JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 15, 118—142 (1992)

Intelligent Process Mapping through Systematic Improvement
of Heuristics*

ARTHUR JEUMWANANONTHACHALI

Center for Reliable and High-Performance Compulting, Coordinated Science Laboratory, University of Illinois at Urbana—-Champaign,
Urbana, Ilinois 61801

AKIKO N, Arzawat

University of [llinois at Urbana-Champaign, Urbana, llinocis 61801

STEVEN R. SCHWARTZ

Motorola, Incorporated, MS 1L27-G79, 1501 Shure Drive, Arlington Heights, IHllinois 60004

BENJAMIN W. Want

Center for Reliable and High-Performance Computing, Coordinated Science Laboratory, University of Illinois ar Urbana—Champaign,
Urbana, lllinois 61801

AND

JERRY C. YaN$

Sterling Federal Systems, Incorporated

In this paper, we present the design of a system for automati-
cally learning and evaluating new heuristic methods that can be
used to map a set of communicating processes on a network of
computers. Qur learning system is based on testing a population
of competing heuristic methods within a fixed time constraint. We
develop and analyze various resource scheduling strategies based
on a statistical model that trades between the number of new
heuristic methods considered and the amount of testing performed
on each. We implement a prototype learning system (TEACHER
4.1) for learning new heuristic methods used in post-game analy-
sis, a system that iteratively generates and refines mappings of a
set of communicating processes on a network of computers. Qur
performance results show that a significant improvement can be
obtained by a systematic exploration of the space of possible heu-
ristic methods. © 1992 academic Press, Inc.

* This research was supported in part by National Aeronautics and
Space Administration Grant NCC 2-481 and NGT 50743 (NASA Gradu-
ate Fellowship Program) and in part by National Science Foundation
Grant MIP 88-10584.

T On leave from National Center for Science Information System,
Tokyo, Japan.

Contact author (wah@aquinas.csl.uiuc.edu).

§ Present address: MS269-3, NASA Ames Research Center, Moffett
Field, CA 94035.

118

0743-7315/92 $5.00
Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

1. INTRODUCTION

To meet the resource constraints and processing re-
quirements of real-time computing systems, efficient
scheduling of resources is necessary. Process mapping is
an important clement in real-time systems whose re-
sources are limited and whose applications often have
somewhat predictable behavior. The problem is NP-hard,
and optimal mapping algorithms generally require an ex-
penential amount of time and/or space, Heuristic meth-
ods have been applied, but their design is usuaily ad hoc,
and their performance relies strongly on the characteris-
tics of the target problem and the experience of the de-
signers. Due to the nature of this problem, the number of
possible heuristic methods is very large; as a result, some
of these are likely to be better than the ones proposed by
the experts.

Our goal in this paper is to develop a statistical method
for exploring systematically the space of possible heuris-
tics under specified time constraints. Our method intends
to get the best heuristic method based on a tradeoff be-
tween its solution quality and its execution time. Learn-
ing of heuristics has been explored in our earlier work in
the TEACHER 1.0 system [22], which learned domi-
nance relations, TEACHER 2.0 system {[12], - which
learned heuristics for selection in combinatorial search,

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

TEACHER 3.0 [17], which learned the design of network
configurations for artificial neural networks trained under
a back-error propagation algorithm, and TEACHER 4.0
[18], which studied the scheduling of a learning-by-
example paradigm under resource constraints.

Our focus in this paper is on mapping a set of commu-
nicating processes on a network of loosely coupled com-
puters, with an objective of minimizing the completion
time of the processes mapped. In our work, we assume
that a process cannot be partitioned at run time, that the
mapping is static, that a process is not replicated for exe-
cution on multiple computers, that the system is dedi-
cated for one application at a time, and that the process-
ing behavior of the application can be reproduced easily
at design time. This last assumption is relaxed from the
assumption that the processing requirements of the appli-
cation are deterministic and known exactly at design
time.

The post-game analysis system developed by Yan [19,
21] with Lundstrom {20] is one method that successfully
deals with this problem. Given a set of communicating
processes and a set of input data, the system incremen-
tally modifies the mappings of processes using informa-
tion collected in previous runs. Based on a set of heuris-
tic decision rules (cailed heuristic decision elements), the
post-game system follows three steps: (1) it formulates
multiple optimization subgoals, based on timing data
gathered from program execution, (2) it proposes new
mappings, and (3) it prioritizes and resolves conflicting
proposals. The main advantage of this system is that the
target application is simulated and its mapping incremen-
tally improved, without relying on any abstract program
model or any particular objective function. Previous
studies show that post-game analysis can consistently
out-perform random placement, dynamic load balancing,
and clustering algorithms by as much as 15% in process
completion times.

The heuristic decision elements used in post-game
analysis are developed by designers based on previous
experience on designing similar algorithms. They do not
adapt to different computing conditions, such as hard-
ware configuration, average workload per processor, and
mix of computation and communication of processes. As
a result, it is possible to improve the performance of
these heuristic methods, especially when the methods are
applied in situations different from those that they were
designed for. In this paper, we develop a learning frame-
work for systematically generating and testing new heu-
ristic methods used in post-game analysis for proposing
new mappings. As there are infinitely many possible heu-
ristic methods and time is always limited, our learning
system evaluates an appropriate number of heuristic
methods within a fixed time constraint,

Since the relationship between actions carried out by a
heuristic method and the performance of the resulting

119

mapping found is unknown without actual simulations,
and there is little domain knowledge available for gener-
ating good mapping heuristics, our system must empha-
size how to schedule the limited time in order to explore
the maximum set of potentially good heuristic methods.
Our system evaluates each heuristic method on a se-
quence of test cases that reflect realistic conditions of the
mapping problem. We develop scheduling algorithms
that trade between the number of new heuristic methods
to be generated and the amount of tests to be performed
on each. We analyze our model statistically for the case
where each heuristic method has performance values that
are normally distributed. We develop a method for ob-
taining a near-optimal tradeoff for the special case where
the average performance values of all heuristic methods
are normally distributed.

In the following section we survey the existing work on
process mapping. In Section 3, we present an overview
of the TEACHER 4.0 framework. Section 4 contains im-
plementation details of TEACHER 4.1, our extension to
learning heuristics for post-game analysis. The model of
our statistical sequential selection strategy for evaluating
heuristic methods is covered in detail in Section 5. Ex-
perimental results are presented in Section 6, and conclu-
sions are drawn in Section 7.

2. PROCESS MAPPING PROBLEM

The problem of finding good mappings for a set of com-
municating processes on a network of computers has
been addressed in numerous previous studies, Most stud-
ies attempt to find a mapping that provides the minimum
completion time. Previous work can be classified into
static and dynamic approaches. In this section we outline
these studies along with their drawbacks. We then
present the post-game analysis method that was designed
to address many of these problems. Finally, we present
some possible extensions for improving the system per-
formance.

Static strategies are applied at design time and are usu-
ally deterministic. They can be further classified based on
their analysis methods. Cost-based methods use simplis-
tic objective functions to evaluate merit while graph-
based methods use graph-theoretical models and tech-
niques. The problems with these approaches are that
their abstract models are simplified and do not result in
the optimal solution and that the deterministic optimiza-
tion problems they model are NP-hard.

Dynamic strategies are nondeterministic run-time
strategies based on information gathered dynamically.
This information is likely to be incomplete and out-of-
date due to the overhead of collecting it. Load sharing,
load balancing, bidding protocols, and Bayesian decision
theory are examples of this approach. Results developed
are usually restricted to independent jobs. This is in part

120

due to the difficulty in finding analytic models on the
behavior of interacting processes. The relationship
among the computation time of the processes, the time
spent in waiting for messages from other processes (or
waiting time, depending on the routing strategy), and the
time spent waiting for the processor to become available
(or contention time, depending on the processor schedul-
ing strategy) are too complex to be accurately predicted
and examined in advance. Consequently, dynamic strate-
gies use simplified objectives and computation models.
These models often ignore either the waiting or the con-
tention times, and the workload on a computer is charac-
terized simply by the number of active processes.

Post-game analysis solves some of the problems men-
tioned above. It tries to find the best mapping while using
the minimum amount of resources. Initially, the pro-
cesses are executed on the target machine using a ran-
dom mapping. The method then iteratively refines the
current process mappings using information collected in
between program executions. Proposal-generation heu-
ristic decision elements, which represent independent
optimization subgoals, use the information collected dur-
ing the execution to propose perturbations to the map-
ping. The resulting proposals are only partial descriptions
of the necessary transformation. These proposals are
then combined based on priority-assessment, transforma-
tion-generation, and feasibility heuristic decision ele-
ments to develop the actual transformation. The program
is then executed (or simulated) using the new mapping.
The entire process is repeated until no new changes are
proposed by the heuristic method. One significant advan-
tage of post-game analysis over earlier work on process
mapping is that it does not assume any model of the
processes and the computer architecture.

Figure 2.1 shows the post-game analysis system. The
system is built on AXE, a simulation package that aids in
collecting statistics during simulation and in experimen-
tation with different machine architectures.

Post-game analysis is designed for ensemble architec-
tures consisting of homogeneous and regularly connected
processing elements (or sites), such as hypercube multi-
computers and distributed systems connected by local
area networks. Each processing element has its own pro-
cessor, a local memory large enough to hold any number
of processes, and an operating system that sends, re-
ceives, and routes all messages.

Each distributed program is represented as a collection
of autonomous processes created at compile-time or at
run-time. There is no shared data, and all communication
must be done via message passing. This software model
includes programs implementing divide-and-conquer
strategies (such as quick-sort and merge-sort), black-
board-solving paradigms (such as speech recognition),
and pipelining (such as image processing).

The key to improving the performance of post-game

IEUMWANANONTHACHAI ET AL.

Processes Execution
on

Target Multiprocessors

ke——— New Mapping = Mapping Generator

1— Teasible move 4—]

Performance
Statistics Performance Transformation | List of
Updae Generation | Accepted
Moves

Proposal-Generation

Heuristics Prioritized Sites &Objects

Alternative

o Priority-assessment
Proposals

Heuristics

FIG. 2.1. Post-game analysis framework.

analysis lies in the development of heuristic methods that
can assess the improvement achieved and the transfor-
mations to be taken next, Currently, the designer must
supply heuristic decision elements for proposing and
evaluating mapping decisions. In this paper, we present
and evaluate an automated system for learning new heu-
ristic methods used in post-game analysis. In addition to
the possibility of generating better mappings using the
heuristic methods learned, the new heuristic methods
may better adapt to new architectural configurations,
specific application characteristics, and different mix be-
tween communication and computation, In the following
sections, we describe this population-based learning
framework.

3. HEURISTICS LEARNING

Our goal in heuristics learning is to find a heuristic
method that maximizes the performance of the mappings
generated by post-game analysis, where a heuristic
method in this context is a collection of heuristic decision
elements used in post-game analysis. This problem can
be expressed as a search through the space of possible
heuristic methods, which can be characterized by an ob-
jective to be optimized and a set of constraints to be
satisfied. For this problem, the objective is ill-defined be-
cause the tradeoff between the quality of the mapping
found and the time spent to find that mapping is not well
defined. In addition, time is limited, so the learning pro-
cess must be terminated when time is expended.

Due to the size of the space of heuristic methods and
the amount of time required for a full evaluation of a
heuristic method, it is impractical to find by enumeration
the best heuristic method for all possible objectives, even
using high-speed computers. For example, each thresh-
old in post-game heuristic method is a real number and
can be represented by any one of the infinitely many
possible values. It is also hard to have experts provide
knowledge for generating good heuristic methods be-

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

cause parameters that affect the performance of heuristic
methods might be interdependent in a way unknown even
to the experts. However, the two approaches can be
combined by using expert knowledge to guide the search
for better heuristic methods, and by utilizing high-speed
computers to perform computation-intensive experi-
ments. This approach, called population-based learning,
is studied in this paper.

