e R Rk e e e R e B a2 e e+ s

Computers for Symbolic Processing

BENJAMIN W. WAH, SENIOR MEMBER, IEEE, MATTHEW B. LOWRIE, anp GUO-JIE LI

Invited Paper

In this paper, -we provide a detailed survey on the motivations,
design, applications, curment status, and limitations of ¢ s
designed for symbolic proci 8. Symbolic processing applica-
tions are computations that are perfc d at the word, relation, or
meaning levels. A major difference between symbolic and conven-
tional numeric applications is that the knowledge used in sym-
bolic applications may be fuzzy, uncertain, indeterminate, and ill
represented. As a result, the collection, representation, and man-
agement of knowledge is more difficult in symbolic applications
than in conventional numeric applications. We survey various
techniques for k ledge rep. ion and processing, from
both the designers’ and users’ points of view. The design and
choice of a suitable language for symbolic processing and the
mapping of applications into a software architecture are then pre-

d. We ine the design process of refining the application
requirements into hardware and software architectures and dis-
cuss state-of-the-art sequential and parallel computers designed
for symbolic processing.

I. INTRODUCTION

The development of the programming language 1PL in
the 1950s by Newell, Shaw, and Simon was a pioneering
effort on symbolic processing by computers [172). Data
structures of unpredictable shape and size could be manip-
ulated conveniently by programs written in IPL. Manyof the
early symbolic programs, including the Logic Theorist and
the General Problem Solver, were written in 1PL. The inven-
tion of Lisp in 1958 by John McCarthy further enhanced
some of the programming tasks for symbolic processing.
The language featured the use of conditional expressions
recursively, representation of symbolic information exter-
nally by lists and internally by linked lists, and represen-
tation of program and data using the same data structures
[152).

Recent advancements in applications of computers sug-
gest that the processing of symbols rather than numbers
will be the basis for the next generation of computers. This

Manuscript received December 29, 1987; revised December 14,
1988. This work was supported in part by National Aeronautics and
Space Administration Grant NCC 2-481 and National Science Foun-
dation Grant MIP 85-19649. The research of M. B. Lowrie was also
supported by a Ph.D. scholarship from AT&T Bell Laboratories.

B.W.Wahand M. B. Lowrie are with the Department of Electrical
and Computer Engineering and the Coordinated Science Labo-
ratory, University of tlinois at Urbana, IL 61801, USA.

G.-J. Li is with the Institute of Computing Technology, Academia
Sinica, P.O. Box 2704-1, Beijing, People’s Republic of China.

IEEE Log Number 8926701,

is highlighted by the numerous research efforts in Japan,
Europe, and the United States 1), {196), [228). Symbolic pro-
cessing has been applied in awide spectrum of areas; among
them are pattern recognition, natural language processing,
speech understanding, theorem proving, robotics, com-
puter vision, and expert systems. Researchers in artificial
intelligence, database, programming languages, cognitive
science, psychology, and many others have addressed
overlapping issues within the area of symbolic processing.

Conventional computers have been designed with tre-
mendous numeric processing power as their focus, rather
than symbolic processing power. The disparity between
symbolic and numeric operations, therefore, calls for dif-
ferent architectures for symbolic processing and innova-
tive research in computers for symbolic processing. A
review of the state of the art in computers for symbolic pro-
cessing is presented in this paper. The discussion proceeds
in a top-down fashion. The relevant features and charac-
teristics of symbolic pracessing are first presented, A per-
spective on the role of techniques and methodologies
involved in the design process are discussed. Hardware and
software architectures in different levels of design are clas-
sified. The general view of computers designed and/or used
for a symbolic processing application is depicted in Fig. 1.

Compicte Systemy/

Sohluzn ol_Avgl)lcau'on e !
Components
(Section 3)
Application Knowledge
(Section 1) Representation

fig. 1. Overview of this paper.

The section discussing each portion is indicated in the fig-
ure.

In Section [, a classification of general computations is
developed. From this classification, a definition of symbolic
processing is derived in Section I-A. Typical symbolic pro-
cessing applications and their characteristics are discussed
in Section 1-B.

0018-9219/89/0400-05G69501.00 € 1989 IEEE

PROCEEDINGS OF THE 1ELE, \OL. 77. NO. 3. APRIL 1989

ts in Japan,
mbolic pro-
eas; among
processing,
otics, com-
in artificial
s, cognitive

addressed
processing.
:d with tre-
>cus, rather
ty between
-alls for dif-
ind innova-
ycessing. A
mbolic pro-
n proceeds
and charac-
wted. A per-
hodologies
rdware and
ign are clas-
and/or used
ed in Fig. 1.

 m——

d in the fig-

putations is
of symbolic
mbolic pro-
e discussed

R R I I I R R R R R R R R R A A A I I I A R R R R A N A R R

P R R S S N R A B)

Knowledge representation and knowledge processing
are two important characteristics of solutions to a symbolic
processing problem. Knowledge representation refers to
the technique for representing data and information in a
computer and is discussed in Section II-A. Knowledge pro-
cessing refers to the technique for controlling the manip-
ulation of knowledge in the system and is the topic of Sec-
tion |l-B.

The design of a computer relies on various concepts and
strategies for implementing knowledge processing tech-
niques. Section [l emphasizes the architectural concepts
behind the design of symbolic processing systems. Soft-
ware architectures are covered in Section {l1-A, and hard-
ware architectures are studied in Section 111-8.

A complete system for symbolic computation is the resuit
of the application of design philosophy, architectural com-
ponents, and available technology. Complete systems are
the topic of Section IV. The status of many existing and
experimental systems are discussed and compared.

Future symbolic processing systems will evolve as new
concepts and technologies develop. Section V outlines
some recent research that is likely to impact the design of
symbolic processing systems in the future.

A. Classification of Computations

One of the fundamental debates on intelligent behavior
has been related to the explanation of what symbols are.
A number of scientists view human beings and computers
as physical symbolic systems that produce through time an
evolving collection of symbolic structures. In their 1975 Tur-
ing award lecture, A. Newell and H. Simon stated a general
scientific hypothesis—The Physical Symbol System
Hypothesis (174):

A physical symbol system has the necessary and suf.
ficient means for general intelligent action.”

By “necessary,” they mean-that any system that exhibits
general intelligence will prove upon analysis to be a phys-
ical symbol system. By “sufficient,” they mean that any
physical symbol system of sufficient size can be organized
further to exhibit general intelligence. Research on artificial
intelligence (Al) addresses the sufficiency of physical sym-
bol system for producing intelligent action, while investi-
gators in cognitive psychology attempt to demonstrate the
necessity of having a physical symbol system wherever
intelligence is exhibited. Although empirical in nature, the
continuous accumulation of empirical evidence on the
above hypothesis in the last 30 years has formed the basis
of much research on Al and cognitive science.

Since our focus is on computers for symbolic processing,
we will first classify computations performed on com-
puters. The definition of symbolic processing used in this
paper is derived from this classification. There are five
classes of computations: analog, numeric, word, relational,
and meaning. These classes are based on the primary unit
of storage in the computation.

Analog: The analog class of computation encompasses
those computations that have continuous variables as the
parameters of the functions it performs. This is not the pri-
mary area of computation in a digital computer, as digital
computers use digital memory. In the computations dis-
cussedin the context of digital computers, this layer of com-

510

putation primarily entails the measurements of parameters
from the environment.
Numeric: In this class of computation, the primary unit
upon which functions are performed represents magni-
tude. Many applications of computers fall into this cate-
gory; functions on memory elements containing integers,
floating point numbers, ... are numeric.
Word: In this class of computation, the parameters of func-
tions are words that do not necessarily have quantitative
value. Text processing is such an example.
Relational: In relational computations, functions operate
on relations among words; that is, the primary unit of stor-
age to be operated on are groups of words that have some
relational interpretation.
Meaning: Verylittle research has been done on techniques
for automated computation at the meaning level. The pri-
mary unit of evaluation is an interrelated series of relations
that represent semantics and meaning.

A few examples to illustrate the various classes of com-
putations are shown in Fig. 2. In Fig. 2(a), a standard super-

fig. 2. Examples toillustrate model of symbolic pracessing
applications. (a) Model of weather forecasting on a super-
computer. (b) Model of speech understanding. (c) Model of
robot control.

computer application, weather forecasting, is presented.
The computation begins with analog measurements of the
atmosphere (arc 1). These measurements are then con-
verted to numeric entities (arc 2). The majority of compu-
tation occurs in the numeric stage (arc 3, representing the
conversion of numbers into different sets of numbers), with
conversion to meaning done at the very end (arc 4, which
may be done by humans instead of the computer). An exam-
ple that uses the full spectrum of the classes of compu-
tations woulid be story comprehension from speech input.
The flow of data would appear as in Fig. 2(b). Computation
may also flow in the oppaosite direction. Robot control is an
example of this, as depicted in Fig. 2(c).

The design of a computer system can be viewed as a prob-
lem in which performance with respect to the problem to
be solved is to be maximized subject to cost constraints.
Computations in more abstract classes are usually carried
out by transformations into computations in more definite
classes. for example, database queries function primarily

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989

e AR i o i e Ve i o - L - —

at the word and relation leve! of computation. However, if
wewish to know the average salary in a database of employ-
ees, numeric computations would be required. The design
of this system may not, however, benefit from the inclusion
of fast arithmetic units, because the performance gain may

putations.

Acomputerthatisaimed at functioning atamore abstract
level of computations should be able to perform compu-
tations that are found at a more definite level of compu-
tations. For instance, the database Computer above shoyld
be able to perform fluid dynamics calculations, When this
is done, however, the efficiency may be much poorer than
a computer of comparable cost that s aimed at numeric
calculations.

Using this classification, a concise description of what is
meant by “symbolic processing” i

8. Characteristics of Symbolic Processing Applications

Inthis section, symbotic Processing applications and their
overall features are Presented. A few applications and their

bolic Processing techniques,

* Incomplete knowledge: Many applications are non-
deterministic; it is not possible to predict the flow of com-
Putation in advance. This is due to incomplete knowledge
and understanding of the application. This lack of complete
knowledge may also lead to dynamic execution, which
refers to the possibility of new data structures and func-

lem., In addition, data structures used in solution of the
problem may be arbitrarily large, thereby necessitating
dynamic allocation of memory, tasks, and other resources,

Putation and illustrates that it is processing knowledge

about the computation, whether that be algorithms, tech-

eventwill occyr. in other words, meta-knowledge is knowl-

WAH, LOWRIg, AND 1 COMPUTERS FOR SYMBOLIC PROCESSING

e L

Table 1 Some Symbolic Processing Applications

Application Characteristics
Problem solving

general User inputs problem, system

specific attempts to solve; user

* Programming/compilation encodes solution of probiem;

* text processing meta-knowledge for specific

* human interface problems is well understood;
small-gain parallelism is
predominant

Database Management
* variety of applications
* often an integral part of
larger systems

Organization of information for
retrieval; efficient algorithms
to consider all run-time
possibilities are too complex;
meta-knowledge is
application dependent; large
potential for parailelism,
both smallgrain and large-
grain

Expert systems
diagnosis
* medical
* plant disease

Hi-structured collection of
facts, inferences . . . as
knowledge-intensive program

° Computer system errors in specific domain {96}
design assistance knowledge and meta-
* architecture knowledge are usually

* computer architecture
* computer chips
personai systems
* business
* finance
* wine tasting
others

Natural language processing
Understanding
Generation
Translation

provided by designers; large
potential for parailelism

Translate natural language to
machine representation;
translate machine
representation to natyral
language; translate between
two forms of natural
language [2), {13), [229)

Primarily numeric at the signal-
processing level; patterns
viewed as sentences--
symbolic in nature; higher-
level reasoning at the image-
understanding level [3], [76}

Computer vision
signal processing
pattern recognition
image understanding

Learning
experimentation Ability to adapt to environment
deduction to improve system efficiency;
knowledge acquisition fundamental to symbolic

Processing {157}, [1 91)

Pmcessln;
Knowledge

Fig. 3, Knowledge processing,

ke e

stics

m, system

; user

of problem;
for specific
understood;
lism is

ormation for
algorithms

vtime

>0 complex;

H
dent; large
lelism,

nd large-

ion of

..as

ve program
[96);

eta-

sally

ners; large
elism

guage to
ation;

atural
between

1]

29]

the signal-
atterns

S
higher-
he image-

3], [76]

vironment
fficiency;
bolic

1]

R N e N N N N R R T

L e)

edge about knowledge (7], (49], [80]. Meta-level knowledge
can be considered to exist in a single level or in a hierarchy
[25]. In fact, there can be an arbitrary number of levels, each
serving to direct the use of knowledge at the lower levels.

Meta-knowledge can be classified as deterministic or sta-
tistical according to correctness and performance consid-
erations {39). Deterministic meta-knowledge refers to the
knowledge about precedence relationships, which results
from a better understanding of the problem and helps to
reduce the resource and time complexity. Statistical meta-
knowledge can be used to order object-level actions in
advance for efficient operations.

Rather than adding more heuristics to improve perfor-
mance, more meta-knowledge about effective use of exist-
ing heuristics can be collected and developed. Meta-knowl-
edge can also account for the formalization of belief, defauit
reasoning, inference in changing situations, and others [7].

* Symbolic primitives: A general symbolic application
may contain primitive symbolic operations. Typical oper-
ations are comparison, sorting, selection, matching, and
logical operations such as union, negation and intersec-
tion, transitive closure, pattern retrieval and recognition.
These operations may be performed at more than one level
of computation (such as word or relation). Higher levels of
computation may also contain complicated “primitive”
operations such as unification.

* Parallel and distributed processing: Many symbolic
applications exhibit a large potential for parallelism. Par-
allelism may be categorized into anp-parallelism and og-
parallelism. In anp-parallelism, a set of necessary and inde-
pendent tasks are executed concurrently. or-parallelism is
a technique used to shorten the processing time in non-
deterministic computations by evaluating alternatives at a
decision point simultaneously.

1. SymBouc PROCESSING

A symbolic application is a problem in which the inputs
and outputs are symbolic. Symbolic processing refersto the
techniques employed by the system for finding the solu-
tions of the application. The characteristics of symbolic
applications have been discussed in the last section. The
emphasis of this section is on the features of symbolic pro-
cessing as they relate to the design of computers. ln Section
ll-A, techniques for representing knowledge are discussed.
Theissues involved in the control of knowledge processing
are presented in Section !i-B.

A. Knowledge Representation

Inorder to design an efficient computer fora given appli-
cation, it is necessary to characterize the programs that will
run on the computer. A primary decision in the solution of

Table 2 Attributes of Local and Distributed
Representations

symbolic processing problems is the knowledge represen
tation to be used [120], (149]. The issues involved include
the selection of the appropriate symbolic structures to rep
resent knowledge, and the appropriate reasoning mech:
anisms to both answer questions and assimilate new infor
mation. There are four criteria to evaluate a knowledge-
representation scheme: flexibility, user-friendliness
expressiveness, and efficiency of processing. Flexibility,
user-friendliness, and expressiveness are required to sim-
plify the tasks of programming and comprehension. The
efficiency or tractability of a knowledge-representation
scheme dictates the efficiency of the solution to the appli:
cation. Much of the research in this area represents a trade-
off between expressiveness and tractability.

Despite a great deal of effort devoted to research in
knowledge representation, very little scientific theory is
availabletoeither guide the selection of an appropriate rep-
resentation scheme for a given application or transform one
representation into a more efficient one. Although a num-
ber of knowledge-representation schemes have been pro-
posed, none is clearly superior to the others for all appli-
cations.

The following sections present two attributes for com-
paring knowledge representations: local versus distributed
aspects, and declarative versus procedural. The classical
knowledge-representation schemes are also evaluated on
the basis of these features.

1) Features of Knowledge Representations

@) Local versus distributed representations: In a loca!
representation, each conceptual datum is stored in a sep-
arate hardware unit. A word or item of data stored in a reg-
ister is an example of local storage for that data item. As a
result, the data are simple to read, update, and understand.
Unfortunately, if any hardware unit fails, all knowledge
contained in that unit is lost to the system. Most current
systems, symbolic and numeric, utilize local representa-
tions for individual pieces of data.

In a distributed representation, a piece of knowledge is
represented over many units, and each unit may be shared
among muiltiple pieces of knowledge which correspond to
features of multiple concepts or data items. The advantage
of such a representation is that it is fault tolerant. If a small
proportion of units fail, the integrity of the distributed data
undergoes little change. This property is very attractive for
practical implementations. Distributed representations aiso
allow for a great deal of parallelism in computation [191].
However, they are usually harder for a user to understand
and modify.

Table 2 summarizes the salient characteristics of local and
distributed representations. It should be noted that there
is not a concrete boundary between local and distributed
features. Some features in a knowledge-representation

Attribute Local Distributed
Storage technique Each data stored in dedicated Data represented over multiple
hardware units
Ease of understanding Easy for humans to comprehend Difficult for humans to interpret
Modification of stored data Simple More difficult

Fauit tolerance

Loss of hardware results in loss
of all stored data in this unit

Loss of small proportion of
units does not seriously
damage integrity of data

512

PROCEEDINGS OF THE I£EE, VOL. 77, NO. 4, APRIL 1989

scheme are local, while others are distributed. At one
extreme is a standard implementation of a simple Lisp pro-
gram, for instance, which can be thought of as a hierarchy
of local representations. The program is stored as one unit
of information. The data structures used by the program are
also stored as a single entity. Finally, each piece of data
within a data structure is gtored in one memory location.
On the other extreme is a standard implementation of a
neural network. A predicate logic program, however, is nei-
ther fully local nor fully distributed. The complete program
is notasingle entity but a set of logic statements. Each state-
ment, however, is an example of alocal representation. This
is considered further in Section 1I-A2.

b) Declarative versus procedural representations: The
issue of distributed versus local representations concerns
the methodology for representing information in the com-
puter. In contrast, the issue of procedural versus declar-
ative representations distinguishes between techniques for
representing the processing knowledge and processing
methodologies employed by the computer programs.

A program written in a declarative representation con-
sists of a set of domain-specific facts or statements and a
technique for inferring knowledge from these statements.
It is, therefore, characterized as a set of statements of
knowledge about the problem domain. Examples of declar-
ative representations include pure predicate logic and pro-
duction systems (to be discussed in Section I11-A2).

Ina procedural representation, program statements con-
sistof steps to be taken in the solution of the problem, which
are statements of knowledge about how to solve the task.
Examples of procedural program representations include
the C language and Lisp.

Declarative representations are user-oriented and
emphasize correctness and user-friendliness of programs.
They are referentially transparent: the meaning of the whole
can be derived solely from the meaning of the parts, inde-
pendent of its historical behavior. This may increase pro-
grammer productivity [245) and result in tremendous
potential for paralielism [88), {128).

Unfortunately, programs written in declarative repre-
sentations are often inefficient to evaluate due to nonde-
terminism, implicit control aspects, and inconsistent
knowledge. It is hard to add domain-specific knowledge
and meta-level knowledge to declarative programs. The dif-
ficulty with using declarative representations to solve sym-
bolic problems lies in determining how to use the facts
stored in the program’s data structures, not in deciding how
to store them.

Procedural programs are not as user friendly as declar-
ative onesbecause the programmer must specify all control
knowledge. In addition, the validity of a procedural state-
ment often relies heavily on other procedural statements
in the program, which complicates both the creation and

modification of software. The loss in flexibility in a pro-
cedural programming environment is counteracted by the
inherent gain in ease of representing control knowledge.
Procedural schemes allow the specification and direct
interaction of facts and heuristic information, thereby elim-
inating wasteful search. Meta-knowledge can also be easily
included in procedures. Overall, procedurai representa-
tions are as much concerned with the technique and effi-
ciency of the computation as with the ease of representing
the domain knowledge.

The salient features of declarative and procedural rep-
resentations are summarized in Table 3. As with distributed
versus local features of a representation, practical knowl-
edge-representation schemes may have both procedural
and declarative features.

2 Classical Knowledge Representation Schemes: In this
section, the classical knowledge-representation schemes
are described and evaluated with respect to the features of
local versus distributed, and declarative versus procedural
qualities. Those that have received the greatest attention
include predicate logic, production systems, semantic net-
works, frames, procedural languages, and fully distributed
representations.

a) Predicate logic: Predicate logic studies the relation-
ship of implication between assumptions and conclusions.
Logic often seems a natural way to express certain notions,
and there are standard methods of determining the mean-
ing of expression in logic formalism [125). Logicis useful for
exploring the epistemological problems that determine
how the observed facts can be represented in the memory
of a computer without being concerned with the use of the
knowledge. The major disadvantage of logic stems from the
separation of representation and processing.

b) Production systems: Production systems use collec-
tions of rules to solve problems. These rules consist of con-
dition and action parts, or antecedent and consequent parts
[173]. it has been found that production systems provide
auseful mechanism for controlling the interaction between
statements of declarative and procedural knowledge. For
this reason, production systems have been used exten-
sively in expert systems and knowledge engineering.
Unfortunately, the expressive power of production systems
is limited. Some researchers have argued that rule-based
expert systems cannot achieve expert-level behavior {59].
Another problem with production systems is their ineffi-
ciency due to high control overhead.

