very important.

Better Al software management methods are essential in
developing more efficient and reliable software for Al
processing. Al systems are usually open and cannot be
defined based on a closed-world model. The language must
be able to support the acquisition of new knowledge and
the validation of existing knowledge. Probabilistic reason-
ing, fuzzy knowledge, and nonmonotonic logic may have
to be supported. The verification of the correctness of an
Al program is especially difficult due 1o the imprecise
knowledge involved and the disorganized way of managing
knowledge in a number of declarative languages and repre-
sentation schemes. Traditional software engineering design
methodologies must be extended to become knowledge
engineering to accommodate the characteristics of knowl-
edge in Al applications. Automatic programming is impor-
tant 10 aid designers to generate the Al software from
specifications.

The role of paralle! processing and innovative computer

architectures lies in improving the processing time of solv-

ing a given Al problem. It is important to realize that
parallel processing and better computer architectures can-

not be used 1o overcome the exponential complexity of
exhaustive enumeration (unless an exponential amount of
hardware is used) and are not very useful to extend the
solvable problem space. For a problem with a size that is
100 large 10 be solved today by a sequential computer in a
reasonable amount of time, it is unlikely that it can be
solved by parallel processing alone, even if a lincar speedup
can be achieved. The decision 10 implement a given algo-
rithm in hardware depends on the complexity of the prob-
lem it solves and its frequency of occurrence. Problems of
low complexity can be solved by sequential processing or
in hardware if they are frequently encountered: problems
of moderate complexity should be solved by parallel pro-
cessing; and problems of high complexity should be solved
by a combination of heuristics and parallel processing. In
many Al systems developed today, tasks and operations
implemented in hardware are those that are frequently
executed and have polynomial complexity. These tasks or
operations are identified from the languages or the knowl-
edge-representation schemes supported. The architectural
concepts and parallel processing schemes applied may be
either well-known conventional concepts or new concepts
for nondeterministic and dynamic processing. The role of
the computer architects lies in choosing a good representa-
tion, recognizing overhead-inteusive tasks to maintain and
leamm metaknowledge, identifying primitive operations in
the languages and knowledge-representation schemes, and
supporting these tasks in hardware and software.

REFERENCES

1] Special Issue on Tomorrow's Computers. [EEE Spectrum, vol. 20,
no. 11, pp. 51-58, 69, Nov. 1983.

{21 “ESPRIT: Europe chalienges U.S. and Japanese competitors.”
Future Generation Computer Syst., vol. 1, no. 1, pp. 61-69, 1984.

{31 D. H. Ackley, G. E. Hinton, and T. J. S¢jnowski, “A learning
algorithm for Boit hines,” Cognitie Sci., vol. 9, no. 1.
pp. 147-169, 1985,

[4] Science and Technology Agency, Promotion of Research and De-
velopment on Electronic and Information Systems that May Comple-
ment or Substitute for Human Inselligence. Tokyo, Japan: Science
and Technol. Agency. Tokyo, 1985,

{5] G. Agha and C. Hewitt, “ Concurrent programming using actors:
Exploiting ltarge-scale parallelism.” Lecrure Notes in Comput. Sci..
no. 206, pp. 19-41, Dec. 1985,

[6] G. Agha, Actor: A Model of Concurrent Compuiation in Dis-
tributed Systems. Cambridge. MA: MIT Press, 1986.

(N M. Amamiya, R. Hasegawa, O. Nakamura, and H. Mikami, A
list-processing-oriented data flow machine architecture,™ in Proc.
Nat. Computer Conf., pp. 144-151, AFIPS Press, 1982,

{8] M. Amamiya and R. Hasegawa, “Dataflow computing and cager
and lazy cvaluations,” New Generation Computing, vol. 2, no. 2,
pp. 105-129, 1984,

9] M. Amamiya, M. Takesue, R. Hascgawa. and H. Mikami, “Imple-

tion and cvaluation of a list-processing-oriented data flow
machine,” in Proc. 13th Annw. Int. Symp. Computer Archuecture.
Tokyo, Japan, June 1986, pp. 10-19.

{10] G. M. Amdahl, “Tampered cxpectations in massively pasalicl
processing and semiconductor industry,” presented at the 2nd [nt.
Conl. Supcrcomputing, Santa Clara, CA, May 1987.

{11] J. M. Anderson e1 al., “The architecwure of FAIM.1" [EEE
Computer, vol. 20, no. 1, pp. 55-65, Jan. 1987. .

{12] E. Babb, *Joined normal form: A storage encoding for reladona!
databases,” Assoc. Compur. Mach. Trans. Dawabase Sysi., vol. 7.
no. 4, pp. S¥8-614, Dec. 1982, oo

WAH AND L1: SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

3
ns

{15

(18]

1

(18}

(19]
{20}

{21

(23]

[24]

{29]

(26]

{27

128

{29

(30}

{31

135}

(36]

{37
[3K]
139}

[40]

J. Backus, “Function-level computing.” JEEE Spectrum, vol. 19,
no. 8, pp. 22~27, Aug. 1982,

R. Bailey, “A Hope wtodal,” Byre, vol. 10. no. 8, pp. 235-258,
Aug. 1985,
L. Bic. " Execution of logic programs on a dataflow architecture,”

in Proc. 11th IEEE/ACM Annu. Int. Symp. Computer Architec-
sure, June 1984, pp. 290-296.

D. G. Bobrow, et al., CommonLoops Merging common Lisp
and object-oriented programming.” Nerox Palo Alto Rescarch
Center, Tech. Rep. ISL-85-8, Aug. 1985.