There have been many systems developed for auto-
mated learning of new heuristic methods. In the following
sections we first present issues important in developing a
heuristics learning system. We then review previous
works on heuristics learning, and the overall framework
of our learning system.

3.1. Issues on Heuristic Learning

There are four important issues involved in heuristics
learning. First, the method for performance evaluation of
heuristics must be defined. This involves (a) comparing
heuristic methods based on performance of these meth-
ods measured over test cases, and (b) verifying the qual-
ity of the heuristic methods selected by the learning sys-
tem. One major difficulty in performance comparison is
that there is no well defined relationship among the vari-
ous performance attributes, such as cost and quality.
Consequently, it is difficult to define what should be
learned by the learning system, and how to show that one
method is better than another. The latter involves nor-
malization of performance values, an area where there
are no systematic methods.

Second, techniques for generating test cases must be
studied. The test cases used must be representative of the
target application domain, and the performance collected
based on these test cases must reflect the performance of
the heuristic method on the target application.

Third, meta-knowledge for generating new heuristic
methods must be developed in the learning system. The
existing generation methods can be classified as model-
based and model-free. Model-based heuristics-generation
methods use a model relating the attributes of the heuris-
tic method to its performance in generating new heuristic
methods. On the other hand, model-free methods gener-
ate new heuristics based on predefined general knowl-
edge and do not depend on the model of the target appli-
cation. An example of such is a random perturbation of
existing methods. Due to less domain knowledge in-
volved, model-free methods are more general but may
take longer to find good heuristics.

Last, the issue of scheduling the available resources in
the learning system must be addressed. This involves
deciding on the number of heuristic methods to test and
the amount of tests performed on each. This issue is im-
portant because the number of heuristic methods is too
large to be evaluated fully within any reasonable time
constraint.

121

Solutions to the first three issues with respect to learn-
ing post-game heuristics are presented in Section 4; solu-
tions to the last issue are described in Section 5.

3.2, Point-Based versus Population-Based Learning

The many different approaches that have been devel-
oped for learning heuristics can be classified into point-
based and population-based approaches [13, 18]. Most
existing learning systems are point-based and maintains
one incumbent heuristic method that is modified in place
by the learning system. Since old heuristic methods are
discarded, substantial knowledge is required in justifying
any change to the heuristic method. As a result, an ex-
plicit model of the problem solver that describes the rela-
tionship between the heuristic method’s specification and
the problem solver’s performance must exist. Further,
since only one incumbent heuristic method is maintained
and modified, there is no need for explicit resource
scheduling.

For the mapping problem considered in this paper, the
relationship between the heuristic method’s specification
and the performance of the target problem solver is un-
known. Hence, there is little domain knowledge available
for guiding the generation of new heuristic methods, and
existing point-based techniques are inappropriate.

The alternative is a population-based approach that
maintains a pool of competing heuristic methods and tries
to find the best heuristic method within the pool. Since
multiple heuristic methods are kept concurrently, and
learning is interleaved among different methods, this ap-
proach is more suitable when only model-free heuristics
generation mechanisms are available, or when model-
free and model-based mechanisms are used together.
Further, this approach is natural to be implemented in a
parallel processing environment, where several heuristic
methods are evaluated concurrently. One of the key is-
sues that need to be addressed in this approach is the
scheduling of resources, which decides which heuristic
methods to be evaluated next and when to generate new
heuristic methods. This is in contrast to point-based
methods where resource scheduling is usually implicit.

One existing example of population-based learning is
the classifier system based on genetic approach [5, 6.
This maintains a pool of heuristic methods and creates
new ones from existing ones that perform well in the
past, while pruning inferior ones from the pool. One limi-
tation of this approach is that it does not take advantage
of the domain knowledge availabie in generating new
heuristic methods. In addition, resource (in terms of
time) is scheduled statically and does not use intermedi-
ate performance results to decide whether testing of a
particular heuristic method should be continued.

To apply population-based learning while considering
resource constraints, we present in the next section the
design of TEACHER 4.0, a system implementing re-

122

TEACHER 4.0 framework.

FIG. 3.1.

source-constrained population-based and point-based
learning. In Section 4, we present the design of
TEACHER 4.1, a system for learning new heuristic
methods used in post-game analysis.

3.3, TEACHER 4.0 Framework

The TEACHER 4.0 (or Techniques for Automated
Creation of HEuRistics version 4.0) learning model [18]
(see Fig. 3.1) is a general framework for implementing
population-based learning systems under resource con-
straints in both knowledge-lean and knowledge-rich do-
mains. It has six main components: (a) Target Problem
Solver, which evaluates the heuristic method using a test
case, (b) Performance Duatabase Manager, which main-
tains the past performance of heuristic methods in the
pool, (c) Internal Critic, which provides feedback based
on the performance measured to indicate how well a par-
ticular heuristic method has performed, (d) Resource
Scheduler, which decides on the best way to use the
available resources, {(e) Heuristics Database Manager
and Generator, which generates new heuristic methods
and maintains a pool of existing ones, and (f) Test-Case
Manager which generates and maintains the database of
test cases used in heuristics evaluation.

If domain knowledge is plentiful, then the Heuristics
Generator plays an important role, and resource schedul-
ing is less critical. In contrast, in knowledge-lean do-
mains, the Heuristics Generator is relatively primitive,
and resource scheduling that decides which heuristic
methods to test and the amount of tests performed is
more important. Such is the case in the process mapping
problem addressed here. The focus in this paper is, there-
fore, placed on developing efficient resource scheduling
algorithms,

To avoid spending a large amount of time on poor heu-
ristic methods, the evaluation process is divided into
small subtests called quanta. This allows the system to
perform additional tests only on heuristic methods that

[EUMWANANONTHACHAI ET AL.

demonstrate some merits during previous quanta. In each
guantum, the Target Problem Solver evaluates the se-
lected heuristic method using test cases provided by the
Test-Case Manager. These test cases can be generated
randomly or supplied by the users.

There are two types of test cases that can be used.
First, we can choose relatively small test cases so that
they can be evaluated fully within the quantum. The al-
ternative is to use test cases dictated by the application
requirements to thoroughly test the heuristic methods.
The advantage of the latter approach is that the heuristic
method is tested under more realistic conditions; how-
ever, its drawback is that if the evaluation of the test case
is not completed at the end of the assigned quantum., it is
difficult to assess which heuristic methods to test next. In
the process mapping problem, performance of heuristic
methods scales well (to a limited extent) between small
and large test cases. Therefore, we opt to test the heuris-
tic methods selected using small test cases and verify the
performance of the final method selected after learning is
completed.

At the end of a quantum, the Resource Scheduler de-
cides on one of the three following actions: (1) select the
next heuristic method to evaluate from the pool, (2) gen-
erate a new heuristic method to be placed in the pool and
possibly remove an existing one from the pool, and (3)
select a group of the best heuristic methods and stop
learning when time is expended. The decision to take is
based on the resource scheduling algorithm and the per-
formance of existing heuristic methods in the pool.

If choice (1) or (3) is selected, then the resource sched-
uler will use the feedbacks provided by the Internal Critic
to select the heuristic method(s) from the Heuristics Da-
tabase. If choice (2) is selected, then the Heuristics Gen-
erator is used to generate a new heuristic method. In
knowledge-lean application domains, mechanisms for
generating new heuristic methods are rather simple. Ex-
amples include simple strategies, such as random or
greedy, and genetic operators, such as crossover and mu-
tation.

4. LEARNING HEURISTICS FOR POST-GAME ANALYSIS

In this section, we present the implementation of
TEACHER 4.1 for learning new heuristic methods in
post-game analysis. We describe our solutions to three of
the four issues discussed in Section 3.1. First, we de-
scribe the type of post-game heuristic decision elements
that we want our system to learn. Next, we discuss the
techniques for evaluating the performance of heuristic
methods during learning as well as after learning. We
then discuss briefly the method for generating test cases
in our experiments and the structure of the Heuristics
Generator. We cover resource scheduling in more details
in the next section.

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

4.1. Post-Game Heuristics

In our learning system, the post-game analysis system
[20] is the problem solver for the target application. The
problem solver can be considered as a coliection of rules
or procedures, whose operations are controlled by a set
of parameters. A heuristic method is defined when the
rules or procedures as well as their control parameters
are specified. Recall that rules or procedures used in the
problem solver are called heuristic decision elements.

There are three parts in the post-game analysis system
that can be improved by learning: proposal generation,
priority assessment, and transformation generation (see
Fig. 2.1),

The proposal-generation component consists of a col-
lection of heuristic decision elements used for generating
proposals based on independent optimization subgoals,
Each proposal-generation heuristic decision element can
be represented as a record composing of four fields: (a)
the reason field that specifies the motivation behind the
decision elernent; (b) the quantifier field that specifies the
scope of the decision element; (¢) the condition field that
specifies the condition in which proposals are generated;
and (d) the action list that specifies the proposals to be
generated. Each action is a record containing the action
type, parameters for the proposal, and an expression
specifying the weight of the proposal. In generating a new
proposal, each heuristic decision element is applied ac-
cording to its quantifier field. The condition expression of
each decision element is then evaluated for cach subject
specified by the quantifier. When the evaluation of an
expression returns a nonzero value, each action in the
action list is executed to generate a proposal and its cor-
responding weight.

There are two priority-assessment heuristic decision
elements, each of which can be represented by an expres-
sion. One of these specifies the priority of each process,
and the other specifies the priority of each site. The two
expressions are used for comparing two processes or two
sites in order to determine their relative importance. The
partial orders obtained are used to determine the order in
which moves are considered.

The transformation-generation component determines
the transformation that will be applied to perturb the cur-
rent mapping of the processes. It consists of two types of
heuristics: the transformation-generation heuristic deci-
sion element that generates possible transformations
from the ordered lists of sites and processes, and the
feasibility heuristic decision elements for checking the
feasibility of a move generated by the transformation-
generation heuristics. For the transformation-generation
heuristic decision elements, there are currently two types
of moves that can be generated: migration [20] that mi-
grates the top-order process to the top-order site, and
swap [21] that swaps the locations of the two top-order
processes. For the feasibility heuristic decision elements,

123

there are two different sets, each of which can be repre-
sented as a collection of expressions stating the condition
in which the transformation would be infeasible. For each
transformation considered by post-game analysis, an ex-
pression in the collection corresponding to the type of
transformation is evaluated. If any expression returns a
nonzero value, then the corresponding transformation is
rejected.

To apply learning, we have modified the post-game
analysis system so that all the heuristic decision elements
are represented as data structures readable in the form a
data file.

4.2. Internal Critic

The objective of the Internal Critic is to evaluate how
well the problem solver has performed using the given
heuristic method. For our target application, the perfor-
mance of post-game heuristic method A on test case v
consists of two measurements: c(/, v), the cost or the
amount of time needed to find the mapping, and gk, v),
the guality of the mapping found, where g(h, v) is the
reciprocal of m(h, v), the completion time of the given set
of processes mapped.

There are two problems with using the quality and cost
measures to evaluate the performance of heuristic meth-
ods. First, the values of these measures are test-case
dependent and can vary widely. This makes it difficult to
compare the performance of heuristic methods that are
evaluated on different test cases. Hence, these values
need to be normalized so that they are consistent across
the entire range of test cases. In this case, since the goal
is to find a heuristic method that performs better than the
one used in the original system, we can use the perfor-
mance of the original heuristic method [21] as the basis
for normalization. ¢,(4, v), the normalized mapping cost,
and m,(h, v), the normalized completion time of the pro-
cess mapped, can be computed using the equations

_ clh, v)
D = D)+ con®) @1
mh, v) = ik, v) (4.1b)

mlh, v) + moe(v)’

where 1, (v) and ¢, (v) are, respectively, the comple-
tion time and the cost of the original post-game heuristic
method on test case v. Note that the normalized values
are always between 0 and 1, and that the original post-
game heuristic method has a normalized cost and com-
pletion time of 0.5. The normalized quality of the map-
ping, g.(h, v), is defined as the reciprocal of m,(h, v).

