- Mstributed procsssing

Implementation of an efficient load
balancing strategy for a local
computer system

Katherine M Baumgartner, Ralph M Kling*
“and Benjamin W Wah*

Load balancing (or global allocation) has been shown to
be effective in reducing the average response time of jobs
in local computer systems. This paper describes the
development and implementation of the GAMMON
(Global Allocation from Maximum to Minimum in
cONstant time) load-balancing strategy in an existing
networked computer system. GAMMON uses the available
broadcast capability of multiaccess networks to implement
an efficient search technique for finding the extremum of
a set of numbers, which reflect the workloads in the
computers. The search technique has average overhead
which is independent of the number of participating
stations. A description is given of the development of a
window search protocol, the development of a load-
balancing strategy using the window search. and a practical
realization of the GAMMON strategy on an existing
network of Sun workstations. The transition from the
theoretical concept to practical issues encountered during
the actual implementation is described in detail. Emphasis
was placed on usability. reliability and performance which
was measured on two different networks.

Keywords: broadcast datagrams. distributed search,
Internet protocol, load balancing. Unix interface.
transparent operation

The decreasing cost, the growth in technology, and the
diversification of applications have caused computer
systems to evolve from being centralized to being

Digitat Equipment Corporation. 146 Main Street MLO3-5/T37,
Maynard, MA 01754, USA

* Computer Systems Group. University of {lfinois a1 Urbana-
Champaign. CSL, 110t W Springficld Avenue. Urbana. {L 61801, USA

6 0367 619759 (406 1150300 ¢ 1989 Butterworth & Co (Publishers) L

distributed. A distributed computer system (DCS) may
possess a large number of general and special-purpose
autonomMous processing units interconnected by a
network.

Load balancing uses communication facilities to
support remote job execution in a user transparent
fashion to improve resource utilization and reduce
response time. A decision to load balance is made if the
job is likely to be finished sooner when executed remotely
than when executed locally. Load balancing is beneficial,
since a job will almost always be waiting for service at
one processor while another processor is idle in a DCS
with ten or more proccssors”.

Load-balancing decisions can be made in a centralized
or a distributed manner. A centralized decision implies
that status information is collected, and decisions to load
balance are made at one location. Theoretical studies on
centralized load balancing have been made by Chow and
Kohler* and Ni and Hwang'®. The disadvantage of
centralized scheduling is the overhead of collecting
processor and job status information. If this overhead is
large, scheduling decisions are frequently based on
inaccurate and outdated information. In contrast. a
distributed load-balancing scheme does not limit the
scheduling intelligence to one processor. It avoids the
bottleneck of collecting status information and jobs at a
single site and allows the scheduler to react quickly to
dynamic changes in the system state.

Load balancing can also be classified as state-
dependent or probuabilistic'. A decision based on the
current state of the system is called state-dependent. A
decision is probabilistic if an arriving job is dis-
patched to the processors according to a sct of branch-
ing probabilities that are collected from previous
experience or are based on system characteristics.

Computer Systems Science and Enginecring

distributed progassing

Other research on load balancing include studies charac-
terizing state-dependent load balancing, determining
appropriate state information, and proposing efficient
algorithms©- 11321 and topology-dependent strate-
gi655.8-10.18‘19'

Distributed, state-dependent load balancing is imple-
mented on the Purdue Engineering Computer Network,
which is a system of computers connected by a hybrid
of Ethernet and point-to-point links”. Each processor
polls other processors for status information about their
loads, decides which machine has the lowest load, and
sends the job for remote processing if the turnaround
time is shorter.

Some results of these previous studies are as follows.

e A network with load balancing performs better than
a network without load balancing.

e State-dependent load-balancing strategies result in -

better performance than probabilistic strategies, but
the overhead associated with implementing them is
higher.

e Probabilistic strategies are sometimes insensitive to
dynamic changes in system load and may result in
suboptimal performance.

e Load-balancing decisions considering the state of the
source only do not have the potential for performance
improvement that decisions considering the state of
the server do?'.

e Extensive state information is not needed for effective
load balancing and can be detrimental to system
performance®.

e Status information used in a state-dependent decision
must be readily available. Decisions based on outdated
of inaccurate status information could degrade per-
formance.

e Load balancing increases network load which may
impede message transmissions.

An efficient load-balancing strategy will result in a
minimum in response time and send a minimum of state
information across the network. Since the common bus
only allows one transmission at a time, one such strategy
is to send a job from the processor with the maximum
load to the processor with the minimum load. The
overhead of sending these jobs and identifying the
participating stations should be kept low. This paper
proposes a strategy for load balancing that can be
implemented on existing networks. The strategy uses an
efficient technique to identify the minimally and the
maximally loaded processors with constant average
overhead. The strategy is called GAMMON: Global
Allocation from Maximum to Minimum in ¢cONstant
time?.

The organization of this paper is as follows. The
subsequent section gives an overview of GAMMON,
followed by a section presenting a window-broadcast
protocol for distributed extremum search, describing its
development, and demonstrating its feasibility. The next
section describes the transition from the theoretical
concept to a practical implementation. Subsequently,
implementation details are discussed. Performance re-

Vol 4 No 4 October 1989

sults are presented in the penultimate section, followed
by conclusions.

