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ABSTRACT 

Efficient scheduling techniques of computing resources are essential for achieving sat­
isfactory performance for users as C•)mputer systems and their applications become more 
complex. ln this paper, we survey research on scheduling algorithms, review previous clas­
sifications of scheduling problems, and present a broader classification scheme. Using a 
uniform terminology for scheduling strategies and the new classification scheme, previous 
work on scheduling strategies is reviewed and trends in scheduling research are identified. 
Finally, a methodology for developing scheduling strategies is presented. 

I. INTRODUCTION 

Early computer systems were centralized due to the cost of replicating 
hardware and additional staffing. As hardware costs dropped, it became pos­
sible for smaller organizations to own computer systems. Consequently, sev­
eral computer installations could be present on a college or industrial campus, 
and local area networks (LANs) evolved to allow communication among the 
computer installations. The resulting collection of resources and the com­
munications medium arc distributed computer systems (DCS's). This trend 
is even more prevalent now as networks of personal computers and work­
stations such as Sun, Apollo, and Micro VAX are common in the work place. 
The difference between workstations and personal computers is the order of 
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development of communication facilities. Personal computers were designed 
as independent computers, and later networking capability was added (this 
is similar to communication among mainframe computers). The communi­
cation among workstations was developed simultaneously with the computing 
power, allowing communication services to be more easily integrated. Now 
computing power is literally distributed from desktop to desktop. 

There are three distinguishing characteristics of local area networks: they 
are comprised of autonomous systems so that control is not limited to one 
location; there is a physical distribution of resources (typically on the order 
of one kilometer); and the speed of communications ranges from approxi­
mately one to 20 megabits per second. Enslow [18] more formally specifies 
five requirements for a DCS: a multiplicity of general purpose resources (phys­
ical and logical), a physical distribution of these resources, a high-level op­
erating system to integrate control, system transparency so that services may 
be requested by name, and operation of the resources characterized by co­
operative autonomy. 

The networks which connect computers and workstations allow commu­
nication, but they also have capability to allow efficient sharing of resources. 
Since the demands for computing power are continually increasing, the net­
work can be used for scheduling tasks during time when it is otherwise idle. 
DCS's can provide a cost-effective means to increase the computing power 
available to a single computer user if jobs can be scheduled to exploit potential 
parallelism. Livney and Melman [33] have shown that in a system of n in­
dependent processors modeled as M/M/1 systems [29], the condition where 
a job is waiting for service at one processor while another processor is idle 
occurs 70% of the time for traffic intensities (the ratio of the arrival rate to 
the service rate) ranging from 0.5 to 0.8. This idle-while-waiting condition 
indicates the possibility of reducing the average job delay. With a global sched­
uling strategy for a DCS, the occurrence of the idle-while-waiting condition 
can be reduced and consequently the overall performance of the DCS can be 
improved. 

1.1. DEFINITION OF THE SCHEDULING PROBLEM 

The scheduling problem is shown in Figure I. It is a mapping of a set of 
jobs or tasks to a set of processors (or machines). The job characteristics 
(processing time and precedence constraints), machine environment (number 
of processors, interconnection, power of processors), and performance ob­
jectives are the input to the scheduler, and the mapping, or schedule, is the 
output. There are five components of the problem: the events, the environ­
ment, the requirements, the scheduler, and the schedule. The scheduler al­
locates resources to events. 
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SCHEDULE 

ENVIRONMENT 

Fig. I. The scheduling problem 

Events are the smallest indivisible schedulable entity. The environment 
refers to all characteristics and capabilities of the surroundings that will impact 
the schedule such as physical capabilities of the processors and the com­
munication mechanism. Requirements are also input to the scheduler and may 
range from a real lime deadline to the requirement of determining if an im~ 
provement in performance is possible. The scheduler takes the events, en­
vironment, and requirements as input, and produces a schedule. In the pre­
cisely specified case, the schedule will be a set of ordered pairs of events and 
times. Frequently it is not possible to precisely state a schedule, in which 
case the schedule is specified by a set of rules. These rules will specify dy­
namic correcting actions when the distribution of events in the environment 
is such that the correcting action will result in an improvement in some system 
performance parameter. 

In order to fully investigate the problem of scheduling, it is beneficial to 
consider a larger perspective as shown in 'Figure 2. The starting point is a 
problem. The problem can be deterministic, non-deterministic, or undecid­
able. A deterministic problem is clearly defined and tractable in terms of both 
time and space. Traditionally, deterministic scheduling problems refer to 
those scheduling problems that have all information required for generating 
a schedule specified a priori. This excludes any data dependent tasks (i.e., 
decision points). An example would be matrix multiplication. A non-deter­
ministic problem may be clearly defined but too complex to find an exact 
solution with finite resources, or it may be clearly defined but require too 
much space to find an exact solution with finite resources, or it may require 
too much time and space. Alternatively, a non-deterministic problem has in· 

LANGUAGE 

Fig. 2. Mapping From problem to machine representation 
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puts which are not exactly specified. For example, a scheduling problem with 
resource requirements specified as distributions is a deterministic scheduling 
problem. There is no algorithm to solve an undecidable problem even with 
infinite processing and storage resources. An undecidable problem cannot be 
solved directly, nor can it be represented directly as a deterministic problem. 
Only a deterministic problem can be solved, so the non-deterministic problem 
is solved using a deterministic algorithm that approximates using heuristics. 
The algorithm is the specified in a language which is in turn given a machine 
representation. 