_ m(h, v) + morig(v)

qulh, v) = oy (4.1c)

124

The second problem is that the proper tradeoff be-
tween quality and cost measures is ill defined: the quality
of the mapping generally improves as more time is spent
on finding the mapping. However, only the following un-
realistic boundary cases are known: (a) unlimited time for
the heuristic method that finds the best mapping, (b) zero
time for the heuristic method and hence zero cost. In this
paper, we assume that the tradeoff is defined by a family
of heuristic functions of guality and cost, which are used
by the Internal Critic to distinguish between heuristic
methods that perform well from those that do not. A
family of functions are used because a single function is
inadequate in capturing all the different levels of trade-
offs in different applications. We assume that the family
of functions is parameterized by T... and are repre-
sented as follows:

B qniht, v)
QToca) = MEX 2 s 0 5 T

4.2)

The parameter T, controls the relative weight between
cost and quality by adjusting the range of the normalized
cost while maintaining the cost of the original heuristic
method at 0.5. The effect of Eq. (4.2) is to scale ¢,(k, v) so
that it is possible to investigate aiternatives where cost is
dominant, or where performance is dominant, or both.
Note that Eq. (4.2) is not unique, and our choice is heu-
ristic in nature.

Unfortunately, the performance of each heuristic
method can vary widely even when evaluated on the
same test case but with different initial mappings. There-
fore, each test case must be evaluated over a number of
initial random mappings until a given confidence level has
been reached. In practice, there is usnally a limit on the
number (say 30} of initial mappings that can be used for
evaluating a test case. For each initial mapping, the per-
formance is computed using Egs. (4.1) and (4.2). The
evaluative feedback of a heuristic method on a test case
is then the average of its performance over the set of
initial mappings.

4.3, Performance Evaluation of Heuristics

In this section, we describe methods for evaluating the
performance of the heuristic method selected by the
learning system. This involves determining the statistical
distribution of performance of the heuristic method se-
lected on test cases similar to those used in the learning
system, and finding the scalability and generality of the
heuristic method on larger test cases and test cases
drawn from different application problems.

In order to compare the performance of one heuristic
method to that of another, it is not enough to use the
average performance values, as the average performance
conveys no information about the distribution of perfor-

IEUMWANANONTHACHAI ET AL.

mance values. Further, post-learning evaluation of per-
formance should not be compared using (7 ...} defined
in Eq. (4.2) because Q(Tycare) is heuristic and may not
capture the proper tradeoff between cost and quality. To
show simultaneously the cost and quality of different
heuristic methods, we need to show the quality of the
heuristic method for each test case against its cost for the
same test case. This allows the relationship between cost
and quality to be depicted without predefining a heuristic
performance function. Such plots are shown in Section
6.3.

A problem in showing the relationship between cost
and quality of different heuristic methods evaluated on
different sets of test cases is that their values may not be
in the same range. Hence, all quality and cost values
must be normalized. To give consistent basis for compar-
ing performance values, we choose to normalize them
against the average quality and cost of the original post-
game heuristic methods. That is, the normalized quality
and cost are

. _ clh, v)
&h) = iy (4.3a)
. _ mih, v)
B O = E e)] 4.36)
Gulh, v) = E__’[:::z:-gs;)], (4.3¢)

where E[m..(v)] and E[c,.(v)] are the average comple-
tion time and the cost of the original post-game heuristic
method on test case v. Note that this normalization is
meaningful only if the expected value is found for test
cases belonging to a set with a common distribution of
performance values.

4.4, Test-Case Generation

The Test-Case Manager of TEACHER 4.1 is used to
generate a set of test cases that are representative of the
problem domain and the hardware environment and that
can be evaluated within a reasonable amount of time dur-
ing learning.

A test case in this case is represented by the specifica-
tion of the set of communicating processes to be mapped,
the hardware on which the processes are mapped, and
the input values to the processes. An example of a test
case is a merge-sort program on a 16-node hyercube ma-
chine evaluated with a data set of size 300. The same
program running on different machine architectures or
with different sizes of array to be sorted is considered to
be a different test case. Programs using different algo-
rithms, such as merge-sort and quick-sort, are considered
different test cases as well,

In the analysis carried out in this paper, we assume

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

that the quality and cost values of test cases are drawn
from a common joint distribution. In reality, the cost and
quality values of a test case are application dependent
and cannot be controlled. In our learning experiments,
we tried to select test cases so that their quality and cost
values satisfied the assumptions made in our analysis. In
particular, we chose test cases that had a constant num-
ber of processes to be mapped on a given architectural
configuration, processes that had the same communica-
tion paitern, and execution times of each code segment
drawn from a common distribution.

Moreover, we assume that small test cases are used,
and the verification of scalability of the heuristic method
learned is carried out in a post-learning phase. Of course,
the attribute we use to distinguish test cases in one set
from those of another set is rather ad hoc. We plan to
study in the future the problems of using test cases of
different types and the normalization of performance
results of these test cases during learning,

4.5. Generation of Post-Game Heuristics

The generation of new post-game heuristics is difficult.
First, a heuristic method has both numeric and symbolic
parts, and the symbolic part is more difficult to modify
automatically. Further, it requires substantial amount of
domain knowledge in order to invent new heuristic deci-
sion clements that are missing in the current heuristic
method. In this paper, we only consider automated gen-
eration methods that start with an initial pool of heuristic
methods and transform them into new ones by a few well
defined operators.

To develop the Heuristics Generator, we must first
identify its desirable characteristics. The learning pro-
cess can be modeled as a search within the heuristics
space; the operators used by the Heuristics Generator
control the direction in which search is conducted. Ide-
ally, the area containing heuristic methods with the high-
est performance should first be located. This is difficult
for knowledge-lean application domains, Hence, the
Heuristics Generator must explore different regions of
the heuristics space simultaneously and focus on promis-
ing regions based on evaluative feedbacks obtained dur-
ing learning.

Initially, when learning starts, there is no performance
results on any heuristic methods. Without domain knowl-
edge, we assume that a random sequence of mutation,
insertion, and deletion is applied initially on the original
post-game heuristic methods in order to generate new
ones. Subsequently, there are four types of operators for
transforming a heuristic method into another: cross-over,
mutation, insertion, and deletion. Cross-over is a global
operator that combines features from two existing heuris-
tic methods and splits them into two new methods. Muta-
tion is the most commonly used operator that modifies
the parameter value of an existing heuristic decision ele-

125

ment. For our application, mutation can be applied to (a)
adjust the threshold of the proposal-generation heuristic
decision elements, (b) change the sites and processes pri-
ority-assessment heuristic decision elements by selecting
from one of six possible combinations, and (¢) change the
transformation-generation heuristic decision element by
selecting from one of six possible choices. The modifica-
tion may be carried out in the direction that shows the
maximum improvement in performance in the past. Note
that both cross-over and mutation are commonly used in
genetic algorithms and are wsed more frequently when
past performance history is available. Finally, an inser-
tion operator adds a new proposal-generation heuristic
decision element to the existing heuristic method, while a
deletion operator removes one of the existing proposal-
generation heuristic decision element.

A special case of the mutation operator is the greedy
operator, which in our current prototype has three
phases. In the first phase, the generator locates an exist-
ing heuristic method that performs the best in a region of
heuristics space. Next, the generator tries to find the se-
quence of transformations that cause the greatest im-
provement in performance within that region. Last, a
new heuristic method is generated from the heuristic
method selected using the sequence of operators found in
the second phase. Qur current implementation is rule
based, so additional operators and rules can be added
easily.

In our prototype, we set the probability of random gen-
eration based on the number of existing heuristic meth-
ods. It is reduced linearly from 1.00 when no existing
heuristic method is in the pool to 0.10 when the number
of heuristic methods reaches 65. The remaining genera-
tion operators are split between the cross-over and the
greedy mutation operators, with mutation selected 80
percent of the time.

5. STATISTICAL CANDIDATE SELECTION UNDER TIME
CONSTRAINTS

In this section, we describe and analyze the resource
scheduling strategies for our learning framework. The
first part of this section outlines the problem, previous
work in the area, and difficulties found in applying pre-
vious results to our problem. Next, we describe our pro-
posed scheduling strategies that address these difficul-
ties. This is followed by the evaluation of various
selection strategies, and their application to the learning
of post-game heuristic methods.

5.1. Problem Overview

In TEACHER, we are faced with choosing the best
heuristic method from a pool of heuristic methods, each
of which is associated with a set of performance values.
This problem can be restated in statistical term as fol-

126

fows: given a set of populations (or candidates) consisting
of normally distributed numbers (with unknown means
and variances), the goal is to select the one with the
highest population mean by testing a certain number of
samples from these populations.! In our case, the popula-
tions are post-game heuristic methods, and the numbers
comprising the elements of the populations are the per-
formance values associated with applying the heuristic
method to the given test cases.? Making one pick from a
population is analogous to testing the heuristic method on
one test case. The goal is to chose the population with the
highest mean within a given amount of tests (or picks).

In the past, this problem of finding the population with
the best mean has been known as the selection problem.
Previous work in this area can be classified into two
types. The first type is known as the stopping problem
and was first studied by Stern in 1948 [14]. Its objective is
to develop a strategy for selecting populations for testing
so that the amount of tests required to reach certain stop-
ping criteria is minimized. The second type is known as
the allocation problem and was pioneered by Bechhofer
in 1954 [1]. The original problem suggested in his paper is
to decide the optimal allocation of picks given a fixed
total number of picks, assuming popuiation means and
variances are known. Optimal solutions to both types of
problems are unknown. Many extensions have been pro-
posed to accommodate various tradeoffs and relaxed as-
sumptions.

The major problem in applying traditional statistical
methods to the heuristics selection process is that the
emphasis has been on testing a finite set of populations,
rather than on finding the best population from a large set
in a given time constraint. The case in which there are
possibly more populations than total allowed testing time
has not been addressed before. This condition is highly
relevant in our case because we know our deadlines and
often have far more options than we could possibly ex-
plore.

To address the selection problem in heuristics learning,
the time allowed can be broken down into two separate
parts: the first part finds the number of populations that
are to be tested in more detail in the second part. Finding
a suitable number of populations to test in the first part is
studied in the next subsection. Once the populations to
be tested and the time allowed for the second part are
determined, scheduling the tests of populations in the
second part is equivalent to the allocation problem stud-
ied in statistics. Note that the objective of the statistical
allocation problem is to maximize P(CS'), the probability

! Population mean and variance are properties of a population. They
can be estimated by the sample mean and variance if limited samples
are drawn from the population.

2 A test case is provided by the Test-Case Manager. See Section 4.3
for details.

IEUMWANANONTHACHAI ET AL.

of correctly selecting the population with the highest pop-
ulation mean when time is expended, whereas the objec-
tive of our selection problem is to maximize the average
population mean value of the population selected. Maxi-
mizing P(CS) is not meaningful in our case because the
number of possible populations are too large to be evalu-
ated in the time limit. Due to this difference in objectives,
most of the analysis used in statistical allocation prob-
lems do not apply to our problem.