H. Boral and D. DeWitt, * Database machine: An idea whose time
has passed?™ Database Machines, pp. 166-167, 1983.

P. Borgwardt, “Parallel Prolog using stack scgments on shared-
memory multiprocessors,” in Proc. JEEE Int. Symp. Logic Pro-
gramming, pp. 2-11, Feb. 1984,

K. Bowen, “Meta-level programming and knowledge representa-
tion," New Generation Computing, vol. 3. no. 4, pp. 159-383, 1985,
R. Brachman and H. Levesque, Ed.. Readings in Knowledge Repre-
sentation. Los Alos, CA: Morgan Kaulmann, 1985,

B. G. Buchanan and E H. Shortlilfe, Rule-Based Experis Pro-
grams: The MYCIN Experiments of the Stanford Heuristic Pro-
gramming Project. Reading. MA: Addison-Wesley, 1984,

S. Cammarata, D. McArthur, and R. Steeb, “Strategies of cooper-
ation in distributed problem solving,” in Proc. 8th Int. Joint Conf.
Artificial Inselligence, Aug. 1983. Los Altos, CA: Kaufmann,
pp. 167-710.

M. Castan and E. 1. Organick, *M3L: An HLL-RISC Processor
for Parallel Execution ol FP-Language Programs,” in Proc. 91h
Annu. [EEE/ACM Symp. Compurer Architecture, 1982, pp.
239-247.

1. H. Chang, A. M. Despain, and D. DeGroot, “AND-panJlelnsm
of logic programs based on a static data dependency analysis,” in
Proc. IEEE COMPCON Spring, 1985, pp. 218-225,

H..Y. Chen and B. W. Wah, “The RID-REDUNDANT proce-
dure in C-Prolog.” in Proc. Int. Symp. Methodologies for Imelli-
gent Systems, Charlotte, NC, Oct. 1987, pp. 71-75.

K. Clark and S. Gregory, “PARLOG: Parallel programming in
Jogic.” Imperial College, London, England, Res. Rep. DOC 84/4,
1984,

K. Clark and S. Gregory, “Note on system programming in
PARLOG.” in Proc. Int. Conf. Sth Generation Computer System,
1984, pp. 299-306.

T. Clarke,. P. Gladstone, C. Maclean,
“"SKIM~—The §, K, ! reduction machine,”
Conf., Stanford Univ,, Menlo Park, CA, 1980.
G. Coghill and K. Hanna, “PLEIADES: A multimicroprocessor
interactive knowledge base.™ Aficroprocessors Microsyst., vol. 3,
no. 2, pp. 77-82, Mar, 1979,

J. Cohen, *Garbage collection of linked data structures,” Compur-
ing Survevs, vol. 13, no. 3, pp. 341-367, Sept. 1981,

1. 8. Conery and D. F. Kibler, “AND parallelism and nondeter-
minism in logic programs,” New: Generation Computing. vol. 3,
no. 1, pp. 43-70, 1985.

J. Darlington and M. Reeve, “ALICE and the Parallel Evaluation
of Logic Programs,” Dept. Computing. Imperial College of Sci-
ence and Technology, London, England. Preliminary Draft, Junc
1983,

J. Darlington, *Functional programming.” in Distributed Comput-
ing. F. B. Chambers, D. A. Duce, and G. P. Jones, Eds. Loondon:
Academic, 1984, ch. 5.

1. Darlingion, A. J. Field, and H. Pull, “The unification of
functional and logic languages.” Imperial College. London.
England, Tech. Rep., Feb. 1985,

A. L. Davis, " A data flow evaluation system bascd on the concept
of recursive locality,” in Proc. Nai. Computer Conf. AFIPS
Press, 1979, pp. 1079-1086.

A. L. Davis and S. V. Robison, “The FAIM-1 symbolic multipro-
cessing system.” in Proc. JEEE COMPCON Spring, 1985, pp.
370-375.

M. F. Deering, "Architectures for AL™ Byte, pp. 193206, Apr.
1985,

D. DeGroot, “Restricted AND-Parallelism.” in Proc. Int. Conf.
Sth Generation Computers, Nov. 1984, pp. 471-478.

D. DeGroot and G. Lindstrom, Eds. Logic Programming. Engle-
woed Cliffs, NJ: Prentice-Hall, 1985,

D. DeGroot and J. H. Chang., “A comparison of two AND-paral.
lel execution mndels,”™ in Proc, Hardware and Software Comper

and A. Norman,
in Conf. Rec. Lisp

141]

(42}

143]

[44)
145)
(46}

47
(48)
149)

[50)

{51

152]

153}

(34)

(53]

136}

157)

(58]
159

160}

{61}
(62)

163}

164)

165)

{66}

(67

689

nenis and Architectures for the Sth Generation, AFCET Informa-
tigue, Paris, France, Mar. 1985, pp. 271-280.

D. DeGroot, “Restricted AND-parallelism and side-cffects in
logic programming.” in Supercomputers and Al Machines, K.
Hwang and D. DeGroot, Eds. New York: McGraw-Hill, 1988.
P. Denning, “A view of Kanerva's sparse distributed memory,”
NASA Amecs Research Center, Moffett Field. CA. RIACS Tech.
Rep. TR-86.14, June 1986,

A. M. Despain and Y. N. Patt, “Aquarius—A high performance
computing system for symbolic/numeric application.” in Proc.
1EEE COMPCON Spring, Feb. 1985, pp. 376-382.

P. Deutsch, “Experience with a microprogrammed interlisp sys-
tems,” in Proc. MICRO, vol. 11, Nov. 1978.

H. Dicl, “Concurrent data access architecture.” in Proc. Int. Conf,
Sth Generation Computer Systems, 1984, pp. 371-388.

W. Dilger and J. Muller, “An associative processor for theorem
proving.” in Proc. IFAC Symp. Artificial Imell., 1983, pp.
489-497. :
1. Doyle, " A truth maintenance system,” Artificial Intell.. vol. 12,
no. 3. pp. 231-272, 1979.

H. Dreylus and S. Drevfus, * Why expert systems do not exhibit
expertise,” JEEE Expert, vol. 1, no. 2, Summer 1986,

M. H. van Emden and G. J. de Lucena-Filho, “Predicate logic as a
language for parallel programming.” in Logic Programming, S. A,
Tarnlund and K. Clark, Eds. New York: Academic. 1982, pp.
189-198.

L. D. Erman, F. Hayes-Roth, V. R. Lesser. and D. R. Reddy.
*The Hearsay-1I speech-understanding system: Intcgrating knowl-
edge to resolve uncertainty, Assoc. Comput. Mach. Computing
Surveys, vol. 12, no. 2, pp. 213-253, June 1980.