During the I 960s and early 1970s, a great deal of attention was focused on 
scheduling problems that emerged in a manufacturing environment [13]. These 
problems were predominantly deterministic as the arrival time of jobs re­
quiring service and the duration of service were exactly known. Scheduling 
problems that emerge in computer systems are non-deterministic because 
exact information about resource requirements is rarely available. Determin­
istic and non-deterministic scheduling problems are discussed further in Sec­
tion 2. 

Scheduling resources on distributed systems has two aspects; intracom­
puter scheduling and intercomputer scheduling. Intracomputer scheduling 
concerns scheduling within a computer (local scheduling) while intercomputer 
concerns scheduling tasks among computers (global scheduling). Intracom­
puter scheduling occurs at many levels within the processor such as through 
the memory hierarchy, at the device and function~! unit level, and also sched­
uling processes. When a computer is composed of multiple processors, sched­
uling among them is another level. Intercomputer scheduling is a level above 
processor scheduling, and involves communication among independent com­
puters. The levels of scheduling are shown in Figure 3. At each level, sched­
uling is a mapping of events to the environment. 

1.2. ORGANIZATION 

This paper is organized as follows. In Section 2 previous classifications of 
scheduling problems are reviewed. These previous classifications are for de­
terministic scheduling problems, which are problems with all resource re­
quirements specified exactly. A new classification of scheduling problems 
which incorporates both deterministic and stochastic scheduling problems is 
presented in Section 3. Using the new classification, trends in research on 
scheduling problems are investigated. Terminology for scheduling strategies 
is also introduced in that section. Section 4 reviews previous work on sched­
uling. A methodology for developing scheduling strategies is discussed in Sec­
tion 5, and Section 6 contains concluding remarks. 
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Fig. 3. The levels of scheduling 

2. PREVIOUS CLASSIFICATIONS OF SCHEDULING PROBLEMS 

Before discussing classifications of scheduling problems, it is useful to state 
the reasons why a classification is needed, and to identify the d~sirable char­
acteristics of a classification. The goal of developing a classificat!O~ IS to 
increase and organize overall knowledge about a class of problems. Thts goal 
is realized through two steps: specification of a problem and showmg rela­
tionship among problems. A classification implies developing~ taxono~y, 
which addresses both the above steps, since a taxonomy tmpltes a specifi­
cation by categorization. Categorization in turn shows relationships since 
problems with attributes in the same category will be related. Thus the tax-
onomy helps organize knowledge about a class of problems. . . 

There are at least four attributes of a classification that are destrable. Ftrst 
is to identify the significant characteristics of the problem since th~se will 
contribute to an efficient solution. Next is to clearly show the relatwnshtp 
among problems. This is beneficial because the solution to one ~roblem may 
indicate the solution to a closely related problem. Conversely If a problem 
has no solution, that may indicate a related problem also has no solutwn. 
Expandability and contractability of a classification are useful bec~use they 
allow important features of the problem to be focused on and ummportant 
details of the problem can be eliminated to reduce the complexity of the prob­
lem representation. Finally, it is desirable for the classification to separate 
the problem specification from the solution. The separation allows a clearer 
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comparison of scheduling strategies for a given problem, and avoids confusing 
a strategy and a problem. 

Three classifications of scheduling problems are discussed in this section. 
First is Conway et al.'s classification [13], a four-parameter scheme where 
the categories are A: the job arrival process which for static arrivals indicates 
the number, and for dynamic arrivals indicates the probability distribution of 
the time between arrivals; B: the number of machines in the shop; C: the flow 
pattern in the shop; and D: objective function. This classification has two of 
the desirable characterics stated earlier: it identifies significant problem fea­
tures and separates the problem from the solution, but lacks expandability 
and contractability. Much of the problem is unspecified, such as whether the 
machines are homogeneous or heterogeneous, if pre-emption is allowed, and 
details about the kinds of tasks to be scheduled. There is no capacity for 
specifying stochastic problems with this classification. 