Existing allocation strategies can be further classified
into static and dynamic. Static allocation strategies have
a selection sequence fixed ahead of time, independent of
the values of the picks obtained during selection. One
simple strategy of this type is the round-robin strategy
that takes samples from each population in turn. It is a
good strategy for maximizing the worst-case P(CS) when
all populations have the same variance [2]. Its drawback
is that the number of picks made from each population is
the same, meaning that the worst population is tested to
the same extent as the best, an obviously inefficient way
of using resources. This problem is inherent in all static
allocation strategies.

In contrast to the static approach, dynamic (or adap-
tive) allocation strategies select the population for testing
based on previous sample values. An example of this is
the greedy policy which takes samples from the popula-
tion that currently has the maximum sample mean. The
potential problem with this approach is that it considers
only populations that look good in the current stage, and
might discard the best population in an early stage. An-
other example is the strategy proposed by Tong and Wet-
zell [16], which dynamically (or adaptively) selects the
next population for testing based on estimated means and
variances of populations in order to optimize P(CS) when
time runs out.

5.2. Resource Scheduling Strategy

Based on the problems described in the previous sec-
tion, the scheduling strategies that we develop must take
limited resources like testing time into consideration, and
must be able to deal with situations in which there are
more populations so that it would be impossible to test all
populations even once. Under these conditions, the
scheduling strategies must trade carefully between the
number of populations to be tested and the accuracy of
the sample-mean values. If more populations are tested,
then the accuracy of the sample-mean values would de-
crease. However, if more samples are tested from a pop-
ulation, then less number of populations are tested in the
time constraint, and there is a greater chance of missing a
good population.

There are two parts to this problem. First, the desirable
fevel of tradeoff depends on factors such as the distribu-
tion of the populations, the distribution of the perfor-

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

mance values of each population, and the distribution of
the testing time (or sampling overhead) required for each
test. In the heuristics learning system, these various dis-
tributions are unknown and need to be estimated before
learning begins. Second, the scheduling strategies devel-
oped must select the most appropriate level of tradeoff so
that we can expect to find a population with a large mean
value when time is expended. The design of such strate-
gies is difficult, and optimal strategies are not expected to
exist.

In this section, we describe the solutions developed for
these two problems. We first describe the method for
estimating the various distributions of the populations
before learning. We then present the multistage selection
strategy. Analysis of the performance of several multi-
stage strategies is presented in Section 5.3.

5.2.1. Presampling Strategy

To estimate the statistical parameters of the target ap-
plication, we assume that the initial 10% of T, the allotted
learning time, is assigned to presample the populations.
During this period, the learning system will evaluate as
many heuristic methods as possible and collect perfor-
mance data in terms of sample means and sample stan-
dard deviations. Each heuristic method is evaluated on
four different test cases to assure a reasonable confidence
in its statistical values.

At the end of presampling, the learning system collects
the performance data and computes (a) an estimated av-
erage (uo) and variance (o§) of all the sample means of
candidates, (b) an estimated variance o? of each candi-
date, assuming all candidates have the same variance,
and {(c} the average sampling overhead, ¢ = T/(10k),
where £ is the total number of tests performed during the
presampling period. The average number of tests that can
be performed in the entire duration is estimated tobe T =
T/c = 10k. The resource scheduler then uses these esti-
mates to choose the appropriate selection strategy along
with appropriate parameters values.

127

5.2.2. Multistage Testing Procedure

We formulate the general selection strategy G(T) as a
series of stages, Gi(g:, 4, n;), where i ranges from 1 to m,
the number of stages. Each stage is characterized by a
triplet consisting of (a) g;, the particular allocation strat-
egy to be used for the stage, (b) t;, the duration of the
stage, and (c) »;, the number of populations to be consid-
ered for testing during the stage [9]. This multistage test-
ing procedure (see Fig. 5.1) can accommodate both static
and dynamic allocation strategies. With this method, the
first stage corresponds to coarse initial testing to weed
out unworthy populations, followed by a more careful
evaluation of the better populations. Only populations
that have the top n;.; sample mean values at the end of
stage i are taken into stage { + 1 for further testing. Note
that in the last stage, only the top population needs to be
selected. This method allows many new populations to
be tested in the early stages, while providing more thor-
ough testing of promising populations in later stages.

The performance of multistage testing depends on the
number of stages and the parameter values for each
stage. The values of these parameters must be selected
properly based on the given problem. Factors that affect
these values include the size and distribution of each pop-
ulation, the total amount of testing time, and the number
of possible populations and their distributions. To de-
velop a procedure for determining the appropriate param-
eter values based on the given distributions, we need to
know their relationship with the performance of the mul-
tistage procedure. This is presented in the next section.

5.3. Performance Evaluation of Multistage Selection
Procedure

In this section, we evaluate the performance of several
multistage selection strategies. We focus on only single-
stage and two-stage strategies because (a) the amount of
improvement in going from two-stage strategies to three-

g , (guidance strategy) £, g,
t, (duration of stage) t, t
n, (number of n, n
- . m
I candidates in sta%e) ’
| | : ¢ oo ; |
Stage 1 t Stage2 | , Stage m
0 ! 2 T
Time
i
FiG. 5.1. Multistage testing procedure.

128

stage ones is less than that of going from one-stage to
two-stage ones, and more importantly (b) the number of
parameters that must be selected increases with the num-
ber of stages, and there is no analytic method for deter-
mining the best values for these parameters.

Monte Carlo simulations and mathematical analysis
are two methods for evaluating performance. Although
mathematical results are more desirable, they may be too
complex to be useful in our problem or may be impossible
to derive. We compromise by deriving analytic results for
simplified cases and by verifying the validity of the ana-
lytic results through Monte Carlo simulations of the ac-
tual learning problem. We first present the assumptions
used in our analysis. We then present general steps used
in analyzing the multistage strategies along with an upper
bound on their performance. These steps are then applied
to the special case in which the sampling overhead is
unity for all populations. We analyze the control of static
strategies and present simulation results on dynamic
strategies. The analysis of two-stage static strategies
(round-robin in both stages) is used as heuristics to deter-
mine the appropriate parameter values when a dynamic
strategy is used in the second stage. Last, we present the
results for the case with stochastic sampling overheads.

5.3.1. Assumptions

There are three assumptions we made on the distribu-
tion of a population in the analysis of the multistage pro-
cedure.

First, we assume that each population is normally dis-
tributed, and that sample values in a population are inde-
pendent and identically distributed (i.i.d.). Empirical ver-
ification of this assumption is shown in Table 6.1.

Second, we assume that the mean of each population is
drawn from a known distribution f,, and that the values
of all population means are i.i.d. That is, a randomly
selected population has a population mean that is nor-
mally distributed, and is independent of means of other
populations. In many cases f, can be approximated as
normal. We further assume that each population has an
infinite number of samples. This assumption can be veri-
fied for reasonably large training sets and deadlines.

Last, we assume that the standard deviation of each
population is drawn from a known distribution f, and
that the values of all population standard deviations are
i.i.d. Further, we assume that the mean and standard
deviation of each population are independent.

The assumptions specified here are somewhat more
restrictive than the ones used in studying traditional se-
lection problem [7]. Traditional analysis of selection
strategies do not assume any distribution of the popula-
tion-mean values because (a) it deals with finite number
of populations and does not need to determine the most
appropriate number of populations to test in the time

IEUMWANANONTHACHAIL ET AL.

allowed, and (b) its goal is to optimize P(CS) instead of
maximizing the average performance of the population
sclected.

5.3.2. Analysis of General Multistage-Selection
Method

We present in this section detailed analysis of multi-
stage selection strategies, assuming that the sampling
overhead is unity. We discuss the general steps for ana-
lyzing stage by stage of such strategies. We then present
an upper bound on the performance.

Let T be the duration of the current stage, # be the
number of populations to evaluate in this stage, and & be
the number of populations that will be seclected for further
evaluation in the following stages, if any.

The key to the analysis depends on finding the joint
probability distribution (fj,:.) between the sample mean,
the population mean, the population standard deviation,
the number of samples drawn from each population, and
any other variables used in selecting the next heuristic
method for further testing., For static strategies, fiom: de-
pends only on X, the sample mean, u, the population
mean, o, the population standard deviation, and s, the
number of samples; that is, fiom = fi 0 Note that s is a
strategy-dependent random variable and may be different
for different populations. For dynamic strategies, since
the candidates are selected based on some parameters of
the joint distribution, each pick must be treated as an
individual stage, and the joint distribution must be up-
dated after each pick. In this case, the analysis is gener-
ally complex because selection is based on the dynamic
ordering of candidates in the pool, which depends on the
sequence of past decisions made. To analyze dynamic
strategies, the joint distribution of the performance val-
ues of all populations based on their performance ranking
must be maintained. The steps required for analyzing dy-
namic allocation strategies are too complex and strategy
dependent and will not be discussed here.

For static allocation strategies, the selection sequence
is fixed ahead of time and all populations are treated in
the same way. Therefore, only the joint probability distri-
bution of a random population is needed. In this case,
there are four general steps in the analysis of each stage
using information available from the analysis of previous
stages.

(1) Determine f;, s, the joint probability distribution
(p.d.f.) for a random population at the end of the current
stage. For the first stage, fz , - can be found based on the
allocation strategy, f,, the given distribution of popula-
tion means, and f,, the given distribution of population
standard deviations. For any other stage, f; .. can be
found based on the allocation strategy used in the stage
and fi oo ien(X, s o, 8) from step (4) of the previous

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

stage. This is the only step in which the chosen allocation
strategy may affect the performance.

(2) Determine F; and £, the cumulative distribution
function (c.d.f.) and p.d.f. of the sample means of the
candidates evaluated at the end of the current stage. This
is the marginal distribution of ¥ and is derived based on
Siposlxs g, o, 5) from step (1):

+

s =3

) Sy, o,) dy do. (5.1)

y=-

(3) Determine f; .., the p.d.f. of the populations that
have one of the top k£ among n sample means at the end of
the current stage. The subscript notation (& : n) means the
top & out of » populations.

At the end of each stage, we select the &k populations
with the highest sample means to be evaluated further in
the following stage, if any. f; .., the p.d.f. of a random
population from among the & selected populations, is sim-
ply the average of the top 4 order statistics [8] of the
sample means (fz(x):

f;,(k:n)(x) :u'&";;x_) E

fup—k+1

i (‘f) [l [1 — Fa(olr.
(5.2)

(4) Determine f; . o s «:m» the joint p.d.f. for the k pop-
ulations with the top sample means among »n original pop-
ulations. This is the only result that must be carried over
to the next stage for static strategies because, in this
case, the dependency among populations at the end of
the current stage can be ignored. Using Bayes’ theorem,
we derive the equation

.ﬁ,u.a’,:,{k:n)(xs My T, S)
= P[x, u, 0. 5 | x is in the top k]

_ Plxisintop k| x, g, o, s fr, .. (¢, i, o, 8)
- Plx is in top k]

_ fpn®) fu;q?;?! s G, S)_ (5.3)

For the last stage, & = 1. Equation (5.2) is reduced to

Sraim(x) = n fix)[Fe ()] (5.4)

In the last stage, it is also necessary to find fieiecreds
the distribution of the population mean of the candidate
with the highest sample mean, This can be found from the
marginal distribution of 5 , »s.1:m (%, i, &, 5) from the last
stage. By using Eqgs. (5.3) and (5.4), we obtain

129

f,w(sefecred)(#)

_ :; j+m

=—z

j-:_m.ﬁ.#,d.s,{]:n)(x! m, O, S) dO’ dx

DR
$

x=-—

| HEOP T fopatt o 0,) do di.
(5.5)

The expected value of the population mean of the candi-
date selected is

E{ﬂ'(sefected}] = J;::_m yfp(selec:ed)(y) dy (56)

For comparison, the performance of any multistage se-
lection strategy is bounded by that of a hypothetical (but
unrealistic) strategy which is able to determine the candi-
date with the highest expected performance after sam-
pling each candidate only once. If the number of tests
that can be performed in the given time limit is 7, then the
maximum number of heuristic methods that can be sam-
pled by the hypothetical strategy is also 7. The distribu-
tion of the sample mean for the best candidate among T
populations is the Tth order statistic of the population-
mean distribution. Let F,(x} and f,(x) be the c¢.d.f. and
p.d.f. of the population mean of a random heuristic
method, then the p.d.f. of the best of T random heuristic
methods is [8]

Jbes:(x) = TIF,)" f,.(0). (5.7}

This upper bound is somewhat loose because it as-
sumes that we would be able to determine the candidate
with the best population mean every time with one sam-
ple from each population. Moreover, it does not take £, ,
the distribution of the population standard deviation, into
constderation,

5.3.3. Static Allocation Strategies

In static allocation strategies, the selection sequence is
fixed and is independent of the values of the picks made
during the selection process. Since the sequence is fixed,
it is likely that testing time be wasted on some popula-
tions that have already shown poor performance from the
few initial tests. This could be partly overcome by using a
multistage selection process which can prune off inferior
populations early in the process.

