INFORMATION SCIENCES 57-58, 319-345 (1991) 319

Computer Scheduling Algorithms: Past, Present, and Future*

K. M. BAUMGARTNER

Digital Equipment Corp., Maynard, Massachusetts 01754-2571
and

B. W. WAH
Coordinated Science Laboratory, University of Hlinois, Urbana, Hlinois 61801-3082

ABSTRACT

Efficient scheduling techniques of computing resources are essential for achieving sat-
isfactory performance for users as computer systems and their applications become more
complex. in this paper, we survey research on scheduling algorithms, review previous clas-
sifications of scheduling problems, and present a broader classification scheme. Using a
uniform terminology for scheduling strategics and the new classification scheme, previous
work on scheduling strategies is reviewed and trends in scheduling research are identified.
Finally, a methodology for developing scheduling strategies is presented.

I. INTRODUCTION

Early computer systems were centralized due to the cost of replicating
hardware and additional staffing. As hardware costs dropped, it became pos-
sible for smatler organizations to own computer systems, Consequently, sev-
eral computer installations could be present on a college or industrial campus,
and local area networks (LANSs} evolved to allow communication among the
computer installations. The resulting collection of resources and the com-
munications medium arc distributed computer systems (DCS's). This trend
is even more prevalent now as networks of personal computers and work-
stations such as Sun, Apollo, and MicroVAX are common in the work place.
The difference between workstations and personal computers is the order of

* This research was supported by the National Aeronautics and Space Administration
under grant NCC 2-481 and the National Science Foundation under grant MIP 88-10584.

© Elsevier Science Publishing Co., Inc. 1991

320 B. W. WAH AND K. M. BAUMGARTNER

development of communication facilities. Personal computers were designed
as independent computers, and later networking capability was added (this
is similar to communication among mainframe computers). The communi-
cation among workstations was developed simultaneously with the computing
power, allowing communication services to be more casily integrated. Now
computing power is literally distributed from desktop to desktop.

There are three distinguishing characteristics of local area networks: they
are comprised of autonomous systems so that control is not limited to one
location; there is a physical distribution of resources (typically on the order
of one kilometer); and the speed of communications ranges from approxi-
mately one to 20 megabits per second. Enslow [18] more formally specifies
five requirements for a DCS: a multiplicity of general purpose resources {phys-
ical and logical), a physical distribution of these resources, a high-level op-
erating system to integrate control, system transparency so that services may
be requested by name, and operation of the resources characterized by co-
operative autonomy.

The networks which connect computers and workstations allow commu-
nication, but they also have capability to allow efficient sharing of resources.
Since the demands for computing power are continually increasing, the net-
work can be used for scheduling tasks during time when it is otherwise idle.
DCS's can provide a cost-effective means to increase the computing power
available to a single computer user if jobs can be scheduled to exploit potential
parallelism. Livney and Melman {33] have shown that in a system of n in-
dependent processors modeled as M/M/1 systems [29], the condition where
a job is waiting for service at one processor while another processor is idle
occurs 7% of the time for traffic intensities {the ratio of the arrival rate to
the service rate) ranging from 0.5 to 0.8. This idie-while-waiting condition
indicates the possibility of reducing the average job delay. With a globat sched-
uling strategy for a DCS, the occurrence of the idle-while-waiting condition
can be reduced and consequently the overall performance of the DCS can be
improved.

1.1. DEFINITION OF THE SCHEDULING PROBLEM

The scheduling problem is shown in Figure 1. It is a mapping of a set of
jobs or tasks to 2 set of processors {or machines). The job characteristics
(processing time and precedence constraints), machine environment (number
of processors, interconnection, power of processors), and performance ob-
jectives are the input to the scheduler, and the mapping, or schedule, is the
output. There are five components of the problem: the events, the environ-
ment, the requirements, the scheduler, and the schedule. The scheduler ai-
locates resources 10 events.

COMPUTER SCHEDULING ALGORITHMS 321

EVENTS

SCHEDULE

ENVIRONMENT

Fig. 1. The scheduling problem

Events are the smallest indivisible schedulable entity. The environment
refers to all characteristics and capabilities of the surroundings that will impact
the schedule such as physical capabilities of the processors and the com-
munication mechanism. Requirements are also input to the scheduler and may
range from a recal lime deadline to the requircment of determining if an im-
provement in performance is possible. The scheduler takes the events, en-
vironment, and requirements as input, and produces a schedute. In the pre-
cisely specified case, the schedule will be a set of ordered pairs of events and
times. Frequently it is not possible to precisely state a schedule, in which
case the schedule is specified by a set of rules. These rules will specify dy-
namic correcting actions when the distribution of events in the environment
is such that the correcting action will result in an improvement in some system
performance parameter.

In order to fully investigate the problem of scheduling, it is beneficial to
consider a larger perspective as shown in Figure 2. The starting point is a
problem. The problem can be deterministic, non-deterministic, or undecid-
able. A deterministic problem is clearly defined and tractable in terms of both
time and space. Traditionally, deterministic scheduling problems refer to
those scheduling problems that have all information required for generating
a schedule specified @ priori. This excludes any data dependent tasks (i.e.,
decision points). An example would be matrix multiplication. A non-deter-
ministic problem may be clearly defined but too complex to find an exact
solution with finite resources, or it may be clearly defined but require too
much space to find an exact solution with finite resources, or it may require
too much time and space. Alternatively, a non-deterministic problem has in-

Fig. 2. Mapping from problem to machine representation

32 B. W. WAH AND K. M. BAUMGARTNER

puts which are not exactly specified. For example, a scheduling problem with
resource requirements specified as distributions is a deterministic scheduling
problem. There is no algorithm to solve an wndecidable problem even with
infinite processing and storage resources. An undecidable problem cannot be
solved directly, nor can it be represented directly as a deterministic problem.
Only a deterministic problem can be solved, so the non-deterministic problem
is solved using a deterministic algorithm that approximates using heuristics.
The algorithm is the specified in a language which is in turn given a machine
representation.

During the 1960s and early 1970s, a greati deal of attention was focused on
scheduling problems that emerged in a manufacturing environment [13]. These
problems were predominantly deterministic as the arrival time of jobs re-
quiring service and the duration of service were exactly known. Scheduling
problems that emerge in computer systems are non-deterministic because
exact information about resource requirements is rarely available. Determin-
istic and non-deterministic scheduling problems are discussed further in Sec-
tion 2.