€) Semantic networks: A semantic network is a directed
graph whose nodes represent objects, concepts, or situa-
tions, and whose arcs represent relationships between
nodes [183]. The basic inference mechanism in semantic
networks is “spreading activation.” The idea here has a clear
neural inspiration: certain concepts in memory become a
source of activation, and activation spreads in parallel to

Table 3 Attributes of Declarative and Procedural Representations

Altribute Declarative Procedural
Emphasis Knowledge of domain Knowledge of solution
Technique Domain-specific statements Solution techniques
Orientation User friendliness; Efficiency of solutions;
Ease of understanding Ease of representing control knowledge
Parallelism Natural, but countered by Constrained and often user specified
unnecessary search
Control Transparent to the user Specified by the user

WAH, LOWRIE, AND LI COMPUTERS FOR SYMBOLIC PROCESSING

L I I T R T T T T T T T T S T S S S

L T R R I T T S T R T S S SR S S Y

related concepts. The significance of this graphical rep-
resentation is in allowing certain kinds of inference to be
performed by simple graph-search techniques. Yet simple
semantic networks can only express a collection of variable-
free assertions. Several authors have shown that semantic
networks can be extended so that they have the same
expressive power as predicate logic (126]. Frequently,
semantic networks are used as data structures for manip-
ulation using other knowledge-representation schemes
(such as Lisp, which is a procedural representation).

d) Frame representation: Frame representations
employ a data structure for representing stereotypical sit-
uations [158]. The frame-description form is mainly an elab-
oration of the semantic-network one. Its emphasis is on the
structure of types themselves (called frames) in terms of
their attributes (called slots). A frame includes declarative
and procedural information in predefined internal rela-
tions. Attached to each frame is various heuristic infor-
mation, such as a procedure on how to use the frame.
Although many issues about the possible implementations
of frame-based systems are unresolved, the basic idea of
frame-like structuring of knowledge appears promising and
has appeared in various forms in many conventional lan-
guages.

e) Procedural representations: In a procedural repre-
sentation, a knowledge base is viewed as a collection of
modules expressed in a procedural language, such as Lisp
or C. The procedural scheme is capable of representing
heuristic knowledge and performing extended logical
inferences, such as plausible reasoning. Due to the elim-
ination of wasteful search, this representation scheme can
be carried out efficiently. However, it is often limited by the
available constructs. Conventional Fortran or Pascal pro-
grams, for example, have been found to be inadequate in
supporting efficient symbolic processing.

f) Connectionist representations: A connectionist rep-
resentation is a form of distributed representation: con-
cepts are represented over a number of modules or units.
When presented with input, units that have a positive cor-

relation with an input feature activate, and those with neg-
ative correlation exhibit inhibitory signals. In this fashion,
input can be recognized as a function of connection
strengths among units (see also Section [11-B2) [191]. Dis-
tributed representations allow automated procedures for
learning concepts and representations and have great
potential for parallelism in computation. Their major draw-
back lies in the difficulty of interpreting the system state
and the internal representations. Additionally, the pro-
gramming of these computers often requires a lengthy
training period.

A given representation may exhibit local or distributed
and declarative or procedural aspects at different levels of
the representation. Table 4 summarizes the characteristics
of these representations and categorizes the representa-
tions by the hierarchy of knowledge representation inher-
ent in the technique.

B. Knowledge Processing

Different reasoning methods are associated with differ-
ent knowledge-representation schemes and require dif-
ferent architectural supports. Table 5 shows the classical

TableS Reasoning Techniques

Representation Typical Reasoning Technique
Logic Resolution (unification)
Production rules Forward/backward chaining
Semantic networks Spreading activation
Frames Procedural attachments
Procedural Control flow
Connectionist Propagation of excitation

knowledge-representation paradigms and their respective
reasoning techniques.

it is argued that humans use logic-like reasoning in the
domain of rational knowledge and apply memory-based
reasoning for perceptual actions. For over 30 years, logic-
like deduction has been the dominant paradigm in Al

Table 4 Examples of Knowledge-Representation Schemes

Representation Level of Representation Characterization
Variable Local/Declarative
Logic Statement/Relation Local/Declarative
Program Distributed/Declarative
Variable Local/Declarative
Production System Statement/Relation Local/Either .
Program Distributed/Declarative
T Node Local/Declarative
. arc/relation Local/Declarative
Semantic Networks Network Local/Procedural
Program Distributed/Declarative
Variable tocal/Declarative
Statement Local/Either
Frames Slots Local/Either
: Frame Local/Declarative
Program Distributed/Declarative
Variable Local/Either
Procedural Statement Local/Procedural
Program Local/Procedural
Connection Strength Local/Distributed

Connectionist

Propagation Technique
Data and Knowledge

Local/Procedural
Distributed/Declarative

$14

PROCLEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989

research. This paradigm has been applied to a wide range
of problems, especially expert systems. Although intelli-
gent behavior often resembles logic-like reasoning with
limited search, the intensive use of memory to recall spe-
cific episodes from the past (rather than rules) could be
another foundation of machine reasoning {209). Memory-
based reasoning (or case-based reasoning) does not use
rules, but attempts to solve the problem by direct reference
to memory. The Connegtion Machine is an example of a
machine designed for memory-based reasoning, although
it can also be programmed to perform logic-like reasoning
[103].

Inthe use of a knowledge representation, the knowledge
processing technique must be tailored to cope with the
application requirements. The greatest need,.in symbolic
processing applications, is the ability to deal with uncer-
tain, incomplete, or conflicting information. Techniques
for dealing with this problem are discussed in Section 11-B1.
In Section 11-B2, methods for exploiting parallelism are dis-
cussed.

1) Uncertain, Incomplete, and Inconsistent Knowledge
Processing: The techniques for dealing with these prob-
lemsin knowledge processing are detailed in Fig. 4. The rest
of the section is devoted to a brief discussion of the entries
in the figure.

@) Uncertain knowledge: Conventional knowledge-
representation techniques based on predicate calculus and
related methods are not well suited for representing com-
mon-sense knowledge. Explicit and implicit quantifiers are
fuzzy, and the standard inference methods mentioned ear-
lier make no provision for dealing with uncertainty. Two
types of uncertainty have been studied. One comes from
noisy data and the fuzzy meaning of symbols; the other is
associated with uncertain inference rules.

Methods and theories of capturing uncertainty have been
examined in recent years. Probability and Bayesian statis-
tics is the fundamental basis of most approaches to this
problem. This takes many forms reflecting different issues.
Approaches and techniques include fuzzy logic (250), [251],
confidence factors [30), Dempster and Shafer’s theory of
plausible inference [199], odds [60], and endorsements [38].

Dealing with uncertain knowledge is most frequently
handled by two principal components. The first is a trans-
lation system for representing the meaning of propositions
and other semantic entities. The second is an inferential
system for arriving at an answer to a question that relates
to the information resident in a knowledge base. Appli-

cation of Bayesian statistics to expert systems follows this

approach [60]. A confidence factor (CF), or certainty factor,
is used to decide among alternatives during a consultation
session. A CF of a rule is a measurement of the association
between premises and actions. A positive CF indicates that
the evidence confirms hypothesis, while a negative CF
negates the hypothesis.

Dempster and Shafer’s theory of plausible inference pro-
vides a natural and powerful methodology for representing
and combining evidence. Ignorance and uncertainty are
directly represented in belief functions and remain
throughout the combination process.

Endorsements are records of information that affect a
hypothesis’ certainty. They can be propagated over infer-
ences, butin amanner thatis sensitive to the context of the
inference.

b) Incomplete and inaccurate knowledge: A key fea-
ture of symbolic computations is nondeterminism, which
results from the fact that almost any intelligent activity is
likely to be poorly understood. This implies that no sys-
tematic, direct algorithms for solving the problems are
available. When a problem becomes well understood and
can be soived by a deterministic algorithm, the solution of
the problem is no longer considered as ““intelligent [206).

The starting point of conventional computations is a
deterministic algorithm. Since most symbolic processing
applications are knowledge intensive, such a deterministic
algorithm may not exist. Efficient solution of the problem,
therefore, requires continual refinement of the computa-
tion technique and may employ various knowledge-acqui-
sition techniques. When knowledge of the application
domain is incomplete or uncertain, heuristic solutions are
utilized [133], [134], {180], [181], {205]). A heuristic is knowl-
edge capable of suggesting plausible actions to follow, or
implausible ones to avoid. It is desirable to use concise and

Knowledge
Processing

Uncertain Knowledge
Use of =
Probabitity/ Use of
Bayesian
Statistics

Fuzzy
o

Conlidence
Factors

Explicit

Inconsistent | (it tion

Knowledge

System Truth o
Applied Mai
Inf.

Reasoning with
Semantic Netuorks

tncomplete
Knowledge

/

Knouledge

Heurrt
Solution

Techniques

Fig. 4. Issues in knowledge processing and some applicable techniques.

WAH 1OWRIE anthy 11 Ao (TEoE FM@ SVATROM I BRI ESSING

s s 8 5 8 4 8 4 8 4 s e & 2 2 &t ¥ s

accurate domain-specific knowledge and meta-knowledge.
Unfortunately, this information is difficult to acquire in
practice and, if available, may be fallible or tremendously
farge in size.

The nondeterministic nature of computations and falli-
bility of heuristic guiding may lead to anomalies of paral-
lelism. As a result, when multiple processors are used, one
or more of the processors may be guided by the heuristic-
guidance function into a part of the search tree that is not
explored in the same order as thatin sequential processing.
This out-of-order exploration of the search tree, coupled
with the pruning of undesirable nodes, may result in a
speedup (as compared to sequential processing) thatis less
than one or greater than the number of processors. Some
results on when anomalies occur and how to cope withthem
can be found in the literature [129], [136), [141], {238].

In addition to heuristics, several new forms of logic for
belief and knowledge have been introduced. Traditional
reasoning methods suffer from the problem of logic omnis-
cience [105]. Logic omniscience refers to the assumption
thatagents are sufficiently intelligent that they know all valid
formulas. Thus, if an agent knows p, and that p implies q,
then the agent mustknow q. Inreal life, peopleare certainly
not omniscient. The newly introduced forms of logic are
more suitable than traditional logic for modeling beliefs of
humans (or computers) with limited reasoning capabilities
{63, (87].

¢ Inconsistent knowledge processing: Traditional
logic is monotonic. Monotonicity implies that new axioms
may be added to the list of provable theorems only when
they are consistent. Nonmonotonic reasoning provides a
more flexible and complete logic system, as well as a closer
model to human-thought processes. The motivations for
nonmonotonic reasoning can be classified into two general
areas: default reasoning, and reasoning in a changing envi-
ronment [24).

Default reasoning can be broken into two distinct areas:
exceptions to the rule, and autoepistemic logic. As the name
implies, exception to the rule allows relations that contra-
dict more general relations. A statement with mostasa rela-
tion will not add any information to a monotonic logic sys-
tem. Nonmonotonic systems allow a representation that
includes exceptions to the general rule, without eliminat-
ing the validity of the computing environment.

Autoepistemic logic (a.k.a. circumscription and closed-
world assumption) allows conclusions to be reached about
relations for which no facts exist in the database. This
involves the assumption that all relevant knowledge is in
the database (closed-world assumption).

In a monotonic system, no modification of existing
knowledge and data can be made without restarting all
inference processes and results. In a world where new dis-
coveries and revisions of previous beliefs is the norm, this
is a poor model for a large knowledge/data-based system.
Accommodating a changing environment is particularly
important when default reasoning is used. A statement
inferred by default may be corrected in light of additional
evidence.

The distinguishing feature of different techniques for
dealing with inconsistent knowledge is the method for han-
dling correction of the knowledge base. These methods
include explicit encoding, system applied inference,
semantic networks, and truth maintenance. In explicit

516

encoding, the programmer is responsible for writing code
that will update the database when a new statementis added
that may conflict with other statements [72]. In a system
employing system applied inference, the system has user-
encoded functions that automatically search for incon-
sistencies in the knowledge base {101). McCarthy and Hayes
have indicated how actions might be described using modal
operators like “normally” and *“consistent” {151]. Sande-
wall used a deductive representation of nonmonotonic
rules based on a primitive called UNLESS [192]). Reasoning
with semantic networks is another technique for ordering
inferences and default reasoning, although they have been
criticized for lacking a clear inference technique and for not
being a sufficiently formal logic system. In Doyle’s truth
maintenance system (TMS), the reasons for program beliefs
are recorded and maintained. These beliefs can be revised
when discoveries contradict assumptions [58). Improve-
ments have been explored by de Kleer in his assumption-
based truth maintenance systems (ATMS) [121]-{123]. In the
1BM YES/MVS expert system, inconsistent deductions are
automatically removed and new consequences are then
computed in accordance with the changed facts [197].

2) Parallel Knowledge Processing: Humans are often
thought of as the most efficient symbolic processing
engines. Some researchers claim that symbolic problems
can, therefore, be most effectively solved using techniques
similar to those employed in the human brain. Observa-
tions of human intelligence suggest that human knowledge
can be divided into perceptual and rational knowledge,
each of which may involve different degrees of paralielism.
In the perceptual stage of cognition, such as vision and
speech understanding, massive parallel processing is pos-
sible due to the large number of independent dataand sim-
ple control. Only limited parallelism can be exploited for
rational knowledge. In other words, the degree of paral-
lelism that could benefit the high-level reasoning is rela-
tively small. Therefore, this kind of task should be solved
by trying to accumulate heuristics, rather than trying to
exploit parallelism.

Unfortunately, early experiences with symbolic multi-
processor architectures, such as Hearsay-ll (70}, Eurisko
[135], and multiprocessor implementation of forward
changing rule-based expert systems {75], have shown that
parallel symbolic programs exhibit small speedups [119].
This has led to the possibly incorrect conclusion that sym-
bolic programs written for sequential execution have low
potential for parallelism.

The considerations of paraliel knowledge processing are
distinguished by four features: deterministic and nonde-
terministic parallelism, granularity of parallelism, data-and
control-level parallelism, and user-and system-defined par-
allelism. These features are summarized in Table 6. Designs
of parallel symbolic processors are presented in detail in
Sections 11l and V.

11l ARCHITECTURAL CONCEPTS FOR SYMBOUIC PROCESSING

With the symbolic processing application characterized
and the representation technique for the solution of prob-
lems in that application selected, it is possible to choose the
appropriate features and attributes for a computer system
10 solve problems in that application. An architectural com-
ponent of a processing system is defined as a hardware or

PROCEEDINGS OF THE 1EEE, VOL. 77, NO. 4, APRIL 1989

e g

v € e e et e e e e e

Table 6 Issues on Parallel Processing

issue Definition

Comments

Deterministic

and completion,

Nondeterministic

backtracking.
Granularity Size of units of computation to be executed bya
single functional unit.
Data Level Data stored one element per processor, program
executed in SIMD fashion.
and

Control Level Independent control for parallel tasks.

User Defined

and
System Defined

execute in parallel.

Concurrent execution of multiple units of
computation, al! of which are necessary for job

Multiple potential solutions evaluated in parallel;
parallelism used to replace or augment

Portions of program specified by users which can

Parallelism detected and exploited automaticaily by
the compiler or run-time software and hardware

Low overhead guarantees speedup; tasks must be
independent; pure functional programming is
deterministic.

Easy to implement—always independent;
nondeterministic nature may lead to anomalies
in parallelism.

Difficult to determine; a function of knowledge
representation, problem complexity, the shape of
the search graph, distribution of processing
times, and the dynamic nature of the problem
{140}

Can be used for large database operations, sort,
set operations, statistical analysis, . .. {240). Can
be implemented in memory—referred to as
active memory [67).

Major type of parallelism used; MIMD systems;
detection of parallelism can be more difficult
than in numeric programs; nondeterministic
nature requires dynamic mapping.

In numeric processing, DOACROSS is a typical
example. The FUTURE construct in Multilisp is a
symbolic construct [247].

Fully distributed representations aliow massive
system-level parallelism; some systems may
employ bath—the user only aids in indicating
available parallelism.

software structure that supports the solution of the appli-
cation. Inthis section, current software and hardware archi-
tectures which are useful in symbolic processing systems
are discussed. This section focuses on the specific archi-
tectures for symbolic processing and the way that they relate
to fundamental design concepts.

Software architectures are comprised primarily of soft-
ware languages and environments for encoding solutions
to the application. Selection of a software environment

imposes certain features that the software and hardware.

must support. The design process considers software and
hardware implementations of the required features and
selection of the best alternative, and is driven by a tradeoff
between cost and expected performance improvement.

A. Software Architectures

The area of software architectures for symbolic process-
ing encompasses two important facets. The first is the
design of appropriate software facilities, tools, and ian-
guages for the symbolic application, while the second facet
Concernsthetools used for mapping a symbolic application
into software.

The discussion of software architectures is organized in
the following manner. First, the process of designing soft-
ware facilities and languages is analyzed. Following this is
an overview of the most frequently researched and utilized
Programming paradigms for symbolic processing. Finally,
tf:ﬂe problem of mapping applications into software is over-
viewed,

* The design of software languages: The objective
behind a software language is to provide software support
and implementation of the knowledge representation(s)
employed. As with the choice of the knowledge-represen-
tation scheme, the major goals are ease and ability to rep-
resent the solution of the application and the promotion
of efficient execution of the algorithm. Once a technique,

WAH, LOWRIE, AnD LI: COMPUTERS FOR SYMBOLIC PROCESSING

or techniques, for representing knowledge is selected, the
major features of the language become apparent. For exam-
ple, the choice of alogic representation dominates the char-
acteristics of the Prolog language.

The software technique for implementing these features
may not be as clear, however. For instance, Lisp was a pro-
cedural language developed for symbolic processing. Inits
design, functional programming with recursion and list-
structured data were selected. These are not obvious
choices, but they arise out of the use of a procedural rep-
resentation. The selection of these features is also made on
the basis of ease of representation and efficiency of pro-
cessing. As another example, additional “im pure” features
may be added to the implementation of a knowledge-rep-
resentation scheme for efficiently supporting computation
and/or providing flexibility to the user. CUTs and side effects
in Prolog are well-known examples. This aspectcan be seen
as a procedural addition to a logic representation, which
isdoneto supportthe efficient implementation oflogic pro-
gramming.

The extension of conventional von Neumann computer
languages for symbolic processing is an issue that has been
explored extensively. By their nature, conventional com-
puter languages are based on procedural representations.
By examining the characteristics of symbolic processing, to
be discussed in Section 111-A1, the desirable features to
incorporate into a conventional programming language
become apparent. Such features include data structures,
symbolic primitives, recursion, and others. Conventional
languages which were designed for numeric processing,
such as Fortran, have not proven to provide adequate sup-
port for symbolic processing. In particular, the languages
are not sufficiently flexible to enable simple encoding of
very complex symbolic operations. For this reason, the new
and less conventional languages for symbolic processing
are emphasized in this section.

As was observed in the preceding section, the emphasis

@ 1 @ 1 8 1 3t 8 4 e 8t E a4 e

8 4 & ¢ 8 5 & & % & @ 3 € 3 M 4 8 E 8 4 € 8 & 4 & 4 8 & ML AT S & S S L oM ToE B A A RS E e e

in the design of new representations for symbolic pro-
cessing problems has been focused in the area of adding
declarative and distributed features to existing represen-
tation schemes. Part of the motivation for this emphasis is
referential transparency, or freedom from side effects. This
relieves some of the programming burden of the users,
allowing easier programming of complex applications. In
the following sections, three paradigms for the design of
software languages which promote referential transpar-
ency are discussed: functional languages {16}, [44],(97), rule-
based languages [36}, [52], [126}, and object-oriented lan-
guages {81), (208], {210}, {242].

1) Functional Programming Languages: The functional
programming approach does not employ states, program
counters, or other sequence-related computational con-
structs. A program is a function in the mathematical sense.
The program, or function, is applied to the input, and the
function is evaluated to the desired output. A functional
approach can bethought of as alanguage based on Lambda
Calculus; operators are applied to data or results of further
function evaluations. John McCarthy’s conception of list
processing is viewed as a pioneering effortin this area [150].
Examples of functional language include pure Lisp [152],
Backus’ FP [16], Hope {32], Val [155), and Id [14].

In a functional language, the meaning of an expression
is independent of the history of any computation per-
formed prior to the evaluation of the expression (referential
transparency). Precedence restrictions occur only asaresult
of function application. Notions such as side effects and
shared memory do not exist in functional programs. The
lack of side effects results in the determinacy property that
is so valuable in parallel processing. Regardless of the order
of computations of the arguments of a function, the same
result (assuming termination) is guaranteed. Hence, all
arguments and distinct elements in dynamically created
structures in a functional program can be evaluated con-
currently. For example, consider a simple program for com-
puting the average of numbers in a list s:

average(s) = div (sum (s), count(s)).

If we attempt to evaluate average(1.(2.(3.nil))), the com-
putation of sum (1.2.3.nil))) can clearly proceed indepen-
dently of the computation of count(1.(2.(3.nil))). The key
point is that parallelism in fundamental languages is implicit
and supported by their underlying semantics. There is no
need for special message-passing constructs, synchroniz-
ation primitives, or constructs for specifying parallelism. It
has been reported that implementation of functional lan-
guages on a parallel computer seems easier than on a
sequential computer {46).

Programming in functional languages facilitates speci-
fication or prototyping, prior to development of efficient
programs. With a satisfactory specification, it is possible to
develop an efficient program through program transfor-
mation. The idea is that the program specification should
be systematically refined to produce the program. Because
functional languages are referentially transparent, they can
be refined as familiar mathematical forms. Another advan-
tage of functional programming is that it can represent high-
order functions; a function can be passed as an argument.
A comparison of functional programming with von Neu-
mann programming is presented in Table 7.

Pure Lisp is a functional language. Many dialects of Lisp,

518

Table 7 Functional Versus Von Neumann Programming

Functional Programming von Neumann Programming

Programs are composed only
of other programs.

Programs can be freely built
from others.

Same program can treat
objects of different
structure and size.

There is a strong theoretical
background about
programs. Programs may be
proven as in mathematics.

Programs contain programs,
expressions, and variables.

Programs are composed only
with common data storage.

Changing size or structure of
data means changing the
program.

Few general practical
theorems exist about
programs. Proving
correctness of a program is
extremely difficult.

however, are not purely functional. Operations on global
variables, property lists, input/output, and other features
incorporated in these dialects create side effects. This is
seen as necessary to support efficient computation by
avoiding recomputation of functions whose results are
required in more than one place and to support convenient
input/output. Unfortunately, the property of referential
transparency is lost in most practical Lisp languages. More-
over, precedence restrictions are represented not only by
functional calls, but also in procedures.

With the presence of side effects, itis not straightforward
to identify the parallel tasks as in a pure functional lan-
guage. Users are required to identify independent tasks
with special primitives. Several parallel Lisp languages have
been proposed and implemented. Multilisp, developed by
R. Halstead at MIT and implemented on a 128-processor
Butterfly parallel processor, includes the usual Lisp side-
effect primitives for altering data structures and changing
the values of variables {89]. Concurrency is introduced by
means of the pcall and future constructs [41]. Both utilize
an implicit fork-join. For example, (pcall A B C) will result
in the concurrent evaluation of expressions A, B, and C;
while (future X) immediately returns a pseudo location for
the value of X and creates a task to concurrently evaluate
X. The use of future allows concurrency between the com-
putation of a value and the use of that value. The primitive
future was introduced because the use of pcall alone did
not provide a great deal of parallelism [90].