Static strategies do have one point in their favor: they
are much easier to analyze than dynamic ones. In addi-
tion, they can be used in the first stage of a multistage
process employing dynamic allocation strategies in order
to obtain initial statistics. In this section, we analyze the

130

performance of the single-stage round-robin and the two-
stage round-robin strategies. We also provide a method
for determining the parameter values for these strategies.

The single-stage round-robin strategy, G(RR, T, n),
takes samples (or tests) from each population (or candi-
date) in turn, where » is the number of populations to be
evaluated, and T is the deadline. Given » and T, s, the
number of tests for each population, is constant and is
equal to T/n when the sampling overhead is unity. As-
suming that each population has normal distribution with
variance o2, population mean g, and s sample drawn, the
sample-mean values have a normal distribution with
mean g and variance o %/s. Assuming that the distribution
of all population means is f, and the distribution of all
population standard deviation is f;,, we can determine the
joint distribution of the population mean, population
standard deviation, and sample mean when the deadline

£ =77 s (x

Fusaeeis) = s {77 B (5

y. o

IEUMWANANONTHACHAL ET AL,

is reached:

fiposl, i, o, 5)

Foprst | 1o @, a2) fo0) for s = =

0 otherwise
fM(M)fD'(O-) (x— w2 in/T) T
—(x— ain f = -

=soV2anlT ¢ T (5.8)
0 otherwise

From this equation, we follow the general steps de-
scribed in the previous section to arrive at the distribu-
tion of the sample mean at the end of the stage (Eq. (5.1))
and the distribution of the population mean of the candi-
date selected when time runs out (Egs. (5.5) and {5.6)):

< 77 P (5] 0. D) 11t dir | dr s}

o 4+ 4+
El piseteerear] = L=7If}"“:”)(x) J“Fim j .

= [Fuw) ElulF = x] dx.

For the special case in which f, is N(uy, o} and all
population standard deviations are constants equal to o,
we derive a more specific result using Egs. (5.4), (5.8},
and (5.11),

fl N o

X(l:n (JC) = e”(l-t-uo)-/Z(rrmN-i—gg])

Featon V2m(o /T + o})
n—1
S U B
“® (m) 5.12)
= xad + wotnlT .
E[Ju-(se!'ecred)] = jx:_x —ow—io’%fi’“m)()“) dx
—4 + j+m U—%yne_yzjz [(I)(y)]n—f

Fo v=== \2m(cn/T + o) ’

(5.13)

where ®(x) is the c.d.f. for an N0, 1) distribution.

T
, ;) fu(») folo) dy do. (5.9
“. =, %) folo) (5.10)
tfi pos X, 1, o, (1/n))
00 do dp dx
5.1

From the equations above, it is clear that in this case
only the ratio between o2 and T affects the performance.
As T increases or o2 decreases, the average performance
of the population selected by this strategy improves. This
happens because the accuracy of the sample mean as a
predictor of the population mean increases as more time
is given or if the variances are reduced.

In the simple one-stage round-robin strategy, the only
parameter that can be adjusted is », the number of popu-
lations to be evaluated. One method for determining the
optimal r, 1 = n = T, that leads to the optimal E{ t¢serecrea:}
for a given problem and deadline is to find » that makes
AE[fhseieciear)/dn = 0. In most cases, however, this cannot
be solved easily because it is difficult to get a closed-form
solution for the integration.

If there is only one n that makes the derivative goes to
0, then there is a simple method for finding the optimal
value of n for the given problem. In this case, if
El sisercereay) at ny is larger than that at s, and ny < na,

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS 131
then n,,, << na; if 5y > ny, then n,,, > n,. Figure 5.2a shows "
that this condition is usually met. Under this condition, =filkln —k+1=i=n [] Afu. o, six).
the optimal n can be found by a binary search. kel 5 14
For more complex multistage strategies using the (5.14)
round-robin strategy in the first stage, we need to derive
the joint distribution of the population means and sample
means of the top & among # populations at the end of the
first stage using Bayes’ theorem:

The above equation is equal to 0 unless x; << x4 for all 7,
a — k + 1 =i=n. Using order statistic [8], we can derive
filxln —k+ 1 =i=n);

‘ﬁ,u,u,:,(k:n)(xis iy Tiy Siln - k + 1 = i = n) f:;(xi[n B k + I == n)
— . . Ay, — -+ = [= n! _ z
iy o, silxpyn —k+ L =i=n) - [Fo (o n)]

Xﬁ(x;[n —k+t1l=i=n (n — k) If}(JC,’). (5.15)

f=n—k+

We can combine Egs. (5.14), (5.15), and (5.8) to simplify the result as follows:

f?,u.,u,s,(k:n}(xi’ MHis 0, §; l n—k+1=i=n)

! - T
(’;ﬁfw [F}(xn—k-»‘-l)]n—k].—.[ﬁ\u,o‘,s (-xi Mi, O, ;) fu(/—bi)fu-(a'i)

ek (5.16)
where s; = Tinforalli, (n —k+ D=i=n, and X, js; < Xnoper < + + « < Xy

0 otherwise,.
If the next stage is a static strategy where the selection of candidates is independent of the past performance of the

candidates selected, then Eq. (5.16) can be approximated using just the average of the joint distribution for the top &
candidates at the end of the stage. This can be derived by substituting Eqs. (5.2) and (5.8) in Eq. (5.3):

‘}(“?.M‘G,S.(k:n](xa M, o, S)

1 n
>

i=n—k+1

(1) UF T 1T = Bl fup, (x

The two-stage round-robin strategy, {G1(RR, rT, 1y,
Go(RR, (1 — 1T, ny)}, is built on the single-stage round-
robin strategy. In this strategy, a fraction r of the total
time T is used in the first stage to evaluate n; populations.
At the end of the first stage, n; populations (n, << n;) with
the largest sample means are taken into the second stage
for further evaluation. The second stage takes all the re-
maining time and also uses a round-robin strategy.

For each stage, the number of tests performed on
each population is the same with s, = rT/n,, and 5, =
(1 — NT)/n,, assuming unit sampling overhead. The
sample-mean value of a population at the end of the sec-
ond stage is dependent on (a) «, the sample-mean value of
this population at the end of the first stage after s, tests,
and (b) x, the sample-mean value found for this popula-
tion at the end of the second stage after s, + s, tests.

.u-” o,

T

Dhwhie =T 5.17)

otherwise

Given & and x for a population, we can determine v, the
sample-mean value of this population for the s, tests per-
formed in the second stage:

Y = (51 + $2)x — s1u

- (5.18)
From this and the law of total probability [3],
o
f@ =7t ay, (5.19)

we can find ff-fz,l,”, the joint p.d.f. of the population mean

and the sample mean of the candidate selected at the end
of stage 2,

132

E Werelecta]

o b W~

F 1:T=5000
[2:T=2000
P 3:T=1000
H : 4:T=500
P 5:7=200
T 6:7=100
o=1.0,F, :NO, 1
1

T I
066 08 1

-0 | l‘ — !‘
0.4
niT

IEUMWANANONTHACHAI ET AL.

Fp(n!lr:ud)
1
1 o=10,Fy:N@O. D)
b — numerical evaluations
0.8~ - - - Monte Carlo simulations .
0.6
0.4 —|
original c.4f. single-stage
0.2 — of population RR ;
means | : upper
- I bound
9 T j | 1
-4 2 0 2 4

Hesetected)

FIG. 5.2. Performance of static allocation strategies. (a) Effect of n on the performance of single-stage round-robin selection. (b) Performance

of single-stage and two-stage round-robin strategies.

.
2
5 x o, §) =
Fiinirs s th 05) for s = &) + s,

0 otherwise,

+e (s + s2)x — syu

32

f;?m,cr.s (

for s = 5 + s2,

==

\0 otherwise,

WHETe fi o ov.im:my 15 the joint distribution of the candidates
at the beginning of stage 2. Equation (5.20) can then be
solved using Eq. (5.17).

When s; > s;, the above equation can be simplified by
considering the s, samples selected in stage 1 to be com-
pletely random when analyzing the performance of the

S ¥T
gp.,(ng:m)(#') = J;:_m J'D_:“cof.’?,p.u-‘s,(n;:m] X, ﬂ'a o, —nT dO" dx

+% (4=
fp.(selecred)(“) = ngp,(ng:m)(.lu') {J_x f_m fil,u..a-,.\‘ (.X.'l,u, o, 51 + 52)

E)
J’:_m Problx, i, o, s; + 5, sample mean u for s, at the end of stage 1] du

rT’

o, O, 52) fx_',p.u',s,(nl:m} (H, My Ty _) du

hy
(5.200

second stage. In this case, we ignore the conditional dis-
tribution of the sample means obtained in the first stage.
With this simplifying assumption and using Eq. (5.10), we
can find fetecteay 0 terms of g, ...y, the p.d.f. of the
population mean of the top 7, populations from the first
stage:

(5.21)

(5.22)

+% [n=~1
X l:Jlm e FH;&.D’.:(xly’ Z, 81 + 'SZ) g;}..{nz:m)(y)fc(z) dZ dy] dx dﬂ'}.

The distribution of sy for single-stage and two-
stage round-robin strategies for a problem with normally

distributed population means is shown in Fig. 5.2b. The
analytical values are computed using Egs. (5.12) and

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

E [Wactecueas]

3.,

FXRTTN

trivial
upper

2.5 bound .

o

15T

o=10,F, 1N, 1)

0.5
I I i f
50 100 200 500
T (1otal 1esting time)
E [P{ul«ud]]
35 trivial i
r .-
b e

2.5 -

N o it

. opiimat

1.5 5500

Ly =0.75,5,=1
2:7=0.90,5 =1
3 =0.60,51=1
4ir=75,5,=2
Sr=040,5,=|
Gir=0.75,5,=5
Tir=0.10,51=1

o=10,F, :N© 1)

I I T I
30 100 200 500

T (total testing time)

0.5

FIG. 5.3. Effect of r with fu = N(0, 1) and & = 1, (a) A two-stage
round-robin method. (b) A two-stage round-robin/greedy method with
varions s,.

(5.21} and are compared to the results of Monte Carlo
simulations, the upper bound defined in Eq. (5.7), and the
original f.. We se¢e that a two-stage round-robin strategy
performs much better than even the best single-stage
round-robin strategy.

A two-stage round-robin strategy has more parameters
to be selected, namely, r, n,, and n,. One method for
finding appropriate values for these parameters is to
make the same assumption we made for the single-stage
round-robin strategy; that is, there is only one local maxi-
mum which is also the global optimum. With this assump-
tion, the values of r, ny, and #: can be determined by
using a binary search. This is far more efficient than enu-
merating all possible combinations of #, #;, and #,. Figure
5.3a shows the results of using this method to select pa-

133

rameters for various values of ». From this figure, r =
0.75 appears to lead to the best performance.