GLOBAL SCHEDULING STRATEGY

In this section, an overview of the scheduling problem
on a broadcast bus is presented. Figure 1 shows a diagram
of the system under consideration. There are multiple
identical processors connected by a broadcast bus. Each
processor can have arrivals external to the system or
from the bus. Jobs are modelied as independent tasks. If
jobs are migrated to a processor across the bus, the results
must be returned to the originating processor when
execution is completed. Moreover, the queue at each
processor is {inite; only a limited number of jobs may be
waiting for execution.

Development of the strategy

The first step in defining a procedure is to find those
system states in which job redistribution can result in
improved performance. Obviously, the occurrence of the
idle-while-waiting condition shouid be decreased as well
as the occurrence of any state that makes idle-while-
waiting more likely. In multiprogrammed systems,
assuring that processors are busy is not sufficient to
minimize the occurrence of the idle-while-waiting condi-
tion. Since the response time for each job is degraded as
more jobs are added to the active queue, it is important
to distribute all available jobs evenly.

The strategy discussed here uses the queue length of
active jobs at a processor as a metric to indicate
workload. A queue-length imbalance will make the
idle-while-waiting condition more likely. Hence, a load
redistribution action is needed when there is significant
difference between queue lengths, such that the estimated
total overhead of migrating a job, queueing delay at a
remote processor and later returning results is less than
the delay a job would experience at its source queue.

External arrivals External arrivols

\ Load from remote

Logd from remote

p?ocessors processors
’
Result Job Result Job
return migration return migration
1
Processor Processor

Figure 1. Queuing diagram of a system of processors
connected by a broadcast bus

217

Jstributed prodassing

It should be noted that the number of jobs at
a processor, while frequently a good reflection of load,
is not always adequate. Other factors that may contribute
to the workload at a processor include physical differ-
ences of processors (such as speed or size of main
memory), paging activity, and the ratio of processing
activities and input/output activities in jobs. Future work
will involve investigating a more inclusive measure of
processor load.

An ideal redistribution of jobs, given that the metric
used is the queue length at each processor, is to have
equal number of jobs at each processor. Since a single
bus is used to connect all the computers, only one job
can be migrated at any one time, and it is not possible
to perform such an ideal redistribution in one step. The
movement with the most impact is to take a job from
the maximally loaded processor, and send it to the
minimally loaded processor. Such a strategy is both
source- and sink-initiated. In addition, minimal status
information is needed because this strategy only requires
the identification of the maximally and the minimally
loaded processors.

Three scheduling operations are required for this
redistribution on a bus network: identification of the
maximally and the minimally loaded processors, job
migration, and result return. Migrating jobs and return-
ing results are straightforward because existing com-
munication facilities can be utilized; however, identifying
processors with the load extremes efficiently is more
difficult. Such an operation should have very low
complexity, preferably independent of the number of
processors connected to the bus. Any centralized schedul-
ing algorithm, such as polling, is not suitable here.

The priority ordering for tasks using the bus network
is (i) regular message transfer, (i) result return, (iii) job
migration, and (iv) max/min identification. The intuitive
reasons behind the choice is that the network was
designed for message traffic, which has the highest
priority in using the network. FEarly return of results will
contribute to reduction in average response time, while
early migration of jobs may not because jobs may be
queued at the remote processor; hence, return is given
higher priority to job migration. Lastly, identifying
candidates for load balancing should be given a lower
priority relative to job migration because the bus network
is shared among all competing jobs; therefore, migrating
multiple jobs simultaneously will delay the initiation
times of all jobs concerned.

The scheduling strategy, GAMMON, consists of two
steps that are executed repeatedly. The first is to
determine which of the current tasks has the highest
priority, and the second is to execute that task.

WINDOW BROADCAST STRATEGIES FOR
DISTRIBUTED EXTREMUM SEARCHES

Contention resolution

Carrier-sense-multiaccess networks with collision detection
(CSMA/CD) are a type of local-area network with

218

packet switching and a bus topology'®. CSMA/CD
networks evolved from CSMA networks that have
listen-before-talk protocols to avoid overlapping trans-
missions. The collision-detection ability of CSMA/CD
networks allows processors to additionally listen-while-
talk, so collisions resulting from simultaneous trans-
missions can be detected and stopped immediately.

There are three types of protocols for contention
resolution in CSMA/CD networks. Collision-free proto-
cols strictly schedule bus accesses, s0 no collisions occur.
Contention protocols function at the other extreme,
allowing processors to transmit whenever they find the
bus idle. When collisions occur because of simultaneous
transmissions, processors stop transmitting, wait for
some prescribed amount of time, and try again. The
backoff algorithm of Ethernet!* is an example in this
class. The disadvantage of collision-free protocols lies in
the overhead of waiting for transmission, while the
disadvantage of contention protocols is the time wasted
during collisions. A third type of contention-resolution
protocol is the limited-contention protocol. This type of
protocol chooses a processor for transmission from
among those waiting to transmit based on a priori
information, such as the channel load. The Virtual
Window Protocol proposed by Wah and Juang®182% s
an example of a limited-contention protocol.

The Virtual Window Protocol assumes that three-
state network information is available to each processor:
(a) collision is detected on the bus network, (b) bus is
idle, and (c) exactly one station broadcast on the network.
All participating stations maintain a global window and
progressively reduce the size of the window until exactly
one station broadcast on the bus. Only stations with
contention parameters inside the window are allowed to
broadcast in each contention slot, which is the maximum
round-trip propagation delay of the network. The
advantage of the Virtual Window Protocol as compared
to the backoff algorithm of Ethernet is that the time
between successive trials is always bounded by the size
of the contention slot, while the time between successive
trials in the backoff algorithm is random. Moreover, by
precomputing the optimal window to be used in each
iteration, it is possible to identify the winner in 2.4
contention slots on the average, independent of the
aumber of contending stations®'®2°. However, hard-
ware modification to existing FEthernet interfaces is
necessary because the three-state network information is
normally not accessible to the operating system.