Proponents of functional languages believe that their
simplicity and elegance will conduce to more orderly, more
rigorous, more verifiable, and ultimately more efficiegt pro-
gramming. Opponents worry about losing expressiveness
as a result of the expression-evaluation-only model. The
crucial disadvantage of functional programming is that it
is difficult to represent the inherent nondeterminism in Al
problems. The recursive formulation and leftmost outer-
most reduction of functional programs enable depth-first
search naturally, but it is difficult to write a heuristic search
program by a pure functional language, since heuristic
search is inherently history-sensitive. In fact, heuristic
search programs written in Lisp include many “setq"” and
“do’” statements that are not pure functional primitives
[246). Due to the inability of representing nondeterminism
and the inefficiency of dealing with large data structures,
pure functional languages are often less suitable for gen-
eral symbolic applications. Their usefulness for determin-
istic symbolic applications is, however, significant.

2) Rule-Based Languages: There are two major forms of

PROCEEDINGS OF THE 1fEE, VOL. 77, NO. 4, APRIL 1989

Fig w

e T A e i e A Bt e omm 2 e

rule-based languages available: logic and production sys-
tems. The languages associated with these representations
are referred to as rule-based since both emphasize the rela-
tion between a condition and an inference or rule.

a) Logic:Inits modest form, a logic program is the pro-
cedural interpretation of Horn clauses or predicate logic
[125], [126]. Some ideas of logic programming, like auto-
matic backtracking, have been used in the early Al lan-
guages QA3, PLANNER, and MICRO-PLANNER (18], [218].
The more contemporary language, Prolog, is based on logic
programmer {37], [241]. Logic programming is a reasoning-
oriented or deductive programming environment. Logic
programming has received considerable attention because
of its choice as the core computer language for the Fifth
Generation Computer System Project in Japan [164].

The motivation of logic programming is to separate
knowledge from control. However, logic programming
implementations often include extralogical primitives to
improve their run-time efficiency and flexibility in speci-
fication. For example, in Prolog, the CUT predicate is an
extralogical control mechanism to define a similar con-
struct as the if-then construct in conventional languages.
In addition, variables in a logic program are often nondi-
rectional, meaning that a variable does not have to be
defined as an input or output variable at compile time, and
its mode can be changed at run time depending on the con-
text. As a result, dependencies among subgoals are not
defined at compile time, and static detection of parallelism
is very difficult. The solution is to require the users to spec-
ify the parallel processible tasks. In Parlog [35], every argu-
ment has a mode declaration that states whether the argu-
ment is input (?) or output (). in Concurrent Prolog [200],
a “read-only” annotation (?) is used. Users can also distin-
guish between ‘“’parallel ano” and ‘’sequential an0** by
using “,” and “&", respectively.

Constructs can also be introduced to restrict parallelism
until certain preconditions are satisfied. An example is a
guard clause that has been adopted in Parlog. A guarded
clause has the format: h :— g|b., where g is the guard of
the clause and b is its body. Subgoals in the body can only
be evaluated when all subgoals in the guard have suc-
ceeded and values bound have been committed tothe body.

User specification of parallelism certainly detracts from
the objective of declarative programming. This is a problem
even in the Restricted ano-Parallelism (RAP) model {51}.
Although the user does not have to explicitly specify par-
allelism, the user must be aware of the underlying com-
putational model. Both mode declarations in Parlog and
read-only annotations in Concurrent Prolog impose a fixed
execution order on subgoals, which may be inefficient.
Choosing the proper subgoals in the guard is sometimes
difficult and is not guided by any general principle. The dis-
tinction between “‘sequential anp” and “parallel anD,”
which is a linear order, is not sufficient to specify all pre-
cedence relationships, which form a partial order. Owing
to the nondeterministic nature of Al applications, users
cannot identify all parallel processible tasks perfectly. A
better symbolic processing language should utilize both
compile- and run-time detection of paralielism.

b) Production system: The other major form of rule-
based language which promotes the separation of know!-
edge from control is based on production-system repre-
sentation [28], [175]. A production-system program consists

WAH, LOWRIE, AND U: COMPUTERS FOR SYMBOUC PROCESSING

of a set of data and a set of rules that can act on the data.
Aruleiscomposed of aleft-hand side (LHS)and aright-hand
side (RHS). The LHS is the antecedent or situation and rep-
resents the conditions necessary for applying the rule. The
conditions are in the form of a Boolean combination of
clauses [28]. The RHS is called the consequent and indicates
a set of changes to the data memory to be performed when
the conditions of its LHS are met. Thus, a production system
can be viewed as a combination of matching the logic con-
dition and modifying the datain a procedural fashion. Strat-
egies are required for matching data conditions with LHS
of rules and for resolving conflicts when morethanone rule
has a match. The conflict set is the set of antecedents and
their bindings that match elements in the working memory.
Production systems operate in a recognize-act cycle. The
recognize cycle computes the conflict set, while the act
cycle selects one matching production and acts on it.

One of the popular programming environments for
implementation of a production-system representation is
the OPSS system [28]. The OPS5 system highlightstheissues
involved in designing production systems. OPS5 employs
data typing. The working memory (data) is viewed as a sep-
arate entity from the production memory, where the rules
are stored. OPSS employs a Rete match algorithm which
computes the conflict set but does not select one produc-
tion to act on. The algorithm works by storing the matching
condition in the form of atree. After the recognize-act cycle,
rather than recomputing the entire conflict set, the tree is
updated via tokens, which reflect the addition or deletion
of elements from the working memory [28], [74]. OPS5 has
two conflict-resolution strategies: LEX and MEA, LEX orders
the conflict set on the basis of the recency of the time tags
corresponding to the working memory elements that match
the condition elements of the production rule. In contrast,
MEA orders the conflict set using the recency of the work-
ing memory element that matches the first condition of the
matching conditions {even if it is not a maximum).

Production systems provide a natural programming par-
adigm for “if-then" programming environments, such as
those employed in expert systems. Unfortunately, algo-
rithms with iterations and recursions are difficult to encode.
In addition, rules are independent, and structural organi-
zation of programs requires special attention by users. Thus,
it is difficult to develop large programs using production
systems [186].

¢) On functional versus rule-based languages: The
advantages and disadvantages of functional languages stem
from the procedural and formal mathematical nature of
Lambda Calculus. In contrast, rule-based languages have
complementary advantages and disadvantages which stem
from their declarative nature.

The properties of nondirectionality of inputs and out-
puts, dynamic binding of variables, and nondeterminism
make logic languages more expressive. On the other hand, -
with the aid of high-order functions, which permits quan-
tification over individual data items as well as predicates
and functions, functional programming enables more con-
cise programs. Programs with high-order functions are eas-
ier to understand and reason about.

Although logic languages are more expensive, their
implementation in a parallel environment is more difficult
due to the nondirectionality of variables. This flexibility
complicates the detection of parallelism at compile time

6 1 ® B k4 & 4 W T oE o Emowomoromon B) R4S EE R ¥F A e RS

P N N I R A R A]

and sesults in the dynamic behavior of execution of logic
progsams. Current Prolog systems also lack a means to
describe the termination of computations on cenceptually
infinite data structures and the concepr of “evaluation” of
function invacations, which makes the logic bage nontrans-
parent. In contrast, the run-time behavior of pure func-
tional programs is much simpler to control than that of first-
order [ogic programs, pasticularly in a parallel context,
Techniques, such as graph reduction and data flow, have
been studied for parallel evaluation of pure functional lan-
guages.

Qbviously, it would be advantageous if the simple con-
trol mechanism of functional languages could be applied
1o support languages with the great expressive power of
logic languages. Considerable efiorts have been devoted
10 combine functional and logic programming [52]. Some
researchers are trying to simplify logic languages by intro-
ducing directionality of information inlogic programs (187].
This approach will degrade the expressive power of logic
pragrams to that of first-order functional programs.

The alternative approach is to extend functional lan-
guages so that they have the expressive power of logic lan-
guages while retaining the underlying functional simplic-
ity, The addition of unification to the Hope language is one

ple [47). Subrat vam et al. have proposed FUN-
LOG, a language that integrates functional and logic pro~
gramming, FUNLGG provides the programmer with the
flexibility of choosing between a backtrack-free compu-
tational framework and a logic computational framework,
Semanticunification has been introduced to serve as abasis
for achieving the integration of function and logic, and can
be used to replace the conventignal unification procedure
in logic programming [216]. VABLOG, a new approach to
logic programming designed by Malachi et al,, is based on
first-order predicate logic with equality and combines rule-
hased and {unctional programming. The use of this richer
and more flexible syntax overcomes some of the short-
comings of the Prolog syntax {146]. Other languages 1hat
combine features of Prolog and Lisp include LOGLISP,
QLOG, POPLOG, Quie, and Lambda Prolog {187].

3) Object-Criented Languages: New languages and pro-
gramming systems are being developed to radically sim-
plify Al programming. Object-oriented programming holds
promiseasaprogramming framework that can be extended
to concurrent systems, databases, and knowledge bases.

In conventional software, data and procedures are the
main focus of the representation and are treated as separate
entities. The choice of procedures and data is made by the
programmer. [n an object-oriented system, there isonlyone
entity: the object. Objects may be manipulated like data,
or describe manipulation such as a procedure, or both, Pro-
cessing is performed by sending and receiving messages
toand from the abject that possesses the appropriate infor.
mation, A selectar in the object specifies the kind of oper-
ation. Message sending is uniform, and a message repre-
sents onky what the sender wanis (or the resuit returned)
but does not include information on how to accomplish
that. Objects respond to messages using their own pro-
cedures (calted methods) for performing operations. Since
all communication is done via messages, one method may
not “calfl” another method. The technique for representing
the procedural knowledge can be any knowledge-repre-
sentation scheme, although most implementations of

520

object-oriented languages have employed procedural rep-
resentations of cantrol knowledge within the object,

la addition to objects and messages, object-oriented lan-
guages may also employthe concepts of class and ingtance.
A class is a description of sirilar types of objects. Lsing
clagses, atiributes of abjects may be shared. In addition,
classes pravide a mechanism for inheritance or implicit
sharing, Inheritance is used to define objects that are almost
like other objects. Thus, classes provicle an interface for the
programmer ta interact with the definition of objects.

Data abstraction is an impartant principle that is entailed
through message sending. Object-oriented languages sup-
part both the management and collection of data through
abstract data types, and the composition of abstract data
types through an inheritance mechanism.

The requirement of typed data abstraction with inher-
Hance is explicit and definitive, suggesting that object.or-
ented programming should be characterized bythe nature
of its type mechanisms rather than by the nature ofits com-
munication mechanisms. In a sense, object-otiented pro-
gramming can be defined as

objectoriented = data abstraction + data types + type

inheritance,

The object-oriented programming paradigm is a meth.
odology mainly for organizing knowledge domains but is
permissive in its methedology for communication. The
messagelobject model provides no new leverage for
exprassing concurrent problems. Concurrent models,
operating systems, and coordination taols.can be buiit from
such lower-level objects as process, queues, and sema-
phoses,

Early explh of object: d programming was
found in Simula [42], A more contemparary object-oriented
language which has received a great deai of attention is
Smalitalk [81). A variety of object-oriented languages
includes LOOPS [210], Actor [6), CommonObjects {208}, OIL
48], and others [242}. Recently, CommonLoops has been
suggested as a standard for object-oriented extensions to
Common Lisp [23].

The Actor model, developed by Hewitt at MIT, is a fot-
mafization of the ideas of object-oriented languagethat alse
considers the added effect of parallelism [98]. An actor is
the analogue of a class or type instance, Computations in
the Actor model are partial orders of events, inherently par-
allel and having no assignment commands. The language
Act3, based on the Actor model, combines the advantages
of object-oriemted programming with those of functional
programming [5]. The Apiary network architecture has been
propased to support the Actor model [99], [100]

4}-Mapping Applications into Software: Software devel.
opment, 2n active avea of research in software engineering,
is the process of mapping the application into a language
¢hosen for the given symbolic application. The process
begins with the selection of a solution technique. This deci-
sionincludes the choiceofaknowledge representationand
& method within that representation for solving the prob-
lem. Maturally, the available fanguages would greatlyimpact
this choice. These choices may be referred to as require-
ment analysis in life-cycle models of software development
[385}, [201].

Software development environments can be classified
into four generations [186]: discrete tools, toothoxes, life-

PROCEEDINGS OF THE IEEE, VOL 77, NO. 4, APRIL 1949

cycle support and knowledge-based tools, and intelligent
life-cycle support. Discrete tools were typical in the 1960s
and 1970s and refer to the development of individual tool-
like debuggers. Toolboxes refer to integrated packages of
tools, the most prevalent example being Interlisp [224]. Life-
cycle support and knowledge-based tools are being devel-
oped in the 1980s. Lifecycle support refers to software-
development environments suitable for each stage in the
design cycle, while knowledge-based tools try to incor-
porate domain knowledge to provide interactive assistance
to the programmer. Finally, intelligent life-cycle support, a
topic for future research {186}, provides knowledge-based
support for all stages of the software-development cycle in
an integrated manner. Software engineering environments
for distributed software development are also an increas-
ingly important area of research {201).

With increased software complexity, verification, vali-
dation, and the enforcement of a structured discipline lead-
ing to reliable software are very important problems.
Although a number of symbolic languages, such as Prolog,
have been criticized for lack of structure, a programming
style can be followed so that the resulting program is hier-
archically developed, as in conventional structured pro-
gramming languages, such as Pascal. There are mixed feel-
ings on verifying and validating software written in symbolic
processing languages. If these programs are treated as an
algorithm and the requirements are well specified, then
verification and validation are similar to those of programs
written in traditional languages. Techniques such as test-
case generation and path testing can be applied. However,
itis difficultto test the validity of the knowledge used, since
the knowledge may be heuristic and fuzzy in nature. The
same criticism can be made about programs written in tra-
ditional languages. In this case, the validity of the program
will largely depend on the experience of the experts and
the procedures used in deriving the knowledge. Systematic
knowledge-capture tools will help but will not guarantee
proper collection and maintenance of consistent knowl-
edge from multiple experts.

B. Hardware Architectural Support for Symbolic
Processing

The choice of the knowledge-representation schemes
and the software languages largely dictates the desirable
hardware architectures. In this section, the desirable inter-
mediate hardware designs of a symbolic processing archi-
tecture are discussed. These hardware designs can support
language-specific features, or primitive symbolic opera-
tions such as sorting and pattern matching.InTable8, some

Table 8 Features of Two Example Languages That Can Be
Supported by Hardware

Lisp Prolog
Data typing Condition matching
Function calls Database functions
Recursion Search

List structures—garbage collection
Individual commands—car, cdr, etc.
Parallelism-future, etc.
Application support

* application dependent

* database support

* transitive closure

* and others

* search strategy

« backtrack mechanism
Unification
Parallelism

modes, guards, etc.
Application support

WAH, LOWRIE. AND 1 COMPUTERS FOR 3YMBOUC PROCESSING

of the features that require hardware or software support
in Lisp and Prolog are shown.

As with languages, hardware features can incorporate
many well-established design philosophies, such as pipe-
lining, parallel processing, microprogramming, and redun-
dancy. Consider, for example, the hardware support of type
checking in Lisp. In Fig. 5, the role that design concepts and

-mz::: [Festure} i Design § [Design Techaique |]
SO\ N
Tag bits \\
in memory SN\
rd

Fig. 5. Hardware support for data typing.

design requirements play in a hardware architectureisillus-
trated. The figure is intended to identify the role of con-
cepts for approaching this design problem. It is not meant
to say that hardware designers utilize such an approach in
a real design.

Oncea setof hardware and software alternatives has been
enumerated, a subset of them must be selected for incor-
poration into the complete system. This will depend largely
onthedesign philosophy of the system (see Section IV). The
selection of competing structures (alternative designs that
perform the same function) is made on the basis of antic-
ipated gain in performance versus anticipated cost, both of
which may be difficult to estimate, especially when the
structures are not commercially available components. An
approximate model is often used to guide the selection.

The current hardware architectures used to support sym-
bolic computation can be classified into microlevel hard-
ware features, subsystem-level hardware features, and sys-
tem-level designs. A hardware architecture at the microlevel
is a piece of hardware designed to support a feature of the
language or processing techniques at its most fundamental
level. it is specialized and does not, in general, provide use-
ful computations outside of its role in the system. A sub-
system-level architecture is an architecture that performs
a complete and useful function by itself, but is often
included as a portion of a larger system. A system-level
design provides a complete hardware/software solution to
a symbolic processing application. Microlevel and subsys-
tem-level designs are discussed below, while system-level
designs are presented in Section IV,

1) Microlevel Hardware Features: A microlevel hardware
architecture is a unit dedicated to the support of a specific
symbolic processing technique used in the system. As the
number of features in symbolic applications and their lan-
guages is quite large, the number of corresponding pos-
sibilities for microlevel architectures is very large. Some
microlevel architectures and the features that they support
are presented in Table 9. ’

Five microlevel architectures are discussed in detail in
this section: stacks, data tags, garbage collection, pattern
matching, and unification. The remainder of the section is

“« ¢ oa s e 1 e

-a-u-un--.-.-.ao--nu-c-.oo-o--c-‘-.-.¢-.--.-c.

PR T L T I I Y

Table 9 Functions That Can Be Supported by Microlevel
Architectures

Function Example Architectures

Function calls, Hardware stacks,

Recursion Register windows,
Fast memory techniques
Data typing Memory tags,
' Concurrent tag-checking hardware
Sorting VLS| sorter

Set intersection Marker-passing systems such as
NETL

Systolic arrays,

Content addressable memories,
Finite state automata
Value-passing system such as
THISTLE and neural networks
Hardware pointers,

Reference counters

Pattern matching

Best-matching

Garbage collection

devoted to adiscussion of emerging technologies employed
in the construction of microlevel hardware.

a) Hardware stacks and fast stack-access techniques:
Stack architectures support function calls. This is especially
useful for Lisp and other functional programming lan-
guages. In the Symbolics 3600 computer [161], there are
three stacks: the control stack, the binding stack, and the
data stack, that are used to support tail recursion and shal-
low binding. To speed access to the control stack, the top
several (up to four) virtual-memory pages of the stack are
held in a dedicated fast-access 1K-word memory, referred
to as the stack buffer. The stack buffer contains all of the
current function environment (frame) plus as many of the
older frames as fit. A second stack buffer contains an aux-
iliary stack for servicing page faults and interrupts without
disturbing the primary buffer.

in ALPHA, a commercially available Lisp computer pro-
duced in japan {94}, a hardware stack is divided into four
2K-word physical blocks. Variables or arguments in a func-
tion of the Lisp program are stored in different locations of
cell space or stack. A great deal of time is required to search
for a free variable, especially in the case of deep binding.
To speed the evaluation of the function, the hardware stack
is designed to support value caching. The value for a var-
iableis fetched from the envionment stack in the first access
inagiven function evaluation and stored in the value cache.
Subsequent accesses will refer to values in the value cache.
When the function exits, the variables it used in the value
cache are marked invalid. Virtual stacks are also used to
avoid the overhead of using a single stack and having to
swap the entire stack in process switching.

Fast stack operations are also useful for implementing
Prolog. Data are often pushed on and pulled from stacks
in backtracking operations. However, the frames of a caller
clause may be deeply buried in the stacks; hence, a stack
architecture may not be adequate. in the Personal Sequen-
tial Interference Machine (PS!, a product of the Japanese
Fifth Generation Compuer Systems Project), a cache mem-
ory is employed. Several operations suited to stack access
are carried out in the cache memory.

b) Tagged memory: A conventional von Neumann
computer does not distinguish between data and program.
Both are stored as fixed-size binary words. Meaning is not
inherent in the contents of storage but defined by the pro-
gram manipulating the storage. Atagged architecture, how-
ever, relies on self-identifying representation at all levels of

b33

storage. Although tagging has been employed since the
1960s, early design considered tagging as a relatively unim-
portant and expensive peripheral concept. Tagged memory
can be a key feature in symbolic processing computers
today. Symbolic architectures often require identification
of different types of physical and abstract data types,
including integer, character, event, garbage, and others.
During processing, it is necessary to identify the different
operands employed in the computation. For this reason,
the tagging of data to improve real-time type checking is
appropriate.

The most common hardware support for data tagging is
the allocation of extra bits in each word to representits type.
Data-type checking at run time may be supported by addi-
tional hardware and overlapped with regular processing.
The speed of symbolic computers is often linked to how
effectively they emulate a tagged-memory architecture (50].
Special hardware for data-type tagging has been estimated
to increase system performance by as much as an order of
magnitude in Lisp computers. Data tagging also supports
garbage collection, facilitates better register utilization,
reduces memory traffic, and simplifies the design of coop-
erating parallel processors and specialized functional units
(71]. Data tagging is also essential in untyped languages
since the programmer does not specify the type of instruc-
tion used. For instance, the programmer need not specify
the type of an add instruction as integer, long, real, or dou-
ble. The type of adder used at run time depends on the types
of operands detected at run time, which are specified by
the corresponding tags.

Datatags can be used to represent information other than
just data-type. In the Classifier Machine [31), no addresses
are used at all. Only tags are used to connect classifiers to
each other. The no-addressing technique employed makes
the Classifier Machine startingly different from classicat von
Neumann architectures.

¢) Garbage collection: Garbage collection refers to the
process of identifying memory cells whose contents are no
longer useful for the computation in progress. In this case,
memory cells are contiguous groups of at least one memory
word. The process involves marking these cells as available
for future use and compacting free memory into contig-
uous blocks. It has been estimated that 10 to 30 percent of
the execution time in large LISP programs is spent on gar-
bage collection. The implication on interactive or real-time
systems is great, as garbage collection often requires large
continuous segments of time from the CPU.

The initial techniques for automatic garbage collection
centered around the use of reference counts [150]. Each cell
had an extra field that indicated the number of times the
cell had been referenced. The reference count was updated
each time a pointer to the cell was created or destroyed.
When the reference count reached zero, the cell could be

reclaimed as garbage. These techniques have the advan--

tage of intuitive simplicity and distributing the processing
overhead along the processing of the task. However, the
extra space and time required for use of the reference
counts can be high, although some of the overhead can be
shifted to compile time [19). In addition, there is no way to
reclaim cyclic structures. Generation scavenging is an
important technique which reduces the overhead rate of
garbage collection by using different rates for memory areas
of different age (or generation) [233].