5.3.4. Dynamic Allocation Strategies

Dynamic allocation strategies select populations to test
based on dynamic performance information. In our
study, we assume that the population selected is based on
the mean, variance, or distribution of performance values
gathered so far for ali populations under consideration.
All dynamic strategies require the application of a static
strategy in the first stage in order to gather the initial
statistics necessary for decision making. In this section
we present two dynamic allocation strategies and their
performance evaluation.

The simplest form of dynamic allocation strategy is the
two-stage round-robin/greedy strategy, {G(RR, T, ny),
G2{Greedy, (1 — ©T, ny)}. With the greedy method, sam-
ples are taken from the population that currently has the
maximum sample mean in the second stage. The problem
with this method is that it considers only populations that
look good in the current stage and might discard the best
population early in the process.

One dynamic strategy that focuses on the population
with high sample means, but also tests the ones with
smaller means if they were not tested enough, was pro-
posed by Tong and Wetzell {16]. Their adaptive alloca-
tion strategy was designed to optimize P(CS) when the
selection process ended. Since we are interested in maxi-
mizing the mean of the selected population rather than
P{CS), we have chosen to develop a similar ailocation
strategy using this new objective. We define a risk func-
tion expressed as the expected squared-error loss of the
mean estimation of each population, weighted by the de-
gree of belief for the selection calculated using a joint -
distribution. This new strategy selects the nexrt popula-
tion so that the weighted risk is locally minimized. Using
Monte Carlo simulations, we find that this new minimum-
risk allocation strategy performs as well as Tong and
Wetzell’s strategy.

To minimize the risk at a future stopping point, dy-
namic programming can be used to find the best popula-
tion to test in each future time instant so that the ex-
pected risk when time is expended is minimized. This
allows time constraint to be considered in the sampling
process. However, the complexity of the method is very
high because the number of choices in each step is the
same as the number of populations, and the number of
possible choices grows exponentially with the number of
steps. In practice, only a one-step iookahead policy that
selects the population with the minimum risk is practical.

Risk Function. Let m be the number of populations.
For the jth-order population based on sampie means, let
u; be its population mean, o; be its population standard
deviation, x; be its sample mean, §; be its unbiased sam-

134

ple standard deviation, and /¥ be the number of samples
tested in stage k. If L;, the estimated loss of the popula-
tion mean values for the ith-order population, is ex-
pressed using the squared-error function, then

L, X = (s — X% (5.23)
Given ¥; and o;, we can calculate the expected value of L,
noting that E[L(w;, X)1 = Var[w — X.].

When o;’s are known, the random variable (u; —
X)) ‘\/‘lf‘/a ; has a standard normal distribution, N(0, 1}. In
conirast, when o ;s are unknown, the random variable
(u: — ff)\/E/S[has a Student’s 7-distribution with If — 1
degrees of freedom. From these distributions, we can
derive E[L;} when o’s are known,

2
E[L(, ¥ = Varlu — % = 51’; (5.24)
as well as when o;’s are unknown,
- . _ 2 s?
ElLdps, $)] = Varlp — 5} = (1 + ==) 7
for It > 3. (5.25)

When the population that currently has the maximum
sample mean is selected in stage &, the expected estima-
tion loss (or risk R,) is expressed as

RF = E[L*(pesnys Xhes)] = 2, P¥ E[Lfui, X1, (5.26)
i=1

where P! represents the probability that the ith-order
population has the best population mean based on the
current information in stage &.

The value of P is calculated using the joint probability
of (a) population i/ having population mean y, and (b) all
populations j # i having population mean smaller than y.
When the values of o/’s are known, Pf can be expressed
as

X;

Pr=[TT o (18 g (2L .
”3 (oj/\/z_js)d (a,-/\/ﬁ’ 627

where ®(x) is the c.d.f. for an N(0, 1) distribution. When
the values of o;’s are unknown, P¥ can be expresses as

P = F ;f;fl,m
JJU "(’ SVIE=T

x dF, l’.‘—l,&,
‘(* SNVTE— 1

(5.28)

IEUMWANANONTHACHAI ET AL.

where Fv, x) is the c.d.f. of the ¢ distribution with v
degree of freedom. The value of risk R* in Eq. (5.26) can
then be solved using Eqgs. (5.24) and (5.27), or Eqgs. (5.25)
and (5.28), depending on whether ;s are known.

One-Stage Look-Ahead Policy. With a one-stage
look-ahead policy, the strategy to be taken in stage & is
the one that, under the constraint that only one of [¥ can
be increased by 1, minimizes Eq. (5.26) in stage (k + 1).

ONE-STAGE POLICY: /! = k41
when j = min {R*! [1} = I} + 1}, (5.29)

In the special case in which one knows the *‘best’” popu-
lation, the choice made by this strategy is simple: only
the **best”” population is tested because Pf = 1if y; is the
highest one, and P* = 0 for other populations.

In the normal case it is assumed that the value P¥ is
changing slowly and P¥*1 = Pf. The actual value of P is
calculated based on the information we currently have in
stage k. This implies that we need at least four samples
from each population in order to apply the minimum-risk
allocation strategy when o;s are unknown (see Eq.
(5.25)).

Approximate Minimum-Risk Method. The complex-
ity of Egs. (5.27) and (5.28) makes it difficult to apply the
minimum-risk method even for small population sizes.
To reduce this complexity, we approximate P* for the
case when o/s are krown. In this approximation, we
compute P¥ as the joint probabilities of (a) the top or-
dered population (i.e., the one with the highest sample
mean) having population mean higher than the second
one, and (b) other populations having population means
higher than the top one. Therefore, ﬁf-‘, the approximate
P% becomes

Y — Xp Yy — X\ .
b | —————=| 4P [= n,
f (on-lf\/li‘j) (Gf/\/f_f-‘) (5.30)
Yy fn y - fx’
¥ dad
j (o-u/\/ﬁ) (0',-/\/[_':-‘)
where ¥; represents the sample mean of the ith-order pop-
ulation, and » is the total number of populations under
consideration. Equation (5.30) can be further simplified
using the fact that the difference of two normal distribu-

tion N(u,, o2) and N(us, of) is also a normal distribution
Nlug — ms, o2 + o). Hence,

o
Ph =

i+ n,

(I) (Ei - -xvr!*]) i =pn
Va2l + ol JI*_, ’ (3.31)

® i Xn i # n
Vol ¥ ol

n "

With this approximation, the total computation time

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

for the minimum-risk method is reduced significantly
from O(n*) to O(x). Our simulation study shows the per-
formance of this approximation is slightly worse than that
of the original minimum-risk method.

For the case in which o’s are unknown, Eq. (5.31) can
also be used to find P{F. In this case, the sample standard
deviations can be used instead of the population standard
deviations.

Performance Analysis. To analyze dynamic alloca-
tion strategies properly, each sample drawn must be
treated as an individual stage with & = n = #,. This is true
because f,, depends on the joint distribution before the
test and changes each time a new test is done,

The equations derived are very complex and time con-
suming to evaluate, even for the simplest dynamic alloca-
tion strategy. For studying the performance of dynamic
strategies, it suffices to use Monte Carlo simulations.
Note that it is much harder to determine the appropriate
values for the parameters of dynamic allocation strate-
gies. Simulation results in Fig. 5.3b show that a two-stage
round-robin/greedy strategy can perform better than the
optimal two-stage round-robin strategy. However, if its
parameters are not set properly, its performance can be
worse than even the single-stage round-robin strategy.
The results also indicate that the case with r = 0.75 and
§) = 1 (one sample drawn from each population in stage
1) performs very well. This turns out to be the best for a
two-stage round-robin strategy in the range of parameters
studied. As a heuristic approach for selecting parameters
for two-stage dynamic strategies, the same r, #n;, and n, as
for a two-stage round-robin strategy can be used.

Figure 5.4 shows the average performance,
Elptsetecreay)- The results are plotted over a range of dead-
lines. The dynamic strategies use the same parameter
values as the optimal two-stage round-robin strategy.

E W setocred)]

35 a0 sim !a:ion nles
£
.... ﬁlsréietsncg evaluation
4 e

wivigt LT ™ lwo-stage

2.5

. - =% - preed .
I e rgnin?rr?um risk

T T T
50 106 200 500
T (total testing time)

FIG. 5.4. Performance comparison for single-stage round-robin,
two-stage round-robin, two-stage round-robin/greedy, and two-stage
round-robin/minimum-risk allocation strategies for fi = N(0, 1) and
o=1.

135

E [Wsetectedy]
1.2 4

14

0.8 5
0.6

3

4
0.4 7 ‘)

500 1000 2000
T (total testing time)
FIG. 5.5. Performance of multistage strategies under stochastic

sampling overheads.

These results show that dynamic strategies can outper-
form the best static strategies.

3.3.5. Allocation Strategies under Stochastic
Sampling Overhead

When the sampling overhead is stochastic, there are
variations on the number of samples (or tests) drawn in
different runs. An accurate analysis would require the
knowledge of the distribution of the number of samples
drawn from each population in a stage of the selection
process, a term that is a high-degree convolution of the
distribution of sampling overheads, g.(x). The analysis is
¢ven more complex when the performance value of the
sample drawn and its corresponding overhead are correl-
ated, which happens frequently since better heuristics
tend to take more time. This is true for the learning of
post-game heuristics in this paper. Due to these reasons,
we will not attempt to analyze exactly the performance of
allocation strategies when the sampling overhead is sto-
chastic.

To find the approximate performance, we can use the
average number of samples drawn in each stage instead
of the exact distribution [10]. This is equal to 7, the total
amount of time available, divided by ¢, the average sam-
pling overhead. The performance of multistage selection
strategies with 7 time units and stochastic sampling over-
head is then approximated by the performance of multi-
stage selection strategies with 7/c time units and unit
sampling ovérhead.

Figure 5.5 shows the effectiveness of this approxima-
tion. The average performance, E[gisereciea)], for several
multistage strategies are plotted over a range of dead-
lines. The performance value in this case is defined as
g/c, where ¢ is the sampling overhead and g is the quality
measure with distribution N(0, 1) and o = 1. The distribu-
tion of the sampling overhead is specified as follows:

x=2

(5.32)

0‘4‘3*0.4(4:72)
gx) = {

x << 2,

136

The parameters for two-stage strategies are selected us-
ing the optimal parameters of two-stage round- robin
strategy for time = 7/¢; f,(u) is N(0, 1/¢?); and o = l/c.

5.4, Application Strategy for Learning Post-Game
Heuristics

In order to apply the scheduling strategies we have
developed to the learning of post-game heuristics, we
must first verify that the assumptions made in the analyti-
cal model are correct for the process mapping problem.
Experimental verification that the distribution of perfor-
mance values within a population is normal, that the dis-
tribution of population means is normal, and that the var-
iances of all populations are identical are shown in
Section 6,1. The actual values of these parameters and
the overhead for testing a heuristic method have to esti-
mated before learning begins.

Based on the general application strategy described in
Section 5.2, the resource scheduling strategy for learning
post-game heuristics can be summarized as follows:

(1) During the initial 10% of the altotted time T, the
presampling strategy described in Section 5 2.1is applied
to estimate (a) average py and varlance ot of all sample
means of populations, (b) variance o2 of each candidate,
assuming all candidates have the same variance, and (c)
the average sampling overhead, ¢ = T/(10k), where kis
the total number of tests performed during the presam-
pling perlod The average number of tests that can be
performed in the entire duration is T =Tic = 0k

(2) Assuming that the distribution of the population
means is a normal distribution, N{ue, o3), and that 75% of
the remaining time is allocated to the first stage of a two-
stage round-robin selection algorithm (r = 0.75), the
scheduler uses a binary search to find n, and n,, the opti-
mal number of populations to be sampled in the two
stages. These values are computed usmg Eq. (5.21) usmg
Ju = N(po, O'()) with the values gy, 3§, and ¢ obtained in
Step 1, and 7 as the total number of tests available.