Window-broadcast strategy with two-state network
information

The extremum-search strategy developed in this work is
similar to the Virtual Window Protocol described above,
except that two-state network information is assumed:
(a) a station successfully broadcasts in a contention
iteration, and (b) no station broadcasts in the broadcast
slot. A broadcast slot consists of the time for all stations
to contend for the channel and the time for the winner

Computer Systems Science and Engineering

istribuied prodassing

E—(——————‘*—— LA
' :
al®o0 “ U0
i X _ "3
H I -
L=00 wp vre
b
. X4
« +
i I U=10
L=00 "3
Cc

Figure 2. Example of the window protocol using the
one-broadcast strategy

to broadcast its message. As a result, such information
is available to the operating system, and our design does
not require any changes to existing Ethernet hardware
interfaces.

Since the information available for window selection
is different at the applications level, the decision process
has to be modified. The one-broadcast strategy for
identifying the minimum is described in detail below; the
identification of the maximum is similar and is not
described. Further details about other strategies can be
found elsewhere!-2. The performance is evaluated using
the number of broadcast slots the strategy requires to
isolate the minimum search parameter. The one-broad-
cast strategy described assumes that information about
the distribution of search parameters is available. To
justify the assumptions made on the distribution, measure-
ment results of load distribution are presented in the
final portion of this section.

One-broadcast strategy

The one-broadcast strategy allows a maximum of one
broadcast slot per iteration. Starting with an interval
(L, U], each station has a search parameter x; in the
interval. The stations maintain a global window on the
interval. Stations with parameters within the window
attempt to broadcast their search parameters, and if there
are one or more parameters in the window, there will be
a contention resolution followed by a broadcast of one
of the search parameters. In that case, the upper bound
of the interval will be updated to the value broadcast. If
there are no parameters within the window, the lower
bound of the interval is updated to the upper bound of
the window used, and the protocol continues. The
minimum is identified when the lower bound of the
interval is equal to the upper bound.

An example of the one-broadcast strategy is shown in
Figure 2. In this example, x, = 0.48, x, = 0.90, x5 = 0.35,
x4 =0.30, and x5=0.7S. For the first iteration (Figure
2a), the upper bound of the window chosen is 0.51.
Stations 1, 3, and 4 attempt to broadcast their para-
meters. Suppose that station 3 is the winner and
transmits. The next interval to be searched is (0, x3). Let
the upper bound of the next window chosen be 0.33.
Only station 4 trys to transmit its parameter, and x, is

Vol 4 No 4 October 1989

broadcast. The search has not concluded even though x4
is the minimum because the fact that it was the only
station broadcasting is not available to station 4 or to
the other stations. The next window chosen is 0.25. There
is, of course, no broadcast. This process will continue
until the bounds of the window isolate x,, and the
minimum is globally known.

The choice of the window in each broadcast slot is
based on the probabilities of the two states, transmission
and idle, which are dependent on previous broadcasts.
If a previous broadcast slot resulted in the transmission
of a value, say x,,, then any subsequent transmissions
must be less than x,,. This implies that any subsequent
x;s broadcast were eligible to broadcast during the
iteration that x,, was broadcast, but lost the contention.
The probability of the subsequent transmissions must be
conditioned on the fact that any x;s in the current window
did not broadcast when they were eligible during previous
iterations. The choice of the window is, thus, dependent
on previous broadcasts, hence, the choice cannot be
optimized by dynamic programming methods because
the Principle of Optimality is not satisfied.

Assume that station i has an independent search
parameter x; with distribution F(x) and density f(x). The
following definitions are used to formulate an approxi-
mate solution of choosing the upper bound of the next
window, assuming that the probabilities of transmission
and idle are independent of previous broadcasts and are
computed without information from previous broad-
casts. The following definitions are used.

N, fa,b) the minimum expected number of broadcast

slots to isolate the minimum x; on the

interval (a, b] using an approximate solution

of the one-broadcast strategy, given that all

x;s are in (a, U], and that at least one x; is

in (a, b];

¢ 4(a, b, w) the probability of a transmission on the
interval (@, w], given that all x;s are in (a, U],
and that at least one x; is in (a, b;

6,(a, b, w) the probability of no transmission on the
interval (a, w], given that all x;s are in (a, uUl,
and that at least one x; is in (a, b].

Tt is obvious that
b a(a b, W)+ 04(a, b, w)=10.)

There are two cases to consider when calculating
6 ,(a, b, w), namely, b=U and b# U. When b="U, it is
uncertain whether there is a x; at b, and the arrangements
of the n x;s must be considered, so

040a, U, w) P A (22)

When b # U, there must be a station at b, since b is only
updated to a value of x; in the event of a transmission.
In this case we are only concerned with the placement of

219

Mstributed procsssing

2.5

2.0

o
T

Broadcast slots

o
T

0.51

[
1 1 1 - i I\
¢} 10 20 30 40 50
Number of processors

Figure 3. Results of the simulations for the one-

broadcast window-search strategy

at most (n— 1) of the x;s,

(F(U)— Fw)y™*

04, b, Wlppv = (2b)

(FU)-F@y™'
The recurrence for choosing the window is
Ny(a, b)

= min {l + ¢ 4(a, b, w)

a<w<b
x [J‘ f.(a, w, x,)N4(a, xb)db]

+0,(a, b, w)N 4, (w, b)}. 3)

The three terms on the right-hand side of the above
equation count the current broadcast slot, additional
broadcast slots in the event of a transmission, and
additional broadcast slots if the current broadcast slot

is idle.