Graham et a) [23] classified deterministic problems with requirements of 
optimal solutions. The classification uses three sets of attributes: job char­
acteristics (a), machine environment ({3), and objective function (y). These 
sets of attributes are subdivided into numerous components. In effect, Graham 
and Lawler's classification combined Conway et al. 's [13] Band C categories 
into one field specifying the machine environment, and provided a more de· 
tailed specification for the job specification and machine environment. The 
a/{3/y classification allows precise specification of problems. In fact, by enum­
erating the possible values of the categories, a finite set of problems can be 
named. Identification of significant features, grouping sets of related char­
acteristics and separating the problem from the solution are also advantages 
of this classification. This classification is especially good at showing the 
relationship among problems using reducibility. As an example, the reduci­
bility for task structure js shown in the attribute task precedence. Scheduling 
tasks governed by general precedence constraints is more difficult than sched­

uling tasks governed by tree-like precedence which in turn is more difficult 
than scheduling independent tasks. Solution to a more difficult problem im­
plies the solution of the easier problem. Unfortunately, this classification does 
not include representations for stochastic scheduling problems or represen­
tations for problems with non-optimal objective function requirements. Since 
each attribute has values that are explicitly specified, a uniform representation 
of stochastic problems using this representation would require a large ex­
pansion of the representation. The set of stochastic problems is extremely 
large, and an expanded version of the a/{3/y representation would be unwieldy. 

Gonzalez [21] uses nine classification categores: the number of processors, 
task duration (either equal or unequal), precedence graph structure, task in­
terruptibility, processor idleness (whether this is allowed or not), job peri­
odicity, presence or absence of deadlines, resource limited schedules, and 
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homogeneous versus heterogeneous processors. While this classification iden­
tifies nine key features, there is no grouping of related charactenst1~s, no 
relationship among problems shown, and the class1ficat10n 1s not easily ex­
pandable. Also, this classification is not designed for problem speclficatton. 

A NEW CLASSIFICATION FOR SCHEDULING PROBLEMS 3. 

In this section, a new classification of scheduling problems is presented. 
Additionally, terminology for describing scheduling strateg1es ts also de· 

scribed. 

3.1. 7HE ESR CLASSIFICATION SCHEME 

In the process of developing a new classification, it was beneficial to use 
some of the methods of the previous classifications, specifically the groupmg 
techniques. Consequently, the classification uses three groups co_rrespondtn~ 
to the input components of tho scheduling problem noted mSectton I. The>o 
three categories (the events, the environment (or surroundmgs), and the re­
quirements) comprise the new ESR classification scheme. These correspond 
in part to the categories of the a/(31-y classification. There IS some rearrange­
ment, and this classification is not as explicit. The categones and the attnbutes 

of the ESR classification are summarized in Table 1. . 
The first category, E, is the event. The three attributes of events considered 

are their relationship with other events, arrival patterns, and the available 
information about the resource requirements of each event. Events may be 
independent, in which case the execution time is not constrained by other 

t Conversely events may have precedence constr~lints, where :.m event even s. , . 
must be executed before its successors. Another relationship among events 
is communication, where two events exchange information during or b~tw~en 
their execution. This relationship is especially important when comrnuntcatton 

costs are considered. . . 
Availability indicates whether events, or jobs. all arnvc SJmult;.mcm~sly 

prior to execution, whether they arrive pcrimlically, or w~1cthcr .thc1r anwal 

is governed by a stochastic distribution. The first case ~~ .~f smmlta~eous 
arrival is also called static arrivals. Periodic arrivals are s1m1'".rto static ar­
rivals in the sense that they can be considered to be a repet1t1on of stat1c 
arrivals if arrivals are sufficiently far apart to allow execution of th~ prev1ous 
set of jobs to complete before the next set arrives. StochastiC amvals have 
interarrival times that are governed by a probability distribution. 
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Category 

Event 

Environment 

Requirements 
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TABLE I. 

The ESR Classification 

Attribute 

Relation to other events 

Availability (arrivals) 

Resource Requirements 

Number. 
Classes of Resources 

Physical Characteristics 

Paths Connecting Resources 
Communication Overhead 

Values 

independent 
precedence 
communication 
static 
periodic 
stochastic 
deterministric resource 

requirements 
stochastic resource requirements 
I, k, n 
homogenous resources (I class) 
heterogeneous resources (>I class) 
speed 
size of main memory 
special capabilities, etc. 
toplogy 
none 
deterministic 
stochastic 

Communication Mechanism flow 

Performance 

broadcast 
message passing 
other 
any solution 
deadlines (real time) 
good (improved) solution 
optimal solution 

The final attribute of events is the resource requirements, which may be 
completely specified as constants and so be deterministic, or may be governed 
by a probability distribution. Clearly these three attributes are important in 
the scheduling process. The available information about resource require­
ments is especially important, however frequently in multiprocessor systems 
there is limited information available. 