Scheduling resources on distributed systems has two aspects: intracom-
puter scheduling and intercomputer scheduling. Intracomputer scheduling
concerns scheduling within a computer (local scheduling) while intercomputer
concerns scheduling tasks among computers (global scheduling). Intracom-
puter scheduling occurs at many levels within the processor such as through
the memory hierarchy, at the device and functional unit level, and also sched-
uling processes. When a computer is composed of muitiple processors, sched-
vling among them is another level. Intercomputer scheduling is a level above
processor scheduling, and involves communication among independent com-
puters. The levels of scheduling are shown in Figure 3. At cach level, sched-
uling is a mapping of events to the environment.

1.2. ORGANIZATION

This paper is organized as follows. In Section 2 previous classifications of
scheduling problems are reviewed. These previous classifications are for de-
terministic scheduling problems, which are problems with all resource re-
quirements specified exactly. A new classification of scheduling problems
which incorporates both deterministic and stochastic scheduling problems is
presented in Section 3. Using the new classification, trends in research on
scheduling problems are investigated. Terminology for scheduling strategies
is also introduced in that section, Section 4 reviews previous work on sched-
uling. A methodology for developing scheduling strategies is discussed in Sec-
tion 3, and Section & contains concluding remarks.

COMPUTER SCHEDULING ALGORITHMS 323

Muttiple Computer

o

Multiprocessor

|

Device/Functional Unit

|

Memory Hierarchy
Fig. 3. The levels of scheduling

2. PREVIOUS CLASSIFICATIONS OF SCHEDULING PROBLEMS

Before discussing classifications of scheduling problems, it 1s us?ful to state
the reasons why a classification is needed, and to identify the df:snra?le ghar-
acteristics of a classification. The goal of developing a c]assn’icatmr} is to
increase and organize overall knowledge about a class of problems. ’l?hls goal
is realized through two steps: specification of a problem and showing rela-
tionship among problems. A classification implies develoging ::1 taxonon?y,
which addresses both the above steps, since a taxonomy 1m;|9i1es a spe-c:t' -
cation by categorization. Categorization in turn shows relationships since
problems with attributes in the same category will be related. Thus the tax-
onomy helps organize knowledge about a class of problems, ' .

There are at least four attributes of a classification that are desirable. F 1r‘st
is to identify the significant characteristics of the problem since the_se wa.li
contribute to an efficient solution. Next is to clearly show the relationship
among problems. This is beneficial because the solution to one p}'nblem may
indicate the solution to a closely related problem. Conversely if a prob}en1
has no solution, that may indicate a related probiem also hias no solution.
Expandability and contractability of a classification are useful becguse they
allow important features of the problem to be focused on an'd unimportant
details of the problem can be eliminated to reduce the compiex‘uy of the prob-
lem representation. Finally, it is desirabte for the classification to separate
the problem specification from the solution. The separation allows a clearer

324 B. W. WAH AND K. M. BAUMGARTNER

comparison of scheduling strategies for a given problem, and avoids confusing
a strategy and a problem.

Three classifications of scheduling probiems are discussed in this section.
First is Conway et al.’s classification [13], a four-parameter scheme where
the categories are A: the job arrival process which for static arrivals indicates
the number, and for dynamic arrivals indicates the probability distribution of
the time between arrivals; B: the number of machines in the shop; C: the flow
pattern in the shop; and D: objective function. This classification has two of
the desirable characterics stated earlier: it identifies significant problem fea-
tures and separates the problem from the solution, but lacks expandability
and contractability. Much of the problem is unspecified, such as whether the
machines are homogeneous or heterogeneous, if pre-emption is allowed, and
details about the kinds of tasks to be scheduled. There is no capacity for
specifying stochastic problems with this classification.

Graham et al {23] classified deterministic problems with requirements of
optimal! solutions. The classification uses three sets of attributes: job char-
acteristics {a), machine environment (8), and objective function (y). These
sets of attributes are subdivided into numerous components, In effect, Graham
and Eawler’s classification combined Conway et al.’s [13] B and C categories
into one field specifying the machine environment, and provided a more de-
tailed specification for the job specification and machine environment. The
alffy classification allows precise specification of problems. In fact, by enum-
erating the possible values of the categories, a finite set of problems can be
named. Identification of significant features, grouping sets of related char-
acteristics and separating the problem from the solution are also advantages
of this classification. This classification is especially good at showing the
relationship among problems using reducibility. As an example, the reduci-
bility for task structure js shown in the attribute task precedence. Scheduling
tasks governed by general precedence constraints is more difficult than sched-
uling tasks governed by tree-tike precedence which in turn is more difficult
than scheduling independent tasks. Solution to a more difficult probiem im-
plies the solution of the easier problem. Unfortunately, this classification does
not inciude representations for stochastic scheduling problems or represen-
tations for problems with non-optimal objective function requirements, Since
each attribute has values that are explicitly specified, a uniform representation
of stochastic problems using this representation would require a large ex-
pansion of the representation. The set of stochastic problems is extremely
large, and an expanded version of the a/B/y representation wouid be unwieldy.

Gonzalez [21] uses nine classification categores: the number of processors,
task duration {either equal or unequal), precedence graph structure, task in-
terruptibility, processor idleness (whether this is allowed or not), job peri-
odicity, presence or absence of deadlines, resource limited schedules, and

COMPUTER SCHEDULING ALGORITHMS 325

homogeneous versus heterogeneous processors. While this classiﬁcaflo‘n iden-
tifies nine key features, there is no grouping of re_iated' ch:f\ractenstlf:s, no
relationship among problems shown, and the classification is not e'asﬂy‘ex—
pandable. Also, this classification is not designed for problem specification.

1. A NEW CLASSIFICATION FOR SCHEDULING PROBLEMS

In this section, a new classification of scheduling probtem‘s is'presented.
Additionally, terminology for describing scheduling strategies 1s also de-
scribed.

1.1. THE ESR CLASSIFICATION SCHEME

In the process of developing a new classification, it w_as beneficial to 1'156
some of the methods of the previous classifications, specifically the groupllng
techniques. Consequently, the classification uses three grqups co.rresponduTg‘
to the input components of the scheduling problem noted m.Sectlon 1. These
three categories (the events, the environment (or surroundings), and tk}e rc{;
quirements) comprise the new ESR classiﬁcati(?n scheme.-These correspon
in part to the categories of the ol By classification. Therc:: is some reanjinge-
ment, and this classification is not as explicit. The categories and the attributes
of the ESR classification are summarized in Table 1. ‘

The first category, E, is the event. The three attributes of events consnc.iered
are their relationship with other events, arrival patterns, and the available
information about the resource requirements of each event. E'vents may be.
independent, in which case the execution time is not csmslmmed by other
events. Conversely, events may have precedence conslramls.. where an event
must be executed before its successors. Another relationshlp.among events
is communication, where two events exchange information during or be?tw?en
their execution. This relationship is especially important when commumcation
costs are considered. ' ‘ .