The assumption that contention can be resolved in
one step when the window size is smaller than & holds,

so the boundary condition is

N(a,b)=1 forall (b—a)<? @)

The data structure for storing the windows is a two-
dimensional array. The number of decision points is
determined by the values of a and b. The total number
of unique nodes with 8=1/(10n) is ((10n)? + 30m)/2,
which is determined by counting the decision points

indicated by the above recurrences. Forn=5and n=6,

220

the numbers of decisions points are 1325 and 1890,
respectively.

The simulation results for the distributed window
search using the approximate one-broadcast strategy are
shown in Figure 3. The broadcast parameters were
generated from a uniform distribution in (0, 1], and
sufficient cases were simulated until a confidence interval
of 0.95 was reached. The number of broadcast slots is
bounded on the average by 2.6.

The proposed scheme is practical as a result of the
constant expected number of broadcast slots. The time
required for a contention slot is approximately 50 us, and
the time required to broadcast a search parameter may
be estimated at approximately 100 us. It follows that each
broadcast slot would require on the order of 220 us if an
average of 2.4 contention slots'® were required to resolve
contention. If it takes 120 us to resolve contention and
100 us to transmit a 1kbyte packet, then the overhead
of each load balancing decision to identify the maximally
and the minimally loaded processors is equivalent to
transmitting 5.2 1-kbyte packets.

Distribution of load averages

The knowledge on the distribution of workload (or load
averages) is needed in the distributed search in order to
choose the windows. The load averages were measured on
a system experiencing a real workload in order to
determine its characteristics and whether global schedul-
ing has potential to improve performance. The study
consisted of measuring the load on a system of 10 Sun
workstations (servers and clients). Every sixty seconds,
the one-minute load average was measured and logged.
The load data was analysed using an adjusted Komol-
gorov-Smirnov test'*'”. This goodness-of-fit test can be
used to detect differences between a normal distribution
and the empirical distribution indicated by the measured
data. The agreement was measured over time. The results
indicate that the distribution of load averages can be
estimated using a normal distribution, as 80% of the time
that the system is active, the distribution is within 0.215
of a normal distribution.

The results of the study are shown in Figures 4 and 5.
Figure 4a shows the maximum and minimum load
averages over time. The minimum is almost always zero,
and the maximum varies. The peak utilization is between
sample number 700 and 1400 which reflects the load
from 1 p.m. until midnight. From 1 am. until 11 a.m,,
the loads measured were uniformly low (<1). There is
no potential benefit from global scheduling during that
time. Figure 4b shows one hour of the minimum, average,
and maximum load averages. The differences between
the normal and empirical distribution is shown in
Figure 5.

PRACTICAL REALIZATION
1t is now time to focus on the transition from the theoretical
concept described above to an actual implementation.

Several options and limitations imposed by the target
system architecture have to be considered.

Computer Systems Science and Engineering

stributed prodessing

Load average
~n
T

o
| i i
0 500 1000
a Sample number
ak
3l
&
&
& 2
Q
o
8
-
.
ok
| ! } | It 1
1080 1090 1100 1110 1120 1130
b Somple number
Figure 4. Load maxima and minima (@) for one day;

(b) for one hour

Host system

The two distributed computer networks on which
GAMMON has been implemented connect Sun 3/280
servers and Sun 3/50 discless clients by Ethernet. The
first system consists of one server and two clients whereas
the second one has one server and ten clients. A client
can access a server’s disc via the network, and is allocated
a portion of the server’s disc for swap space. Swapping
over the network is a part of the regular message transfer.
The NFS (Network File System) supports transparent
access to remote file systems. This mechanism allows
uniform access by the clients to secondary storage.

All hosts run Sun Unix version 3.4. When a process
is initiated on a server or a client, a core image of that
process containing run-time information exists in the
swap space associated with that server of client. This
core image may be quite large (on the order of several
megabytes). Since the operating system maintains a
separate swap partition for each host, there is no

Vol 4 No 4 October 1989

straightforward way to load-balance jobs already in
progress without explicitly copying their core images
from one swap partition to another. Due to the size of
the core image, this transfer would have high overhead
{on the order of seconds). Owing to this overhead, the
current implementation migrates jobs only at their entry
point. Future enhancements to GAMMON will study
pre-emption strategies, especially in combination with Sun
Unix version 4.x which allows a common swap area for
several hosts.

Adaptation of the GAMMON strategy

The search for the minimum load as described in the
previous section takes 2.7 broadcast slots on the average.
A practical implementation of the strategy within the
constraints of the operating system poses several diffi-
culties. There is a high overhead for all stations to
synchronize the updating of the search window and to
resolve priorities of broadcasts. A number of require-
ments in the protocol have been relaxed to result in a
practical implementation. A number of strategies that
allow a practical implementation but do not significantly
degrade performance are discussed in this section.