The second category, S, is the environment or surroundings. Any envi­
ronmental characteristics that will impact a schedule, such as the number of 
resources, the number of classes of resources, the physical characteristics of 
each class, the topology of the communications medium, the communication 
delay, and the communication mechanism, are included in this category. The 
number of resources can be one, implying scheduling on one machine, a spe-
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cific number such as two or three (specified ask), or an arbitrary number, 
n. The resources may be homogeneous (all are identical) or homogeneous (all 
are unique or multiple classes of processors). The physical characteristics of 
these classes can also be indicated if they are significant. Interconnection 
among resources is called the path among them. There are infinite possibilities 
for this category including bus, ring, multistage networks, and arbitrary point­
to-point connections. Communication overhead may be zero, in which case 
events now among resources at nO cost, or may have a constant (deterministic) 
or varying (stochastic) cost. Last, the communication mechanism may be a 
flow of events, broadcast of information, message passing, or take some other 
form. The scheduler uses information about the surroundings to make pre­
dictions about the relative costs of different schedules. 

The final category is the requirements, R, of the schedule. In the simplest 
case, the requirements are for any solution or schedule. Other cases include 
decreasing response time (or another performance metric) resulting from a 
previous schedule, meeting a fixed deadline, finding the schedule that uses 
the minimum number of processors, and so on. 

A key point about this classification is that it is high level, meaning that 
attributes and their values can be specified in general terms or in more detail. 
When a scheduling problem is specified using this classification, the values 
of the attributes are expanded if they reflect a characteristic that will be used 
in creating the schedule. Unlike the deterministic scheduling problems con­
sidered with the a/(:Jiy classification, stochastic scheduling problems are not 
enumerable; it is impossible to Jist every problem. With this classification. it 
is possible to specifically note those values the scheduler uses and leave Jess 
important parameters expressed in more general terms. Problem specification 
is indicated by the three categories using the following notation: 

E:{•} - S:{•} - R:{•} 

The sets correspond with each category, and include as much detail as is 
desired. lfthe sets are empty, itis presumed that there is no useful information 
available about that category. For example, deterministic problems can be 
specified as 

E: 

arbitrary acyclic 
event precedence 

static orveriodic 
arrivals 

deterministic 
resource 

requirements 

- S: 

n processors 

heterogeneous 
resources 

deterministic 
communication 

overhead 

{

optimize some} 
- R: performance . 

parameter 
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Stochastic scheduling problems, in contrast, can be specified as 

arbitrary acyclic 
event precedence 

E: stochastic arrivals - S: 

stochastic resource 
requirements 

3.2. SCHEDULING TERMINOLOGY 

n processors 

heterogeneous 
resources 

stochastic 
communication 

overhead 

_ R· { reduce } 
· response time · 

There is a considerable conflict in the literature regarding terminology used 
to describe attributes of scheduling strategies. This section discusses termi­
nology for classifying scheduling strategies. First, some previous classifica­
tions of scheduling strategies are reviewed. Using the results of these studies, 
terminology used in this paper is described. 

Wang and Morris developed a classification of scheduling algorithms [54]. 
The criteria for classification is whether the strategy is source-initiated or 
sink-initiated meaning whether overloaded resources look to alleviate their 
load, or lightly loaded resources actively pursue more work. Additionally, 
the level of information dependency is a factor. Information dependency refers 
to the level at which a resource has information about the current state (work­
load) of other resources. 

The terminology used in global scheduling (or load balancing) [5, 12, 15, 
19, 38, 52] is varied and conflicting. Some features commonly discussed (using 
different names) are whether the scheduling intelligence is centralized or dis­
tributed, whether the rule basis is static, meaning independent of the current 
state of the system, or dynamic, meaning decisions are state-dependent. This 
characteristic is also referred to as being deterministic versus probabilistic, 
or adaptive versus non-adaptive (adaptability also refers to a different at­
tribute discussed below). These features are useful for comparing scheduling 
strategies. The comparison has indicated that these characteristics are related 
to the potential of an algorithm, as will be discussed in Section 4. 

The informal classification used for load balancing problems above was 
formalized by Casevant and Kuhl in an attempt to unify the diverse notation 
used [9]. Their classification was designed for distributed computing systems 
and consists of two parts: a hierarchical classification and a flat classification. 
The hierarchical classification is used to show where some characteristics are 
exclusive. The flat classification gives definitions of attributes that are not 
exclusive. Several observations about this taxonomy are: 
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(a) Adaptability refers to long-term algorithm state-dependency rather than 
short-term state dependency for rule basis. Adaptability is available w1th both 
a static and dynamic rule basis since the algorithm can be static (or dynamic) 
for one time interval, and then change for the next time interval. . . 

(b) Load balancing and optimality are considered strategy charactcnst1cs 
rather than problem requirements (elements of the set R). 

(c) One time reassignment and dynamic reassignment (whic~ correspond 
to pre-emption in the one processor case) arc considered strategy character­
istics rather than environment capabilities (elements of the set S). 

(d) Bidding in the flat portion of the classification and cooperation in the 
hierarchical portion of the classification are not distinct. 