Availability indicates whether events, or jobs, alt armve :nmuit:.mcmfsly

prior to execution, whether they arrive periodically, or wl'\clhcr .IhCIl"ilt'l'l\"dl.
is governed by a stochastic distribution. The first case ::s ‘(-)f smlulltnfeous
arrival is also called static arrivals, Periodic arrivals are sumila-r‘to static ar-
rivals in the sense that they can be cousidered to be a repetition of st-anc
arrivals if arrivals are sufficiently far apart to allow exccution_of th'.? previous
set of jobs to complete before the next set arrives. St'och.astlf: arrivals have
interarrival times that are governed by a probabitity distribution.

326 B. W, WAH AND K. M. BAUMGARTNER

TABLE i .
The ESR Classification
Category Attribute Values
Event Relation to other events independent

precedence
communication

Availability (arrivals) static
periodic
stochastic

Resource Requirements deterministric resource

requirements
stochastic resource requirements

Environment Number Ik, n
Classes of Resources homogenous resources {1 class)
heterogeneous resotrces (> class)
Physical Characteristics speed

size of main memory

special capabilities, etc,
Paths Connecting Resources toplogy
Communication Overhead none

deterministic

stochastic
Communication Mechanism flow

broadcast

message passing

other

Requirements Performance any sofution

deadlines {real time)

good (improved) solution

optimal solution

The final attribute of events is the resource requirements, which may be
completely specified as constants and so be deterministic, or may be governed
by a probability distribution. Clearly these three attributes are important in
the scheduling process. The available information about resource require-
ments is especially important, however frequently in multiprocessor systems
there is limited information available, |

The second category, S, is the environment or surroundings. Any envi-
ronmental characteristics that will impact a schedule, such as the number of
resources, the number of classes of resources, the physical characteristics of
each class, the topology of the communications medium, the communication
delay, and the communication mechanism, are included in this category. The
number of resources can be one, implying scheduling on one machine, a spe-

COMPUTER SCHEDULING ALGORITHMS 327

cific number such as two or three (specified as k), or an arbitrary number,
n. The resources may be homogeneous (all are identical) or homogeneous (all
are unique or multiple classes of processors). The physical characteristics of
these classes can also be indicated if they are significant. Interconnection
among resources is called the path among them. There are infinite possibilities
for this category including bus, ring, multistage networks, and arbitrary point-
to-point connections. Communication overhead may be zero, in which case
events flow among resources at no cost, or may have a constant {(deterministic)
or varying (stochastic) cost. Last, the communication mechanism may be a
flow of events, broadcast of information, message passing, or take some other
form. The scheduler uses information about the surroundings to make pre-
dictions about the relative costs of different schedules.

The final category is the requirements, R, of the schedule. In the simplest
casc, the requirements are for any solution or schedule. Other cases include
decreasing response Lime (or another performance metric) resulting from a
previous schedule, meeting a fixed deadline, finding the schedule that uses
the minimum number of processors, and so on.

A key point about this classification is that it is high level, meaning that
attributes and their values can be specified in general terms or in more detail.
When a scheduling problem is specified using this classification, the values
of the attributes are expanded if they reflect a characteristic that will be used
in creating the schedule. Unlike the deterministic scheduling problems con-
sidered with the a/Bly classification, stochastic scheduling problems are not
enumerable; it is impossible to list every problem. With this classification, it
is possible to specifically note those values the scheduler uses and leave [ess
important parameters expressed in more general terms. Problem specification
is indicated by the three categories using the following notation:

E:fe} — S:fs} — R:{e}

The sets correspond with each category, and include as much detail as is
desired. If the sets are empty, it is presumed that there is no useful information
available about that category. For example, deterministic problems can be
specified as

r . LY [3
arbitrary acyclic o
N Processors
evenl precedence
. .. heterogeneous -
static or-periodic g oplimize some
. resources
E: W arrivals y -S4 f — R: < performance
e arameter
e e deterministic p
deterministic . .
communication
resource
; overhead
requirements

328 B, W. WAH AND K. M. BAUMGARTNER

Stochastic scheduling problems, in contrast, can be specified as

. . n processors
arbitrary acyclic p

event precedence
p heterogeneous

. . . resources reduce

E: { stochasticarrivals } — S:) — R: . .
responsec time

stochastic

communication
overhead

stochastic resource
requirements

3.2. SCHEDULING TERMINOLOGY

There is a considerable conflict in the literature regarding terminology used
to describe attributes of scheduling strategies. This section discusses termi-
nology for classifying scheduling strategies. First, some previous classifica-
tions of scheduling strategies are reviewed. Using the results of these studies,
terminology used in this paper is described.

Wang and Morris developed a classification of scheduling algorithms {54].
The criteria for classification is whether the strategy is source-initiated or
sink-initiated meaning whether overloaded resources look to alleviate their
load, or lightly loaded resources actively pursue more work. Additionally,
the level of information dependency is a factor. Information dependency refers
to the level at which a resource has information about the current state (work-
load) of other resources.

The terminology used in global scheduling {or load balancing) {5, 12, 15,
19, 38, 52] is varied and conflicting. Some features commonly discussed (using
different names) are whether the scheduling intelligence is centralized or dis-
tributed, whether the rule basis is static, meaning independent of the current
state of the system, or dynamic, meaning decisions are state-dependent. This
characteristic is also referred to as being deterministic versus probabilistic,
or adaptive versus non-adaptive (adaptability also refers to a different at-
tribute discussed below). These features are useful for comparing scheduling
strategies. The comparison has indicated that these characteristics are related
to the potential of an aigorithm, as will be discussed in Section 4,

The informal classification used for load balancing problems above was
formalized by Casevant and Kuhl in an attempt to unify the diverse notation
used [9]. Their classification was designed for distributed computing systems
and consists of two parts: a hierarchical classification and a flat classification.
The hierarchical classification is used to show where some characteristics are
exciusive. The flat classification gives definitions of attributes that are not
exclusive. Several observations about this taxonomy are:

COMPUTER SCHEDULING ALGORITHMS 329

(a) Adaptability refers to long-term algorithm stale-depende.ncy rall}er than
short-term state dependency for rule basis. Adaptability is available with bqth
a static and dynamic rule basis since the algorithm can be static {or dynamic)
for one lime interval, and then change for the next time interval, .