S. E. Fahlman, NETL: A System for Representing and Using
Real-World Knowledge, Series on Artificial Intclligence, Cam-
bridge, MA: MIT Press. 1979,

S. E Fahlman and G. E. Hintou, “Massively parallel Architec-
tures for Al: NETL, THISTLE, and Bolzmann Machines.” in
Proc. AAAT Nut. Conf. Artificial Intell,, 1983, pp. 109-113.

S. E. Fahlman and G. E. Hinton, *Connectionist architecture for
artificial inelligence,” IEEE Computer, vol. 20, no. 1, pp. 100-109,
Jan. 1987.

E. A. Feigenbaum, * Knowledge engincering: The applied side.” in
Intelligent Systems: The Unprecedented Opportunity, J. E. Haves
and D. Michie, Eds. Chichester. England: Ellis Horwood 1.4d.,
1983, pp. 37~55.

R. D. Fennell and V. R. Lesser, “Parallclism in artificial intelli-
gence problem solving: A case study of Hearsay-11." JEEE Trans.
Computers, vol. C-26, no. 2, pp. 98-111, Feb. 1977,

R. E. Fikes and N. J. Nilsson. “Strips: A new approach 10 the
application of thcorem proving to problem solving.” Ariificial
Intell,, vol. 2, no. 3 & 4, pp. 189-208, 1971,

A. L. Fisher, "Dictionary machines with a small number of
processors.” in Proc. 11th Annu. IEEE/ACM Ini. Symp. Compurter
Architecture, June 1984, pp. 151-156.

J. Fitch, *Do we really want a Lisp machine?” presented at the
ACM SEAS/SMC Annu. Meeting. Jan. 1980.

A. M. Flynn and J. G. Harris, “Recognition algorithms for the
connection machine,” in Proc. Int. Jormt Conf. Aruficial ntell,,
1985, pp. $7-60.

C. L. Forgy, A. Gupta. A. Newell, and R. Wedig, “Initial assess-
ment of architectures for production systems.” in Proc. AAAl
Nat. Conf. Artificial Imell. Aug. 1984, pp. 116-120.

W. Fritz, “The Intelligent System,” SIGART Newslener, no. 90,
pp. 34-38. Oct. 1984,

K. Furukawa and T. Yokoi, * Basic software svstem,” in Proc. Int.
Conf. Sth Generation Computer Systems, 1983, pp. 37-57.

H. Gallaire and C. Lasscrre, “Metalevel control for logic pro-
grams.” in Logic Programming, K. L. Clark and S. A. Tarnlund.
Eds. New York: Academic, 1982, pp. 173-1K5.

M. R. Genesercth, “An overview of meta-level architecture,” in
Proc. AAAl Nar. Conf. Artificial Imiell., 1983, pp, 119-124,

A. S. Gevins, “Overview of the human brain as a distributed
computing network.” in Proc. TEEE Int. Conf. Computer Design:
VIL.S1 in Computers, 1983, pp. 13-16.

W. K. Giloi and R. Gucth., ~Concepts and sealization of a
high-performance data type architecture,” Iar. J. Comput. Inform.
Sci., vol. 11, no. 1, pp. 25-54, 1982,

W. K. Giloi, “"Advanced object oricnted architecture.”
Generation Compui. Sys.. vol. 2. no. 2, pp. 169-175, 1985,

Future

689

tion, AFCET Informu-
0.

m and side-effects in
and Al Machines, K.
© McGraw-Hill, 1988,

+ distributed memory.”
cld. CA, RIACS Tech.

A high performance
application.” in Proc.
376-382.

%‘rnmmcd inteclisp sys-

ure.” in Proc. Int. Conf.
3. 373-388.

processor for theorem
ctal Imell., 1983, pp.

triificial Ingell., vol. 12,

systems do not exhibit
nmer 1986,

1, “Predicate logic as a
xgic Programming. S. A,
: Academic, 1982, pp.

ser. and D, R. Reddy,
tem: Integrating knowl-
1put. Mach. Computing
1980.

Representing and Using
1al Intelligence, Cam.

sively parallel Architec-
lzmann Machines,” in
983, pp. 109-111,

ctionist architecture for
. 20, no. 1, pp. 100109,

2 The applied side,” in
pportunity, 3. E. Hayes
d: Ellis Horwood Lid.,

lism in artificial intelti-
arsay-11." 1EEE Trans.
ch. 1977,

\ new approach to the
em solving.” Arniificral
|

h a small pumber of
M Int. Symp, Computer

ine?™ presented at the
R0)

on algorithms for the
Conf. Artificial Tnell.,

Wedig, “Initial assess-
ems.” in Proc. AAAL
116-120.

RT Newsletier, no. 90,

e system,”™ in Proc, Ing,
4, pp. 3757,

control for logic pro-
k and S. A. Tarnlund,
- 185,

level architecture.™ in
A3 pp. 119-124

rain as a distributed
wif. Computer Design:

and realization of s
i J. Comput. Inform.

architecture.” Furure
69175, 1988

690

(68]
169}

170)

nl

1)

73]

(74}

175)

(76

77

178)

19

(80]

(81

182}
183}

184

185)

186}
{874
{88)

(89

{90}

191

192

{93

194]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 19, NO. 4, JULY /AUGUST 1989

A. J. Goldberg and D. Robson, Smailtalk-30: The Language and
Its Implemeniation. Reading, MA: Addison-Wesley, 1983.

M. M. Gooley and B. W. Wah, “Efficient reordering of Prolog
programs.” in Proc. 4th IEEE Imt. Conf. Data Engineering, Los
Angeles, CA, Fcb. 1988, pp. 71-75.