The terminology summarized in Table 2 is not exclusively adopted from 
any of these sources for the following reasons. Wan~ a?~ ~orris' cl~ssi~catl~m 
[54] focuses on only two aspects of the strategy (nntmtJOn loc<lt!On ,1~1d m­
formation dependency), so it not extensive enough. Casevant and Kuh~ s tax­
onomy is not used exclusively because there is overlap bet":een their clas­
sification of solutions and the classification of problems descnbed m Sectwn 

2.3 [9]. . d . 
The first characteristic specified is the level of scheduling as descnbe m 

Section 1. The rule basis is included next and may be static or dyna':'ic. Note 
this is different than the static versus dynamic sets used to descnbe event 
arrivals. Next is the location of control. If control has a degree of distribution, 
the controlling processors can negotiate to make scheduling decisions, orfu.nc­
tion independently. Initiation and adaptability are the two tina I ~haractensttcs. 
The tradeoffs of these different characteristics are discussed m the next sec-

tion. 
The relationship among the six characteristics is shown in Figure 4. Each 

path through the relationship graph indicates a set of attributes a schedule 
may have. Some paths and the corresponding combination of sets. of attnlmtcs 
are not possible. For example it is not possible to have a cent~ahzed st~ategy 
with cooperation. Centralized implies one decision point. StatiC strateg~es are 
considered centralized since although each participating strategy may make 
different decisions, the choice was determined a priori by one scheduling 
intelligence. In Section 4 this terminology is used to discuss the results ob­

tained in previous work on scheduling problems. . . . 
Previous classifications of scheduling problems are limited to determm1st1c 

scheduling problems. The ESR classification includes both deterministic a~d 
stochastic problems, and specifies problems using three sets of characteriS­
tics, events, environment (or surroundings), and require.ments. The ESR 
scheme specifies problems in a flexible manner, so that attnbutes of the th:ee 
sets can be indicated with varying degrees of completeness allowmg attentiOn 
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Characteristic 

Level of Scheduling 

Rule Basis 

Location of Control 

Cooperation 

Initiation 

Adaptability 
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TABLE 2 
Revised Classification of Scheduling Strategies 

Terminology 

Values 

Intra-resource 
Inter-resource 

Static 
Dynamic 

Distributed 
Hierarchical 
Centralized 

Negotiated 
Independent 

Source 
Sink 
Both 
Adaptable 
Non-adaptable 

Explanation 

Refers to scheduling within a node or resource 
as opposed to among nodes or resources. 
There may be muhiplc sub-levels of intra­
resource scheduling. Also called global ver­
sus local. 

Refers to the flexibility of schedule rules to 
react to the current state of the system. A 
static schedule bases rules on unchanging 
system characteristics. A dynamic sched­
ule bases rules on the current state of the 
system. Also called state-dependency. 

Describes where the responsibility for sched­
uling decisions lies. This applies primarily 
to dynamic timing since static timing implies 
a centralized decision. Hybrids are also pos­
sible. 

Describes the interaction among locations of 
control (distributed or hierarchical only). 
This applies to distributed or hierarchical 
control since centralized does not have sep­
arate modules to cooperate. 

Which processor initiates job movement, the 
'overloaded processor (source initiated) or 
the underloaded processor (sink initiated). 

Refers to flexibility of the algorithm, and 
whether the algorithm changes execution 
based on the arrivals to the system. 

to be focused on important features of the problem, and less important details 
to be left in general terms. 

4. STATE OF THE ART IN SCHEDULING RESEARCH 

In this section, trends in scheduling problems that research is focused upon 
are identified. This information indicates the current importance of scheduling 
problems on DCS's. The trends also show the progression of understanding 
of scheduling problems. Table 3 chronologically lists studies on scheduling 
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!.<:vel of 
Scheduling 

Rule 
Basis 

Location 
of Control 

Cooperation 

intra-processor interprocessor 

>< 
static dynamic 

centralized hierarchical distributed 
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negotiated independent 

Initiation 

source sink both 
Apaptability 

adaptive non-adaptive 

Fig. 4. Relationship among strategy characteristics 

problems. Problems are uniformly specified in this table. Three categories 
indicating trends are communication overhead, resource requirements, arrival 
characteristics. Figure 5 shows a graphical representation of the trends. The 
progression is toward the general problem of scheduling tasks on distributed 
computing systems. This is not unexpected; the earlier work is on the more 
specific problems associated with deterministic scheduling, and later work 
focuses on the more general problems associated with stochastic scheduling 
problems. 