The first strategy is to truncate the search after one
iteration to reduce network traffic. This is equivalent to
the use of a precomputed static search window instead of
a dynamic one as presented in a previous section. As
shown later on, this does not severely affect global
performance since wotkload information is heuristic in
nature and small errors in identifying processors for load
balancing are not critical. An important tradeoff we have
achieved is that reasonable results are obtained at
substantially lower overhead.

The second strategy to reduce computational over-
head is to deliberately not enforce prioritics of network
usage as outlined before. A strict enforcement would have
required changes to the operating system kernel which

Difference
[e)
w
T

°L, .

i
[¢) 500 1000 1500
Sample number

Figure 5. Difference between empirical and normal
distributions

221

Hstributed processing

would have greatly reduced the portability of our system.
Moreover, the effect of interleaving packets containing
results and migrating jobs will not have a significant
impact on the overall performance. The problem of too
many jobs being migrated at the same time is considered
subsequently.

In the third strategy to reduce overhead, the search
for the maximum load is not performed explicitly. It was
observed that if a processor’s load was above the initial
window in the minimum search, its load was the
maximum the majority of the time. As a result, processors
with loads above the initial window can migrate the
current job if the minimum load is current, and an explicit
search of the maximally loaded processor is not needed.

A potential problem with not explicitly identifying the
maximally loaded processor is that a lightly loaded
processor may be swamped by jobs from more heavily
loaded ones. There are two solutions to resolve this
problem. First, a processor may only be allowed to
migrate jobs if it has a load higher than the upper bound
of the initial window and a new arrival. Second, a
processor may be allowed to migrate at most one job
between searches. Our performance data indicate that
swamping is not a problem for a moderate number of
participating processors. However, if pre-emption were
implemented, it would be necessary to identify a unique
maximum, as a large fraction of the processors may be
pre-empting jobs at any time.

Finally, in order to avoid synchronization overhead
as much as possible, the hosts participating in the search
are only loosely synchronized by means of alarm timers
which are reset upon arrival of a data packet. It was
found that this type of synchronization, which is less
stringent than assumed previously, is sufficient for our
purposes and does not lead to adverse effects. On the
contrary, a lower program complexity and less network
overhead were achieved.

Implementation overview

During the program development, a number of decisions
were made concerning the implementation of certain
functions. On the highest level, the search for the
minimally loaded processor should be running periodic-
ally and independently of eventual job migrations. This
will minimize job startup times. The underlying search
algorithm is the previously described window broadcast
strategy.

The search daemon is a background process that
periodically participates in a search for the minimum
load among all network hosts. A search is initiated by a
periodic timeout signal on each host, or in response to
an incoming data packet. In any of those events, each
host will send out a data packet containing its own load
information, provided it is within the search window.
Incoming packets are used to update the local informa-
tion about the minimally loaded host.

This algorithm proved to be the most efficient in terms
of network load and processor overhead. Finally, the

222

program was designed to be modular, therefore exten-
sions can be easily made. These include a module that
emulates NFS calls on a non-NFS machine, and a module
which handles migration of jobs already in progress.

The second part of the GAMMON load-balancing
software is the remote execution handler, which operates
asynchronously from the search. Upon a user request to
execute a certain program, the load-balancing software
decides if the job will be executed locally or remotely.
Job migration is performed by sending the necessary
information of a job at its entry point to the remote
processor. The input and output channels of the user’s
shell and the remote execution shell are linked to ensure
transparent operation.

IMPLEMENTATION DETAILS
Distributed search

A search is initiated, as mentioned before, by a periodic
alarm signal, or by a packet arriving from another search
module. When an alarm is received, the processor’s
current load is compared to the lower bound of the
window. If the local workload value is smaller than the
currently known lower bound, it is broadcast with a
timestamp and processor address. If a packet is received,
the load is accepted as the minimum and is stored with
the current time. If more than one processor sends a load
packet due to their both receiving an alarm simul-
tancously, the minimum load is accepted. If the loads are
identical, the processor address is used as a tie breaker.
The alarm timer is reset when packets are received,
therefore, the process is loosely synchronized.

The contents of received packets are written to a log
file to monitor the current status of the network. Along
with the status (the minimum load, and the location of
the processor with the minimum load), the current time
is also stored. When the status information is retrieved,
the time stamp is checked and is used to determine if the
load value is out of date. In that case, the processor
considers itself ineligible for job migration until it receives
another status packet. This time stamping allows an
unreliable communication mechanism (broadcast data-
grams) to be used to communicate load informadtion. This
reduces network traffic since no circuit has to be
established and no acknowledgements have to be sent.
In case that load information is lost by one processor,
that processor does not migrate jobs. This has a minimal
effect on the overall performance of the ‘scheduling
strategy. Moreover, since packet loss is a relatively rare
occurrence, acknowledgements are unnecessary.

The search routine used to find the minimally loaded
host can be implemented on single broadcast networks
connecting independent workstations or a file server and
a number of clients. It can also be run in a hierarchical
manner, for example, on a system having a number of
the above mentioned networks plus a backbone net
connecting the file servers. In this case, the search would
be run on each subnetwork independently. In addition,
there will be a global search among the file servers on

Computer Systems Science and Engineering

Socket locked up : restort daemon

searchd
shell script

broadcast
receive (if within
packet search
window)

Periodic alarm expired : start new search
Figure 6. Simplified state diagram of the searchd daemon

the main net; however, this search would use the values
found by all the local searches. The remote execution
handler could then either use the local result, if the scope
of the job migration should be limited to the local
network, or the giobal result, if load balancing among
the networks is allowed.