(b) Load balancing and optimality are considered strategy characteristics
rather than problem requirements (elements of the set R). .

(c) One time reassignment and dynamic reassignment (which correspond
to pre-emption in the one processor case) are considered strategy character-
istics rather than environment capabilities (elements of the set §). o

(d) Bidding in the flat portion of the classification and cooperation in the
hierarchical portion of the classification are not distinct.

The terminology summarized in Table 2 is not cxclusively 'adopt'ed frf)m '
any of these sources for the following reasons. Wang and Morrls clz}smﬁcahlon
[54] focuses on only two aspects of the strategy (initiation location a‘nd in-
formation dependency), so it not extensive enough. Casevant and Kuh! s tax-
onomy is not used exclusively because there is overlap betw'een t.helr ci_as-
sification of solutions and the classification of problems described in Section
2.3 [9]. o

The first characteristic specified is the level of scheduling as desc.nbed in
Section 1. The rule basis s included next and may be static or dynarptc. Note
this is different than the static versus dynamic sets used to desrcnb'e e\{ent
arrivals. Next is the location of control. If control has a degree of distribution,
the controlling processors can negotiate to make scheduling decisions, or‘fu'nc-
tion independently. Initiation and adaptability are the two final Fharactenslrcs.
The tradeoffs of these different characteristics are discussed in the next sec-
tion. .

The relationship among the six characteristics is shown in Figure 4. Each
path through the relationship graph indicates a set of attributes a sc}}edule
may have. Some paths and the corresponding combination of scls. of attributes
are not possible. For example it is not possible to have a cent‘rallzed st'ralegy
with cooperation. Centralized implics one decision point. Static strategies are
considered centralized since although each participating strategy may mqke
different decisions, the choice was determined a priori by one scheduling
intelligence. In Section 4 this terminology is used to discuss the results ob-
tained in previous work on scheduling problems. o

Previous classifications of scheduling problems are Jimited to det_erlmllmsnc
scheduling problems. The ESR classification includes both deterministic apd
stochastic problems, and specifies problems using three sets of characteris-
tics, events, environment (or surroundings), and reguirements. The ESR
scheme specifies problems in a flexible manner, so that attributes of the thf‘ee
sets can be indicated with varying degrees of completeness allowing attention

330 B. W. WAH AND K. M. BAUMGARTNER

TABLE 2
Revised Classification of Scheduling Strategies

Terminoiogy
Characteristic Values Explanation
Level of Scheduling Intra-resource Refers to scheduling within a node or resource
Inter-resource as opposed to among nodes or resources.

There may be multiple sub-levels of intra-
resource scheduling. Also called global ver-

sus [ocal.
Rule Basis Static Refers to the flexibility of schedule rules to
Dynamic react to the current state of the system. A
static schedule bases rules on unchanging
system characteristics. A dynamic sched-
ule bases rules on the current state of the
system. Also called state-dependency,
Location of Control Distributed Describes where the responsibility for sched-
Hierarchical uling decisions lies. This applies primarily
Centralized to dynamic timing since static timing implies
acentralized decision. Hybrids are also pos-
sible.
Cooperation Negotiated Describes the interaction among locations of
Independent control {distributed or hierarchical only).
This applies to distributed or hierarchical
control since centralized does not have sep-
arate modules {o cooperate.
Initiation Source Which processor initiates job movement, the
Sink ‘overloaded processor (source initiated) or
Both the underloaded processor (sink initiated),
Adaptability Adaptable Refers to flexibility of the algorithm, and
Mon-adaptable whether the algorithm changes execution

based on the arrivals to the system.

to be focused on important features of the problem, and less important details
to be left in general terms.

4. STATE OF THE ART IN SCHEDULING RESEARCH

In this section, trends in scheduling problems that research is focused upon
are identified. This information indicates the current importance of scheduling
problems on DCS's. The trends also show the progression of understanding
of scheduling problems. Table 3 chronologically lists studies on scheduling

COMPUTER SCHEDULING ALGORITHMS 331
Level of /O\
Scheduling

intra-processor interprocessor

Rule .
Basis

static dynamic

Location
of Control

centralized hierarchical distributed

Cooperation

negotfated independent
Initiation

SOuURce sink

Apaptability
adaptive non-adaptive

Fig. 4. Relationship among strategy characteristics

problems. Problems are uniformly specified in this table. Three catego;l"zes
indicating trends are communication overhead, resource requirements, arrival
characteristics. Figure 5 shows a graphical representgtmn of the lrc:.nd:?. The
progression is toward the general problem of schedul_mg tasks_on distributed
computing systems, This is not unexpected; the earlier v..fork is on the morL:
specific problems associated with deterministic scheduling, an.d later wgrk
focuses on the more general problems associated with stochastic scheduling
problems. .

The ESR classification scheme can be used to specify a problem, and to
make comparisons among similar problems. It becomes dii.‘ﬁcult to sh9w re-
lationships among problems using all the attributes for a wide range of prob-
lems because it is possible for a given problem to be less general than zm.othcr
problem for one attribute, while being more general for another z}ttnbute.
Because of this, the results of previous studies are shown by grouping pfob-
lems by the characteristic that dominated the trends S}-IOWI“I in the Prevmus
section (i.e., whether processing requirements are spemﬁ;d stochastically or
deterministically).

TABLE 3

Sumimary of Scheduling Problems Studied

(A%

Event Environment
Rc[ationship Availabilit RC‘SOU:‘:’, Communicaition
References ¥ Requirements Number Resources Overhead
i P et -
C Static | Periodic | Stoch | Determ | Stoch k Homog | Heter | None | Seme
CoMé6 X
[7] b4 X X X x % X .
[GoR72 X
] X x X « < .
[RaC72) x X x X x X X X x =
Bak74
[Ba } X X X X x x x x :
{Sto77])
X X X X X X X X x % ::E
[LiH77) X x
X X X x X x « N
[GrL77 X Z
] X X X x X X < . 5
Gon77
{Gon77] X X x N . N N ; =
{S1B78] X X X X X g
x x X X X ee)
[Sto78] X X X X X b
X x X x X o
[Apl78] X x X « =
X X O
Gon79 >
[Gon791 X X X X X X 5
: Z
continued el
-~}
TABLE 3 8
Summary of Scheduling Problems Studied (continued) =z
g~}
Event Environment o
=
Resoure Communication =
Relationship Availability Requirements Number Resources Overhead 7]
References (@]
P C Static | Periodic | Stoch | Determ | Stoch k Homog | Heter None | Some E‘i
(=]
1ChK79] X X X X X X Pt
-
[RaS879] X % X X X X X X x E
o)
[OuS80] X X X X 13 X X >
oy
[Weg80] X X X X X X [»
]
[EnHE0] X X X X X ~
—
{ChHB80] X X X X X X X x X %
[KrH20] X X X x X X 2
[JaK80] X X X X X X
[NiHB1] X X X X X X X
{Lol81] X x X X X X X
[Efe82] X X X X X X 3
{WaHB2| X X X X X X X
[1.iIMEB2] X % X X X X
’ [59]
tad

continaed

Summary of Scheduling Problems Studied (contimued)