The ESR classification scheme can be used to specify a problem, and to 
make comparisons among similar problems. It becomes difficult to show re­
lationships among problems using all the attributes for a wide range of prob­
lems because it is possible for a given problem to be less general than another 
problem for one attribute, while being more general for another attribute. 
Because of this, the results of previous studies are shown by grouping prob­
lems by the characteristic that dominated the trends shown in the previous 
section (i.e., whether processing requirements are specified stochastically or 
deterministically). · 



TAHLE J 
Summary of Scheduling Pmblems Studied 

Event 

Resoure 
Relationship Availability Requirements Number 

References 
I p c Static Periodic Stach Determ Stach I k 

[CoM67[ X X X X X X X 

[GoR72] X X X X X X 

[RaC72] X X X X X X X X 

[Bak74] X X X X X X 

{Sto77] X X X X X X X 

[LiH77] X X X X X X X 

[GrL77] X X X X X X X 

[Gon77] X X X X X X 

[StB78] X X X X X X X 

[Sto78] X X X X X X X 

[Apl78] X X X X X 

[Gon79] I I X I I X I I I X X I I X X I X X I 

TABLE 3 

Summary of Scheduling Problems Studied (romimu?d) 

Event 

Resoure 

Relationship Availability Requirements Number 

References ! 
I p c Static Periodic Stoch Determ Stoch I k 

[ChK79] X X X X X 

[RaS79] X X X X X X X 

[OuS80] X X X X X X 

[Weg80[ X X X X X 

[EnHSO] X X X X X 

IChHSO] X X X X X X X 

[KrH80] X X X X X 

[JaK80] X X X X X 

[N;HBI] X 
X X X X 

[LoL81) X X X X X X 

[Efc82[ X X X X X X 

{WaH82] X X X X X 

[LiMR2) X X X X X 

Environment 

Resources 

n Homag Heter 

X X 

X X 

X X 

X X X 

X X X 

X X 

X X X 

X X X 

X X 

X X 

X 

X X I I X X 

Environment 

Resources 

n Homog Heter 

X X X 

X X 

X X 

X X 

X 

X X 

X X X 

X X 

X X X 

X X X 

X X 

X X 

X X 

Communication 
Overhead 

None Some 

X 

X 

X 

X 

X X 

X 

X 

X 

X X 

X X 

X 

I I X X 
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TABLE 3 

Summary of Scheduling Problems Studied (continued) 

Event 

Resoure 
Relationship AvailabilitY Requirements Number 

References 

I p c Static Periodic Stoch Determ Stoch I k 

[HwC82} X X X X X 

[ChA82[ X X X X 

[Mon82J X X X X X 

[Leu82} X X X X X 

[Ma182] X X X X 

[Bal831 X X X X 

[W;I83] X X X X X 

[Pin83] X X X X ' 
[WaP83] X X X X X 

[WaJ83] X X X X X 

[MeT84] X X X X X X X 

[KeL84] X X X X X 

[Ra$84] X X X X X X X 
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4.1. PROBLEMS WITH DETERMINISTIC RESOURCE REQUIREMENTS 

A great deal of research was done for scheduling tasks with exact a priori 
knowledge of execution requirements during the 1960s and 1970s. This work 
has been described in several books [7, 13, 14] and survey papers [21, 23]. 
The problems are represented as follows. 

n processors 
arbitrary acyclic 

precedence heterogeneous [ ~~- ) resources 
E: static arrival 

- S: 
open shop, - R: near -optimal 

deterministic flow shop paths 
resource approx1mate 

requirements communication 
by flow 

Note that this specification includes less general problems (i.e., events that 
are independent tasks). When specifying a set of problems with the ESR 
classification, a more general problem encompasses less general problems. 
This is a class of problems that frequently occurs in a manufacturing envi­
ronment and is scheduling at a inter-resource level. Scheduling strategies 
for this type of problem have been discussed extensively [7, 23]. Solutions 
are optimal, near optimal, or approximate. Schedules may be explicit time, 
event pairs or static rules such as schedule the shortest job first. Scheduling 
iptelligence in this case is centralized. 

As DCS's evolved, scheduling problems related to computing environment 
received more attention. The ESR specification of these problems is 

arbitrary acyclic n processors 
precedence 

[ ~···· ) heterogeneous 

E: static arrivals 
- S: resources 

R: near-optimal 

deterministic deterministic 
resource communication approximate 

requirements overhead 

Some early scheduling problems for the multiprocessor environment con­
sidered scheduling tasks with acyclic precedence requirements with no com­
munication among tasks [20, 43]. These studies assumed that a reasonable 
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estimate of resource requirements could be obtained with a preprocessing 
phase of a program. Results of these studies included a method for determining 
the minimum computation time, and a method to determine the minimum 
number of processors to, achieve the minimum computation time 14.'1. Also. 
a comparison of a centralized versus a decentralized algorithm indicated that 
the decentralized algorithm performed better. 