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989

Lt s

More recent research in the area of garbage collection
has focused on parallel-garbage-collection methods. Par-
allel garbage collection is garbage collection that is per-
formed concurrently with program execution. Two pro-
cessing entities areinvolved: the Mutator andthe Collector.
The Mutator is responsible for program execution, while
the Collector is responsible for garbage collection. The
techniques often center around the use of coloring cells
{57}, [127), or the division of memory space into {two) dis-
tinct regions (17], [142]. Tagging can be a useful microlevel
hardware feature.

Parallel garbage-collection processors can be designed
with very simple and fast components, without becoming
a bottleneck of the system. In a design proposed by Hibino
{102), the collector processor cycle time was 200 ns—six
times faster than typical processor cycle times.

d) Pattern matching hardware support: Addition and
multiplication are the mainstay of scientific computations.
Similarly, pattern matching is the basic operation of sym-
bolic processing. A pattern matcher may be employed for
two major tasks (among other things): finding entries in a
database and choosing an operation to execute next. For
example, determining the applicable rule in a production
system is a pattern matching problem. Empirical results
show that 90 percent of execution time in a production sys-
tem employed for expert systems can be spentin the match-
ing phase (75). Therefore, hardware pattern-matching sup-
port can simplify the programming task and improve run-
time efficiency.

In most symbolic representations, symbols are repre-
sented in the form of strings. Conventional string-matching
hardware can be classified into four categories. The first
approach is associative memory. Although straightforward,
it is difficult to operate on strings of variable lengths. The
second technique is cascaded logic-memory arrays, also
called acellulararray [137]. Each character in a pattern-string
is stored in a cell and is compared with a character in the
input string. A third technique is the finite-state-automata
(FSA) method that uses a transition table to perform com-
plex string matching. Finally, there is the dynamic pro-
gramming technique that uses statistical characteristics of
the general pattern in order to determine the parameter
table for promixity matching. A survey of techniques for
hardware support of pattern matching can be found in [165].
More recent techniques for hardware support have also
been proposed [69], {220].

Pattern matching in some symbolic processors differs
from conventional database retrievals because many sym-
bolic applications contain widely varying field lengths and
uncertainties in data may forbid exact matching of patterns.
The pattern matching hardware for a symbolic processor
must be tailored to the representation(s) for which it will
be used.

In matching under uncertainties, best-matching is
required. Best-matching structures search for the pattern
Which best matches the defined objective. Best-matching
using associative memories has been explored {184). Neural
networks also provide potential for performing best-match-
Ing (see Section 111-B2). Kanerva’'s Sparse Distributed Mem-
ory (SDM) is a system designed for best-matching [116]. The
Proposed prototype consists of a virtual memory that is
addressed by a 1024-bit address, and a small physical mem-
ory. Each word in the physical memory has the 1024-bit

WAH, LOWRIE. AND (11 COMPUTERS FOR SYMBOLIC PROCESSING

address for this word and the data fields. When a memory
address is given, all locations in the physical memory with
addresses that differ by less than 450 bits of the given
address are accessed, and the corresponding data fields are
combined together into a single response. The 450 bits are
chosen so that approximately 0.1 percent of the memory
words will respond on the average for a physical memory
of 4 Mwords.

In a semantic-network representation, pattern matching
and other functions can be performed in parallel using a
marker-passing operation [68). A high-bandwidth com-
munication channel is important for this type of pattern
matching.

In a forward chaining rule-based production system, the
objects to be matched are constants, and multipattern mul-
tiobject pattern matching is required. The Rete Match Algo-
rithm is an efficient solution to this problem [74]. A number
of hardware implementations of this technique have been
proposed, including tree architectures [202), (212}, SIMD
Cellular Array Processor (CAP) [26], and tagged token data-
driven multiprocessor [78). It has been pointed out that the
key architectural requirements to support the Rete Match
Algorithm in parallel production systems are the use of a
memory to maintain information across muitiple recog:
nize-act cycles, and the proper choice of granularity of par-
allelism [86].

e) Unification hardware: Unification, a form of pattern
matching, is the fundamental technique in logic program
ming. It determines whether two terms can be made tex
tually identical by finding a set of substitutions for variables
in the terms, and replaces all occurrences of each variable
by that variable’s substitution. In general, both terms to be
resolved in unification are allowed to contain variables
hence, unification can be thought of as a bidirectional pat
tern matching operation [126). Since unification is appliec
extensivelyand is known toconsume over 60 percent of the
execution time in sequential logic execution, itis desirable
that additional hardware or firmware support be available

The primitive operations in unification are: 1) search fo
the called clause, 2) fetch of arguments of the caller anc
called predicates, and 3) examination of equivalence o
arguments, In order to carry out unification in hardware
fast memory access is required. To support dynamic mem
ory allocation, an efficient garbage collection technique i
also required. Finally, hardware support for data-typ
checking can also speed performance.

Research in this area has concentrated on string-match
ing hardware [204], uniprocessor machines [170), specia
unification chips [188), and pipelined unification [169]. T
reduce the required memory space and improve perfor
mance, the use of structure sharing [29] and techniques
structure copying [156] have also been explored.

The Parallel Inference Engine (PIE) developed at the Un
versity of Tokyo employs special hardware, referred to 2
UNIRED, for unification and reduction. UNIRED may b
characterized by the following features: tagged memor
high-speed focal memory that can be accessed in paralle
parallel hardware stacks, and dedicated internal buses. Th
unify processor fetches a goal from a memory module an
candidate clauses from definition memory. The unify pre
cessor then attempts to unify them, generates new goal
and returns these goals to the memory module.

Parallel unification is also an area of great interest. Pa

>

*mory
y with
given
idsare
its are
emory
emory

itching
ssing @
y com-
pattern

2m, the
rn mul-
:hAlgo-
~umber
ve been
1, SIMD
en data-
that the
e Match
use of a
o recog-
ty of par-

{ pattern
yrogram-
1ade tex-
variables
1 variable
rms to be
variables;
ional pat-
is applied
entofthe
desirable
available.
search for
caller and
-alence of
hardware,
umic mem-
chnique is
data-type

ing-match-
70}, special
o [169]. To
ove perfor-
hniques for
d.

{ at the Uni-
ferred to as
ED may be
d memory,
in parallel,
1buses. The
module and
e unify pro-
s new goals,
le.
nterest. Par-

B A T O T L NI I L

l!llltll!ooi.l.l-l!llll!n!lt.tll.‘...onc‘n.l.n.lnccl-'cuncau

allel unification can be performed either by unifying each
term pair in two atoms simultaneously, or by finding many
possible unifications concuirenty [(164]. Unfortunately, the
unification problem is proven to be log-space-complete in
the number of processors. This means thatitis not possible
to perform parallel unification in O(log* n) time using a
polynomial number of processors for any constant k, where
n is the total number of nodes and edges of the directed
acyclic-graph representation of the clauses. [t has also been
shown, however, that near linear speedup can be achieved
in parallel unification. Thus, unification algorithms are par-
allelizable from a practical perspective [237]. Array archi-
tectures for parallel unification have been proposed, such
as the Cellular Array Processor (CAP) (26), and others [204].
A mesh connected array of unifiers has been proposed to
exploit anp-parallelism in unification and may achieve
superlinear speedup [203].

f) VLS! and emerging technologies: Very Large Scale
Integrated circuit or VLSI technology has been a major fac-
tor in the cost reduction and increased functionality of sym-
bolic processing systems. The high degree of space-time
complexity in Al and symbolic computations has necessi-
tated the use of both parallel processing and VLSI tech-
nology. The development of specialized microelectronic
functional units is among the major objectives of the Jap-
anese Fifth Generation Computing project (771, MCC {73},
and DARPA’s Strategic Computing projects {45].

VLS! technologies allow a single-chip computer to be
realized. Although many functions can be implemented on
a single chip, the size of the chip and the number of input/
output pins are usually fimited, and chip areahastobe care-
fully aliocated to achieve the highest performance. Reduced
Instruction Set Computers (RISC) is a highly populardesign
approach that carries out only the most frequently used
instructions in hardware and the less popular instructions
in software [179]. The smaller chip area required by the con-
trol unitof RISC computers as compared to that of complex-
instruction-set computers enables incorporation of these
registers onto a single chip. It has been found that a large
set of registers on the chip is a good design tradeoff to
reduce the overhead of swapping registers in context
changes.

SOAR, or Smalitalk on a RISC, is a project to develop a
RISC chip for Smalitatk-80 [235]). The SOAR design details
a 32-bit NMOS microprocessor containing 35 700 transis-
torsand runs roughly 400 ns per instruction. Cycletime may
be decreased to 290 ns if 3-u lines were used. FAIM-1 is
another project that designs RISC chips to carry out spe-
cialized functions in the system [12].

Besides implementing RISC on a single chip, specialized
symbolic processing functions can be carried out in hard-
ware as well. An example is the Texas Instruments Lisp chip
with over 500K transistors on a 1-cm? chip implementing
approximately 60 percent of the functions in a Texas instru-
ments Explorer (147).

Many existing computers for symbolic computation
employ VLS| technology. The major building block of the
Connection Machine CM-1and CM-2 is d custom VLS! chip
containing 16 processor cells (103} The chip is imple-
mented on a CMOS die about 1 cm? in area. There are
approximately 50 000 active devices. Although each add
takes approximately 21 ps, an aggregate maximum rate of
2500 MIPS or 5000 MFLOPS can be achieved with 64K pro-

524

cessors implemented in 4K processor chips and 4K floating-
point chips.

Cellutar array structures are a widely studied technique
that can take advantage of the available VLSI technology
and exploit data-level parallelism in many symbolic pro-
cessing problems. The Cellular Array Processor (CAP)is an
example in this class [26]. A systolic cellular hardware design
has been explored for performing unification {204].

There are also emerging technologies that will likely
become cost effective in the near future for implementing
computers for symbolic processing. These include GaAs
circuits, wafer-scale integration (WSI), and optical com-
puting techniques.

GaAs circuits have similar design requirements as con-
ventional semiconductor circuits but are much faster.
Switching speeds on the order of 10 ps have been reported
in high electron mobility transistor (HEMT) GaAs circuits
{130). Gate propagation delays are typically on the order of
200 ps. Unfortuntely, fabrication of GaAs circuits is subject
to limited size and greater numbers of defects, which adds
to the already high cost [154].

WSt refers to the integration of multiple circuits on the

same wafer in order to avoid the high performance and cost
penalty of off-chip connections. As chip yield is low, the
yield of a complete wafer would be negligible. Techniques

i

such as focused ion beam (FIB) repair are utilized to increase "

yield of wafers. Low yields on WS! may make it more suit-
able for implementing a distributed knowledge-represen-
tation scheme, such as a neural network, in which the loss
of a small fraction of the distributed knowledge may not be
critical. When GaAs and WS! are combined, it s possible
to implement a 32-bit GaAs processorona singlewafer [154].
Design of such a processor for production systems has been
explored (131]).

Optical processing can be used ina fashion similar to sil-
icon gating. Switching speeds on the order of 5t0 10 ps are
possible in optical gates. Optical circuits do not have the
penalty of capacitance [244] and can communicate with low
propagation delay and no interference. Optical processing
has been developed in the form of arrays of light rays {21},
(79] and optical crossbars [148]. Use of optics in storage
media may greatly improve performance in symbolic sys-
tems with erratic memory behavior. it has been proposed
that optical techniques have the potential for improving
data- and knowledge-base processing speeds by two orders
of magnitude [21).

in Table 10, the microlevel architectures presented in this
section are summarized. Associated with each type of

Table 10 Microlevel Architectures and Their Significance

Architecture Significance
Stacks For function calls and value binding;
more than one stack may be used.
Tagging Data type checking; up to an order of
magnitude speed improvement for

Lisp.
Reclamation of usable storage; accounts
for 10 to 30 percent run-time in Lisp.
fundamental operation; up to 90% of
execution time in production systems
Type of pattern matching for logic; over
60% of execution time in sequential
logic programs.

Garbage Collection
Pattern Matching

Unification

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 198

microlevel architecture is one of the main applications for
that type of hardware, and an example of the significance
of architectures for support of that feature,

2 Subsystem Leve! Architectures: The subsystem-level
architecture represents an intermediate level between
microlevel and complete-system designs. In this section,
we identify three techniques for classifying the subsystem-
level architectures that address different types of knowl- :)
edge processing. Three different types of subsystems will Inference Maching

.emerge from this analysis: data- and knowledge-base
machines, inference engines, and neural networks.

Control-flow, data-flow, and demand-flow are three
important approaches that are used in the design of sub-.
system-level architectures as well ag the complete system
[236]. Their definitions and relative advantages and dis-
advantages are summarized in Table 11.

Knowledge representation plays an important role inthe
way that a complete system integrates its com ponents. The

(Meta-level)

A

and inference engines, which are integrated after their
development [9]. This viewpoint of the system architecture
is illustrated in Fig. 6(a),

An alternative perspective is seen from the design of the) @
Connection Machine (103], which closely reflects a seman- Fig. 6. Relationship among knowledge-base machine,
tic-network knowledge representation and memory-based Fags e machine, and database machine, (s Japanese

l. (b ti hi 18 Hierar-
reasoning. All the knowledge in the system is embodied in ﬁ,‘.’,ff, Q;’Sj,_ (®) Connection machine mode (€) Hierar

a large collection of facts; no intentional knowledge, or
rules, are employed. For this type of system, the database

isimplemented directlyon the architecture, and inferences database computersand a survey of commercially available
are carried out in software and message exchanges. This database computers can be found in [93] and {145]. Com-
perspective of system design is illustrated in Fig. 6(b). mercial manufacturers include Britton-Lee, Hitachi [2277,

Thelast design perspective is thatof a hierarchical nature International Computers Limited [15], and Teradata 7.
asshownin Fig. 6(c). An inference machine handies all meta- These systems may not function well for some applica-
level inferences, while a knowledge-base computer deals tions because the bottieneck in database retrieval has found
‘with rules manipulating domain knowledge. A separate tobe disk input/output and not processorcycles. Asaresult,
database €omputer carries out search and selection oper- very intelligent database processing using application-
ations on the domain knowledge. dependent knowledge and indexing may be preferable to

@) Database architectures: Early studies on specialized massive parallelism [214],

database architectures emphasized the yse of parallelism. b) Knowledge-base architectures: The objectives and
Such designs include CASSM [215), RAP [178], and DIRECT requirements of a knowledg&base computer are different
[S6). Some later Systems, such as the Connection Machine, from those of a database architecture. The most prominent
are designed with massive parallelism for symbolic appli- - differences are noted in Table 12, An evolving knowledge-
cationsand can beapplied fora number of specialized data- base subsystem should have a mechanism for either rejec-
base functions [240]. A comparison of several early paralle| tion of or truth maintenance for the insertion of incon-

Table 11 Control-Driven Versus Data-Driven Versus Demand.Driven Computations

Control Flow Data Flow Reduction
(control-driven) (data-driven) (demand-driven)
Definition Conventional Computation; statements Eager evaluations; statements Lazy evaluation; statements are only
are executed when a token of are executed when all of executed when their resylt is
control indicates that they should be their operands are available required for another computation
evaluated
"\dvamages Full control Very high potential parallelism Only required instructions are
executed
Complex data and control structures High throughput High degree of paralielism
are easily implemented Free from side effects Easy manipulation of data
structures
DlSadvantages Less efficient. Time lost waiting for Does not suppon sharing of objects
unneeded arguments whose local state changes
Difficulty in programming High control overhead Time to Propagate demand tokens.
Difficulty in preventing run-time efror Difficulty in manipulating data
Structures

WAH, Lowpe, AND LI: COMPUTERS FOR SYMBOLIC PROCESSING

vt
g
("

vailable
1. Com-
i [227),
1 (171).

ipplica-
s found
iresult,
ication-
able to

-es and
ifferent
minent
viedge-
T rejec-

incon-

re only
is
utation

ubjects

wens.

Table 12 Differences Between Databases and Knowledge Bases

Issue Database Knowledge Base
Contents Collection of data and facts Higher level c?f abstraction
Classes of objects
Complexity Stored items are simple Stored items are complex relations
Time dependence Data changes over time Kno l?dgg ch'ange.s less frequently with
) exception in situation knowledge
. Size Large number of facts Fewer relations on classes of objects
Use Operational purposes Analysis, planning, ...

sistent data or rules. Support for the inference mechanism
is also desirable and may take the form of an automatic rule-
selection mechanism, logic support, or special hardware
for operations such as joins and projections of relations.
Finally, the interface to the host computer should prefer-
ably be intelligent and may draw on the resources of the
knowledge-base system.

The issues in the design of a knowledge-base computer
include:

a) Storage and manipulation of intentional and exten-
sional data: Extensional data refers to data repre-
senting facts, that is, statements with no quantified
variables. Intentional data refers to general facts or
rules. In Fig. 6(c), the extensional and intentional data
are stored and operated on separately. in Figs. 6(a)
and 6(b), they are processed by the same physical ent-
ity.

b) Relational operations: As above, hardware and soft-
ware support must be provided.

¢ Hierarchical storage: Knowledge can be classified into
categories by degree of generality: fact through the
most general meta-knowledge. The access charac-
teristics are highly dependent on the type of knowl-
edge accessed. A hierarchical storage for meta-
knowledge may be used for efficiently exploiting the
knowledge structure.

d) Access-control algorithms: A knowledge-base sub-
system may be required to control access to its con-
tents. The main issues here are security, integrity, and
concurrency control.

e) Parallel and Distributed processing: Database
updates are history-sensitive. It remainsanopen issue
as to the best techniquels) for exploiting parallel and
distributed processing in knowledge-base systems.
Data-flow may be a good concept to apply.

tn many applications, a database computer may be inte-
grated with an existing host to form a knowledge-base com-
puter. An example is shown in the Intelligent Information
Resource Assistant developed at System Development Cor-
poration [118]. The system consists of a Britton-Lee IDM 600
backend database computer, a Xerox 1100 workstation as
alogic-based deductive engine, and a VAX 11/780 computer
as a file and print server. This prototype has demonstrated
that a knowledge-base computer can be easily constructed
from existing hardware components. ..

The Japanese FGCS project has developed Delta, a com-
bined knowledge and database computer. The motivation
behind a specialized design is that the integrated system
calls for a performance that cannot be met by commercial
components. The system consists of a control processor,
relational database engine, and a hierarchical memory. The

526

contro! processor translates commands (received from an
interface processor that communicates with a parallelinfer-
ence machine) into subcommands that the relational data-
base engine can perform. The relational database engine
operatesthrough adata-path with the hierarchical memory,
which is composed of semiconductor and magnetic disk
storage {166].

) Hardware support for inference engines: Inference
engines are a key component of knowledge processing
architectures. Their structure is highly dependent on the
knowledge representation and programming language
employed.

Animportant problem in designing hardware supportfor
inference engines is the architectural supports for search-
ing the knowledge base. Deduction and search have been
the dominant paradigms for machine inférence over the
fast 30 years. As discussed in Section {1, development of
superior heuristics combined with efficient hardwareisthe
best approach. The following are some of the key issuesin
research on search architectures. (More general issues on
parallet processing have been discussed in Table 6.)

a) Prediction of performance: A major difficulty in devel-
oping search-based inference engines is the inability
to estimate their performance without the actual exe-
cution of the search. This is due to both the non-
deterministic nature of searches and anomalies in
paraliet search algorithms [238].

b) Space-time tradeoff: There is a space-time tradeoff
in using heuristic knowledge. Very accurate heuristic
functions may require greater amount of space and
computation time than less accurate ones. This rela-
tionship, as well as the given architectural con-
straints, must be understood for the design of effec-
tive search subsystems.

o) Architectural support for machine learning: Heuristic
functions used in search algorithms should be
improved over time by automatic learning methods.
Architectural support for nonmonotonic processing
may be also helpful.

d) Management of large memory space: Heuristic search
strategies may require large amounts of memory
space to store the intermediate results and heuristic
information. Tradeoff with respect to the effective-
ness of a search strategy and the corresponding over-
head incurred must be considered. Techniques for
efficient memory management tuned to the search
behavior are vital in such a system.

) Granularity of parallelism: The proper choice of gran-
ularity is difficult to determine at design time due to
the dynamic nature of the problem. Granularity may
have to be varied at run time when more is known
about the application.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 4, APRIL 1989

(e pa e et O~ R ~a e 10> A S

S

f) Scheduling and load balancing: Due to nondeter-
minism in many search probiems, direct mapping of
asequential search strategy.into a parallel system may
not result in the best performance. The key to effec-
tive scheduling is the proper order of execution, not
just keeping the available processors busy. Counter
to intuition, depth-first search is sometimes prefer-
ableto best-first search in real systems when memory
constraints are considered [249]. Conditions for the
sequential search strategy may also have to be relaxed
to accommodate the architectural constraints {238).
For instance, the selection of the subproblem with
the minimum heuristic value in a heuristic search may
‘notbadesirable when the overhead of selecting sub-
problems distributed in local memories of muitiple
processors is high. Selecting the local subproblem
with the minimum heuristic value will suffice in most
cases.

8 Communication of pruning information: When the
search space is explored in parallel, excess compu-

- tation may be performed if pruning information can-

" not be shared among the processors. In general, a
tradeoff exists between search efficiency and com-
munication overhead.

‘Microlevel hardware features discussed in Section 1i-82
are often components of the inference subsystem. Data-
flow, control-flow, and demand-flow techniques (see Table
11) have been employed in designing hardware supports
for inference engines of Lisp and logic [10), (114), {167]. An
example of a combined data-driven and demand-driven
approach is demonstrated in ALICE {43) and Rediflow [117].
Although the theory behind data-driven and demand-driven
computations appears very promising, no clear solution has
been developed for many of the design considerations such
as the proper granularity. it remains an open problem as
to the proper tradeoff among demand-flow, data-flow, and
control-flow in an inference computer.

d) Artificial neural networks: Automated computa-
tions based on a neural-network design philosophy origi-
Nhated manyyears ago. A pioneering contributor was Rosen-
blatt who developed the concept of perceptrons [189).
Recently, a great deal of interest has been revived in this
area. Besides capturing the imagination by modeling com-
puters after the human brain, artificial neural networks, or
in short neural networks, offer a high potential for auto-
mated learning. The focus of storing information in the con-
nections between neurons is why they may be referred to
as connectionist systems.