(3) We choose to use the two-stage round-robin/mini-
mum-risk strategy as the primary resource scheduling
strategy in the remaining time based on parameters r, ny,
and n, determined in Step 2. This strategy is more robust
and is less likely to fail than other multistage strategies
we have evaluated by Monte Carlo simulations.

{(4) The two-stage round-robin/minimum-risk is car-
ried out until the time is expended. At the end of the
second stage, the heuristic method with the highest aver-
age performance is returned.

6. EXPERIMENTAL RESULTS

In this section we present the results of applying
TEACHER 4.1 to learn post-game heuristics. First, we
describe verifications of assumptions made in the analyti-

JEUMWANANONTHACHAI ET AL.

cal model and the learning experiments performed. Next,
we present plots for showing the tradeoff between cost
and quality of the heuristic methods selected by the
learning system. Finally, we demonstrate scalability and
generality of the heuristic methods learned.

6.1. Post-Game Heuristics Learning Experiments

To evaluate our method for learning heuristics for post-
game analysis, we apply the post-game system on a target
problem based on the divide-and-conquer paradigm. In
this application, each process computes for a random
amount of time, sends a message to each of its child
processes in order to start their computation, and waits
for the results from its descendents before reporting to its
parent. There are a total of 105 processes that are
mapped to a 3-by-3 mesh architecture. Twenty problem
instances, each with a common communication pattern
and CPU times for each code segment drawn from a uni-
form distribution (£/(50, 150)), are included in the Test-
Case Database.

The 20 test cases are evaluated for 100 different heuris-
tic methods. Each set of 20 points is then tested for nor-
mality using both the Kolmogorov—-Smirnov Test and the
Geary Test [3]. The results summarized in Table 6.1 dem-
onstrate the validity of the normality assumption.

Figure 6.1 shows the cumulative distribution of the
mean performance (Eq. (4.2)) of 100 random heuristic
methods, each evaluated on 20 test cases with 31 initial
mappings for each test case. The graph illustrates our
assumption that the distribution of population means is
normal.

We apply the learning system described in Sections 4
and 5 to learn new post-game heuristic methods for sev-
eral intermediate objective functions used in the Internal
Critic. Since the actual learning experiments are very
time-consuming, we use results from actual as well as

TABLE 6.1
Test of Normality for 100 Random Heuristic Methods, Each
Run with 20 Test Cases and Averaged over 31 Initial Mappings
for Each Test Case

#Fails

Ticate Test Min Avg Max /Total

15 Kolmogorov—Smirnov 0.06314 0.122008 0.228907 4/100
(e = 0.05, KS < 0.19)

Geary Test 0.007155 0.800058 2.302100 6/100
(= 0.0, |G| =< 1.96}

50 Kolmogorov—Smirnov 0.061655 0,118434 0.195710 2/100
(e = 0.05, KS < 0.19)

Geary Test 0.007323 0.685574 2.15586 3/100

(e = 0.05, |G| < 1.96)

Note. At a = 0.05, Kolmogorov—Smirnov test with 20 samples re-
quires the vajue to be less than 0.19, while Geary Test at & = 0.05
requires the absolute value to be less than 1.96 [3].

INTELLIGENT PROCESS MAPFPING/IMFROVED HEURISTICS

F
il
0.8 -
Tycaie=15
0.6 -
0.4
0.2 -
-0 T T T T
3.85 39 3.95 4 4.05 4.1

Average Performance p

FIG. 6.1. Distribution of population means of 100 random heuristic
methods used in post-game analysis; performance is computed using
Eq. (4.2).

simulated runs to present a full picture of the learning
system performance. In the simulation run, only the sec-
ond stage of the learning experiment is actually executed;
the first stage is simulated using statistical data of heuris-
tic methods gathered during an actual run. The savings in
execution time is significant, as a simulation run requires
only 25% of the time required by an actual run. The prob-
lem with simulations is that heuristics generation is not
modeled, as only heuristic methods generated in a pre-
vious run are used during the simulation. Some justifica-
tion to this approach can be found by comparing the

TABLE 6.2
Result of Learning for Different T,
Average
normalized
performance

(Eq’s 4.3a and

Intermediate 4.3c, Orig = 1.0}

performance Number ———————o

Experiment (orig = 4.00} of Mapping

Tcaie type (Eq. (4.2)) quantum Caost quality
1 SIM 20.6870 305 0.1292 0.9042

8 SIM 4.2020 290 0.2740 0.9697

15 RUN 4.0764 238 0.2740 0.9697
30 RUN 4.0077 191 0.3172 0.9727
50 RUN 4.0087 128 2.2063 1.0133
100 SIM 4.0537 147 4. 7188 1.0360
1000 SIM 4.0726 149 4,7188 1.0360
% RUN 4.048] 109 4.5179 1.0225

Note. Time allowed for learning is 16 h of CPU time on a DECStation
5000 Model 200; the strategy used is two-stage round-robin/minimum-
risk: the time for the initial presampling period is 96 min. The execution
time taken by post-game analysis averaged over all test cases using the
existing heuristic method of Yan [21] with Lundstrom [20] is [9.89 min
per test case on a DECStation 5000/200. The corresponding average
completion time of the mappings found by the original heuristic meth-
ods is 1454.05 seconds.

137

results between the actual and simulation runs shown
later in Table 6.2,

We carried out two experiments to evaluate our learn-
ing system. In the first experiment, we applied the learn-
ing system to learn post-game heuristic methods for inter-
mediate objective function Q(Tsear) (Eq. (4.2)) with four
different values of Ti. The pool of initial heuristic
methods for all experiments consists of 10 predefined
heuristic methods. Information collected during the
learning experiment for T;... of 15 was then used to simu-
late the learning experiment for 4 other values of Ty ...
At the end of each learning experiment, we fully evaluate
the selected heuristic method over the entire training da-
tabase. The duration of an actual run is 16 h of CPU time
on a DEC-Station 5000 model 200 with 16 Mbytes of
memory; each quantum of time corresponds to evaluat-
ing a heuristic method over one test case with up to 31
initial mappings. This is done by testing each test case
until a 97.5% confidence interval (based on the Student’s
t-distribution) of the average performance across the ini-
tial mappings is within 3% of the average value.

In the second experiment, we investigated the effect of
learning time on the quality of the heuristic methods se-
lected by our learning system. Based on the heuristic
methods and their performance information gathered
during an actual learning experiment with T, of 15, we
simulated learning experiments with durations ranging
from 4 h to 16 h and three different values of T,...

In the next section, we describe the step involved in
evaluating the performance results we have obtained
from our experiments. The actual performance results
are presentied in Section 6.3,

6.2. Performance-Tradeoff Plots

In Section 4.3, we explain why the average perfor-
mance information by itself does not provide a complete
picture on the effectiveness of the heuristic methods se-
lected and the tradeoff between cost and quality of the
mapping obtained by each heuristic method. To ¢valuate
properly the performance of the various heuristic meth-
ods, we need to evaluate cost and quality separately. We
propose using the plot of the normalized quality of a heu-
ristic method on each test case against its normalized
cost on the same test case as a way for evaluating the
performance of that heuristic method.

The first step in obtaining this plot is to compute the
normalized values of the cost and mapping quality by
Eq. (4.3). Although a scatter plot can be achieved with
this step, additional steps are required to obtain a more
comprehensive view of the performance of heuristic
methods.

Second, we eliminate from the performance data any
anomalous data points which might unduly influence the
statistical result we want to observe. We are mainly inter-

138

ested in univariate outliers, 1.e., the few extreme cost or
mapping quality values which do not fit with the other
data points. This can be detected simply by computing
the standardized score (x — p/o) of the normalized cost
and quality for the given heuristic method. Any data
point with standardized scores in excess of 8.00, i.e., the
point is more than eight standard deviations away from
the mean, is considered an outlier and is removed. Note
that this computation does not assume any underlying
distribution of the data. Multivariate outliers, which are
the cases that have an unusual combination of cost and
quality, can also be detected by computing the Mahalano-
bis distance for each data point. A data point with Maha-
lanobis distance that have less than 0.001 probability of
happening can be considered an outlier [15]. The applica-
tion of this method requires that the joint distribution is a
multivariate normal distribution. We did not apply multi-
variate-outlier detection here because the performance
data after eliminating the very few (5 out of 9000 data
points) univariate outliers appear to be reasonable.
Next, we determine the joint distribution between the
two normalized measures for the given heuristic method.
Based on the performance data, we hypothesized that the
joint distribution is a bivariate normal distribution. To
validate this assumption, we first checked that the mar-
ginal distributions of cost and quality were normal. There
are many methods for evaluating univariate normality;
examples include computing the values of skewness and
kurtosis [15], applying the goodness-of-fit test, such as
Kolmogorov-Smirnov and Geary tests, and applying the
Shapiro—Wilk test [4]. We have applied all these tests on
our performance data; with only one or two exceptions,
normality was accepted at level o = 0.1. Next, we evalu-
ated bivariate normality of the joint distribution. The
method we used was the chi-square plot or gamma plot
[11], which depicts the ordered square distance from the
centroid (mean values) to each data point against the chi-
square distribution. If the data have a bivariate normal
distribution, this plot would appear as a straight line.
Again, bivariate normality was verified for our data.
Other methods for checking multivariate normality can
he found in the reference [4]. If the performance values
do not have a normal distribution, then a distribution has
to be first assumed so that the values can be transformed
into another set which can be tested for normality.
Finally, we obtained the 90% constant probability den-
sity contour of the bivariate normal distribution repre-
senting the joint distribution of the normalized cost and
mapping quality. To do so, we first computed the mean
vector, M, and the variance-covariance matrix, 2, for the
distribution. We then derived the axes for the ellipse that
represented this contour from the eigenvalues {A1, Az} and
eigenvectors {e|, ez} of the covariance matrix, =. The
axes of the ellipse were represented as the vectors
x3(0. 1)\/3_131 and x3(0.1) V Ases, respectively [11]. These

IEUMWANANONTHACHAI ET AL.

two vectors represent the direction and length of the axes
for the ellipse with respect to the centroid of the data set,
M. The resulting contour encompasses the area where
90% of the data from the given bivariate normal distribu-
tion should appear. If the original performance values are
not normatlly distributed and a transformation was made
in the previous step, then the contour found in this step
has to be converted using the inverse transformation into
one for the original data points.

6.3. Experimental Results on Learning Heuristic Methods

Using a DEC-Station 5000 model 200 with 16 Mbytes
of memory, it took approximately 30 days of CPU time to
acquire all the results shown in Section 6. The data
shown in Section 6.1, which were based on fully evaluat-
ing 100 randomly generated heuristic methods, required
about 14 days of CPU time. Each actual learning experi-
ment (with 16 h of learning time) took approximately 48 h
of CPU time to complete, while each simulated learning
experiment took approximately 8 h of CPU time. Finally,
for the data shown in Section 6.3 and 6.4 on fully evaluat-
ing the heuristic methods selected, about 7 days of CPU
time were used.

Table 6.2 shows the performance of heuristic methods
learned using different Ty... The third column of Table
6.2 shows the objective value of (7. reported by the
Internal Critic when learning is terminated. The last two
columns show the performance by evaluating the se-
lected heuristic methods exhaustively over the entire
training set. We see that our learning system consistently
found heuristic methods that outperform the original
post-game heuristic methods of Yan [21] and Lundstrom,
which have a normalized average cost and quality of 1.0.
Moreover, the intermediate objective Q(Tcwe) is quite
consistent with the results obtained by exhaustive evalu-
ation. Note that the original heuristic methods already
generate mappings of high quality. As a result, heuristic
methods that generate mappings of higher quality is more
difficult to find: a small improvement in quality means a
large increase in cost. On the other hand, our learning
system was able to find much faster heuristic methods
that have minor degradation in quality.