Scheduling tasks with intertask communication is a more difficult and a 
more realistic problem. Improving performance requires limiting excessive 
communication and evenly distributing the work load among processors. If 
all the tasks are scheduled on one processor, there is no communication cost, 
but there is no benefit from a multiplicity of processors. If the tasks are dis· 
tributed such that processor utilization is completely uniform, full advantage 
of the multiplicity of processors is realized; however. communications costs 
may be so large that the benetits of concurrent execution are eliminated caus­
ing processing to be more expensive than with one processor. Since the goals 
of limiting communication and balancing load are directly conflicting, ob­
taining maximum performance is a tradeoff. 

Several studies were performed by Stone et al. [44, 46, 48, 49] in which 
jobs were represented by graphs. The nodes represent tasks with cxccutiun 
requirements, the edges are labeled with communication costs. The repre­
sentation is actually serial since the program will be executing on only one 
node at a time. The communication is information that one module sends to 
its successor on completion. An assignment of tasks is specified by a cut that 
divideds the graph into as many sections as there are processors. The cost 
of the assignment is equal to the sum of the execution costs plus the sum of 
the communication costs between tasks that are not assigned to the same 
processor (i.e., the sum of the weights of the edges on the cut). Consequently, 
the minimum cost assignment corresponds to the minimum cutset. The time 
requirements of this method may allow it to be used dynamically for two or 
three processors, but not efficiently for larger numbers of processors. A sim­
ilar mapping problem for larger systems was explored by Bokhari [8] in which 
communicating modules are placed as much as possible on adjacent proces­
sors. Other approaches to this problem include graph matching [II, 44], 
mathematical programming [II, 56], a branch and bound algorithm [35]. and 
heuristics [2, II, 16, 30, 34]. An optimal solution for then processor case was 
found by Chou and Abraham [10]. 

The solutions to these problems are for static sets of jobs, and the sched­
uling strategies are static as well. Their execution time is too long for them 
to be effective for dynamically arriving tasks. Their utility is then for the 
planning phase of a system (prediction of minimum or maximum execution 
time), or for real-time systems where timing is critical. 
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Fig. 5. Trends in scheduling research 

EVENTS 

4.2. PROBLEMS WITH STOCHASTIC RESOURCE REQUIREMENTS 

The studies reviewed in the previous subsection used exact information 
about the execution and communication requirements of the jobs being sched­
uled. Frequently in scheduling problems on computer systems, this infor­
mation is not known and only probabilistic information may be available. 
Further, dynamically arriving sets of jobs are more common in computer 
systems than static sets of job~. This change in available information changes 
the methods and expectations of the scheduler. The problem is easier in some 
cases because with exact a priori information, there may be much information 
that it cannot be used efficiently [42]. The class of problems discussed in this 
section have an ESR representation as follows: 

E: 

independent tasks 

dynamic arrivals 

stochastic resource 
requirements 

- S: 

n processors 

homogeneous 
resources 

bus or 
point-to-point 

interconnection 

( 

evenly ) 
_ R: distributdoad 

ffitnlffilZC 

communication 

The following issues are important when developing strategies for dynamic 
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scheduling problems with stochastic resource requirements: balanced load 
versus minimized communication tradeoff, location of control, the status in­
formation used for the scheduling decisions. and the initiation point. The bal­
anced load versus communicntion tradeoff was discussed above. 

Location of control is also~ tradeoff. A centralized location of control may 
allow the scheduling strategy to be simpler. However, the decision point has 
the potential of becoming a bottleneck and a critical failure point. If a dis­
tributed decision is made, the overhead of distributing status information can 
be so high as to eliminate the benefits of scheduling. A comparison of cen­
tralized versus distributed strategies using a trace driven simulation was per­
formed by Zhou [58]. The results indicate that neither strategy is always su­
perior, and that the overhead for communicating information is important for 
both. The third consideration is what status information to use for scheduling 
decisions. Several studies on this topic have indicated that excessive status 
information is not only unnecessary, but can be detrimental [33, 50, 54]. 

Several static scheduling strategies have been proposed. Proportional 
branching is a static, sink-initiated strategy where jobs are routed to proces­
sors with a probability determined by the relative power of the processors 
[12]. Ni and Hwang found optimal static sink initiated strategies for single 
and multiple job classes again with centralized control [38]. An optimal static 
source-initiated strategy was found by Tantawi and Towsley for scheduling 
jobs that are modeled as independent tasks [50]. 

Dynamic strategies have more potential than static strategies because they 
can react to changes in the system state. Chow and Kohler [12] proposed 
three dynamic centralized strategies with a job dispatcher (sink-initiated) and 
found the one that maximizes throughput gives the best performance. 