Aneural network can be viewed as containing eight com-
Ffonents: Processing units, state of activation, output func-
tion, pattern of connectivity, propagation rule, activation
rule, Iearning tule, and an environment [190]. These are
SUmmarized in Table 13. The first design consideration is
on the representation in the set of processing units. There
are two possible approaches: local and distributed. A local
Tepresentation allocates one concept to its own unit. Hop-
field’s network solving the traveling-salesman problem is
3N example of a Jocal fepresentation on a neural network
{110]. While this may be an efficient solution to the problem,
it does not perform learning. In contrast, in a distributed
Tepresentation, each unit participates in the storage of many
concepts [106]. In this way, aprocessing unitin adistributed

WAH. I ywore AN 41 S eBe €0 Svaan i OONrCCCIam

Table 13 Artificial Neural Network Components

Component Description

Processing units

Three types; input, output, and hidden.
State of activation

Vector of the activation levels of the units
in the system.

Function on the activation level of a unit
which produces the units’ output; may
vary between units, but most systems
are homogeneous.

The connections are what determines the
performance and function of the
system.

A way of combining outputs of units and
patterns of connectivity into an input
for each unit; usually is a weighted sum
of the inputs and the excitatory (+) and
inhibitory (-) connection strengths.

A function for determining the new
activation level of a unit on the basis of
current activation and inputs to the
unit,

Three types: develop new connections,
abandon old connections, modify
weights; only the last has been
pursued; almost all learning rules are
based on the Hebbian learning rule.

in which the computing engine
functions.

Output function

Pattern of
connectivity

Propagation rule

Activation rule

Learning rule

Environment

representation stores an abstract feature at the microleve!
[190].

In a neural network, each unit has an associated acti-
vation level. This activation level can be analog, analog and
bounded, or discrete. Its output is a function of its acti-
vation level. Output functions are usually threshold or sig-
moidal functions. The output of each unit is distributed to
a set of processing units. The emphasis that the outputs
from other units have on a unit is determined by the weight
of the connection between units. Finally, a node’s activa-
tion is modified by the activation rule which is a function
of inputs, their relative connection strengths, and the cur-
rent activation level. :

Classes of neural networks may be discerned by their
learning paradigms [190). One class is associative learning
inwhich the network learns associations between the inputs
and their desired outputs. The second class is regularity
detectors, which learn to recognize interesting pattern on
the input. An overview of designs for neural networks of
both classes can be found in the references (4], [144). Learn-
ing techniques in alternative neural network strategies are
also extensively reviewed in the references [108).

Neural networks have been proposed for a variety of
applications, although they are not yet widely used in prac-
tice. A neural network can be easily adapted as associative
memory with capability for inexact matching, Its strengths
include both speed and accuracy in the presence of noise
[53]. Ata more complex level, neural networks can be used
for speech recognition {198}, and vision tasks such as letter
recognition [153]. Neural networks have been applied for
solving combinatorial search problems, such as the trav-
eling-salesman problem (110}, (111], although solutions for
large search problems on neural networks are not yet of as
high quality as those of goqg digital algorithms [20). Neural
networks are also useful for some strategy-learning tasks.
Experiments have been performed for a balance-control
system [11].

units

Jnit
may
ms

s the

level

- acti-
gand
» acti-
) sig-
ed to
itputs
reight
ictivas
wction
e cuf-

' their
irning
inputs
ularity
(N On
rks of
Learn-
ies are

ety of
" prac-
ciative
engths
f noise
e used
s letter
ied for
& trav-
ons for
et of as
Neural
7 tasks.
control

327

The design of neural networks is stitll plagued by a num-
ber of difficult problems. First, a neural network must be
trained for a given application and must be retrained when
the system parameters change. There is no systematic
method to generalize a neural network trained for one
application and apply it for another application. Second, ali
the learning algorithms known today require extensive
amount of training for good performance. Forexample, over
9000 learning sweeps, each of which has 40 phases, are
required to train a shifter network using the Boltzmann
Machine learning algorithm {107]. Moreover, the learning
speed dependsonthe configuration of the neural network,
which cannot be selected systematically. Dedicated hard-
ware to emulate various configurations of neural networks
and map the inner-loop operations into analog instead of
digital circuits canimprove the learning speed significantly.
A million times improvement in speed has been demon-
strated using hardware emulation [8]. Third, extremely large
neural networks cannot be built with the current technol-
ogy. There are numerous industrial efforts in building
neural networks. For example, AT&T's R3 chip has a word
size of 1048 bits and performs learning by back propaga-
tion. It was estimated that 4.5 million neurons can be built
on one wafer by 2010 using 0.25 micron lithography and 250
million transistors [62]. Consequently, it is unlikely that a
complete symbolic processor as intelligent as the human
brain (with over 10 billion biologicat neurons} can be built
with neural networks alone in the near future. Lastly, with
the limited size of neural networks, it is necessary 10 par-
tition the problem so that part of it can be learned by tra-
ditional methods and the other part by neural processing.
However, knowledge representations in neural networks
are drastically different from procedural and declarative
representations in conventional symbolic processors. Sys-
tematic methods to integrate them are still missing.

1V. COMPLETE SYSTEMS

Up to this point, we have focused on individual tech-
niques for effective symbolic computations. In this section,
complete systems for solution of symbolic applications are
classified into single-processor systems, parallel com-
puters, and connectionist systems. As in the preceding sec-
tions, we are interested in analyzing the role of individua!
components in the design of complete systems.

There are two prevailing trends in designs. Wwith the
increasing complexity of many symbolic processing appli-
cations, there is a shifting emphasis on knowledge rep-
resentations, as well as software languages and support,
away from strongly procedural techniques and toward dis-
tributed and declarative computing environments. Parallel
processing is another obvious trend in computer-system
design for symbolic processing.

Dependingon the starting point of the design, the system
can be classified as following a top-down or a bottom-up
approach. Top-down design begins with the specification
and analysis of the application. A knowledge representa-
tion is then designed, tailored to the needs of the appli-
cation. From this, a language is designed, and the system
is mapped into software, microlevel and subsystem-level
structures. This process may have to undergo many iter-
ations if it is discovered that the functional requirements
of the design cannot be implemented using the current

528

e e - i e e i A T T 0 e . - -

technology. The FGCS project can be viewed as a system
designed using a top-down design approach.

{n contrast, a bottom-up design first selects the tech-
nology and design options such as data- or demand-driven
calculation. A language and application suitable for imple-
mentation with these concepts are then sought. As above,
the design process may have to undergo many iterations
if it is found that the applications cannot be suitably sup-
ported by the computer designed. ZMOB (243] and the But-
terfly Multiprocessor [27] are instances designed using this
technique.

A shortcut to the top-down approach is to compromise
between the top-down and bottom-up approaches, result-
ing in a middle-out design approach [239]. The middle-out
approach begins with the selection of an appropriate and
weli established knowledge-representation scheme that is
the most suitable for the application. The representation
scheme should already have 2 well-developed program-
ming environment that can be modified later for the needs
of this specific system. Primitives for concurrent execution
may be added to allow users to annotate concurrent tasks
inthe application. The hardware and software architectures
are then designed, and the selection of features to incor-
porate includes consideration of previously used and
designed structures. The middle-out approach can further
be classified into top-first and bottom-first. in a top-first
middie-outapproach, the designers start withawell-defined
knowledge-representation scheme and tailor itto the given
application. ALICE and FAIM-1 are examples of architec-
tures designed using this philosophy.ina bottom-first mid-
dle-out approach, the designers first develop the architec-
ture to support a well-established representation scheme
before mapping the application to the scheme chosen.
DADO is an example developed using this approach.

The overall design process of a computer for symbolic
processing is iterative (see Fig. 7). In mapping from appli-

high tevels APPLICATION
of sbstraction SPECIFICATIONS

-\‘%'ﬁ :............‘....: DESIGN OF SYM. (-===c*t==="e .

b ; sreas of I goLIC PROCESSING | spplicadle :

25u P.wdy 7 cowpuTeR i 0% ¢

¥ . . [e P

Timd H i H Toed H H

Ak H H 9! s synthesis

tea 2 { basis i {Representation] i :

t program- H + anslysis E

i mabliity : 1 : v .

i ucs:.q: : ! optimization :

$ matho : H H

. : Algorithmic H M

c i design H Representation] ¢ beuristics ¢

> : : H :

w : M 4 H H

§g i wigornme : validation :

gy i end control 1 T simutstion ¢

T emerging ¢ sica 3 5

Sz :: les ’:C!lgn' H :
- J

jow levels
of abstraction HARDWARE/SOFTWARE
TECHNOLOGIES

Fig. 7. Perspective of design of a computer for symbolic
processing applications.

cation specifications to hardware and software technolo-
gies, the designers iterate in proposing and selecting
knowledge-representation schemes, algorithms, and phys-
ical designs until a feasible and cost-effective mapping is
found. Applicable design tools include methods for syn-
thesis, analysis, optimization, heuristic designs, validation,

1 v 4 v

~

simulation, and testing. During the design process, the
designers have to address issues related to theory, pro-
grammability, design methodology, design tradeoffs, effec-
tive control, and emerging technologies.

A. Single-Processor Symbolic Computers

. Lisp has enjoyed the longest tenure in the main stream
“of languages for symbolic processing and has led to the

) gieatest number of computers devoted to its execution. The

“earliest Lisp computers were PDP-6s, followed by the PDP-
10s and PDP-20s of Digital Equipment Corporation [152].
The half-word instructions and stack operations in these
computers were parficularly well suited to Lisp. Agreatdeal
of work has also been done specifically for garbage col-
lection on the PDP-10s and 20s.
.- The MIT Al Laboratory introduced the design of a Lisp
computer called CONS in 1976 [124]. This was soon fol-
lowed by CADR in 1978, their second generation Lisp com-
puter. This computer was the basis for many commercial
Lisp computers, all introduced in 1981. These computers
were the Symbolics LM2, the Xerox 1100 Interlisp com-
puter, and the Lisp Machines Incorporated Series 11l CADR.
Some notable recent commercial and research-oriented
Lisp computers are shown in Table 14.

Inaddition to providing special hardware to improve effi-
clency, commercial Lisp computers also provide an inte-
grated software development environment, such as KEE and
ART, that allows programmers to develop, debug, and
maintain large Lisp Programs. A recent trend is that these
development environments can be implemented effi-

Table 14 Notable Single-Processor Symbolic Computers

ciently in software (rather than microcode) on high-speed
general-purpose workstations. It is likely that in the future
special-purpose Lisp computers will be used to execute
rather than develop Lisp programs.

The design of special-purpose Lisp computers continues
to be a popular research area. Many experimental com-
puter designs have been reported (55}, (83-85), {168}, [182],
[193-195], [222}. A single-chip design to support Scheme, a
dialect of Lisp, has been demonstrated in the Scheme-79
and Scheme-81 chips {219]. Scheme-79 was limited by its
implementation of a register file and slow programmable
array logic. A redesign, Scheme-81, has proven to be much
faster.

The popularity of rule-based systems has come at a time
when parallel processing also became highly popular. As
a result, most architectures designed for supporting these
languages have been parallel computers. However, the
study of single-processor rule-based systems is still impor-
tant because a parallel system can be limited by the speed
ofits inferences, and the building block of a parallel system
is likely to be a single-processor symbolic computer.

The three most notable designs for executing logic lan-
guages are SRI’s pipelined Prolog processor [226], the Per-
sonal Sequential Inference (PSI) Machine of the Japanese
FGCS Project (223), and the Cooperative High-Speed Infer-
ence Machine(CH1), also of the Japanese FGCS Project[230].
PSl, an integrated workstation with an execution speed of
30KLIPS, is intended to be a software development tool for
the project. PSI has been redesigned into PSI-If and has a
performance of 150 KLIPS on the average [230). CH! was
designed with speed in mind, and took on a less con-

Machine Year/Status® Primary Language Features

Scheme-79, Scheme81 1981/PO Scheme Single chip; tail recursion; lexical scoping.

Lisp Machines Lambda 1983/CD Zetalisp, LMLisp NuBus-—multiprocessor capability; stack
orientation.

Symbolics 3600 1983/CA Zetalisp, Flavors Tagged memory; stack-buffer, hardware
garbage collection; single-address
instruction.

Tektronix 4400 1984/CA Smalltalk, Franz Lower-end Al workstation; Motorola 68010/

Lisp 20

TI Explorer 1984/CA Common Lisp NuBus; tagged memory; microprogrammed;
mega-chip version has 60% of processor
implemented in one chip with 550 000
transistors [147].

Fujitsu ALPHA 1983/CA Utilisp Value cache; hardware stack; virtual stack.

FGCS PSI-1, PSI-UI 1985/PO KLO (Logic) PSI-11: CMOS-GaAs; TTL; 200 ns cycle time;
cache; stacks; copying for structure data;
hardware unification; tagged data;
interpretive execution; 150 KLIPS average
speed.

FGCS CHI-, CHi-lt 1986/PO Current Mode CHL-i1: CMOS-GaAs; TTL; 170 ns cycle time;

Logic (CML) cache; about 400 KLIPS average speed for
append operation.

SRIs Pipelined Prolog 1984/S1 Prolog Pipelined execution; microprogrammed

Processor controller; interleaved memory; FCFS
module queues.

SOAR 1984/PO Smalltalk-80 RISC; hardware support for expensive

procedure calls in Smalltalk-80; tagged
and untagged instructions; large number
of registers; automatic storage
reclamation; direct object addressing; fast
type checking.

* Status Codes:
(Tables 14-19)

CA: Commercialty available;
PO: Prototype operational;
UC: Under construction;
PD: Paper design:

WAH, LOWRIE, AND L1: COMPUTERS FOR SYMBOUC PROCESSING

CD: Discontinued commercial system;
HS: Hardware simulated;
SI: Simulations completed;

-speed
: future
xecute

ntinues
il com-
], [182),
veme, 3
eme-79
d by its
nmable
e much

it atime
ular. As
1g these
ver, the
1impor-
e speed
1system
ter.
ogic lan-
the Per-
apanese
od Infer-
ect(230].
speed of
t tool for
nd has a
CHI was
ess con-

329

strained design technique. The original CHI was also rede-
signed into CHI-, with an estimated improvement in per-
formance from 280 to 400 KLIPS for the ApPEND Operation
(230].

Single-processor support for production systems has
focused on additional data memories [132] and RISC archi-
tectures {751

Object-oriented languages have been implemented on
sequential processors. The Xerox 1100 family of computers
were one of the first workstations on which Smalitalk-80
was built. Smalitalk-80 has been implemented on a single
chip using the RISC approach in the Smalltalk-On-A-RISC
(SOAR) project [234]. There is no microcode or fine-grained
addressing hardware, and few multicycle instructions.

B. Parallel Symbolic Processors

1n this section, we classify parallel symbolic processors
in terms of their representations or programming tech-
niques employed. Section 1V-B1 discusses the methods of
communication and synchronization in parallel symbolic
processors. The rest of this section is devoted to discus-
sions on parallel symbolic processors for functional, rule-
based, and object-oriented representations.

1) Communication and Synchronization

a) Communication: Message passing, marker passing,
and value passing are three predominant communication
methods in parallel symbolic processors.

Message passing is the conventional way of communi-
cation in which the information to be communicated is for-
mulated into a message and sent over the interconnection
network. The computing elements are generally complex,
and the communication costs are high. Message passing is
popular in many parallel symbolic processors.

Marker passing refers to the transfers of single-bit mark-
ers from one processor to another. A marker indicates the
presence of a given property, and a set of markers indicate
the conjuction of a set of properties. Each processor is sim-
ple and can store a few distinct marker bits. There is never
any contention: if two markers arrive at the same desti-
nation, they are simply ored together. The basic inference
operation performed is, therefore, setintersection. Marker
passing is especially suitable for implementing semantic
networks and recognition problems in hardware. Onesuch
system is NETL[64],[66]. The Connection Machine was orig-
inally designed as a marker-passing system, but was mod-
ified later to carry out more powerful processing and com-
munication features as well as support of virtual processors
[68].

The last method of communicating information is value
passing. In this form, information is passed as cortinuous
quantities. Only simple operations are performed on these
numbers. The salient feature of this approach is that if sev-
eral values arrive simultaneously atone point, they arecom-
bined into asingle outputbya mathematical function. Con-
sequently, there is no contention in information transfer.
Examples of value passing systems include the Boltzmann
machine [66] and other neural computation systems [109].
lterative relaxation techniques for problems such as low-
level vision, speech understanding, and optimization alt
seem to be suited to value-passing architectures.

b) Synchronization: Synchronization refersto the con-
trol of concurrentaccesses to shared itemsina parallel pro-

530

cessing system. Itis importantin message-passing systems
because messages may result in contention for shared
resources. In contrast, synchronization is not critical in
marker-passing or value-passing systems because there is
a predefined method of passing markers and combining
values so that contention will not occur.

Synchronization is important when there are shared data
items. In a program written in a procedural language, the
order of statements dictates the order of execution. If two
statements share a variable, the first is to be executed prior
to the second. Therefore, synchronization control isimplic-
itly defined by the order of statements when data sharing
is necessary. In contrast, the order of execution in a pro-
gram written in a pure declarative language is not defined.
When two tasks share a common variable, the order of exe-
cution is indeterminate. As a result, explicit specification
of synchronization control is needed when data sharing is
present. However, most declarative languages lack facili-
ties for explicit specification of synchronization control.

Synchronization can be carried out by shared memory
or message passing. Shared memory is popular and has
been used in systems such as Aquarius {54}, Concurrent Lisp
Machine [217], Concert Multitisp Multiprocessor [92], and
the Parallel Inference Engine [82]. Blackboard architectures
and shared variables are two applicable techniques for
shared-memory synchronization.

The blackboard model was originally developed for
abstracting features of the HEARSAY-t{ speech understand-
ing system (61}, {176]. There are three components: a set of
knowledge sources, a blackboard, and control. The knowl-
edge processing technique to solve the problem is parti-
tioned into separate knowledge sources. The data, includ-
ing inputioutput and partial solutions, are stored in the
blackboard. The blackboard may be partitioned into smaller
blackboards, forming a hierarchy of solution spaces.
Knowledge sources manipulate the data in the blackboard
inorderto reach asolution. Theonly communication mech-
anism between these knowledgesourcesis the blackboard.
A monitor is present to ensure that only one knowledge
source is changing the blackboard at any time.

A more powerful blackboard architecture has been pro-
posed in which control information (or meta-knowledge)
is allocated a separate blackboard [95)- This approach is
more flexible and suits the nondeterministic nature of sym-
bolic processing.

Synchronization may also be achieved through shared-
memory variables. Lisp languages that have been modified
for parallel processing often contain shared variables for
synchronization. Multilisp provides a mechanism for wait-
ing for values to be generated inthe future. As in other lan-
guages, procedure activations may not be well nested, and
a process can terminate prior to an activation that it began.
This is a problem that must be addressed by the program-
ming system [91].

Single assignment languages, such as pure Prolog and
pure dataflow languages, do not require careful synchro-
nization of shared memory variables since a variable ma
be written only once {143]. in Prolog, the technique istot
to delay process reduction uatil information is available in
order to make a better decision. In Guarded Horn Clauses
(GHC) [231), the current kernel language of the Japanese
FGCS project, or-parallelism is not exploited. A strict syn
chronization rule suspends a subgoal if it tries to modi

PROCEEDINGS OF THE ILEE, VOL. 77, NO. 4, APRIL 198%

wim < e ey

SR

v b, s k) B T . [,

e Skt e ———

its parent environment. This simplifies the implementation
of the language but results in a less expressive language

1}

[zzsjnchronization in a message passing system is accom-
plished through a protocol implemented in hardware or
software. In a standard message passing environment, the
messages may be of arbitrary complexity. This is more
appropriate, for example, in systems using an object-ori-
ented programming technique. Actor is a paradigm for sys-
tems with message passing of this nature {98}, [100]. When
an actor receives a message, it performs predefined prim-
itive actions. In this sense, actor systems are inherently par-
allel. The Apiary architecture is based on actors {99). Other
message passing systems for symbolic applications include
the Contract Net system [207] and the Rand Distributed Air
Traffic Control System [33].

2) Parallel Functional Programming Computers: The
majority of special-purpose paralle! processors designed to
support functional languages are oriented toward Lisp.
gxamples include Concert [92], EM-3 [248], and a multi-
microprocessor Concurrent Lisp system developed atKyoto
University [217]. In all these systems, users are required to
specify to some extent the tasks to be decomposed. Com-
pilers for automatic detection of parallelism in sequential
Lisp programs is an area of active research. Table 15 pre-
sents some of the more publicized paralle! systems for func-
tional programming techniques.

The majority of computers that were designed for gen-
eral-purpose applications have only a few features specif-
ically appropriate to symbolic processing. As a result, the
inference engine and knowledge base are not separated
and are almost exclusively implemented by sophisticated
software structures. Lisp is added as one of the several lan-
guages to accompany their parallel computers. A Lisp com-

Table 15 Notable Parallel Functional Programming Computers

piler is used for decomposing tasks for parallel processing,
and users are required to annotate tasks in various degrees.
Examples of commercial multiprocessors supporting Lisp
include the Butterfly [41), Connection Machine [39}, and the
intel iPSC concurrent computer [22].

For the Connection Machine, special chips containing 16
bit-serial processors and router circuits were developed.
*Lisp in CM-2 allows users to specify a parallel variable
{pvan), which is a first-class object with value for each pro-
cessor in the computer [40]. The primitive pvar can be
accessed concurrently (with possible masks) by all local or
remote processors in a SIMD or multiple SIMD mode. CM-
Lisp is a dialect of Common Lisp extended to allow fine-
grained, data-oriented parallel processing. It provides
higher-level data abstractions called “‘zappings,” which are
similar in structure to arrays or hash tables. Broadcasts,
reductions, and combinations can be specified.

Other general-purpose computers with limited support
for parallel symbolic processing, such as ZMOB, are being
developed at universities [243]. These computers can be
viewed not just as symbolic processing computers, butalso
as general-purpose computers that are appropriate for both
numeric and symbolic computations.

3) Parallel Logic Architectures: In this section, parallel
systems suitable for evaluating logic programs are pre-
sented. A summary of notable projects is shown in Table
16.

Unification and search are two key features in evaluating
logic programs. Architectures that emphasize efficient
search of logic programs include the BAGOF architecture
{34] and MANIP-2 [138]. The MANIP-2 architecture is par-
ticularly interesting due to its emphasis on heuristic parallel
search strategies.