A. Goto, H. Tanaka, and T. Moto-oka, ** Highly parallel inference
engine PIE— Goal rewriting model and machine architecture,”
New Generation Computing, vol. 2, no. 1, pp. 37-58, 1984

E. Goto, T. Ida, K. Hiraki, M. Suzuki, and N. Inada. “FLATS, A
machine for numerical, symbolic and associative computing,” in

- Proc. 6th [nt. Joini Conf, Artificial Intell.. Los Altos, CA: William

Kaufman, Aug. 1979, pp. 1058-1066.

N. Greenfeld and A. Jericho, “A professional’s personal computer
system.” in Proc. IEEE/ACM 8th Int. Symp. Computer Architec-
ture. 1981, pp. 217226,

M. Griss and M. Swanson, “MBALM /1700: A microprogrammed
Lisp machine for the Burroughs B1726,” in Proc. ACM/IEEE
MICRO-10, 1977.

A. Gupta, “Implementing OPS5 production systems on DADO,”
in Proc. IEEE Ini. Conf. Parallel Processing, 1984, pp. 83~ 91
A. Guzman, “ A heterarchical multi-microp Lisp

in Proc. 1EEE Workshop on Computer Architecture for Pattern
Analvsis and Image Dalabase Management, Nov. 1981, pp.
309-317.

R. H. Halstead, Jr., “lmplcmen(aucn of MULTILISP: LISP on
multiprocessor,” in Proc. ACM Symp. LISP and Functional Pro-
gramming, 1984,

R. Halstead, “Parallel symbolic p
19, no. 8. pp. 35-43, Aug. 1986.

R. Halstead, Jr., and . Loaiza, “Exception handling in multilisp,”
in Proc. Int. Conf. Parallel Processing, Aug. 1985, pp. 822~830.
R. Halstead, Jr., T. Anderson, R. Osbome, and T. Sterlig, “Con-
cert: Design of a multiprocessor develop system.” in Proc.
IEEE/ACM Int. Symp. Computer Architecture, Junc 1986,
pp. 40-48.

R. Halstead, Jr., “Design requirements of concurrent Lisp ma-
chines,” in Supercomputers and Al Machines, K. Hwang and D.
DeGroot, Eds. New York: McGraw-Hill, 1988,

R. Hascgawa and M. Amamiya, “Parallel exccution of logic
programs based on dataflow concept,” in Proc. Int. Conf. 5th
Generation Computer Systems, 1984, pp. 507-516.

B. Hayes-Roth, “A blackboard architecture for control.” Artificial
Iniell., vol. 26, no. 3, pp. 251-321, July 1985.

C. chiu. “Viewing control struclure as patterns of passing
messages,” Artificial Intell., vol. 8, no 3 pp. 323-364, 1977,

C. Hewitt, “The apiary network arch for knowledgeabl
systems,” in Conf. Rec. Lisp Conf., Stanlord Univ., Menlo Park,
CA. 1980, pp. 107-117.

C. Hewitt and H. Licberman, *Design issues in parallel architec-
tures for artificial intelligence, in Proc. |EEE COMPCON Spring,
Feb. 1984, pp. 418-423,

M. Hill er al., “Design decisions in SPUR.” TEEE Compuler. vol.
19, no. 11, pp. 8-22, Nov. 1986,

W. D, Hillis, The Connection Machine. Cambridge, MA: MIT
Press, 1985.

B. K. Hillyer and D. E. Shaw, “Execution of OPSS production
systems on a massively parallel machine,” J. Parallel Distributed
Computing, vol. 3, no. 1, pp. 236268, 1986.

G. E Hinton, T. J. Sejnowski, and D. H. Ackley. “Boltzmann
machine: Constraint satisfaction network that learns,” Carnegie-
Mellon Univ.. Pittsburgh, PA, 1984,

J. 1. Hoplficld, * Neural networks and physical systems with emer-
gent collective computational abilities,” Proc. Nat. Acad. Sci.,
vol. 79, pp. 2554-2558, 1982.

1. J. Hoplicld and D. W. Tank, * Neural computation of decisions
in optimization problems,” Biol. Cybern.. vol. 52, no. 3, pp. 1-25,
July, 1985,

D. K. Hsiao, Ed,, Special Issue on Database Machines, H'EE
Compuier, vol. 12, no. 3, Mar. 1979,

K. Hwang, R. Chowkwanyum and J. Ghosh, “Computer architec-
tures for impl g Al sy " in Supercomputers and Al
Machines, K. meg and D. DeGroot, Eds. New York:
McGraw-Hill, 1988,

N. Ichiyoshi, T. Miyazaki. and K. Taki, “A distributed implemen-
tation of flat GHC on the multi-PSL." presented at the Int. Conl.
Logic Programming, 1987,

.

g.” 1EEE Computer, vol.

{951

196]

197

198}

{991

{100}

{101}

102}

(103}

{104}

1105}

[106]
{107

{108)

(109}

(110}

{1y

13 93]

13

(114]

{1s)

{116}

(117

{118)

{119

{120

K. B. Irani and Y. F. Shih, “lmplementation of verv large prolot-
based knowledge bases on data flow architectures.” in Proc. [sr
IEEE Conf. Artificial Intell. Applications. Dec. 1984, pp. 454459,
Y. Ishikawa and M. Tokoro. " The design of an object-orientad
architecture,” in Proc. Ilth IEEEJACM Int. Symp. Computer
Architecture, 1984, pp. 178 -187.

N. lto, H. Shimizu, M. Kishi, E. Kuno, and K. Rokusawa.
“Data-flow based execution mechanisms of paralle! and concur-
rent prolog.” New Generation Computing, vol. 3, pp. 15-41, 1985,
P. Kanerva, * Parallel structures in human and computer memory.”
NASA Ames Research Center, Moffett Field, CA. RIACS Tech
Rep. TR-86.2. Jan, 1986.

K. Kawanobe, “Current status and (uture plans of the fifth

gencration p system project.” in Proc Int. Conf 5th
C. tion Ce Systems, 1984 pp. 3-36.
R. M. Keller and F. C. H. Lm. “Simulated performance of 2
d -based mul " JIEEE Ci . vol. 17, no. 5.

pp. 70-82, July 1984,

R. M. Keller, F. C. H. Lin, and J. Tanaka, “Rediflow multipro-
cessing,” in Proc. IEEE COMPCON Spring. 1984, pp. 410~411,
C. Kellogg, “Intelligent assistants for knowledge and information
resources management,” in Proc. &h Int. Joint Conf. Artificial
Intell. Los Altos, CA: William Kaufman. 1983, pp. 170~172.