Search shell script

The search shell script is used to start the search process.
It has two purposes. First, it clears the status file
containing a trace of all packets sent or received, and the
resulting actions taken. Subsequently, the searchd process
is initiated, which handles all the necessary interactions
required for the search process. This includes sending,
receiving and processing the load information.

Unfortunately, experiments have shown that the
broadcast sockets used for the Internet communication
between the hosts participating in the search can lock
up. It was found out that this error occurs primarily on
heavily loaded networks with heterogeneous machines.
A locked-up socket will prevent the corresponding
machine from receiving packets, thereby severely disturb-
ing the search process.

Searchd uses an interrupt timer to deter such a
condition. If it expires a certain consecutive number of
times, the daemon has to be restarted in order to clear
the socket. This restart cannot be done using a fork or
execute system call, since interrupt processing, which is
vital to the correct function of searchd would be blocked.
Therefore, the process will exit with an error code and
the restart is done at the shell level.

The gsearch shell script functions in the same manner
as the search script described above, except that it invokes
the global search daemon gsearchd. The shell scripts run
in suid mode and are owned by root to allow modification
of system files.

Operation of the searchd daemon

A simplified state diagram of the searchd daemon is
shown in Figure 6. When started, the daemon initializes

Vol 4 No 4 October 1989

Jistributed processing

a broadcast socket using initsocket. This procedure
creates a broadcast datagram socket for the requested
service, standard or global search. Then, it sets the
appropriate socket options and constructs an Internet
address for the network to be used. It returns a pointer
to the newly created socket, which is used by the following
communication routines.

Next, the alarm timer is initialized to a predefined
interval and the start_search procedure is called. This
procedure will also be called every time the alarm time
expires. The following loop is executed for a given amount
of time or forever. Inside the loop, receive_packet is called,
followed by update search. Finally, the alarm time is
restarted.

The start search routine counts the number of
consecutive iterations in which no packets have been
received. If a certain predefined threshold value is
exceeded, it can be concluded that the receiving socket
has locked up. In that case, the program exits with an
error code, thus enabling the search shell script to restart
the daemon. Otherwise, the local load data is collected
and a datagram packet assembled. In case the local load
is within the search window, and no other packet has
been received in the meantime, a broadcast of the packet
is initiated. Finally, the alarm timer is restarted.

The broadcast procedure initiates the broadcast of a
search packet on the network. Its counterpart is the
routine receive_packet, which listens on the network until
it gets a valid packet. In that case, the alarm timer is
temporarily disabled to allow undisturbed processing.
Next, the received packet is timestamped and the address
of the sending host is returned. The alarm timer is used
to interrupt the receive packet procedure by the searchd
program, if no packet has been received during the given
time interval.

If a valid packet has been received, update_search is
called. This procedure compares the jteration number of
the new packet with the current one. If the new number
is smaller, the packet is from a previous iteration and
was not delivered in time. In that case, it is ignored.
Otherwise, the current search number is updated. This
also has the effect of automatically synchronizing
daemons which have been restarted to the current
iteration number. The new packet is subsequently used
to update the current load status.

Remote execution

In the general case, result return and job migration
require that input file (and executable files if necessary)
be sent over the network from the source processor to
the destination processor, and that output files be sent
back. In an NFS environment, it is not necessary to
explicitly send files from the source to the destination
because all processors and clients have access to the same
secondary storage. Job migration simply requires sending
the command from the source to the destination, and
returning results and error messages.

The job migration decision is made as follows. First

223

dstributed procassing

the current load of the processor is compared to the

threshold which would be used for a maximum search.
If the load is above that value, the global minimum
location and its timestamp are read from a local file. If
the timestamp indicates the minimum is current, the job
is executed on the processor with the minimum load using
a remote shell. This causes any error messages associated
with the remote execution to be sent back directly. The
remote shell uses a reliable communication mechanism
(TCP/IP protocol), so execution of the job is guaranteed.
The remote execution handler, x, uses the information
generated by the search process and the current load on
the host it is running on to decide if the job given in the
command line argument is to be executed remotely or
locally. The minimally loaded machine on the network
is determined from the information in the lbstat file. In
case of a hierarchical search, the glbstat file can be used.
The local load is obtained from the kernel.

Load balancing is only initiated if the current local
load is larger than a certain local minimum and the
current minimal load on the network. It is initiated by
obtaining the current working directory and using the
rsh system command to establish communication with
the remote host. First, the working directory on that host
is set to the working directory of the local host. Then,
the command is executed. The input, output, and error
message channels are linked to the remote host such that
job execution appears transparent to the user.

A sample x command looks like this:

x ditroff -me -Tps filename >~ /printfile

o]
It should be noted that the only difference to the usual
command invocation is the leading x which indicates
load-balanced execution. Even shell metacharacters such
as {"* >} and the like arc allowed. The above
command translates into the following line:

rsh mintoadhost ' cd workdir; ditroff -me -Tps filename >
homedir/printfile *

The above line will perform the transparent remote
execution. It was deliberately decided to use the remote-
shell facility instead of a remote procedure call initiating
a job via the system or popen commands. The reason is
that the rsh call allows shell metacharacters, multiple
command execution, and provides linked input, output
and error channels. Therefore, command execution is
transparent to the user. This is achieved at a slight
performance expense due to a somewhat longer startup
time. However, since jobs to be load-balanced are usually
long, this extra time should be negligible in most cases.
The above described mode of execution depends on
the existence of NFS or a similar remote file sharing
facility. The program was conceptually designed for a
system mainly consisting of discless workstations and file
servers. In such an environment, a network file system
is usually a part of the operating system and transparent
to user applications. However, if the remote execution
facility is to be used in an environment where NFS is
not used, explicit copying of files has to be done. This
generates a much larger overhead and network traffic
and should be avoided when possible. For such applica-

224

tions, a software module can be provided which simulates
an NFS environment.