TABLE 3

bit

Event Environment
Resoure Commuunication
References Relationship Availability Requirements Number Resources Overhead
[P C Static | Periodic | Stoch | Determ | Stoch K n Homog | Heter | None | Some
[HwC82] X X X X X X X X
IChAS82] x X x | x x x x x
[Mong2] X X X X X X X =
[Leu82] X X X X X X E
[Mal82] X X X X X X X 2
[Bal83] X X X X X é
[Wil83] X X X b3 X X X ;
[Pin83] X X X X X X X X Eq
[WaP83} X x x X X x x g
[Wal83] X X X X % x x "-:E
[MeT84] X X X X X X X X X X X §
fKelL84] % X X X X X X C:a
{RaSg4] X X x X X X X X X b3 5
continned %
TABLE3 8
Summary of Scheduling Problems Studied (continted) %
Event Environment S
Resoure Communication %
Relationship Availability Requirements Number Resources Overnead &
References] p C | Static | Periodic | Stoch } Determ | Stoch k n | Homog | Heter | None | Some t_'»'—':]
{BaWss) X X X * - X . ! E
{BaH85] X X X X X X g
[JeB85) X X X * * h 2
[TaT8S] x x * * * * - ~ é
[WaM&S] x X X * * . i z E
| [Wal8s] % X * * * X - %
[NiH85] X x X * * X b @
NiX85] X * * i - -
[Sta8S) x * * * * X -
JuWs6] N X % X X X X
[Ezz86] X X * * X * h
[EaL&6] x * * : * " -
[AloR6] x * . * z h - -
(BaW87] % X x * N - &

336 B. W. WAH AND K. M. BAUMGARTNER

4.1. PROBLEMS WITH DETERMINISTIC RESOURCE REQUIREMENTS

A great deal of research was done for scheduling tasks with exact a priori
knowledge of execution requirements during the 1960s and 1970s. This work
has been described in several books (7, 13, 14] and survey papers {21, 23]
The problems are represented as follows.

. . 0 processors
arbitrary acyclic
precedence heterogencous optimal
o resources
E: < static arrival P 8 S open shop, L— R: { near-optimal
deterministic flow shop paths .
resource approximate
\ requirements) communication
| by flow

Note that this specification includes less general problems (i.c., events that
are independent tasks). When specifying a set of problems with the ESR
classification, a more general problem encompasses less general problems.
This is a class of problems that frequently occurs in a manufacturing envi-
ronment and is scheduling at a inter-resource level, Scheduling strategies
for this type of problem have been discussed extensively [7, 23]. Solutions
are optimal, near optimal, or approximate. Schedules may be explicit time,
event pairs or static rules such as schedule the shortest job first. Scheduling
intelligence in this case is centralized.

As DC8’s evolved, scheduling problems related to computing environment
received more attention. The ESR specification of these problems is

4 . .y s 3
arbitrary acyclic 0 Processors
precedence imal
heterogencous optima
. static arrivals resources .
E: < r S HE } — R: { near-optimal
deterministic deterministic .
resource communication approximate
requirements overhead
4 . J

_ Some early scheduling problems for the multiprocessor environment con-
sidered scheduling tasks with acyclic precedence requirements with no com-
munication among tasks [20, 43]. These studies assumed that a reasonable

COMPUTER SCHEDULING ALGORITHMS 337

estimate of resource requirements could be obtained with a preprocessing
phase of a program. Results of these studies included a method for determining
the minimum computation time, and a method to determine the mininwum
number of processors to achieve the minimum computation tinwe [43]. Also,
a comparison of a centralized versus a decentralized algorithm indicated that
the decentralized algorithm performed better.

Scheduling tasks with intertask communication is a more difficult and a
more realistic problem. Improving performance requires limiting excessive
communication and evenly distributing the work load among processors. If
all the tasks are scheduled on one processor, there is no communication cost,
but there is no benefit from a multiplicity of processors. If the tasks are dis-
tributed such that processor utilization is completely uniform, full advantage
of the multiplicity of processors is realized; however, communications costs
may be so large that the benefits of concurrent execution are eliminated caus-
ing processing to be more expensive than with one processor. Since the goals
of limiting communication and balancing load are directly conflicting, ob-
taining maximum performance is a tradeoff.

Several studies were performed by Stone et al, [44, 46, 48, 49] in which
jobs were represented by graphs, The nodes represent tasks with cxecution
requirements, the edges are labeled with communication costs. The repre-
sentation is actually serial since the program will be executing on only one
node at a time. The communication is information that one module sends to
its successor on completion. An assignment of tasks is specified by a cut that
divideds the graph into as many sections as there are processors. The cost
of the assignment is equal to the sum of the execution costs plus the sum of
the communication costs between tasks that are not assigned to the same
processor (i.e., the sum of the weights of the edges on the cut). Consequently,
the minimum cost assignment corresponds to the minimum cutset, The time
requirements of this method may allow it to be used dynamically for two or
three processors, but not efficiently for larger numbers of processors. A sim-
ilar mapping problem for larger systems was explored by Bokhari [8] in which
communicating modules are placed as much as possible on adjacent proces-
sors, Other approaches to this problem include graph matching [11. 44],
mathematical programming [11, 56|, a branch and bound algorithm [35], and
heuristics {2, 11, 16, 30, 34]. An optimal solution for the n processor case was
found by Chou and Abraham [10].

The solutions to these problems are for static sets of jobs, and the sched-
uling strategies are static as well. Their execution time is too long for them
to be effective for dynamically arriving tasks. Their utility is then for the
planning phase of a system (prediction of minimum or maximum execution
time), or for real-time systems where timing is critical.