Distributed dynamic strategies are more complex than scheduling strategies 
using centralized control because of the added task of coordinating indepen­
dent actions. Typically, distributed and adaptive strategies involve negotiation 
among participating processors. This negotiat~on involves communication of 
status information, and the selection of processors involved in the scheduling 
decision. The simplest method is to maintain a centralized table with load 
information, and processors can consult the table before sending jobs for 
remote execution [24]. This method has the similar problems as the centralized 
dispatcher in the sense of reliability and bottleneck. Another technique is to 
have each processor broadcast its load and keep track of the loads of the other 
processors, in effect duplicating the table at each processor in the system [33, 
58]. Alternatively, only significant load changes can be broadcast resulting in 
a decrease in network overhead [33, 58]. Other methods of exchange involve 
nearest neighbors [28, 57]. Stankovic and Ramamritham have proposed a 
strategy that includes a bidding phase where negotiation takes place [45, 47]. 
Some significant results of these previous studies are as follows. 
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(a) Load balancing is beneficial since load imbalance occurs frequently in. 
a system with 10 or more processors. 

(b) Excessive slate information to make a load-balancing decision is not 
necessary and may be detrimental. 

(c) Sink~initiated strategies have the potential for improved performance 
over source-initiated. 

(d) Dynamic strategies have greater potential than non-adaptive strategies. 
(e) Centralized strategies may create reliability and bottleneck problems. 
(f) Scheduling communication should not interfere with regular message 

transfer. 
(g) There is a mismatch between the capabilities of the network and the 

communications required for scheduling operations. 

5. A METHODOLOGY FOR DEVELOPING SCHEDULING 
STRATEGIES 

There are three components of a scheduling strategy where improvement 
is possible: representation, procedure, and evaluation. Representation in­
volves the identification of features significant to the problem. The procedure 
is the steps performed in the strategy. Finally, the evaluation is the mea­
surement of parameters associated with performance. Evaluation may then 
involve measurement of system parameters for use in procedure decisions, 
and measurement of system parameters for performance evaluation. 

The methodology for developing a scheduling strategy uses the following 
three assumptions: the system in question is a distributed computer system 
as discussed in Section I, the arrival rate is stochastic, and the jobs resource 
requirements are expressed· stochastically. 

The overall flow of the methodology is shown in Figure 6. There are eight 
steps and each is made considering the key results noted in Section 4.3. The 
first step is to develop a problem representation for the three components: 
environment, events and requirements. In this step, environmental attributes 
of the system which may aid in the scheduling process are identified. Un­
derlying communication network capabilities, such as broadcast or multicast 
capability and bandwidth, arc important at this point as they may be helpful 
during later steps. 

The procedure specification is next and consists of identifying system states 
that will allow improvement. Such states are those in which the idle-while­
waiting condition arises, or those states which make the idle-while-waiting 
condition more likely. The next step is to determine feasible rearrangements 
of events or l> s that redistributed the jobs to correct the condition. Clearly 
the redistribution must use the environment capabilities indicated when the 
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Fig. 6. The methodology for developing scheduling strategies 

problem representation was specified. Consequently, it may be necessary at 
this point to iterate to the first step and redefine the representation to include 
more features to aid in identifying the states where improvement is possible, 
and the redistribution to effect the improvement. 

The next step in procedure development is to determine the support tools 
for state detection and implementing the As. It is important to assure that 
these operations can be performed efficiently. If this is not the case, iteration 
may again be necessary. Candidates for change will be both the representa­
tion, where it may be possible to identify additional capabilities that can be 
utilized, and determining new states and As. It may be necessary to adjust 
expectations because network limitations preclude complex state detection 
and rearrangement. Conversely, care should be taken to assure that network 
capabilities are fully exploited. 

With tools developed to identify slates and l>s, the !ina! step in the pro­
cedure development is to determine the overall sequence of operations. Dur­
ing the formulation of this sequence, other system responsibilities need to be 
considered. The sequence development may require adjustment to each of 
the four steps mentioned previously. 

After the sequence has been generated, performance evaluation is nec­
essary. This consists of two steps: determining the evaluation criteria (i.e., 
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delay or throughput), and measuring the performance. Obviously, ihese steps 
must consider the set R. Also important is assuring the overhead of the sched­
uling strategy does not impede other system missions. 

At the conclusion of the preliminary study, the strategy can ·be implc~ 
mented. This may require iteration through all of the five steps of the meth­
odology. Again, performance measurement will be necessary. 

6. CONCLUDING REMARKS 

Previous classifications of scheduling problems are limited to deterministic 
scheduling problems. In this paper, we have presented the ESR classification 
which includes both deterministic and stochastic problems. The ESR scheme 
specifies problems in a flexible manner, so that attributes of the three sets 
can be indicated with varying degrees of completeness allowing attention to 
be focused on important features of the problem, and less important details 
to be left in general terms. Using the attributes of the ESR classification, 
previous research on scheduling problems has been discussed and trends in 
scheduling problems that have been studied have been identified. Addition­
ally, terminology for discussing scheduling strategies has been defined. Fi­
nally, a methodology for developing scheduling strategies has been described. 
It uses the ESR representation of the problem to focus key aspects that con­
tribute to an efficient solution. 
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