S. Kim, 5. Maeng. and J. W. Cho, “A parallel execution model of
logic program based on dependency relationship graph.” i Proc.
Imi. Conf. Parallel Processing, Aug. 1986. pp. 976-983,

G. Klinker, E. Clune, J. Crisman, and J. Webb, “ The implementa-
tion of a complex vision system on systolic array machine,” Dep.
Comput, Sci.. Camegie—Mellon Univ., Pittsburgh, PA, Tech. Rep..
May 1986.

W. E. Kluge, “Cooperating reduction machines.” [EEE Trans.
Compuiers, vol. C-32, no. 11, pp. 1002-1012, Nov. 1983,

T. Knight, “The CONS Microprocessor,” Mass. Inst. Technol.
Cambridge. Al Working Paper 80, Nov. 1974,

A. Koster, *“Compiling Prolog programs for parallel execution on
a cellular Machine,” in Proc. ACM'84 Annw. Conf., Oct. 1984,
pp- 167-178.

D. J. Kuck, E S. Davidson, D. H. Lawrie, and A H. Sameh,
“Paraliel supercomputing today and the cedar approach,” Science.
pp. 967-974, Feb, 1986,

G. G. Langdon Jr, Ed., Special issuc on database machines,
ITEEE Trans. Comput., vol, C-28, no. 6, June 1979.

D. B. Le¢nat and J. McDermott, “Less than general production
system architectures,” in Proc. Sth Int. Joint Conf. Artificial Inzeil.
Los Altos, CA: William Kaufman. 1977, pp. 923-932.

D. B. Lenat, “Computer software for intelligent systems,” Sci
Amer., vol. 251, no. 3, pp. 204-213, Sept. 1984,

V. R. Lesser and D. D. Corkill. “The distributed vehicle monitor-
ing testbed: A tool for investigating distributed problem solving
networks.” A Mug.. pp. 15-33, Fall 1983.

G. 1. Li and B. W, Wah, “Computational efficiency of pasailel
approximate branch-and-bound algorithms.” in Proc. JEEE Ini.
Conf. Parallel Processing, Aug. 1984, pp. 473-480.

s “MANIP-2: A multicomputer architecture for evaluating
logic programs.” in Proc. [EEE Int. Conf. Parallel Processing,
Aug. 1985, pp. 123-130. (Also in Tutorial: Computers for Artifical
Intell. Applications, B. W, Wah, Ed., New York: IEEE Computer
Society, 1986, pp. 392-1399.)

memme s " Optimal granulanity of parallel evaluation of AND-trees,”
in Proc. Fall ACM/IEEE Joint Computer Conf. Nov. 1986,
pp. 297-306.

. " Coping with anomalies in paraliel branch-and-bound algo-
nthms,” TEEE Trans. Computer, vol. C-34, no. 6, pp. 568-573,
June 1986.

s “How 200d are parallel and ordered depth-first searches?”
in Proc. 1EEE Im. Conf. Parullel Processing, Aug. 1986, pp
992-999.

Y.). Lin and V. Kumar, “A parallel execution scheme {oe exploit-
ing AND-parallclism of logic programs,” Artificial Inteil.. pp
972-975, Aug. 1986,

G. Lindstrom and P. Panangaden, “Stream-bascd execution of
logic programs,™ in Proc. IEEE Int. Symp. Logic Programming.
Feb. 1984, pp. 168-176.

G. Mago, “Making parallel computation simple: The FFP ma-
chine,” in Proc. TEEE COMPCON Spring. 1985, pp. 424-428.

WAH

{121]

(122)
{123)

[124]
(125}
u.zs]
{127)
{128]
{129]
{130}
(131])
(132
{133
{134
[135)

[136]

[137]
{138)

{139)

[140]

{141}

{142)
{143]
[144]
1145)

[146]

(47}

AND L1: SURVEY OF MULTIPROCESSING SYSTEMS FOR Al APPLICATIONS

G. Matthews, R. Hewes, and S. Krueger, “Single-chip processor
runs Lisp environments,” Comput. Design, PP 69-76, May 1,
1987. .

J. McCarthy, *Histocy of Lisp,” SIGPLAN Notices, vol. 13, no. 8,
pp. 217-223, 1978,

J. R McGraw, “Data flow computing: Soliware dcvclopmcnl.
1EEE Trans. Compur., vol. C-29, no. 12, pp. 1095-1103, 1980.

D. McKay and 8. Shapiro, “MULTI-—A Lisp based multiprocess-

ing system,” in Conf. Rec. Lisp Conf., Stanford Univ., Menlo
Park, CA, 1980,

M. Modcl, *Multiprocessing via intercommunicating Lisp sys-
tems.” in Conf. Rec. Lisp Conf., Stanford Univ., Menlo Park, CA,
1980,

D. 1. Moldovan, “An associalive may architecwure intended for
semantic network processing,” in I‘mc. ACM'84 Annu. Conf., Oct.
1984, pp. 212-221.

D. A. Moon, “Symbolics uchuzclure. 1EEE Computer, vol. 20,
no. 1, pp. 43-52, Jan. 1987,

K. Murakami, T. Kakuta, and R. Onai, “Architectures and Hard-
ware Systems: Parallel Inference Machine and Knowledge Base
Machine,” in Proc. Int. Conf. JIh Generation Computer Systems,
1984, pp. 18-36, -

K. Murakami, T. Kakuta, R. Ona. and N. lio, “Research on

parallel machine arch for fifth-g

tems,” JEEE Computer, vol. 18, no. 6, pp 76-92, Junc 1985,

M. Nagao, J. I. Tsujii, K. Nakajima, K. Mitamura, and H. lto,
“Lisp machine NK3 and measurement of its performance,” in
Proc. 6th Int. Joint Conf. on Anificial Intell. Los Allos. CA:
William Kaufman, Aug. 1979, pp. 625-627. .