338 B. W. WAH AND K. M. BAUMGARTNER

ENVIRONMENT
Sto77 LoL81 Cus30 WaP83 NiH8S
Deterministic/ 578 Malf2 | WaHS2 MeT2d NiXBS JuWgs
Stochastic 51078 Wilg3 ChASZ : LiMB2 Kel84 St85 Alogs
RaS79 BaH8s ! HwCE2 BaW85 Ez286 BaWs?
a - ChHg0 JeB85 Wal3 TiT85 EaL86

]
]
1
|
1
1
]
! H
Ov - - = = '!""__"—: __________________
erhead ' :
1
1
X
1
]
)
]
}
Deterministic :
1
]

Stochastic ._,. EVENTS

Static/Periodic ! Swchastic
Arsival

Fig. 5. Trends in scheduling research

4.2, PROBLEMS WITH STOCHASTIC RESOURCE REQUIREMENTS

The studies reviewed in the previous subsection used exact information
about the execution and communication requirements of the jobs being sched-
uled. Frequently in scheduling problem on computer systems, this infor-
mation is not known and only probabilistic information may be available.
Further, dynamically arriving sets of jobs are more common in computer
systems than static sets of jobs. This change in available information changes
the methods and expectations of the scheduler. The problem is easier in some
cases because with exact a priori information, there may be much information
that it cannot be used efficiently [42]. The class of problems disctissed in this
section have an ESR representation as follows:

(1 Processors)
independent tasks :
evenly
homogeneous distribute load
dynamic arrivals resources
E: y -S4 v — R:
. inimize
stochastic resource bus or conlxnﬂlmnication
requirements point-to-point
| interconnection)

The following issues are important when developing strategies for dynamic

COMPUTER SCHEDULING ALGORITHMS 339

scheduling problems with stochastic resource requirements; balanced load
versus minimized communication tradeoff, location of control, the status in-
formation used for the scheduling decisions, and the initiation point. The bal-
anced load versus communication tradeoff was discussed above.

Location of control is also a tradeoff. A centralized location of control may
allow the scheduling strategy to be simpler. However, the decision point has
the potential of becoming a bottleneck and a critical failure point. If a dis-
tributed decision is made, the overhead of distributing status information can
be so high as to eliminate the benefits of scheduling. A comparison of cen-
tralized versus distributed strategies using a trace driven simulation was per-

‘formed by Zhou [58]. The results indicate that neither strategy is always su-

perior, and that the overhead for communicating information is important for
both. The third consideration is what status information to use for scheduling
decisions. Several studies on this topic have indicated that excessive status
information is not only unnecessary, but can be detrimentat [33, 50, 54].

Several static scheduling strategies have been proposed. Proportional
branching is a static, sink-initiated strategy where jobs are routed to proces-
sors with a probability determined by the relative power of the processors
{12]. Ni and Hwang found optimal static sink initiated strategics for single
and multiple job classes again with centralized control [38]. An optimal static
source-initiated strategy was found by Tantawi and Towsley for scheduling
jobs that are modeled as independent tasks [50].

Dynamic strategies have more potential than static strategies because they
can react to changes in the system state. Chow and Kohler [12] proposed
three dynamic centralized strategies with a job dispatcher (sink-initiated) and
found the one that maximizes throughput gives the best performance.

Distributed dynamic strategies are more complex than scheduling strategies
using centralized control because of the added task of coordinating indepen-
dent actions, Typically, distributed and adaptive strategies involve negotiation
among participating processors. This negotiation involves communication of
status information, and the selection of processors involved in the scheduling
decision. The simplest method is to maintain a centralized table with load
information, and processors can consult the table before sending jobs for
remote execution [24]. This method has the similar problems as the centralized
dispatcher in the sense of reliability and bottleneck. Another lechnique is o
have each processor broadcast its load and keep track of the loads of the other
processors, in effect duplicating the table at each processor in the system [33,
58]. Alternatively, only significant load changes can be broadcast resulting in
a decrease in network overhead [33, 58]. Other methods of exchange involve
nearest neighbors {28, 57]. Stankovic and Ramamritham have proposed a
strategy that includes a bidding phase where negotiation takes place [45, 47].
Some significant results of these previous studies are as follows.

340 B. W. WAH AND K. M. BAUMGARTNER

(a) Load balancing is beneficial since load imbalance occurs frequently in_

a system with 10 or more processors.

(b) Excessive state information to make a load-balancing deClSIon is not
necessary and may be detrimental.

(c) Sink-initiated strategies have the potential for improved performance
over source-initiated.

{d) Dynamic strategies have greater potential than non-adaptive strategies.

{e} Centralized strategies may create reliability and bottleneck problems.

{f) Scheduling communication should not interfere with regular message
transfer.

{g) There is a mismalch between the capabilities of the network and the
communications required for scheduling operations.

5. AMETHODOLOGY FOR DEVELOPING SCHEDULING
STRATEGIES

There are three components of a scheduling strategy where improvement
1s possible: representation, procedure, and evaluation. Representation in-
volves the identification of features significant to the problem. The procedure
is the steps performed in the strategy. Finally, the evaluation is the mea-
surement of parameters associated with performance. Evaluation may then
involve measurement of system parameters for use in procedure decisions,
and measurement of system parameters for performance evaluation.

The methodology for developing a scheduling strategy uses the following
three assumptions: the system in question is a distributed computer system
as discussed in Section 1, the arrival rate is stochastic, and the jobs resource
requirements are expressed- stochastically.

The overall flow of the methodology is shown in Figure 6. There are eight
steps and each is made considering the key results noted in Section 4.3. The
first step is to develop a problem representation for the three components:
environment, events and requirements, In this step, environmental attributes
of the system which may aid in the scheduling process are identified. Un-
derlying communication network capabilities, such as broadcast or multicast
capability and bandwidth, are impoertant at this point as they may be helpful
during later steps.

The procedure specification is next and consists of identifying system states
that will allow improvement. Such states are those in which the idle-while-
wailing condition arises, or those states which make the idle-while-waiting
condition more likely. The next step is to determine feasible rearrangements
of events or As that redistributed the jobs to correct the condition. Clearly
the redistribution must use the environment capabilities indicated when the

COMPUTER SCHEDULING ALGORITHMS 341

Determine & pepresentation

for the probilem
using the
ESR clusificstion
Find set of states . Tdemify and Develop s procedure
that can be altered temming A3 develop support 1ools o (of sequence) detecting
P winpovesptem [W staies that ™ 1o detect states and the staies, tnd
performunce causs improverment perform 4s pesfarming As
]
Alier evaluation Evalume efficiency
criteriz of the sequence
Implement the
SRy

Fig. 6. The methodology for developing scheduling strategies

problem representation was specified. Consequently, it may be necessary at
this point to iterate to the first step and redefine the representation to include
more features to aid in identifying the states where improvement is possible,
and the redistribution to effect the improvement.