Operating/file system modifications

The following updates were made to the services database
in the Yellow Pages.

720/udp
721 /udp

experimental
experimental

search-service
global search

search
gsearch

The re.ocal script was updated to include the following
lines which start the search daemons at boot time.
If [-f /ust/local/search -a -f Jusr/local/searchd 1; then
Jusr/local/search & (echo -n’ search’)
> /dev/console
fi
if [-f /usr/locai/gsearch -a -f /usr/local/gsearchd J; then
Jusr/local/gsearch & (echo -n* gsearch’)
> /dev/console
fi

The search dacmons create several files in the /usr/spool/
rwho directory. This directory was chosen since it is
private to each host and its usage does not interfere with
normal system operation. Its usage eliminates further
system modification since no special directory has to be
created on each host’s partition. The files created are
listed in the following.

Just/spool/rwho/Ibstat
Jusr/spool/rwho/glbstat

(load information for search)
(load information, global)

PERFORMANCE OF GAMMON

As mentioned before, the implemented version of the
window-broadcast search strategy uses only one fixed
window. Table 1 shows the simulation results of such a
truncated search. This table shows that, under this
condition, the absolute minimum is located 70-78% of
the time, and there are 18.6-23.1% of the unresolved
cases in which all search parameters are in the interval
{(wy, U] and no workload information is broadcast.
Unresolved searches are not critical here because they
reflect a condition in which no processors are lightly
loaded enough to accept additional jobs. For cases that
are resolved, those that do not find the absolute minimum
only have a one to two percent difference from the
absolute minimum. Since workload information is heur-
istic in nature, small errors in identifying processors for
load balancing are not critical. An important tradeoff
achieved is that reasonable results are obtained at
substantially lower overhead.

The overall performance of the search algorithm was
tested on two differently configured systems: one with
one server (Aquinas) and two clients, and another with
one server (Dwarfs) and ten clients. On Aquinas, a
complete search was resolved in 50-80 ms, and on
Dwarfs, it was resolved in 150-180 ms. The performance
on Dwarfs can be considered the worst case since the
number of clients and the physical net length approach
the allowable limits. The results for both Aquinas and

Computer Systems Science and Engineering

distributed proesssing

Table 1. Results of simulation for the truncated search

Number of % of searches % resolved searches Average rank % difference of
processors unresolved finding minimum of result result from minimum
3 20.0 78.00 0.194 2.790
4 18.6 76.04 0.224 2.192
5 20.1 73.97 0.268 2.086
6 21.8 73.66 0.252 1.665
7 214 72.26 0.279 1.506
8 20.5 70.57 0.292 1.495
9 231 72.82 0.256 1.151
10 218 74.04 0.256 0.959

Table 2. Comparison of cumulative overhead for status
diseribution in one hour

Table 3. Performance of the global scheduling strategy

Job time Job time
Cumulative Cumulative w/out with
system time user time Total number global global Yo
Deamon (seconds) (seconds) of broadcasts Name scheduling scheduling difference
search 0.1094 0.0137 65 Aquinas
broadcast 0.2593 0.0316 181 (Sun 3/260 server)18 963 18540 2.23
rwho 0.2633 0.0613 181 Calvin
(Sun 3/50 client) 12143 10430 14.10
Hobbes
Dwarfs were consistent with the simulation results in (Sun 3/50 client) 7319 5912 19.22
which the absolute minimum was located 70% of the Totals 38425 34882 9.2

time for all resolved searches.

Another obvious technique for distributing status
information would be to broadcast it periodically, as is
done with the rwhod daemon in Unix. To determine the
savings of using the proposed method as opposed to
using the technique of the rwhod daemon, the resource
utilization of both was measured for the period of one
hour. The overhead is summarized in Table 2. For
comparison, a daemon that only broadcasts the load
average value is studied (as opposed to the rwho daemon
which broadcasts other information as well). Recall that
the daemons perform a search every minute. When a
search using GAMMON is performed, it is possible for
daemons at two computers to start a broadcast simul-
taneously; hence the total number of broadcasts is slightly
above 60 (first value in the last column of Table 2). When
the broadcast of rwhod daemons are used, each computer
initiates a broadcast every minute independent of other
computers. These results indicate that both rwhod and
the simple broadcast daemon introduce considerably
more communication overhead than the search daemon
we proposed.

To compare the overall improvement in performance
due to the GAMMON load-balancing strategy as
compared to that without load balancing, the server
Aquinas with its two clients, Calvin and Hobbes were
used. First, workload was generated by processes that
either initiated a CPU-bound job or slept for the amount
of time the job consumed during its last execution with

Vol 4 No 4 October 1989

equal probability. As these processes were executed, the
load and the amount of time consumed by executing
processes was tabulated. Also, a history of the initiation
of jobs was created. During the second portion of the
test, the global scheduling strategy was enabled, and the
jobs were initiated according to the history. Again the
load was monitored, and the execution time tabulated.