There are two significant parallel logic systems devel-

Primary
Machine Year/Status* Language Interconnection Communication Features
Butterfly 1985/CA Multilisp Butterfly Switch Shared memory 256 MC68000-series PEs; homogeneous,
tightly coupled; general-purpose
. multiprocessor.
iPSC 1986/CA Common Hypercube Message 256 Intel 80286 and 80386 processors; no
Lisp passing shared environment; user decomposes
program into concurrent processes that
[« icate by ; general-
. purpose multiprocessor.
Connec}non 1986/CA *Lisp, CM- Hypercube Message Model CM-2 has 4096 bit-serial processors;
Machine Lisp passing users annotate Lisp programs for SIMD or
multiple SIMD parallel processing; C*,
Fortran, and Paris (CM-2 assembly
language) are also supported.
Copcurrent 1983/PO C-Lisp Muiltiple buses Shared memory 17 MC68000-series PEs; special cell interface;
Lisp control stack; garbage collector.
Machine
EM-3 1984/PQ EMLISP Modified Delta Message List-like data-driven language; 16 MC68000-
network passing series PEs; special router chip; control for
C function evaluation.
oncert 1986/PO Multilisp Ringbus Shared memory 32-64 MC68000-series PEs; network is
Redifl segmented bus in shape of ring.
how 1984/51 Functional Mesh or richer Message Demand/data-driven; loosely coupled;
Equation connections passing hardware support for load balancing;
Language distributed garbage collection.
. (FEL)
Alice -uC Hope, Lisp, Cluster of processors, Message Transputer as basic processor; reference
Prolog ring buffer. passing counter for parbage collection.

Refer to Table 14 for explanation of status codes.

W, ..
AH. LOWRIE, AND U1 COMPUTERS FOR SYMBOLC PROCESSING

s St At e

1ssing,
grees.
g Lisp
nd the

1ing 16
loped.
iriable
h pro-
an be
xal or
e.CM-
v fine-
ovides
ichare
dcasts,

ipport
 being
-an be
utalso
>r both

arallel
e pre-
\ Table

uating
Hicient
ecture
is par-
varallel

devel-

0
es
hat

0rs;
1D or

rface;

ol for

Table 16 Notable Parallel Computers for Logic Representations

Machine Year/Status* Interconnection Communication Features
BAGOF 1984/PD Bus Shared memory OR-parallelism; separate static and dynamic
) memory; token pool.
MANIP-2 1985/PD Global broadcast Message passing Cluster of PEs with local memory; distributed
bus selection; heuristic guiding and pruning.
Aquarius -/UC 8us and crossbar Shared memory Heterogeneous MIMD; 16 PEs; synchronization
) through Goodman Cache; crossbar to shared
memory modules; special Prolog, floating-paint,
and /O processors.
Parallel Inference 1984/51 Switching Shared memory 100s to 1000s of inference units; goal rewriting
Engine (PIE) network model; OR-parallelism; sequential AND
processing; Activity Controllers to control
inference tree; Unify Processors connected to
Definition Memory containing program.
Parrallel 1986/HS Multistage Shared memory Many Inference Modules connected to Structure
Inference network AMemory units through network: structure
Machine- copying.
Reduction
(PIM-R)
Parailel inference 1986/HS Multistage Shared memory Multiple PEs connected to Structure Memory;
Machine- network unfolding interpreter; asynchronous
Dataflow communication; streams for nondeterministic
(PiM-D) control.
PIM-1 <SUC Hierarchy Shared memory, 100 PEs; 8-PE clusters interconnected with shared
message memory and parallel cache.

passing

*Refer to Table 14 for explanation of status codes.

oped at universities. The Aquarius multiprocessor devel-
oped at University of California, Berkeley, emphasizes a
coupling of intensive numeric calculations and symbolic
manipulations [54). It intends to utilize paralielism at all lev-
els of computation and considers cost as secondary to per-
formance considerations. Another university project is the
Paralle! Inference Engine (PIE), being developed at the Uni-
versity of Tokyo [163]. The target is 1000 processors, and a
speedup of 170 has been estimated for 256 processors. PIE
utilizes or-parallelism only.

Probably the most massive effort at the development of
parallel logic systems is contained in the Japanese Fifth
Generation Computing System project (FGCS). The project
discerns three major areas of development: problem solv-
ing and inference machines (hardware), knowledge-base
management systems (software and algorithms), and an
intelligent man-machine interface [162]. The project is
divided into three stages. The initial stage explores basic
computer technology and processing techniques. This
stage has been completed. The middle stage is for the devel-
opment of subsystems, and the construction of experi-
mental subsystems. The final stage is devoted to the devel-
opment of the complete system.

Table 17 Notable Parallel Machines for Production Systems

The initial-stage designs of the Parallel inference
Machines (PIM) were based on two concepts: reduction and
dataflow (PIM-R, and PIM-D, respectively) {115, 166]. The
architectures for these computers were similar, but the
technique for evaluation reflected these two philosophies.
The hardware of PIM-R and PIM-D have both been simu-
lated.

PIM-l is a hardware design for the intermediate stage of
the FGCS project. The target speed for the 100-processor
PIM-i is 10 to 20 MLIPS, with target speed of 200-500 KLIPS
for the individual processors [230). The machine language
for this computer will be KL1-B, which is based on Guarded
Horn Clauses. The software development will be done on
a network of PS! systems (multi-PS1) [113].

4) Parallel Systems for Production Systems Computa-
tions: The exploration of computers for production systems
has been carried out primarily at universities. Table 17 pre-
sents a summary of these projects.

The DADO1and DADO2 projects [211], [213] at Columbia
University develop a class of computers based ontreearchi-
tectures. The upper-level nodes synchronize and select
rules, intermediate nodes match and store rules, and the
leaves are for the working memory.

Machine Year/Status* Interconnection

Communication Features

DADO?1, 1986/PO Binary tree

DADO2,

Non-Von 1985/PO
connections;
connections to
Large PEs (LPEs)

PSM 1986/S1 Shared buses

Message passing DADOQ?2; 1023 8-bit processors; 16K user memory; two

Binary tree with leaf Message passing Binary SIMD tree of Small PEs; leaves are connected in

Shared memory 32.64 processors; paraliel Rete Match algorithm; PEs

modes; MIMD, and multiple SIMD; special I/O circuits.

mesh; LPEs connected by network, with connections to
high-level nodes in tree; intelligent disk drives
connected to LPEs.

connected to memory modules through cache: local
memory; hardware task scheduler.

*Refer to Table 14 for explanation of status codes.

$32

PROCEEDINGS OF THE IELE, VOL. 77, NO. 3, APRIL 1989

Table 18 Notable Parallel Computers for Object-Oriented Computation

Machine Year/Status® Interconnection Communication Features

FAIM-1 -JucC Hexagonal mesh Message passing PEs = Hectagons; heterogeneous shared-memory
multiprocessor: Instruction Stream memory, Post Office
communication processor, Evaluation Processor, and
others; three-port switch at edge of array for 1/0 and
wrapping of connections.

Dragon -uC Bus Shared memory Up to 10 32-bit workstation/processors; tightly coupled;

. . associative cache at each processor.
Apiary . 1980/PD Single-stage Message passing Implements Actor model; computations in the Actor model
network are partial orders of events with no assignment

commands.

+Refer to Table 14 for explanation of status codes.

Another project at Columbia University is the Non-Von
computer (Non-Von-1 is an earlier version) [104], (112].
Unlike DADO2, Non-Von connects smaller processing ele-
ments in a binary tree, which are subject to the control of
large processing elements. Most of the pattern matching
tasks that are done in the working memory have small gran-
ularity and are more suitable to be executed on alarge num-
ber of small processing elements.

Finally, the PSM computer is a large-grain machine that
is specifically designed to support the OPS5 system and a
parallel Rete-Match algorithm. Simulations have shown
promising speedups, and that 32 processors are sufficient
to exploit most parallelism for this system [86].

Numerous studies on strategies of mapping productions
systems to multiprocessors can be found in the references
(132, 1177, (225}, [232).

5) Parallel Object-Oriented Architectures: Most devel-
opment work on object-oriented programming has been
on computers not specifically designed for object-oriented
computation, such as the intel iPSC. Two notable multi-
processors are designed specifically for object-oriented
computations. FAIM-1{12] is a multiprocessor with special
RISC processors connected by a hexagonal mesh. OIL, an
intermediate language, was first developed for interfacing
modules. However, the scope of the project has recently
been changed to exclude the development of OIL and base
programming of the computer on MultiScheme. The
Dragon project is another object-oriented design project,
butsupports only 10 processors [160}. Table 18 shows a sum-
mary of the notable projects. .

Table 19 Parallel Connectionist Systems

C. Connectionist Processing

The connectionist implementations focus on the corre-
lation between nodes in a graph containing the knowledge
and have been designed primarily for semantic networks.
Other connectionist designs of interest are the artificial
neural networks. Unfortunately, current technology for
design of artificial neural networks have precluded their
development in a role greater than that of subsystem.

The four designs of connectionist system for the imple-
mentation of semantic networks correspond to the three
types of message passing environments. NETL utilizes the
most elementary processing elements in a marker passing
system [65}, [66]). THISTLE is a similar design, but employs
value passing instead [66). The Connection Machine can be
programmed to simulate marker passing in semantic net-
works and value passing in artificial neural networks using
massive data-level parallelism [39). Finally, SNAP relies on
message passing [159). These machine are summarized in
Table 19.

D. Summary

The purpose of this section has been to give a top-level
perspective of existent special-purpose computers
designed for symbolic processing. Sequential, parallel, and
connectionist processing are three fundamental
approaches to processing techniques that are appropriate
for various knowledge representations. Thus, the first
attribute of distinction for complete systems will be made
on this basis.

Machine Year/Status* interconnection Communication Features
NETL 1979/PD Multi-leve! Marker passing For semantic networks; million processors, each can
switching store 16 markers; simple PEs; only Boolean functions.
network
THISTLE 1983/PD Multi-level Value passing For semantic networks; similar to NETL, only with 8-bit
switching value passing.
. network
COﬂhec.tnon 1986/CA Hypercube Message passing General-purpose SIMD and multiple SIMD processing;
Machine can be programmed for marker passing operations in
semantic networks and simulating artificial neural
SNAP)] networks.]
1985/PD Mesh with global Messape passing Square array of identical processors; CAM in each PE for

bus

relationships between nodes; Communication Unit;
Processing Unit.

Refer 1o Table 14 for explanation of status codes.

W,
AH. LOWRIE, AND 11: COMPUTFRS FOR SYMBOLIC PROCFSSING

at-

ng
on

vel
2rS
nd
tal
ate
rst
de

18,

it

IH

Bl

- for

2]

The other primary discerning feature is the overall pro-
cessing technique. Current systems define the processing
technique in one of two ways. The firstwayis by knowledge
representation, for example, computers for parallel logic
computation. The second processing technique isbasedon
the programming paradigm, such as functional or object-
oriented paradigm. In either case, the processing tech-
nique can be used as the second attribute for distinguishing
existent systems.

Systems can be further distinguished by various design
decisions, and micro/macro-level architectures employed.
For an overall perspective, however, it is not necessary to
further classify these systems in order to understand the
state of the art in symbolic processing systems.

Figure 8 classifies the computers presented in this sec-
tion, on the basis of the above criteria. A number of systems

Lambda
Symbolics 3600
Tektronix 4400
T Explorer
ALPHA
Scheme
Pst
CHI
SRI Pipeline
SOAR
Butierfly
Concert
Approsch “EM3
CIM
Paraliel Rediflow

Functional Alice
Processing
Technique

Connection
Connectionist

Machine
BAGOF

Logic MANTP-2
Aquarius

Production
Systems

PE
PRMI
Object DADO-2
Oncmcd\‘©<: NON-VON

PSM

FADM-1

Dragon
Semantic NETL
Nerworks THISTLE

Processing
Technique

Machine
SNAP

fig. 8. Complete symbolic processing systems.

have been designed for diverse symbolic applications and
cannot be uniquely classified into one category. The Con-
nection Machineisoneofthe notable examples in this class.

V. REeSEARCH DIRECTIONS

We have presented in this paper an extensive discussion
and analysis of the state of the art in computer solution of
symbolic processing problems. We conclude in this section
by indicating some of the research areas where advance-
ment will most likely benefit fast and efficient computer
solution of these applications.

« Technologies: The basis for any computer system is the
technalogy in which it is implemented. The design of a sys-

534

tem is often driven by its cost; hence, the fastest technol-
ogies, subjecttocost constraints, are used. New and emerg-
ing technologies may give higher performance but are often
prohibitively expensive. The candidates that will likely
become cost effective in the near future include GaAs cir-
cuits {130}, {131}, Wafer-Scale Integrated circuits (W51) [154],
analog-digital VLSI circuits, and optical computing tech-
niques [21], [79], [244].

These emerging technologies offer tremendous poten-
tial for increasing the processing speeds of current com-
puters. This extension in the limit of processing power is
valuable, especially for real-time systems. However, the
most that can be expected from these technologies is about
one to two orders of magnitude speed improvement in the
next ten years. They will not greatly impact the size or type
of symbolic applications that are addressed today. Many of
these applications involve huge search spaces of an expo-
nential size; one to two orders of magnitude increase in
computational speed will do little to extend the size of a
solvable instance of such a problem {238].

- Algorithms:Research in the area of application-specific
algorithms will have the greatest potential for speeding the
solution of the given application. The development ofn
and improved algorithms for an application can be seen as
finding alternative ways to incorporate knowledge abou
the application domain into the computer solution. In this]
way, advancement of symbolic processing capabilities i
the area of application-specific algorithms is tightly link
to advancement in the area of knowledge representations

- Knowledge representations: Most new knowledge re
resentations for symbolic processing have emphasiz
declarative and distributed features in order to reduce pr
gramming complexity. These representation schemes ma:
have to be modified or extended to tailor to the application
and computational environment. The addition of temporal
features and nonmonotonicity would be helpful.

A major problem in the area of knowledge represent
tions is the fack of an overall technique to guide the eval
uation and selection of a knowledge-representatio
scheme. Research in this area could prove extremely va
uable. Learning techniques for incorporating new kn
edge about application domains into cusrent solutions i
a knowledge-intensive application may also have a grea
impact on symbolic processing. Artificial neural networ!
and connectionist representations are examples of incor,
porating automated learning techniques into the desig
philosophy from the knowledge-representation level.

- Software architecture: Software architectures are hight
dependent on research in the area of knowledge repr
sentations. Generation of new software environment
tools, and languages will probably rely on amalgamation o
known knowledge-representation techniques. Softwar
development systems and automated intelligent progra
ming assistants represent prime areas for advancement 0
symbolic programming. The problems of program veri
cation and validation and continuous maintenance of sy
bolic programs are important related topics.

- Hardware architectures: As with software, hardwar
architectures are often based on known design technique
such as parallel processing and pipelining. Innovation fi

new architectural concepts may be caused by the avai
ability of new and emerging technologies.

New hardware architectures are best utilized for ope

PROCEEDINGS OF THE I(EE, VOL. 77, NO. 4, APRIL ¥

& .

ations that the computer performs frequently. Counter to
intuition, identification of these tasks is very difficult. Oper-
ations may be instructions, parts of instructions, groups of
instructions, Jt frequently recurring tasks. Identification of
new 'a'Qd-'v'alid areas for development of new hardware
architeétures is an important area of research.

« System design: System-level design is often based on
an overall design philosophy. Systems may contain, for
example, a mix of data- and control-flow computation. The
proper mix of control, data, and demand flow is one area
of research that may impact systems for symbolic pro-
cessing. New systems for symbolic processing may also
greatly benefit from integrating new hardware subsystems
and microlevel architectures, as well as the integration of
new and emerging technologies. The major difficulty, how-
ever, lies in integrating designs with radically different
knowledge representations. Combination of distributed
representation offered by artificial neural networks and
procedural or declarative representation offered by stan-
dard computers is an interesting area for development.

REFERENCES

(1] - “ESPRIT: Europe challenges U.S. and Japanese competi-
tors,” Future Generation Computer Systems, vol.1,n0.1, Pp-
61-69, 1984.

] “Special issue on natural language processing,” Proc. IEEE,

- July 1986.

B)" “Special issue on computer vision,” Proc. IEEE, 1987,

[4] Defense Advanced Research Project Agency, DARPA Neural
Network Study, Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, MA, July 1988.

{5) G. Agha and C. Hewitt, “Concurrent programming using
actors: exploiting large-scale parallelism,” Lecture Notes in

.- Computer Science, no. 206, pp. 19-41, Dec. 1985.

[6} G. Agha, Actor: A model of concurrent computation in dis-

© tributed systems. Cambridge, MA: MIT Press, 1986,

1 L Aiello, C. Cecchi, and D. Sartini, “Representation and use
of metaknowledge,” Proc. IEEE, pp. 1304-1321, Oct. 1986,

18] J. Alspectorand R. B. Allen, “A neuromorphic VLSI learning

- system,” in Advanced Research in VLSI: Proc. 1987 Stanford
Conference, P. Loseleben, ed. Cambridge, MA: MIT Press,
1987.

[9] M.Amamiya etal., “New architecture for knowledge based

* mechanisms,” in Proc. Int. Conf. Fifth Generation Computer
Systems, pp. 179-188, japan, 1981.

(10} M. Amamiya et al., “Implementation and evaluation of list-
processing-oriented data flow machine,” in Proc. 13th Int.
Symp. Computer Architecture, pp. 10-19, 1986.

{1 C. W. Anderson, “Strategy learning with multilayer con-
nectionist representations,” Proc. Fourth Int. Workshop
Machine Learning, pp. 103-114, June 1987.

112] J. M. Anderson et al., “The architecture of FAIM-1,” Com-
puter, vol. 20, no. 1, pp. 55-65, Jan. 1987.

{131 H.L Andrews, “Speech processing,” Computer, vol. 17, no.
10, pp. 315-324, Oct. 1984,

114} Arvind, K. Gostelow, and W. Plouffe, “An asynchronous pro-
gramming language and computing machine,” Tech. Rep.
114a, Univ. of California, Irvine, CA, Dec. 1978.

(15) €. Babb, “Implementing a relationai database by means of
Specialized hardware,” Trans. Database Systems, vol. 4, no.
1, pp. 1-29, March 1979.

116)). Backus, “Can programming be liberated from the von
Neumann style? A functional style and algebra of pro-
gBrams,” Comm. ACM, vol. 21, no. 8, pp. 613-641, 1978,

1 Hoc. Baker, jr., "Optimizing allocation and garbage col-
lection of spaces,” in Artificial Intelligence: An MIT Per-
Spective, P. H. Winston and R. H. Brown, ed. vol. 1, pp. 391-
396, Cambridge, MA: MIT Press, 1979.

A. Barr and E. A. Feigenbaum, The Handbook of Artificial
Inrelligence, vol. 1,2, and 3, Los Altos, CA: Wiiliam Kauf-
mann, 1981, 1982.

(18}

v
VAH, LOwWRIE, anp Li: COMPUTERS FOR SYMBOUIC PROCFSSING

[19]). M. Barth, “‘Shifting garbage collection overhead to com-
pile time,” Comm. ACM, vol.20,n0.7, pp.3513-518, July 1977,

[20) E. B. Baum, *“Towards practical ‘neural’ computation for
combinatorial optimization problems,” in AIP Conf. Proc.
Neural Networks Computing, pp. 53-58, 1986.

[21} P. B. Berra and N. B. Troullinos, “Optical techniques and
data/knowledge base machines,” Computer, vol. 20, no. 10,
pp. 59-70, Oct. 1987.

{22] D. Billstrom, }. Brandenburg, and). Teeter, “CCLISP on the
iPSC concurrent computer,” in Proc. Sixth Intl. Conf, Arti-
ficial Intelligence, pp. 7-12, 1987.

[23] D.G.Bobrow,etal., “CommonLoops: Merging common Lisp
and object-oriented programming,” Tech. Rep. 151858,
Xerox Palo Alto Research Center, Aug. 1985.

[24) D. G. Bobrow and P. J. Hayes, (ed.), “Special issue on non-
monotonic logic,” Artificial Intelligence, vol. 13, no. 1 & 2,
April 1980.

[25] K. Bowen, “Meta-level programming and knowledge rep-

’ resentation,” New Generation Computing, vol. 3, no. 4, Pp.
359-383, 1985.

[26] R. Brooks and R. Lum, “Yes, an SIMD machine can be used
for AL" in Proc. Int. Joint Conf. Artificial intelligence, pp. 73~
79, 1985.

271 C. M. Brown, C. S. Ellis, }. A. Feldman, T. J. LeBlank, and G.
L. Peterson, “Research with the Butterfly multicomputer,”
Rochester Research Review, pp. 3-23, 1984.

[28] L.Brownston, R. Farrell, E. Kant, and N. Martin, Programming
Expert Systems in OPS5. Reading, MA: Addison Wesley,
1985. e

{29] M. Bruynooghe, “The memory management of PROLOG
implementations.” in Logic Programming, K. Clark and 5. A.
Tarnlund, ed. pp. 83-89, New York: Academic Press, 1982.

[30) B. G.Buchanan and E. H. Shortliffe, Rule-Based Experts Pro-
grams: The MYCIN Experiments of the Stanford Heuristic
Programming Project. Reading, MA: Addison-Wesley, 1984.

[31) A. W. Burks, ““Keynote of CONPARSS6,” Lecture Notes in
Computer Science No. 237, pp. 1-17. New York: Springer-
Verlag, 1986.

{32] R.M.Burstall, D. B. MacQueen, and D. T. Sannella, “HOPE:
An experimental applicative language,” in Conf. Record Lisp
Conf., pp. 136-143, 1980.

[33) S. Cammarata et al., “Strategies of cooperation in distrib-
uted problem solving,” in Proc. Int. Joint Conf. Artificial
Intelligence, pp. 767-770, 1983.

{34] A. Ciepielewski and S. Haridi, “Execution of Bagof on the
or-parallel token machine,” in Proc. Int. Conf. Fifth Gener-
ation Computer Systems, pp. 551-560, 1984.

[35) K. Clark and S. Gregory, “Note on system programming in
PARLOG,” in Proc. Int. Conf. Fifth Generation Computer
System, pp. 299-306, 1984.

[36] K.L.Clarkand S-A. Tarnlund, (ed.). Logic Programming, New
York: Academic Press. 1982.

{371 W.F.Clocksinand C.S. Mellish, Programming in Prolog, New
York: Springer-Verlag, 1981.