The next step in procedure development is to determine the support tools
for state detection and implementing the As. It is important to assure that
these operations can be performed efficiently. If this is not the case, iteration
may again be necessary. Candidates for change will be both the representa-
tion, where it may be possible to identify additional capabilities that can be
utilized, and determining new states and As. It may be necessary to adjust
expectations because network limitations preciude complex state detection
and rearrangement. Conversely, care should be taken to assure that network
capabilitics are fully exploited.

With tools developed to identify states and As, the final step in the pro-
cedure development is to determine the overall sequence of aperations. Dur-
ing the formutation of this sequence, other system responsibilities need to be
considered. The sequence development may require adjustment to each of
the four steps mentioned previously.

After the sequence has been generated, performance evaluation is nec-
essary. This consists of two steps: determining the evaluation criteria {i.e.,

342 B. W. WAH AND K. M. BAUMGARTNER

delay or throughput), and measuring the performance. Obviousff, these steps
must consider the set R. Also important is assuring the overhead of the sched-
uling strategy does not impede other system missions.

At the conclusion of the preliminary study, the strategy can be imple-
mented. This may require iteration through all of the five steps of the meth-
odology. Again, performance measurement will be necessary.

6. CONCLUDING REMARKS

Previous classifications of scheduling problems are limited to deterministic
scheduling problems. In this paper, we have presented the ESR classification
which includes both deterministic and stochastic problems. The ESR scheme
specifies problems in a flexible manner, so that attributes of the three sets
can be indicated with varying degrees of completeness allowing attention to
be focused on important features of the problem, and less important details
to be left in general terms. Using the attributes of the ESR classification,
previous research on scheduling problems has been discussed and trends in
scheduling problems that have been studied have been identified. Addition-
ally, terminology for discussing scheduling strategies has been defined. Fi-
nally, a methodology for developing scheduling strategies has been described.
It uses the ESR representation of the problem to focus key aspects that con-
tribute to an efficient solution.

REFERENCES

I. R. Alonso, The Design of Load Balancing Strategies for Distributed Systets, Future
Directions in Computer Architecture and Software Workshop, May, 1986.

2. W, F, Appelbe and M. R, lto, Scheduling Heuristics in a Multiprogramming Environ-
ment, IEEE Transactions on Computers, July, 1978, pp. 628-637,

3. J. Barhen and E. C. Halbert, ROSES: An Efficient Scheduler for Precedence-Con-
strained Tasks of Concurrent Multiprocessors, Proceedings of the SIAM First Confer-
ence on Hypercube Computers, August, 1985, pp. 123-147,

4. K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Preemptive
Scheduling of a Single Machine to Minimize Maximum Cost Subject 10 Release Dates
and Precedence Constraints, Operations Research 31:381-386 (1983},

5. K. M. Baumgartner and B. W, Wah, The Effects of Load Balancing on Response Time
for Local Computer Systems with a Multiaccess NMetwork, Proceedings of the Inter-
national Conference on Communications, June, 1985, pp. 10.1.1-10.1.5.

6. K.'M. Baumgartner and B. W. Wah, Window Protocols for Load Balancirig on a System
with a Local Multiaccess Network, Proceedings of the International Conference on
Parallel Processing, August, 1987, pp. 851-858.

7. K. A. Baker, Introduction of Sequencing and Scheduling, John Wiley and Sons, New
York, 1974,

COMPUTER SCHEDULING ALGORITHMS , 343

8. S. H. Bokhari, On the Mapping Problem, [EEE Transactions on Computers, March,
1981, pp. 207-214.

9. T. Casevant and J. Kuhl, A Taxonomy of Scheduling in General-Purpose Distributed
Computing. Systems,"” IEEE Transactions of Saftware Engineering 14: 141154 (1988).

W, F. C. K. Chou and 1. AL Abrshum, Toad Balancing in Distibuted Systens, IEEE Trans-
actions on Software Enginvi*riug. Vol SE-8:401-412 (tUB2),

11. W. W. Chu, L. J. Holloway, M. T. Lan, K. Efe, Task Allocation in Distributed Data
Processing, JEEE Computer, November, 1980, pp. 57-68.

12. Y. C. Chow and W. Kohler, Models for Dynamic Load Balancing in a Heterogencous
Multiple Processor System, IEEE Transactions on Computers, C-28:354-361 (1979).

13. R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1967.

14. E. G, Coffman, Jr., Computer and Job-Shop Scheduling Theory, John Wiley and Sons,
New York, 1976.

15. D. L. Eager, E. D. Lazowska, J. Zahorjan, Adaptive Load Sharing in Homogeneous
Distributed Systems, IEEE Transactions on Software Engineering SE-12:662-675
(1986).

16. K. Efe, Heuristic Models of Task Assignment Scheduling in Distributed Systems, IEEE
Computer, June, 1982, pp. 50-56.

17. G. P. Engleburg, J. A, Howard, D. A, Mellichamp, Job Scheduling in a Single-Node
Hierarchical Network for Process Control, JEEE Transactions on Computers, August,
1980, pp. 710-719.

13. P. H. Enstow. Jr., What is a **Distributed’ Data Processing System? JEEE Compurer.
January, 1978, pp. 13-21.

19. A. K. Ezzat, Load Balancing in Nest: A Network of Workstations, Distributed Com-
puting Conference, 1986, pp. 1138-1149.

20, M.]. Gonzalez, Jr. and C. V. Ramamoorthy, Paraliel Task Executionin a Decentralized
System, JEEE Transactions on Compulers, c-21:1310-1322 (1972).

21. M.], Gonzalez, Jr., Deterntinistic Processor Scheduling, Computing Surveys, 9:173~
204 (1977).

22. T. Gonzalez, A Note on Open Shop Preemptive Schedules, [EEE Transactions on Com-
puters, October, 1979, pp. 782-786.

23. R. L. Graham, E. L. Lawler, J. K. Lenstra, A, H. G. Rinnooy Kan, QOptimization and
Approximation in Deterministic Sequencing and Scheduling, Proceedings of Discrete
Optimization, August, 1977, pp. 47, Y8,

24, K. Hwang, W. Croft, B. W, Wah, F. A, Briggs, W. R, Simmons, C. L. Coates, A Unix-
Based Local Computer Network With Load Balancing, IEEE Computer, 15:55~66
{1982).