P. M. Neches, “ Hardware support for advanced data management
systems,” JEEE Computer, vol. 17, no. 11, pp. 29-40, Nov. 1984,
K. Niwa, K. Sasaki, and H. lhara, “An experimental comparison
of knowledge representation schemes,™ A/ Mag., pp. 29-36, Sum
mer 1984,

J. T. O'Donnell, “A systolic uwcuuve Lisp computer aschitec-
ture with incremental paralie] storage management,” Ph.D. disser-
tation, Univ. of Jowa, lowa Ciry, 1981

K. Oﬂuzt. “Partitioning in paralle! processing of producuou

systems,”. in Proc. JEEE Int, Conf. Parallel Processing, 1984,

pp. 92-100.

1. Pavlin, *Predicting the pcrlomuncc of distributed knowkdgc

based systems: A modeling approach,” in Proc. Nat. Conf. Artifi-

cial Intelligence, 1983, pp. 314319,

J. Pearl, Heuristics— Intelligent Scarch Strategies for Compum
Problem Solving. Reading, MA: Addison-Wesley, 1984,

L. M. Percira and R. Nasr, “Delta-Prolog, A distributed logic
programming language.” in Proc. Int, Conf. 5th Generation Com-

puter Svstems, 1984, pp. 283-291.

A. Plotkin and D. Tabak, “A tree structured architecture for
semantic gap reduction.” Compurer Architecture News, vol. 11,
no. 4, pp. 30-44, Sept. 1983,

E. von Puttkamer, “A mi d Lisp hine,” Micro-

processing Mn:mpmgramnun;.vol ll no. 1, pp. 9-14, Jan. 1983
U. 8. Reddy, “On the relationshi logic and {uncti

languages.” in Logic Programnun(. ed. D. DeGroot and E G.

Lindstron, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1985.

T. Rentsch, “Object oriented programming.” SIGPLAN Notices,

vol. 17. no. 9. pp. 51-57, Sept. 1982.

J. Robinson and E. Sibert, “LOGLISP: Motivation, design. and
implementation,” in Logic Programming, K. Clark and S.
Tarnlund, Eds. New York: Academic, 1982

H. Sakai er al., “Design and impl ion of relational database
engine.” in Proc. Sth Generation Computer Systems, 1984, pp.

419-426.

J. Sansonnet, D. Botella. and J. Perez, “Function distribution in a

list-directed architecture,” AMicroprocessing Microprogramming,
vol. 9, no. 3, pp. 143-153, 1982,

J. P. Sansonnet. M. Castan, and C. Percebois, “M3L: A list

directed architecture™ in Proc. 7th Annu IEEE/ACM Symp.
Computer Architecture, May 1980, pp. 105-112.

J. P. Sansonnet, M. Castan, C. Percebois, D. Botella, and J. Perez,
* Direct execution of Lisp on a list-directed architecture,” in Proc.
1CM Symp. Archuectural Support for Programming languages

and Operating Svstems, Mar, 1982, pp. 132-139,

M. Sato, H. Shimizu, A, Matsumoto, K. Rokusawa, and A. Goto,

“RUL evecution model fie PIM clusier with shated memory”
presented st the Int, Conl. Logic Programming, 1987,

[148]

(149
{150}

{1s1)
{152)
[153)
[154)
{159)

{156}
[157)

(158)

{159)

(160}
{161
{162]
{163]
[164]
165}
(166]
{167)
(168}
{169]
{170]
nny
(172}

{173}

_emulating microprocessor for object-oriented languages.”

691

H. Schmeck and H. Schroder, “Dictionary machines for different
models of VLSL" JEEE Trans. Compur., vol. C-34, no. 5. pp.
472-475, May 1985..

M. Schor, *Declarative knowledge programming: Better than pro-
cedural,” JEEE Expert, vol. 1, no. 1., pp. 36-41, Spring 1986.

E. Shapiro and A. Takeuchi, “Object oricnted programming in
concurrent Prolog. New Generation Computing, vol 1, no. 1,
pp. 25-48, 1983,

E. Shapiro, “Systolic programming: A paradigm of parallel pro-
cessing,” in Proc. Inmi. Sth Generation Computer Systems, 1984,
pp. 458-470. -

D. E. Shaw, “On the range of applicability of an artificial intelli-
genoe machine,” Artificial Intell., vol. 32, pp. 151-172, 1987,

S. Shibayama, T. Kakuta, N. Miyazaki, H. Yokota, and K.
Murakami, “A relational database machine with large semicon-
ductor disk and hardware ! algebra pr " New
Generation Computing, vol. 2, no. 2. pp. 131155, 1984,

B. Silver, Meta-Level Inference: Representing and Learning Control™

Information in Artificial Intelligence. Studies in CS and Al Am-
sterdam, The Netherlands: North-Holland, 1986.

H. A. Simon, “Whether software engineering needs to be artifi-
cially intelligent,” /EEE Trans. Software Eng., vol. SE-12. no. 7,
July 1986,

K. Smith, “New computer breed uses transputers for parallel
processing,” Electronics, pp. 67-68, Feb. 24, 1983,

R. G. Smith and R. Davis, “Frameworks for coopcration in
distributed- problem solving,” /EEE Trans. Syst. Man Cybern.,
vol. SMC-11, no. 1, pp. 6170, Jan. 1981.

A. Soyder, “Object-oriented programming for common Lisp,”
Software Technology Lab., Hewlett-Packard Lab., Palo Alto, CA,
Rep. ATC-85-1, 1985,

G.-Steel and G. Sussman, “Design of Lisp-based processor, or
SCHEME: A dielectric Lisp or finite memorics considered harm-
(ul, or LAMBDA: The ultimate opcode.” Mass. Inst. Technol.,
Cambridge, Al Memo 514, March 1979,

G. L. Steele, Jr, and G. J. Sussman, “Design of a Lisp-based
microprocessor,” Comm. Assoc. Compu. Mach., vol. 23, no. 11,
pp. 628-645, Nov. 1980,

M. Stefik and D. G. Bobrow, “Object-oriented programming:
Themes and variations,” A7 Mag., pp. 40-~62, Spring, 1986.

S. J. Stoflo, “Initial performance of the DADO2 prototype.”
1EEE Computer, vol. 20, no. 1, pp. 75-84, Jan. 1987.

S. Sugimoto, K. Tabata, K. Agusa, and Y. Ohno, “Concurrent
Lisp on a multi-micro-processor system,” in Proc, 7th Int, Joint
Conf. Artificial Intell. Los Alos, CA: William Kaufman, Aug.
1981, pp. 949-954.