[38) P.R.Cohen and M. R. Grinberg, ““A theory of heuristic rea-
soning about uncertainty,” The Al Magazine, pp. 17-24, 1983.

(39] Thinking Machines Corporation, “Connection Machine

Model CM-2 Technical Summary,” Tech. Rep. HA87-4, Cam-

bridge, MA, April 1987.

[40] Thinking Machines Corporation, *Lisp Reference Manual,
Version 4.0. Cambridge, MA, Oct. 1987.

[41] A.S.Cromarty, “What are current expert system tools miss-
ing?” Proc. IEEE COMPCON Spring, pp. 411-418, 1985.

{42) O.).Dahland K. Nygaard, “SIMULA—an ALGOL-based sim-
ulation language,” Comm. ACM, vol. 9, no. 9, pp. 671-678,
Sept. 1966.

{43} J. Darlington and M. Reeve, “ALICE: A multi-processor
reduction machine for the parallel evaluation of applicative
languages,” in Proc. Conf. Functional Programming Lan-
guages Comp. Architecture, pp. 65-74, 1981.

(44) J. Darlington, P. Henderson, and D. Turner, Functional Pro-
gramming and Its Applications, Cambridge, UK: Cambridge
University Press, 1982.

(45} J. Darlington and M. Reeve, ALICE and the Parallel Evalua-
tion of Logic Programs, Preliminary Draft, Dept. of Com-
puting, Imperial College of Science and Technology, Lon-
don, England, June 1983,

-

SO
i977.
1 for
Proc.

and
». 10,

n the
Arti-

1 Lisp
85-8,

non-
&2,

rep-
L pp.

used
), 73—

d G.
ter,”

ming
'sley,

LOG
S.A.
1982,
s Pro-
ristic
1984.
es in
nger-

OPE:
1lisp

strib-
ificial

n the
ener-
ngin
puter

New
, New
¢ rea-
1983.
chine
Cam-
:nual,

miss-

3 sim-
1-678,

25500
cative
r Lan-

il Pro-
ridge

valua-
Com-
, Lon-

(46}

{47}

[48]

(49}

(50}
51
152
(53]
{54]

(55

{56}

571

(s8]

{59}
{60]

61

(62}

f63]

(64]

(65)

[66]

1671

{681

(69}
{70}

71
72

73

536

j. Darlington, “'Functional programming (Chapter 5}, in Dis-
tributed Computing, . B. Chambers, D. A. Duce, and G. P.
jones, ed. London: Academic Press, 1984,

J. Darlington, A. J. Field. and H. Pull, The Unification of Func-
tional and Logic Languages, Tech. Rep. Imperial College,
tondon, England, Feb. 1985.

A. L. Davis and S. V. Robison, *‘The FAIM-1 symbolic mul-
tiprocessing system,” in Proc. 1EEE COMPCON Spring, pp.
370-375, 1985.

R. Davis and B. Buchanan, ““Metal-level knowledge: over-
view and applications,” in Proc. 5th Int. Joint Conf. Artificial
Intelligence, pp. 920-928, 1977,

M.F.Deering, “‘Architectures for Al," Byte, pp. 193206, April
1985.

D. DeGroot, “Restricted ano-Parallelism,” in Proc. Int. Conf.
Fifth Generation Computers, pp. 471-478, Nov. 1984.

D. DeGroot and G. Lindstrom (eds.), Logic Programming,
Englewood Cliffs, N|: Prentice-Hall, 1985.

1. 5. Decker, “Neural network models of learning and adap-
tation,” Physica, pp. 216~232, 1986.

A. M. Despain and Y. N. Patt, “Aquarius—A high perfor-
mance computing system for symbolic/numeric applica-
tions,” in Proc. IEEE COMPCON Spring, pp. 376-382, Feb.
1985.

P. Deutsch, “Experience with a microprogrammed Interlisp
systems,” Proc. MICRO, vol. 11, Nev. 1978.

D. }. DeWitt, “DIRECT—A multiprocessor organization for
supporting relational database management systems,”” JEEE
Trans. Computers, pp. 395-406, june 1979.

E. W. Dijkstra, L. Lamport, A.). Martin, C. S. Scholten, and
E.F. M. Steffens, “On-the-fly garbage collection: An exercise
in cooperation,” Comm. ACM, vol. 21, no. 11, pp. 966-975,
Nov. 1978.

J. Doyle, “A truth maintenance system,” Artificial Intelli-
gence, vol. 12, no. 3, pp. 231-272, 1979.

H. Dreyfus and S. Dreyfus, “Why expert systems do not
exhibit expertise,”” IEEE Expert, vol. 1, no. 2, Summer 1986.
R.0.Duda,P.E. Hart, and N. J. Nilsson, “Subjective Bayesian
methods for rule-based inference systems,” in Proc. National
Computer Conf., pp. 1075-1082, 1976.

L D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy,
“The Hearsay-il speech-understanding system: Integrating
knowledge to resolve uncertainty,” Computing Surveys, vol.
12, no. 2, pp. 213-253, june 1980.

F. Fagin, How Far Can We Go With Proven Technology? Spe-
cial Session on Neural Networks, presented at AAAL Con-
ference, Seattle, WA, July 1987.

R. Fagin and). Halpern, “Belief, awareness, and limited rea-
soning: preliminary report,” in Proc. Int. Joint Conf. Artifi-
cial Intelligence, pp. 491-501, 1985.

S. E. Fahlman, NETL: A System for Representing and Using
Real-World Knowledge, Series on Artificial Intelligence,
Cambridge, MA: MIT Press, 1979.

S. E. Fahiman, “Design sketch for a million-element NETL
machine,” in Proc. Tst Annual National Conf, Artificial Intel-
ligence, pp. 249-252, Aug. 1980.

S. £. Fahlman and G. E. Hinton, “Massively parallel archi-
tectures for Al: NETL, THISTLE, and BOLTZMANN
machines,” in Proc. National Conf, Artificial intelligence, pp.
109-113, 1983.

S.E.Fahlman, *‘Parallel processing in artificial intelligence,”
Parallel Computing, vol. 2, pp. 283-286, 1985.

S. E. Fahlman and C. E. Hinton, “Connectionist architecture
for artificial intelligence,” Computer, vol. 20, no. 1, pp. 100-
109, Jan. 1987,

C. Faloutos, *“Access Method for Text,” Computing Surveys,
March 1985.

R. D. Fennell and V. R. Lesser, “Parallelism in artificial intel-
ligence problem solving: A case study of Hearsay-1,” IEEE
Trans. Computers, vol. C-26, no. 2, pp. 98-111, feb. 1977.
£. A. Feustel, “On the advantages of tagged architecture,”
IEEE Trans. Computers, vol. C-22, no. 7, pp. 644-656, 1973,
R.E. Fikes and N.]. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” Arti-
ficial Intelligence, vol. 2, no. 3 & 4, pp. 189-208, 1971.

M. A. Fischetti, “’A review of progress at MCC," IEEE Spec-
trum, March 1986.

174]

{75]

[76]

78]

791

[80]

(81]

{82

(831

[84]

(85)

(86]

{671

(e8]

(89)
(%0}

91

(92

193)

{94]

(95
[96]
197]
(98]

[99]

C.L.Forgy, “Rete: Afast algorithm for the many pattern/many
object pattern match problem,” Artificial Intelligence, vol.
19, no. 1, pp. 17-37, Sept. 1982.

C. L. Forgy, A. Gupta, A. Newell, and R. Wedig, “Initial
Assessment of Architectures for Production Systems,” in
Proc. National Conf. Actificial Intelligence, pp. 116-120, Aug.
1984.

K. S. Fu, Syntactic Methods in Pattern Recognition, New York:
Academic Press, 1974,

K. Fuchi, “The direction the FGCS project will take,” New
Generation Computing, vol. 1, no. 1 pp. 3-9, 1983.

].-L. Gaudiot, S. Lee, and A. Sohn, Data-Driven Multiproces-
sor Implementation of the Rete Match Algorithm, Tech. Rep.,
Dept. of Computer Science, University of Southern Cali-
fornia, Los Angeles, CA, 1987.

T. K. Gaylord and E. 1. Verriest, “Matrix triangularization
using arrays of integrated optical Givens rotation devices,”
Computer, vol. 20, no. 12, pp. 59-67, Dec. 1987.

M.R. Genesereth, ““An overview of meta-level architecture,”
in Proc. National Conf. Artificial intelligence, pp. 119-124,
1983.

A. . Goldberg and D. Robson, Smalltalk-80: The Language
and Its Implementation, Reading, MA: Addison-Wesley,
1983.

A. Goto, H. Tanaka, and T. Moto-oka, “Highly parallel infer-
ence engine PIE—Goal rewriting model and machine archi-
tecture,” New Generation Computing, vol. 2, no. 1, pp. 37~
58, 1984.

E. Goto, T. 1da, K. Hiraki, M. Suzuki, and N. Inada, “FLATS,
A machine for numerical, symbolic and associative com-
puting,” in Proc. 6th Int. Joint Conf. Artificial intelligence,
pp. 1058-1066, Aug. 1979.

N. Greenfield and A. Jericho, “A Professional’s Personal
Computer System,” in Proc. 8th Int. Symp. Computer Archi-
tecture, pp. 217-226, 1981.

M. Griss and M. Swanson, “MBALM/1700: A micropro-
grammed Lisp machine for the Burroughs B1726,” in Proc.
MICRO-10, 1977.

A.Gupta, C.L.Forgy, A. Newell,and R. Wedig, “Parallel algo-
rithms and architectures for rule-based systems,” in Proc.
13th Int. Symp. Computer Architecture, pp. 28-37, 1986.

J. Halpern and Y. Moses, “A guide to the modal logics of
knowledge and belief: Preliminary draft,” in Proc. Int. Joint
Conf. Antificial Intelligence, pp. 480-490, 1985.

R. H. Halstead, Jr., “Implementation of MULTILISP: LISP on
multiprocessor,” in Proc. Symp. LISP and Functional Pro-
gramming, 1984.

R. Halstead, “Paraliel symbolic computing,” Computer, voi.
19, no. 8, pp. 35-43, Aug. 1986.

R. H. Halstead, Jr., “An assessment of Multilisp: Lessons from
experience,” Int. /. Parallel Programming, vol. 15, no. 6, pp.
459-501, Dec. 1986.

R. Halstead, Jr., and). Loaiza, “Expection handling in Mul-
tilisp,” in Proc. Int. Conf. Parallel Processing, pp. 822-830,
Aug. 1985.
R. Halstead, Jr., T. Anderson, R. Osborne, and T. Sterlig,
“Concert: Design of a multiprocessor development s
tem,” in Proc. Int. Symp. Computer Architecture, pp. 40-43,
June 1986.

P. B. Hawthorn and D. J. DeWitt, “Performance analysis of
alternative database machine architectures,” [EEE Trans.
Software Engineering, vol. SE8, no. 1, pp. 61-75, Jan
1982.

H. Hayashi, A. Hattori, and H. Akimoto, “ALPHA: A high-per:
formance Lisp machine equipped with a new stack structure,
and garbage collection system,” in Proc. 10th Annual Int,
Symp. Computer Architecture, pp. 342-348, June 1983.
B. Hayes-Roth, “A blackboard architecture for control,’” Arti:
ficial Intelligence, vol. 26, no. 3, pp. 251-321, july 1985.
f. Hayes-Roth, D. A. Waterman, and D. B. Lenat, Buildin,
Expert Systems, Reading, MA: Addison-Wesley, 1983.

P. Henderson, Function Programming, Application an
Implementation, Englewood Cliffs, Ni: Prentice-Hall, 1980.
C. Hewitt, ““Viewing control structure as patterns of passin
messages,” Adificial Intelligence, vol. 8, no. 3, pp. 323-364,
1977.

C. Hewitt, “The apiary network architecture for kn

PROCEEDINGS OF THE IEEE, VOL 77, NO. 4, APRIL 1989

AR

{100}
(101}
(102}
[103)
(104
{105]
(106}

[107)

(108)
(109]

[110)
123
(12)

{1131

{114
[115)

116}
m7n
(118)

(119)

{120

(21
122
(123)
(124

[125]

WAL,

edgeable systems,” in Conf. Record Lisp Conf., pp. 107-117,

1980.

C.Hewittand H. Lieberman, “Designissues in paralletarchi-

tectures for artificial intelligence,” in Proc. IEEE COMPCON

Spring, pp. 418-423, Feb. 1984.

C. E. Hewitt, Description and Theoretical Analysis of PLAN-

NER: A Language for Proving Theorems and Manipulating

Models in Robot, MIT Al Lab. TR-258, 1972.

y. Hibino, “’A practical parallel garbage collection algorithm

and its implementations,” in Proc. 7th Annual Symp. Com-
uter Architecture, pp. 113-120, May 1980.

W. D. Hillis, The Connection Machine, Cambridge, MA: MIT

Press, 1985.

B. K. Hillyer and D. E. Shaw, ““Execution of OPS5 production

systems on a massively parallel machine,” /. Parallel Distrib-

uted Computing, vol. 3, no. 2, pp. 236-268, 1986.

J. Hintikka, “Impossible possible world vindicated,” /. Phil-

osophical Logic, pp. 475-484, 1975.

G. Hinton,). L. McCleliand, and D. D. Rumelhart, “‘Distrib-

uted representations,” in Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, D. E. Rumel-

hart, J. L. McClelland and the PDP Research Group ed., vol.

1, Cambridge, MA: MIT Press, 1986.

G. Hinton and T. J. Sejnowski, “Learning and relearning in

Boltzmann machines,” in Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, D. E. Rumel-

hart, J. L. McClelland and the PDP Research Group ed., vol.

1, Cambridge, MA: MIT Press, 1986.

G. E. Hinton, “Connectionist learning procedures,” Tech.

Rep. CMU-CS-87-115, Carnegie Melion University, Pitts-

burgh, PA, June 1987.

1. 1. Hopfield and D. W. Tank, “Neural computation of deci-

sions in optimization problems,” Biological Cybernetics, vol.

52, no. 3, pp. 1-25, July 1985.

). }. Hopfield and D. W. Tank, Disordered Systems and Bio-

logical Organization, Springer-Verlag, 1986.

J.). Hopfield and D. W. Tank, *“Computing with neural cir-

cuits: A model,” Science, pp. 625-633, Aug. 1986.

H. A. H. tbrahim,]. R. Kender, and D. E. Shaw, “Low-level

image analysis tasks on fine-grained tree-structured SIMD

machines,” J. Parallel and Distributed Computing, pp. 546~

574, Dec. 1987.

N, Ichiyoshi, T. Miyazaki and K. Taki, A distributed impie-

mentation of flat GHC on the multi-PS1,” presented at Int.

Conf. on Logic Programming, 1987.

N. Ito et al., “The architecture and preliminary evaluation

resuits of the experimental parallel inference machine PIM-

D,” in Proc. 13th Int. Symp. Comput. Architecture, pp. 149-

156, 1986.

N. Ito, H. Shimizu, M. Kishi, E. Kuno, and K. Rokusawa, “Data-

flow based execution mechanisms of parallel and concur-

rent prolog,”* New Generation Computing, vol. 3, pp. 15-41,

OHMSHA Ltd. and Springer-Verlag, 1985.

P. Kanerva, “‘Parallel Structures in Human and Computer

Memory,” RIACS Tech. Rep. TR-86.2, NASA Ames Research

Center, Moffett Field, CA, Jan. 1986.

R. M. Keller, F. C. H. Lin, and). Tanaka, "Rediflow multi-

1p;lc;;:essing," in Proc. IEEE COMPCON Spring, pp. 410-417,

C. Kellogg, “Intelligent assistants for knowledge and infor-
mation resources management,” in Proc. 8th Int. joint Conf.
on Artificial Intelligence, pp. 170-172, Los Altos, CA, 1983.
D. F. Kibler, “Parallelism in Al programs,” in Proc. Int. Joint
Conf: on Artificial Intelligence, pp. 53-56, 1985.

M. King and M. Rosner, “Scanning the issue: The special
issue on knowledge representation,” Proc. IEEE, vol. 74, no.
10, pp. 1299-1303, Oct. 1986.

J. de Kieer, “An assumption-based TMS,” Artificial Intelli-
gence, vol. 28, pp. 127-161, 1986.

!,. de Kleer, “Extending the ATMS,” Artificial Intelligence, vol.
28, pp. 163-196, 1986.

l: deKleer, “Problem solving with the ATMS,” Artificial Inte!-
ligence, vol. 28, pp. 197-224, 1986.

T. Knight, “The CONS Microprocessor,” Al Working paper
80, MIT, Cambridge, MA, Nov. 1974.

R. Kowalski, “Predicate logic as a programming language,”
IFIP Information Processing, pp. 369-374, 1974,

LOWRIE, AND LI: COMPUTERS FOR SYMBOLIC PROCESSING

{126}
(127}

[128)

(129}

(130)

(131)

132)

[133)

(134)
{135
{136}

(137}

[138]

(139)

(140}

{141]

[142]

{143)

[144]

[145]}

(146]

(147}

[148)
{149)

[150]

{151]

[152)

[153)

R. Kowalski, Logic for Problem Solving, North-Holland, 1979.
H. Kung and S. Song, "An Efficient Parallel Garbage Col-
lection Systems and Its Correctness Proof,” Tech. Rep. Dept.
Computer Science, Carnegie Mellon Univ., Pittsburgh, PA,
Sept. 1977.

R. Kurzweil, “What is artificial intelligence anyway?” Amer-
ican Scientist, vol. 73, no. 3, pp. 258-264, May/June 1985.
T. H. Lai and S. Sahni, “Anomalies in parallel branch-and-
bound algorithms,” Comm. of the ACM, vol. 27, no. 6, pp-
594-602, June 1984.

L.E.Larson,).F.Jensen, and P. T. Greiling, “GaAs high-speed
digital IC technology: An overview,” Computer, vol. 19, no.
10, pp. 21-28, Oct. 1986.

T. F. Lehr and R. G. Wedig, “Toward a GaAs realization of
a production-system machine,” Computer, vol. 20, no. 4, pp.
36-49, Apr. 1987.

D.B.Lenatand). McDermott, “Less than general production
system architectures,” in Proc. 5th Int. Joint Conf. on Arti-
ficial Intelligence, pp. 923-932, Los Altos, CA, 1977.

D. B. Lenat, “The ubiquity of discovery,” in Proc. 5th Int. Joint
Conf. on Artificial Intelligence, pp. 1093-1105, Los Altos, CA,
1977.

D. B. Lenat, “The nature of heuristics,” Artificial intelligence,
vol. 19, no. 2, pp. 189-249, 1982.

D. B. Lenat, “Computer software for intelligent systems,”
Scientific American, vol. 251, no. 3, pp. 204-213, Sept. 1984.
G.).liand B. W. Wah, “Computational efficiency of parallel
approximate branch-and-bound algorithms,” in Proc. IEEE
Int. Conf. on Parallel Processing, pp. 473-480, Aug. 1984.
G.J. Li and B. W. Wah, “The design of optimal systolic
arrays,” IEEE Trans. Computers, vol. C-34, no. 1, pp. 66-77,
Jan. 1985.

G.-}. Li and B. W. Wah, “MANIP-2: A multicomputer archi-
tecture for evaluating logic programs,” in Proc. IEEE Int.
Conf. on Parallel Processing, pp. 123-130, Aug. 1985. Also in
Tutorial: Computers for Artificial Intelligence Applications,
ed. B. W. Wah, IEEE Computer Society, 1986, pp. 392-399.
B.W.Wahand G.-). Li, “Multiprocessing of logic programs,”
in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics,
pp. 563-567, Oct. 1986.

G.). Li and B. W. Wah, “Optimal granularity of parallel eval-
uation of anp-trees,” Proc. Fall Joint Computer Conf., pp.
297-306, Nov. 1986.

G.). Li and B. W. Wah, “How good are paraliel and ordered
depth-first searches?” in Proc. IEEE Int. Conf. on Parallel Pro-
cessing, pp. 992-999, Aug. 1986.

H. Lieberman and C. Hewitt, “A real-time garbage collector
based on the lifetimes of objects,” Comm. ACM, vol. 26, no.
6, pp. 419-429, June 1983.

G. Lindstrom and P. Panangaden, “Stream-based execution
of logic programs,” in Proc. IEEE int. Symp. on Logic Pro-
gramming, pp. 168-176, Feb. 1984.

R. P. Lippmann, “An introduction to computing with neural
nets,” IEEE Acoustics, Speech, and Signal Processing Mag.,
pp. 4-22, April 1967.

F.). Malabarba, “Review of available database machine tech-
nology.” in Proc. JEEE Trends and Appl., pp. 14-17, 1984.

Y. Malachi, Z. Manna, and R. Waldinger, “TABLOG: A new
approach to logic programming,” in Logic Programming, D.
DeGroot and G. Lindstrom, Eds. Englewood Cliffs: Pren-
tice-Hall, 1985.

G. Matthews, R. Hewes, and S. Krueger, “'Single-chip pro-
cessor runs Lisp environments,” Computer Design, pp. 69-
76, May 1987.

A. D. McAulay, “Spatial-light-modulator interconnected
computers,” Computer, vol. 20, no. 10, pp. 45-58, Oct. 1987.
G. McCalla and N. Cercone (Eds.), ““Special Issue on Knowl-
edge Representation,” Computer, vol. 16, no. 10, Oct. 1983.
J. McCarthy, “Recursive functions of symbolic expressions
and their computation by machine, pt. 1, Comm. of the
ACM, vol. 3, no. 4, pp. 184-195, 1960.

). McCarthy and P. Hayes, ““Some philosophical problems
from the standpoint of artificial intelligence,” Machine Intel-
ligence 4, pp. 463-502, 1969.

J. McCarthy, “History of Lisp,” SIGPLAN Notices, vol. 13, no.
8, pp. 217-223, 1978.

J.L.McClelland, D. D.Rumeihart, and G. Hinton, “The appeal

ol

ept.
PA,

mer-
3.

and-
PP
reed
, NO.

n of

, pp-

ction
Arti-

Joint
. CA,

ence,

2ms,”’
1984.
iraliel
- IEEE
184,
'stolic
5677,

archi-
c€ Int.
\Iso in
itions,
’-399.
rams,"’
netics,

el eval
f., pp-

rdered
ifel Pro-

sllector
.26, n0.

ecution
gic Pro-

1neural
g Mag.,

netech-
1984.