25. B, Jayaraman and R, M. Keller, Resource Control in a Demand-Driven Data-Flow
Model, Proceedings of the International Conference on Parallel Processing, 1980, pp.
118-127. .

26. D. Jefferson and Beckman, B, Virtunl Time and Time Warp on the JPL Hypercube,
Proceedings of the SIAM First Conference on Hypercube Computers, August, 1985,
pp. 111-122.

27. 1. Y. Juang and B. W, Wah, Channel Aliocation in Multiple Contention Bus Networks,
INFOCOM, luly, 1986, pp. 34-42.

78 R. M. Keller and F. C. H. Lin, Simulated Performance of Reduction-Based Multipro-
cessors, IEEE Computer, July, 1984. pp. 70-82.

29, L. Kleinrock, Queneing Systems Volum 1: Theory, John Wiley and Sons, New York,
1975.

344
30.
it
32.

33.

34,
35,
36.
37.

38.

39
40,
41,

42.

43,

45,

47
43,
49.
30,
5L

52

53

B. W. WAH AND K. M. BAUMGARTNER

A. Kratzer and D. Hammerstrom, A Study of Load Leveling, Proceedings of the IEEE
COMPCON, Fall, 1980. pp. 647-654.

1. Y. T. Leung, On Scheduling Independent Tasks with Restricted Fxecution Times,
Operations Research, Vol, 30, 1982,

. F. Li, Scheduling Trees in Parallel/Pipelined Processing Environments, JEEE Trans-
actions on Computers, November, 1977, pp, 1105-1112,

M. Livney and M. Melman, Load Balancing in Homogencous Broadcast Distributed
Systems, Proceedings of the ACM Computer Neiwork Performance Symposium, 1982,
pp. 47-55.

V. Lo and J, W. 8. Liu, Task Assignment in Distributed Multiprocessor Systems,”
International Conference on Parallel Processing, August, 1981, pp. 358-360,

P.Y. R. Ma, E. Y. S. Lee, M, Tshchiya, A Task Allocation Model for Distributed
Computing Systems, JEEE Transactions on Computers, C-31:41-47 (1982),

R. Mehrotra and S, N. Talukdar, Scheduling Tasks for Distributed Processors, The [1th
Annual International Symposium on Computer Architecture, June, 1984, pp. 263-270.
C. L. Monma, Linear-Time Algorithms for Scheduling on Paralle! Processors, Opera-
tions Research, 30:124-116 (1982).

L. M. Ni and K. Hwang, Optimal Load Balancing Strategies for a Muitiple Processor
System, Proceedings of the International Conference on Parallel Processing, August,
1981, pp. 352-357,

L. M. Niand K. Hwang, Optimal Load Balancing in a Multiple Processor System with
Many Job Classes, IEEE Transactions on Software Engineering, SE-11:491-496 (1985).
L. M. Ni, C. W. Xu, T. Gendreau, A Distributed Drafting Algorithm for Load Balancing,
IEEE Transactions on Seftware Engineering, SE-11:1153-1161 (1985).

1. K. Ousterhowt, D. A, Scelza, P. S. Sindhu, Medusa: An Experiment in Distributed
Operating System Structure, Communications of the ACM, 23:92-105 (1980).

M. Pinedo, Stochastic Scheduling with Release Dates and Due Dates, Operations Re-
search, Yol. 31, 1983,

C. V. Ramamoorthy, K. M. Chandy, M. J. Genzalez, Ir., Optimal Scheduling Strategies
in 2 Multiprocessor System, IEEE Transactions on Computers, C-21:137-146 (1972).

- G.5.Rao, H. 3. Stone, T. C. Hu, Assignment of Task in a Distributed Processor System

with Limited Memory, IEEE Transactions on Computers, C-28:291~-299 (1579).
K. Ramamritham and J. A. Stankovic, Dynamic Task Scheduling in Hard Real-Time
Distributed Systems, JEEE Software, 1:65-75 (1984).

. H. 5. Stone and 5. H. Bokhari, Control of Distributed Pfocesses, IEEE Computer, July,

1978, pp. 97-1405.

J. A. Stankovic, An Application of Bayesian Decision Theory to Decentralized Control
of Job Scheduling, IEEE Transactions on Computers, C-34:117-130 (1985).

H. S. Stone, Multiprocessor Scheduling with the Aid of Network Flow Algorithms,
IEEE Transactions on Saftware Engineering, SE-3:85-93 (1977).

H. S. Stone, Critical Load Factors in Two-Processor Distributed Systems, JEEE Trans-
actions on Software Engineering, SE-4:254-258 (1978).

A. N, Tantawi and D. F. Towsley, Optimal Static Load Balancing in Distributed Com-
puater Systems, Journal of the ACM, 32:445-465 (1985).

B. W. Wah and A. Hicks, Distributed Scheduling of Resources on Interconnection
Networks, National Computer Conference, June, 1982, pp. 697-709.

B.W. Wah and J. Y. Juang, An Efficient Protocol For Load Balancing on CSMA/CD
Networks, Proceedings of the Eighth Conference on Local Computer Networks, Oc-
tober, 1983, pp. 55-61.

B. W. Wah and L. Y, Juang, Resource Scheduling for Local Computer Systems with a

COMPUTER SCHEDULING ALGORITHMS 345

34,

35,

56.

51,

58.

Multiaccess Network,"* IEEE Transactions on Comptiters, December, 1985, pp. 1144
]Y‘.S'-lc. Wang and R. J. T. Morris, Load Sharing in Distributed Systems,”” IEEE Trans-
actions on Computers, C-34:204-217 (1985}, _
B, Walker, G, Popek, R, English, C. Kline, G. Thiel, The LOCUS Bistributed Operating
System, Proceedings of the Niith Anmual Symposium on Operating System Principles,
1943, pp. 49-70,

1. Welgarz, Mulliprocessor Scheduling with Memory Allocalion—A Deterministic Ap-
proach, IEEE Transactions on Computers, August, 1980, pp. 703-709. .
E. Williams, Assigning Processes 10 Processors in Distributed Systems, Proceedings of
the International Conference on Paraliel Processing, 1983, pp. 404-406.

S. Zhou, A Trace Driven Study of Dynamic Load Balancing, University of Californig—
Berkeley Technical Report #UCBICSD 871305, September, 1986.

Received | February 1990; revised 23 July 1990