S. Sugimoto, K. Agusa, K. Tabata, and Y. Ohno, *A multi-micro-
processor system for concurrent Lisp,” in Proc. IEEE Int. Conf.
Parallel Processing, 1983, pp. 135-143,

G. Sussman, T. Winograd, and E Chamiak, “Micro-planter
reference manual,” Mass. Inst. Technol., Cambridge, Tech. Rep.
AIM-203, 1970.

G. J. Sussman, J. Holloway, G. L. Stecl, Jr.. and A. Bell, “ Scheme-
79—Lisp on a chip., IEEE Computer, vol. 14, no. 7. pp. 10-21,
July 1981,

N. Suzuki, K. Kubota, and T. Aoki, “SWARD32: A b)‘lcc(\dc
in Proc.
Int. Conf. Sth Ge n C \ . pp. 389-397, 1984,
A. Takeuchi and K. Fukukawa, “Parallel logic programming
languages,” in Proc. 3rd Int. Conf. Logic Programming. New
York: Springer-Verlag, 1986,

1. Takeuchi, H. Okuno, and N. Ohsato, “TAO—A harmonic
mean of Lisp, prolog. and smalltalk.” SIGPLAN Notices. vol. I8,
no. 7, pp. 65-74, July 1983,

K. Taki, Y. Kaneda, and S. Mackawa, *The experimental Lisp
machine,” in Proc. 6th Int. Joint Conf. Artificial Intell.. Los Alios,
CA: William Kaufman, Aug. 1979, pp. 865-867.

K. Taki er al., “Hardware design and implementation of the
personal s i inference hine (PSI), in Proc. Int. Conf.
Sth Generation Computer Systems, 1984, pp. 398-409.

K. Taki, “The parallcl soliware rescarch and development tool;
Multi-PSI systen.” in Proc. France-Japan Anificial Intell. and
Computer Science Symp., 1986, pp. 365-38].

Y. Tanaka, “MPDC.massive parallel architecture for very large
databases,” in Proc. Int. Conf. Sth Generation Computer Syatems,
TOR4, pp. 113037

691

‘hines for different
. C-34, no. 5. pp.

8: Better than pro-
}, Spring 1986,

d programming in
ing, vol. 1, no. 1,

ym of parallel pro-
ner Systems, 1984,

an artificial intelli.
S1-172, 1987,

. Yokota, and K.
vith large semicon-
a processor,” New
55, 1984,

nd Learning Control
1CS and AL Am-
86.
. needs 10 be astifi-
. vol. SE-12, no. 7,

sputers for parallel
983,

for cooperation in
Syst. Man Cybern.,

lor common Lisp,”
Lab,, Palo Alto, CA,

-based processor, or
es considered harm-
{ass. Inst, Technol.,

ign of a Lisp-based
ich., vol. 23. no. 11,

:nted programming:
Spring 1986,
YADO2 prototype,”
n. 1987,

Ohno, “Concurrent
Proc. Nth Int, Joint
am Kaufman, Aug.

no, “A multi-micro-
oc. 1EEE Int. Conf.

ak, *“*Micro-planrer
nbridge, Tech. Rep.

d A. Bell, “Scheme-
i, no. 7, pp. 1021,

RD32: A bytecode
anguages.” in Proc.
p. 389-397. 1984,

logic programming
'ragramming. New

TAO—A harmonic
{N Nutices, vol. 18,

experimental Lisp
al Intell., Los Altos,
7.

lementation of the
in Proc. Int. Conf.
R-409.
development 1ool:
rtificial Intell. and

wre for sery large
Computer Systems,

692

[174)

{175]

(176

(177

{178}

{179

{180}
1181}
182}

{183)

{184)

{185}

(136

{187)

(188}

(189)
{190}

191

{192}

{193}

1EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 4, JULy/AaUGusT 19RY

E Tick and D. H. D. Warren, “Towards a pipelined Prolog

processor.” New Generation Computing, vol. 2, no, 4, pp. 323-345,

1984,

P. Treleaven and G. \v{olc. “A mult- proocssor reduction machine

for user-defined red 1 in Proc. 7th IEEE/ACM

Int. Symp, Computer Archneaure. pp. 121-130, 1980.

P. C. Treleaven and R. P. Hopkins, “A recursivé computer archi-

tecture for VLSL” in Proc, 9th Annw. IEEE/ACM Symp. Com-

puter Architecture, Apr. 1982, pp. 229-238.

P. C. Treleaven and 1. G. Lima, “Japan’s fifth-generation com-

puter syslcnu " IEEE Computer, vol. 15, no. 8, pp. 79-88, Aug.

1982,

Y. W, Tun; and D. Moldovan, *Detection of AND-parallelism in

logic programming,” in Proc. Int. Conf. Parallel Processing.

pp. 984991, Aug. 1986.

D. A. Turner, “A new impl tation tech for applicative

languages,” Software — Practice und Experience, vol. 9, no. 1,

pp. 31-49, 1979,

S. Uchida, “Inference machines in FGCS project,” in Proc.
VISI'87 Int Conf., Aug. 1985, IFIP TC-10, WG 10.5.

K. Ueda, “Guarded horn clauses,” 1ICOT, Tokyo, Japan, Tech
Rep. TR-103, 1985.

L. M. Uhr, “Parallel-serial production systems,” in Proc. 6th Int.

Joint Conf. Artificial Intell. Los Altos, CA: William Kaufman,
Aug. 1979, pp. 911-916.