L A new
ming, D.
fs: Pren-

hip pro-
, pp- 69-

»nnected
dct. 1987,
n Knowl-
Jct. 1983,
yressions
m. of the

sroblems
hine Intel-

ol. 13, no.

he appeal

wt
w
<i

of paraliel distributed processing,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
D. E. Rumelhart, |. L. McClelland and the PDP Research
Group, vol. 1. Cambridge, MA: MIT Press, 1986.

[154]). F. McDonald, H.]. Greub, R. H. Steinvorth, B. }. Donlan,
and A. S. Bergendahl, “Wafer scale interconnections for
GaAs packaging—applications to RISC architecture,” Com-
puter, vol. 20, no. 4, pp. 21-35, Apr. 1987.

{1551). R. McGraw, “Data flow computing: Software develop-
ment,” IEEE Trans. Computers, vol. C-29, no. 12, pp. 1095-
1103, 1980.

(156} C.S. Mellish, ““An alternative to structure sharing in the
implementation of 2 prolog interpreter,” in Logic Program-
ming, ed. K. Clark and S. A. Tarnlund, Eds. New York, NY:
Academic Press, 1982, pp. 99-106.

(157} R.S. Michalski, . G. Carbonell, and T. M. Mitchell, Machine
Learning: An Artificial Intelligence Approach, Tioga, 1983.

[158] M. Minsky, “A framewaork for representing knowledge,” in
The Psychology of Computer vision, P. H. Winston, £d. New
York, NY: McGraw-Hill, 1975.

{159) D.L Moldovan and Y. W. Tung, «§NAP: A VLS| architecture
for artificial intelligence processing,” J. Parallel and Distrib-
uted Computing, pp. 109-131, May 1985.

{160} L. Monier and P. Sidhu, “The architecture of the dragon,”
in Proc. IEEE COMPCON, pp. 118-121, Spring 1985.

[161] D. A. Moon, ~Symbolics architecture,” Computer, vol. 20,
no. 1, pp- 43-52, Jan. 1987.

{162) T. Moto-oka, “QOverview to the fifth generation computer
system project,” in Proc. 10th Annual Int. Symp. on Com-
puter Architecture, pp- 417-422, june 1983.

(163 T. Moto-oka, H. Tanaka, H. Aida, K. Hirata, and T. Maruyama,
+The architecture of a parallel inference engine (PIE).” in
Proc. Int. Conf. on Fifth Generation Computer Systems, pp-
479-488, 1984.

(164] T. Moto-oka and H. S. Stone, “Fifth-generation computer
systems: A Japanese project,” Computer, vol. 17, no. 3, pp-
6-13, Mar. 1984.

(165] A. Mukhopadhyay, “Hardware algorithms for nonnumeric
computation,” IEEE Trans. Computers, vol. C-28, no. 6, pp-
384-394, June 1979.

{166) K. Murakami, T. Kakuta, R. Onai, and N. to, “Research on
parallel machine architecture for fifth-generation computer
systems,”” Computer, vol. 18, no. 6, pp. 76-92, june 1985.

(167 K. Murakami, “Research on parallet machine architecture
for fifth generation computing systems,” Computer, p. 92,
1985.

{168) M. Nagao, J. 1. Tsujii, K. Nakajima, K. Mitamura, and H. Ito,
“Lisp machine NK3 and measurement of its performance,”
in Proc. 6th Int. Joint Conf. on Artificial Intelligence, pp. 625-
627, Los Altos, CA, Aug. 1979.

{169] H. Nakagawa, “AND parallel prolog with divided assertion
set,” in Proc. Symp. on Logic Programming, pp. 22-28, 1984,

{170] R.Nakazaki, etal., “Design of a high speed prolog machine
(HPM),” in Proc. 12th Int. Symp. on Computer Architecture,
pp. 191-197, 1985.

{171] P. M. Neches, “Hardware support for advanced data man-
agementsystems,” Computer,vol.17,n0.11, pp.29-40, Nov.
1984.

(172] A.Neweli,]. C. Shaw, and H. A, Simon, “programming the
logic theory machine,” in Prof. IRE 1957 Western Joint Com-
puter Conf., pp. 230-240, 1957.

{(173] A. Newell and H. A. Simon, in Human Problem Solving.
Englewood Cliffs: Prentice-Hall, 1972.

[174] A. Newell and H. Simon, “ACM Turing Award Lecture: Com-
puter science asan empirical inquiry: Symbols and search,”

Comm. ACM, vol. 19, no. 3, Mar. 1975.

1751 A. Newell, “Production systems: Models of control struc-
tures,” in Visual Information Processing, W. G. Chase, £d.
New York: Academic Press, 1975.

{176] H. P. Nii, «Blackboard systems, blackboard systems from a
knowledge engineering perspective,” Al Mag., pp. 82-106,
Aug. 1986.

1771 K. Oflazer, “partitioning in parailel processing of produc-
tion systems,” in Proc. IEEE Int. Conf. on Parallel Processing,
pp. 92-100, 1984.

(178] € A. Ozkarahan, S. A, Schuster, and K. C. Smith, “RAP—AN
associative processor {or database management,” in Proc.
National Computer Conf., pp. 379-388, 1975.

538

{179 D. A. Patterson, “Reduced instruction set computers,”
Comm. ACM, vol. 28, no. 1, pp. 8-21, fan. 1985.

{180]). Pearl, Heuristics—Intelligent Search Strategies for Com-
puter Problem Solving. Reading, MA: Addison-Wesley,
1984,

(1811). Pearl, “Some recent results in heuristic search theory,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
PAMI-6, no. 1, pp. 1-13, Jan. 1984.

{182] E. von Puttkamer, “A microprogrammed Lisp machine,”
Microprocessing and Microprogramming, vol. 11, no. 1, pp-
9-14, fan. 1983.

{183] M.R.Quillian, ~Word concepts: A theory and simulation of
some basic semantic capabilities,” Behavioral Sci., pp- 410-
430, 1967.

{184] C.V. Ramamoorthy, §. L. Turner, and B. W. Wah, “A design
of a fast cellular associative memory for ordered retrieval,”
IEEE Trans. Computers, vol. C-27, no. 9, pp- 800-815, Sept.
1978.

{185) C. V. Ramamoorthy, A. Prakash, W.-T. Tsai, and Y. Usuda,
“Software engineering,’” Computer, vol. 17, pp. 191-210, Oct.
1984,

(186] C. V. Ramamoorthy, 5. Shekhar, and V. Garg, “Software
development support for Al programs,” Computer, pp- 30-
42, Jan. 1987.

{187) U.S. Reddy, “On the relationship between logic and func-
tional languages,” in Logic Programming, D. DeGroot and
£. G. Lindstrom Ed. Englewood Cliffs: Prentice-Hall, 1985.

[188] P.Robinson, “The SUM: an Al co-processor,” Byte, pp. 169-
180, june 1985.

{189] F. Rosenblatt, Principles of Neurodynamics. New York:
Spartan Books, 1962

(190] O.D. Rumelhart, G. Hinton, and}.L.McClelland, “A general
framework for parallel distributed processing,” in Parallel
Distributed Processing: Explorations in the Microstiucture
of Cognition, ed. D. E. Rumelhart, §. L. McClelland and the
PDP Research Group, vol. 1. Cambridge, MA: MIT Press,
1986.

{191] D.E. Rummelhart and |. L McClelland et al. (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition. Cambridge, MA: MIT Press, 1986.

[192} €. Sandewall, “An approach to the frame problem, and its
implementation,” Machine intelligence 7, pp. 195-204, 1972

(193}).Sansonnet, D. Botella, and J. Perez, «fuynction distribution
in a list-directed architecture,” Microprocessing and Micro-
programming, vol. 9, no. 3, pp. 143-153, 1982.

{194]). P. Sansonnet, M. Castan, and C. Percebois, “M3L: A list-
directed architecture,” in Proc. 7th Annual Symp. on Com-
puter Architecture, pp- 105-112, May 1980. .

195}). P. Sansonnet, M. Castan, C. Percebois, D. Botella, and }.
Perez, “’Direct execution of Lispona list-directed architec-
ture,” in Proc. Symp. Architectural Support for Programming
Languages and Operating Systems, pp- 132-139, Mar. 1982.

{196) D. Schaefer and J. Fischer, “Beyond the supercomputer,"
1EEE Spectrum, vol. 19, no. 3, pp. 32-37, Mar. 1982.

(1971 M. Schor, “Declarative knowledge programming: Better
than procedural,” [EEE Expert, vol. 1, no. 1, pp. 36-43, Spring
1986.

{198) T.J. Sejnowksi and C. R.Rosenber “NETtalk:a Parallel Net-
work that Learns to Read Aloud,” Tech. Rep., John Hopkins
University, Baltimore, MD, Jan. 1986.

{199] G. Shafer, A Mathematical Theory of Evidence. Princeton,
NJ: Princeton Univ. Press, 1976.

{200} E.Shapiroand A. Takeuchi, “Object oriented programming
in concurrent prolog.” New Generation Computing, vol. 1,
no. 1, pp- 25-48, OHMSHA Ltd. and Springer-Verlag, 1983.

[201] S. M. Shatz and }.-P. Wang, “Introduction to distributed-
software engineering,” Computer, pp- 23-32, Oct. 1987.

{202] D.E. Shaw, “On the Range of Applicability of an Artificial
intelligence Machine,” Tech. Rep., Columbia University,
New York, NY, jan. 1985.

{203] Y.Shih and K. B. Irani, “Large scale unification usinga mesh-
connected array of hardware unifers,” in Proc. Int. Conf. on
Parallel Processing, pp. 787-794, St. Charles, 1L, 1987.

[204] Y. Shobatake and H. Asio, A unification processor based
on uniformly structured cellular hardware,” in Proc. 13th Int.
Symp. on Computer Architecture, pp. 140-148, 1986.

{205] H. A. Simon, “Search and reasoning in problem solving,”
Artificial Intelligence, vol. 21, pp. 7-29, 1983.

PROCEEDINGS OF THE IEEE, vOL. 77. NO. 4, APRIL 1989

e e s e Ao T T T - Ny b 131

Y -

"w -~ w

T ot

T

206}
[2671
[208]
209]
'[é{dl

P11

ﬁ?zl

213
[214)
215)

216}

17
18]

219]

21

(224)

(226]
227)
[228)
{229)

230}
231}

[232)

2331 O

WAH,

H. A. Simon, “Whether software engineering needs to be
artificially intelligent,” IEEE Trans. Software Engineering, vol.
SE-12, no. 7, July 1986.

R. G. Smith, “The contract net protocol: High-level com-
munication and control in a distributed problem solver,”
EEE Trans. Computers, vol. C-29, no. 12, 1980.

A. Snyder, "“Object-Oriented Programming for Common
Lisp,” Rep. ATC-85-1, Software Technology Lab., Hewlett-
packard Lab., Palo Alto, CA, 1985.

C. Stanfill and D. Waltz, “Toward memory-based reason-
ing,” Comm. ACM, pp. 1213-1228, Dec. 1986.

M. Stefik and D. G. Bobrow, “Object-oriented program-

- ming: Themes and variations,” Al Mag., pp. 40-62, Spring

1986.

S.). Stolfo and D. E. Shaw, “DADO: A Tree-Structured
Machine Architecture for Production Systems,” Tech. Rep.,
Columbia University, New York, NY, Mar. 1982.

S.). Stolfo and D. P. Miranker, “The DADO production sys-
tem machine,” J. Parallel and Distributed Computing, vol. 3,
no. 2, pp. 269-296, 1986.

S. J. Stolfo, “Initial performance of the DADO-2 prototype,”
Computer, pp. 75-84, Jan. 1987.

H. S. Stone, “Parallel querying of large databases: A case
study,” Computer, pp. 11-21, Oct. 1987.

S. Y. W. Su, “Associative programming in CASSM and its
applications,” in Proc. 3rd Int. Conf. Very Large Databases,
pp- 213-228, 1977.

P. A. Subrahmanyam and }J-H You, “FUNLOG: A computa-
tional model integrating logic programming and functional
programming,” in Logic Programming, D. DeGroot and G.
Lindstrom, Eds. Englewood Cliffs: Prentice-Hall, 1985.

S. Sugimoto, K. Agusa, K. Tabata, and Y. Ohno, “A multi-
microprocessor system for concurrent Lisp,” in Proc. IEEE
Int. Conf. Parallel Processing, pp. 135-143, 1983.

G.). Sussman and D. V. McDermott, “From PLANNER to
CONNIVER—A genetic approach,” Fall Joint Computer
Conf., vol. 41, pp. 129-137, 1972.

G. J. Sussman,). Holloway, G. L. Stee! Jr., and A. Bell,
“Scheme-79—~Lisp on a chip,” Computer, vol. 14, no. 7, pp.
10-21, July 1981.

K. Takahasi, H. Yamada, H. Nagai, and K. Matsumi, “A new
string search hardware architecture for VLSI,” in Proc. 13th
Int. Symp, Computer Architecture, pp. 20-27, 1986.

A. Takeuchi and K. Fukukawa, “Parallel logic programming
languages,” in Proc. Third Int. Conf. Logic Programming,
1986.

K. Taki, Y. Kaneda, and S. Maekawa, *The experimental Lisp
machine,” in Proc. 6th Int. Joint Conf. on Artificial Intelli-
gence, pp. 865-867, Aug. 1979.

K. Taki, M. Yokota, A. Yamamoto, H. Nishikawa, S. Uchida,
H. Nakashima, and A. Mitsuishi, “Hardware design and
implementation of the personal sequential inference
machine (PSI),” in Proc. Int. Conf. Fifth Generation Com-
puter Systems, pp. 398-409, 1984.

W. Teitelman and L. Masinter, “The Interlisp programming
environment,” Computer, vol. 14, no. 4, pp. 25-33, Apr. 1981.
M. F. M. Tenoario and D. 1. Moldovan, “Mapping production
systems into multiprocessors,” in Proc. IEEE Int. Conf. Par-
allel Processing, pp. 56-62, 1985.

E. Tick and D. H. D. Warren, *Towards a pipelined prolog
processor,” New Generation Computing, vol. 2, no. 4, pp.
323-345, 1984.

S. Torii et al., “A database system architecture based on a
vector processing method,” in Proc. 3rd Int. Conf. Data Engi-
heering, Feb. 1987.

P.C.Treleavenand 1. G. Lima, “Japan’s fifth-generation com-
?;g;r systems,” Computer, vol. 15, no. 8, pp. 79-88, Aug.

A.B.Tucker, r., A perspective on machine translation: The-
ory and practice,” Comm. ACM, vol. 27, no. 4, pp. 322-329,
Apr. 1984,

S. Uchida, ““Inference machines in FGCS project,” in Proc.
VLSI'87 Int. Conf., 1IFIP TC-10, WG 10.5, Aug. 1985.
K.Ueda, “Guarded Horn Clauses,” Tech. Rep.TR-103,1COT,
Tokyo, japan, 1985.

L. M. Uhr, “Parallel-serial production systems,” in Proc. 6th
Int. Joint Conf. Artificial intelligence, pp. 911-916, Aug. 1979,
- Ungar, “Generation scavenging: A non-disruptive high

LOWRIE, AND (L COMPUTERS FOR SYMBOLIC PROCESSING

{234]

[235)

[236]

237

[238]

[239)

[240)

241}

242)

[243]

[244)
[245)

[246)
(247}

[248)

[249)

performance storage reclamation algorithm,” ACM SIC-
SOFT, vol. 9, no. 3, pp. 157-167, May 1984.

D. Ungar, R. Blau, P. Foley, D. Samples, and D. A. Patterson,
“Architecture of SOAR: Smalltatk on RISC,” in Proc. 11th
Ann. Int. Symp. Computer Architecture, pp. 188-197, 1984.
D. Ungar and D. Patterson, “What price Smalltalk?”” Com-
puter, pp. 67-74,)Jan. 1987.

S. R. Vegdahl, “A survey of proposed architectures for the
execution of functional languages,” IEEE Trans. Computers,
vol. C-33, no. 12, pp. 1050-1071, Dec. 1984,

J. . Vitter and R. A. Simons, “New classes for paratlel com-
plexity: A study of unification and other complete prob-
lems,” IEEE Trans. Computers, vol. C-35, no. 5, pp. 403-418,
May 1986. :

B. W. Wah, G.). Li, and C. F. Yu, “Multiprocessing of com-
binatorial search problems,” Computer, vol. 18, no. 6, pp.
93-108, June 1985. Also in Tutorial: Computers for Artificial
Intelligence Applications, ed. B. W. Wah, 1986, pp. 173-188.
B. W. Wah, “Guest editor’s introduction: New computers
for artificial intelligence processing,” Computer, vol. 20, no.
1, pp. 10-15, Jan. 1987.

D. L. Waltz, “Applications of the connection machine,”
Computer, vol. 20, no. 1, Jan. 1987.

D. H. Warren, L. M. Pereira, and F. Pereira, “Prolog—The
language and its implementation compared with Lisp,” in
Proc. Symp. Artificial Intelligence and Programming Lan-
guages, also SIGART Newsletter, vol. 64, pp. 109-115, Aug.
1977.

P. Wegner and B. Shriver (ed.), “Special issue on object-ori-
ented programming workshop,” SIGPLAN Notices, vol. 21,
no. 10, Oct. 1986.

M. Weiser, S. Kogge, M. McElvany, R. Pierson, R. Post, and
A. Thareja, “Status and performance of the ZMOB paraliel
processing system,” in Proc. IEEE COMPCON Spring, pp.7 i~
73, Feb. 1985.

L. C. West, “Picosecond integrated optical logic,” Com-
puter, vol. 20, pp. 34-47, Dec. 1987.

T. Winograd, “Frame representations and the declarative
procedural controversary,” in Representation and Under-
standing: Studies in Cognitive Science, pp. 185-210, Aca-
demic Press, Inc., 1975.

P. H. Winston and B. Horn, Lisp, Second Edition, Reading,
MA: Addison-Wesley, 1984.

Y. Yamaguchi, K. Toda, and T. Yuba, ““A performance eval-
uation of a Lisp-based data-driven machine (EM-3),” in Proc.
10th Annual Int. Symp. Computer Architecture, pp. 363-369,
june 1983,

Y. Yamaguchi, K. Toda,). Herath, and T. Yuba, “EM-3: A Lisp-
based data-driven machine,” in Proc. Int. Conf. Fifth Gen-
eration Computer Systemns, pp. 524-532, 1984.

C.F.Yu, “Efficient Combinatorial Search Algorithms,” Ph.D.
Thesis, School of Electrical Engineering, Purdue University,
West Lafayette, IN, Dec. 1986.

L. A. Zadeh, “Fuzzy sets,” Information and Control, pp. 338-
353, 1965.

L.A.Zadeh, “Approximate Reasoning Based on Fuzzy Logic,”
in Proc. 6th Int. Joint Conf. Artificial Intelligence, pp. 1004-
1010, Aug. 1979.

Benjamin W. Wah (Senior Member, 1EEE)
received the Ph.D. degree in computer sci-
ence from the University of California,
Berkeley, in 1979. He was on the faculty of
the School of Electrical Engineering at Pur-
due University, West Lafayette, IN, between
1979 and 1985. He is now an Associate Pro-
fessor in the Department of Electrical and
Computer Engineering and the Coordi-
nated Science Laboratory of the University
of lllinois at Urbana-Champaign, Urbana.

He is currently on leave at the National Science Foundation as a
Program Director in the Microelectronic Information Processing
Systems Division. His areas of research include computer archi-
tecture, parallel processing, artificial intelligence, distributed data-
bases, and computer networks.

Dr. Wah is the Associate Editor-in-Chief of the forthcoming IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, an area editor of

 SIG-

rson,
. T1th
1984,
Com-

or the
yuters,

1 com-
prob-
)3-418,

f com-
. 6, pp-
rificial
73-188.
puters
20, no.

chine,”

yg—The
isp,” in
ng Lan-
15, Aug.

»ieCt'OI'i‘
.vol. 21,

ost, and
 parallel
, pp. 71~

" Com-

clarative
d Under-
210, AcCa-

Reading,

nce eval-
" in Proc.
. 363-369,

-3: A Lisp-
Fifth Gen-

ns,” Ph.D.
Jniversity,

!, pp. 338~

1zy Logic.”
pp. 1004~

ber, 1EED)
puter sci-
California,
 faculty of
ing at Pur-
i, between
ociate Pro-
ctrical and
e Coordi-
University
n, Urbana.
dation as a
Processing
suter archi-
buted data-

-oming JEEE
ea editor of

539

the Journal of Parallel and Distributed Computing, and an editor
of Information Sciences. He serves as a member of the Governing
Board of the IEEE Computer Society and a program evaluator for
ABET (computer Engineering) and CSAC (computer science). Pre-
viously, he served as chairman and member of program committee
of a number of international conferences, an editor of the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, and 2 distinguished visitor
of the IEEE Computer Society.

Matthew B. Lowrie received the B.S. degree
(highest honors) in computer engineering
and the M.S. degree in electrical engineer-
ing from the University of lllinois, Urbana,
in 1985 and 1986, respectively. He is cur-
rently a Ph.D. candidate in electrical engi-
neering at the University of Hlinois.

His research interests include artificial
intelligence, learning, search algorithms,
and fault tolerant computing. Mr. Lowrie is
supported by a fellowship with AT&T Bell
Laboratories.

Guo-jie Li graduated from Peking Unive
sity in 1968 and received the M.S. degree
computer scienceand engineering fromti
University of Science and Technology
Chinaand the Institute of Computing Tec
nology, Academia Sinica, in 1981, |
received the Ph.D. degree in electrical en;
neering in 1985 from Purdue Universi
Between 1985 and 1986, he was 2 post-dc
toral research associate in the Coordinat
Science Laboratory of the University of |
nois at Urbana-Champaign.

Guo-jie Li is an Associate Professor at the Institute of Computi
Technology, Academia Sinica. His research interests include p
allel processing, artificial intelligence, theory of algorithms, a
computer architecture. He has published over 30 papers andt
co-edited Tutorial: Computers for Artificial Intelligence Appli
tions (IEEE Computer Society Press, 1986). He has also written s
eralchapters in several published books. Heisan editorofthe Jo
nal of Computer Science and Technology and the journal of Patte ;
Recognition and Artificial Intelligence.

PROCEEDINGS OF THE {EEE, VOL. 77, NO. 4, APRIL