The results as summarized in Table 3 show a small
improvement for the server, and a much larger improve-
ment for the clients. This is expected as the server is
about 2.7 times faster than the clients, and has direct
access to the secondary storage through the VME bus
rather than via Ethernet. As a result, the clients will
benefit more by sending jobs to the server.

CONCLUSIONS

This paper has presented an efficient technique for a
distributed extremum search and a load-balancing proto-
col using this technique. The search technique can be
implemented on existing CSMA/CD networks at the
applications level. This is important because it is typically
not possible to make hardware modifications to existing
networks. The maximum or the minimum of a set of
numbers can be identified in a small bounded number of

225

Hstributed precassing

broadcasts on the average. Since the search technique has
a constant average behaviour, the GAMMON strategy
using this efficient search technique is feasible. Perform-
ance of GAMMON was found to be favourable at
low-to-moderate traffic intensities, and load-balancing
intervals (the total time to perform max/min identifica-
tion, job migration, and result transfer) that are small
relative to the average service time.

Implementing GAMMON on a network of Sun
workstations reveals a number of disparities between the
assumptions made in the theoretical model and the
physical limitations of distributed computing systems. By
relaxing a number of assumptions without degrading
the performance, a load-balancing system has been
developed that is comparable in performance to the
theoretical model and allows improvements in overall as
well as in individual processor performance.

ACKNOWLEDGEMENT

This research was supported in part by the National
Aeronautics and Space Administration Contract NCC2-
4881 and the National Science Foundation Grants MIP
85-19649 and MIP 89-10584.

REFERENCES

1 Baumgartner, K M and Wah, B W ‘Load balancing
protocols on a local computer system with a multi-
access bus’ Proc. Int. Conf. Parallel Processing
Pennsylvania State University, USA (August 1987)
pp 851-858

2 Baumgartner, K M Resource allocation on distributed
computer systems PhD Thesis, School of Electrical
Fngineering, Purdue University, USA (May 1988)

3 Chou, T C K and Abraham, J A ‘Load balancing in
distributed systems IEEE Trans. Softw. Eng. Vol 8,
(July 1982) pp 401412

4 Chow, Y C and Kohler, W ‘Models for dynamic load
balancing in a heterogeneous multiple processor
system’ IEEE Trans. Computers Vol 28, (May 1979)
pp 334-361

5 Chu, W W, Holloway, L J, Lan, M T and Efe, N K
“Task allocation in distributed data processing’ IEEE
Comput. (November 1980) pp 57-68

6 Eager, D L, Lazowska, E D and Zahorjan, J
‘Adaptive load sharing in homogeneous distributed
systems’ IEEE Trans. Sofiw. Eng. Vol 15, (May 1986)
pp 662-675

7 Hwang, K, Croft, W J, Goble, G H, Wah, B W,
Briggs, F A, Simmons, W R and Coates, C L ‘A

226

10

11

12

13

14

15

16

17

18

19

20

21

UNIX-based local computer network with load
balancing’ IEEE Computer Vol 15 No 4, (April 1982)
pp 55-66

Juang, J Y and Wah, B W ‘Optimal scheduling
algorithms for multistage resource sharing intercon-
nection networks’ Proc. Comput. Softw. Appl. Conf.
IEEE, UK (November 1984) pp 217-225

Juang, J Y and Wah, B W ‘Unified window protocols
for contention resolution in local multiaccess net-
works’ Proc. INFOCOM 1EEE, UK (April 1984) pp
97104 :

Juang, J Y and Wah, B W ‘Global state identification
for load balancing in a computer system with
multiple contention buses’ Proc. Comput. Softw.
Appl. Conf. IEEE, UK (October 1986) pp 36-42

Kratzer, A and Hammerstrom, D ‘A study of load
leveling’ Proc. COMPCON IEEE, UK (Fall 1980)
pp 647-654

Law, A M and Kelton, D W Simulation modeling and
analysis McGraw-Hill, New York, NY, USA (1982)

Livny, M and Melman, M ‘Load balancing in
homogeneous broadcast distributed systems’ Proc.
Modeling and Performance Evaluation of Computer
Systems ACM SIGMETRICS, USA (1982) pp 47-55

Metcalfe, R and Boggs, D ‘Ethernet: distributed
packet switching for local computer networks’
Commun. ACM Vol 19 No 7 (1976) pp 395-404

Ni, L M and Hwang, K ‘Optimal load balancing
strategies for a multiple processor system’ Proc. 10th
Int. Conf. Parallel Processing 1IEEE, UK (August
1981) pp 352-357

Tanenbaum, A S Computer networks Prentice Hall,
UK (1981)

Trivedi, K S Probability and statistics with reliability,
queuing, and computer science applications Prentice-
Hall Inc., Englewood Cliffs, NJ, USA (1982)

Wah, B W and Juang, J Y ‘An efficient protocol for
load balancing on CSMA/CD networks’ Proc. 8th
Conf. Local Computer Networks IEEE, UK (October
1983) pp 55-61

Wah, B W and Juang, J Y ‘Resource scheduling for
local computer systems with a multiaccess network’
IEEE Trans. Computers Vol 34 No 12 (December
1985) pp 1144-1157

Wah, B W and Juang, J Y An efficient contention
resolution protocol for local multiaccess networks
Patent Number 4630264, Filed: September 21, 1984,
Granted: (December 16 1986)

Wang, Y T and Morris, J T ‘Load sharing in
distributed systems’ Trans. Computers Vol 34 IEEE,
UK (March 1985) pp 204-217

Computer Systems Science and Engineering