D. Ungar, R. Blau, P. Foley, D. Samples, and D. A, Patterson,
“Architecture of SOAR: Smalltalk on RISC." in Proc. I1th Annw.
IEEE/ACM Int. Symp. Computer Architecture, 1984, pp. 188-197.
S. R. Vegdahl, “A survey of proposed architectures for the exccu-
tion of functional languages,” JEEE Trans. Comput., vol. C-33,
no. 12, pp. 1050-1071, Dec. 1984,

B. W. Wah and K. L. Chen, “A partitioning approach to the
design of selection networks,” JEEE Trans. Comput., vol. C-33,
no. 3, pp. 261-268, March 1984,

B. W, Wah and Y. W. Ma, “MANIP—A multicomputer architec-
ture for solving combi ial ex problems,” JEEE Trans.
Comput,, vol. C-33, no. 5, pp. 377-390, May 1984. (Also in
Tutorial: Computer Architecture, D. D. Gajski, V. M. Milutinovic,
H. J. Siegel, and B. P. Furht, Eds. IEEF. Compuler Soc., 1987 PP
578-591 and Twtorial: Parallel Arch e for Datab

A. R. Hurson, L. L. Miller, and S. H. Pakzad, Eds. lE.EE Com-
puter Soc., 1988.)

B. W, Wah, G. J. Li, and C. F. Yu, “Multiprocessing of combina-
torial search problems,” JEEE Computer, vol. 18, no. 6, pp.
93108, June 1985. (Also in Tutorial: Computers for Artificial
Intell. Appl., B. W. Wah Ed. IEEE Computer Soc., 1986, pp.
173-188.)

B. W. Wah and G. J. Li, Eds., Tutorial on Computers for Artificial
Intell. Appl. New York: lF.EE Computer Society Press, May
1986.

D. L. Walz, “Applications of lhe connection machine,” TEEE
Computer, vol. 20, no. 1, Jan, 1987,

D. H. D. Warren, “Efficient processing of interactive relational
database queries expressed in Jogic,” in Proc. 7th Int. Conf. Very
Large Data Bases, 1981, pp. 272-281, .

P. Wegner and B. Shriver, Eds., “Special issuc on object-oriented
programming workshop,” SIGPLAN Notices, vol. 21, no. 10,
Oct. 1986.

M. Weiser et al., “Status and performance of the ZMOB parallel
processing system.” in Proc. IEEE COMPCON Spring, Feb.
1985, pp. T1-73.

R. Williams, “A muluprooasm; system for the direct execution of
Lisp.” in Proc. ACM 4th Workshop Computer Architecture for
Non-Numeric Processing, Aug. 1978,

(194} T. Winograd, “Extended inference modes in reasoning by com-
puter systems,” in Areificial Intell., vol. 13, pp. 5-26, 19%0.

{195] P. H..Winston and B. Horn. Lisp, Ind ed. Reading. MA: Addi-
son Wesley, 1984,

{1961 Y. Yamaguchi, K. Toda, and T. Yuba, "A pcrformancc evaluation
of 2 Lisp-based data-driven machine (EM-3)," in Proc. I0th Annu
IEEE/ACM Int. Symp. Computer Architecture. June 1983 Pp.
363-369.

{1971 Y. Yamaguchi, K. Toda, J. Herath, and T. Yuba, “EM-3: A
Lisp-based data-driven machine.” in Proc. Int. Conf. 5th Genera-
tion Compuser Systems, 1984, pp. 524-532. .

{198] T. Yokoi, S. Uchida, “Sequential inference fhine: SIM—Its
programming and operating system,” in Proc. Int. Conf. Sth Gen-
eration Computer Systems, 1984, pp. 70-81. .

[199] C.F.Yuand B. W. Wah, * Efficient branch-and-bound algorithms
on a two-level memory system,” [EEE Trans. Software Eng..
vol. SE-14, no. 9, Sept. 1988,

(200} ____, “Learning dominance relations in combinatorial search
problems,” [EEE Trans. Software Eng.. vol. SE-14, no. 8,
Aug. 1988, ’

Benjamin W. Wah (§74-M"79-SM'85) received
the Ph.D. degree in computer science from the
University of California, Berkeley, CA, in 1979
He was on the faculty of the School of Electri-
cal Engineering at Purdue University, West
Lafayette, IN, between 1979 and 1985. He is
now 3 Pro(cssor in (hc Dcpanmeut of Electrical
and C E 21 ng and the Coordinated
~--Science Labomory of the University of Illinois
at Urbana-Champaign. Between 1988 and 1989,
he was on lcave at the National Science Founda-
tion as a Program Director in the Microclectronic Information Processing
Systems Division. His areas of research include computer architecture,
paralle! pr ing, artificial intellig, distributed databases, and com-
puter networks. For his contributions to rescarch, he has been nominated
as a University Scholar of the University of Illinois in 1989,

Dr. Wah is the Associate Editor-in-Chiefl of the IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, an area editor of the Jowrnal
of Parallel and Disiributed Computing, and an editor of Information
Sciences. He secves as a member of the Governing Board of the IEEE
Computer Society and a program evaluator for ABET (computer engi-
necring) and CSAC (computer science). Previously, he served as chairman
and member ol program committee of 2 number of international confer-
ences, an Editor of the IEEE TRANSACTIONS ON SOFTWARE ENGINEER-
ING, and a Distinguished Visitor of the IEEE Computer
Society.

Guo-jie Li (S'83-M'86) graduated from Peking University, Beijing, China.
in 1968. He received the M.S. degree in computer science and engineering
from the University of Science and Technology of China and Instiwte of
Computing Technology, Chincse Academy of Science, and the Ph.D.
degree in electrical engineering from Purdue University in 1981 and 1985,
respectively.

He was a Post-Doctoral Rescarch Fellow at the Umvcmty of Winois.
Urbana-Champaign, between 1985 and 1986, Currendy, be is an Associ-

ae R her at the Academy of Science, Beijing, China. His research
interests include parallel processing, computer architecture, and anificial
intelligence. :