Table 6.2 also illustrates the dependency of the inter-
mediate objective function on the sampling overhead.
The number of selections finished during learning de-
crease as T, increases. This happens because heuristic
methods that perform well for higher values of T are
likely to require higher sampling overhead, and the num-
ber of quanta completed during the training period is re-
duced as T,.4. increases. These observations show that if
the objective function is dependent on the sampling over-
head, then the distribution of sampling overheads for
good heuristic methods are likely to be different from that
for random heuristic methods.

Figure 6.2 shows the normalized graphical plot of cost

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

139

1.1
1.05 |
T segle =30
o hiads
| SR %
£ Tscale = 15 % x
g T -y
g B -
= i
k= ¥ scale =1 lﬁ; {
095 [&7, L ey
§ RS ‘\‘m .’?‘ .
;" + o4 oy
E ool v)
= 091 PRl _
085 F + Training Time = 16 Hours CPU Time —
08 L - .
0.1 10

13
Normalized Cost for Finding Mapping using Post-Game Analysis

FIG. 6.2. Performance of heuristic methods selected by different intermediate objective functions on test cases in the training database.

versus mapping quality for some of the heuristic methods
shown in Table 6.2. This plot, obtained using the steps
described in Section 6.2, provides a better picture of the
tradeoff between cost and quality for each heuristic
method than the information shown in Table 6.2. Each
data point in this figure corresponds to the average per-
formance of a heuristic method on a test case in the train-
ing database. The graph shows the tradeoff between the
quality of the mapping found and the execution time of
the heuristic methods selected for various values of Ts.q.

Recall that T,... controls the relative importance between
these two measures; as Teq. iRcreases, the execution
time of the heuristic method becomes less important.
Consequently, both the cost of the heuristic method se-
lected and the quality of the mapping found are im-
proved. To choose the heuristic method appropriate for
the application, an automated learning system that aids
users in experimenting with various alternatives is, there-
fore, very important.

Figure 6.3 shows the normalized plot for the second set

1.1 v T . =y
Tscale =15 - 10'12*1\4’;6 o
1.05 +]
)
-]
8]
:
!
2005 | N e d
3 .:/'_s . A l‘
ik "l Tscale = 100
2 T R
EREV A I
-t Te T -
ﬂg 0.9 |“?+ :,? ;
\oe !
Z L
.y
,
085 | -2 |
[j_j T=8,10,12,14,16
+
08 qunle: =1 — . ‘ ’
= . 10

Normalized Cost of Finding Mapping using Post-Game Analysis

FIG. 6.3. Performance of heuristic methods selected using different learning time, T, ranging from 4 to 16 h,

140

of experiments in which the amount of learning time is
varied. The learning experiments were performed for
three different values of T, (1, 15, and 100) and seven
different learning times (4, 6, 8, 10, 12, 14, and 16 Hours).
Only one of the results is derived from an actual run of
the learning system (7., = 15 and learning time = 16 h}.
Simnulation runs based on this run were used to select the
other heuristic methods.

From Figs. 6.2 and 6.3, we observe that the cost for
finding a mapping increases exponentially with respect to
increase in the quality of the mapping found. We also
observe that the quality of the mapping found by the post-
game system is already very good. Even after 16 h of
learning, the best heuristic method (7. = 100 in Fig.
6.3) provides only 5% improvement in the quality, while
the cost increases by more than four times. On the other
hand, we can reduce the cost significantly with only mi-
nor degradation in mapping quality. For example, Fig.
6.3 shows that with 4 h of learning time, our learning
system can find a heuristic method that uses only 10% of
the cost of the existing post-game heuristic method and
finds mappings that are 10% worse (Toue = 1).

Figure 6.3 also shows the improvement in performance
of the heuristic methods selected as learning time in-
creases. This is more obvious for Ty, = 1 and 100. For
T.cwie = 1. the heuristic methods selected have lower cost
as the learning time increases. For T,.,. = 100, the heu-
ristic methods selected not only have higher mapping
quality as the learning time increases, but also have more
consistent performance in term of both cost and guality.
For T,.q. = 15, the improvement in performance is
harder to characterize. Even in this case, we observe that

IEUMWANANONTHACHAIL ET AL,

the heuristic method selected after 16 b of learning has
more consistent performance than that of other heuristic
methods selected using less learning time.

6.4. Verification of Heuristics Performance

The experimental results in Table 6.2 indicate that our
learning system produces heuristic methods that outper-
form existing post-game heuristics. However, before
these heuristics can be applied in general, we need to
verify that the performance of these heuristic methods
are not restricted to the test cases defined in the training
database.

To demonstrate the generality of the heuristic methods
learned, we apply the heuristic methods selected on three
other test sets. Each test set contains 10 test cases drawn
from a unique distribution. The test cases in the first set
are drawn from the same distribution as the test cases in
the training database. This is used to verify that the per-
formance of the heuristic method is not restricted to the
training set, and that the performance is consistent across
the problem domain. To check the scalability of the heu-
ristic methods learned, test cases in the second test set
are drawn from an implementation of a divide-and-con-
quer paradigm with 204 processes on a 16-node hyper-
cube architecture, The CPU time for each code segment
for this test set is also drawn from a uniform distribution
U/(50, 150). Last, test cases in the third test set are drawn
from an entirely different problem domain that imple-
ments a distributed blackboard program with 115 pro-
cesses on a 3-by-3 mesh architecture. The idle times be-
tween new observations for each observer are drawn
from a uniform distribution A0, 12),

1 T T T T T T
0.98 | Blackboard set X .
< e % xx___. ’
o 096 ol P .
Eﬂ 094 |- -1
g ;
=092 Y
=3 i
B :
g 09 / P
7 ;
'-g 088 / .
¢
2 i
0.86 Bigger problem set “ -
0.84 ~
Heuristics Selected for T goale =1
0.82 1 1 1] 1 L
0.02 0.04 0.06 0.08 0.1 0.12 0.14

Normalized Cost of Finding Mapping uéing Post-Game Anatysis

FIG. 6.4. Performance of heuristic methods selected for 7,4 = 1 on different test sets.

INTELLIGENT PROCESS MAPPING/IMPROVED HEURISTICS

141

1.06 T - T T T T
1.04 |- ,"ﬂ'\ Bigger problem set -
Verify set /¢
FRY i
1.02F 5 ! _
'% II Biackboa.rdft':_t__ e e e T
= 1] . g x X x IR
g : /) x N
B i : T X B
=098 [i - . .
e :
Z]
E 096 |- -
E 094 | Heuristics Sclected for Tgeale = 15 .
E L
A ML
oo 17 ¢ Training set .
L
i ¢
09 - " _1” =
L
0‘88 L L] 1 L
0.2 04 0.6 0.8 1 1.2
Normalized Cost of Finding Mapping using Post-Game Analysis
FIG. 6.5. Performance of heuristic methods selected for 7. = 15 on different test sets.

Figures 6.4 and 6.5 compare the performance of the
heuristic methods learned for Ty of 1 and 15 on the
three test sets defined above. These plots show that the
heuristic methods selected perform consistently for the
type of problems represented by the training database.
These figures alsc indicate that the heuristic methods
learned have performance that can be generalized to
large problems of the same type. However, the heuristic
methods selected does not perform well with respect to
test cases drawn from the distributed blackboard prob-
lems, which have different characteristics. To allow the
heuristics learned to generalize, test cases from different
problem types may have to be used during learning. The
use of diverse test cases in learning will be studied in the
future,

7. CONCLUSIONS

In this paper we present a population-based system for
learning heuristics for mapping processes on a network of
computers, Qur system extends post-game analysis by
systematically generating new heuristic methods in order
to determine process mappings and test them on sample
problems. We have modeled resource scheduling for the
learning system as a statistical selection problem under
time constraints. Based on some general assumptions,
various multistage procedures for selecting the heuristic
method with the best population mean are developed,
evaluated, and tested. We also present methods for se-
lecting appropriate parameters for the multistage proce-

dures,

Our learning system is able to propose new heuristic
methods that consistently outperform existing post-game
heuristics obtained by extensive hand tuning. Our experi-
ments also show that different heuristic methods may be
required under different objectives and processing condi-
tions. Our learning system provides an automated tool
for generating new heuristic methods that can adapt to
the target environment.

We have also developed a graphical method for com-
paring the performance of heuristic methods on different
sets of test cases, Our method provides additional insight
into selecting the proper heuristic methods for the target
application. It is useful for verifying the generality and
demonstrating the scalability of the heuristic methods se-
lected. We show that our heuristic methods learned have
performance that are scalable and can be generalized to a
limited extent to other mapping problems.

REFERENCES

1. Bechhofer, R. E. A single-sample multiple decision procedure for
ranking means of normal populations with known variances. Aan.
Math. Statist. 25, 1 (Mar. 1954}, 16-39.

2. Bechhofer, R. E., Hayter, A. J., and Tamhane, A. C. Designing
experiments for selecting the largest normal mean when the vari-
ances are known and unequal; Optimal sample size allocation. J.
Statist. Plann. Inference 28 (1991}, 271-289.

3, Devore, J. L. Probability and Statistics for Engineering and the
Sciences. Brooks/Cole, Monterey, CA, [982.

4. Gnanadesikan, R. Methods for Statistical Data Analysis of Multi-
variate Observations. Wiley, New York, 1977,

5. Goldberg, D. E., and Holland, J. H. Genetic algorithms and ma-
chine learning. Mach. Learning 3, 2/3 (Oct, 1988), 95-100.

142

6. Grefenstette, J. J., Ramsey, C. L., and Schultz, A. C. Learning
sequential decision rules using simulation models and competition.
Mach. Learning 5 (1990), 355-381.

7. Gupta, 8. 8., and Panchapakesan, S. Sequential ranking and selec-
tion procedures. In Sen, P. K. (Ed.). Handbook of Sequential Anal-
vsis. Dekker, New York, 1991, pp. 363-380.

R. Hogg,R. V., and Tanis, E. A. Probability and Statistical Inference,
3rd ed. Macmillan Publishing Company/Collier Macmillan Pub-
lishers, New York, NY/London, England, 1988.

9. Ieumwananonthachai, A., Aizawa, A. N., Schwartz, S. R., Wah,
B. W., and Yan, J. C. Intelligent mapping of communicating pro-
cesses in distributed computing systems. Proc. Supercomputing 91.
ACM/IEEE, Albuquerque, NM, Nov. 1991, pp. 512-521.

10. Teumwananonthachai, A., and Wah, B. W. Learning process map-
ping heuristics under stochastic sampling overheads. Proc. Com-
puting in Aerospace 8 Conference. American Institute of Aeronau-
tics and Astronautics, Baltimore, MD, Oct. 1991.

11. Johnson, R. A., and Wichern, D. W. Applied Multivariate Statisti-
cal Analysis. Prentice—Hall, Englewood Cliffs, NJ, 1982,

12. Lowrie, M. B., and Wah, B. W. Learning heuristic functions for
numeric optimization problems. Proc. Computer Software and Ap-
plications Conf. IEEE, Chicago, IL, Oct. 1988, pp. 443—450.

13. Mehra, P., and Wah, B. W. Architectures for strategy learning. In
Wah, B., and Ramamoorthy, C. {Eds.). Computer Architectures for
Artificial Intelligence Applications. Wiley, New York, 1990, pp.
395-468,

14. Stein, C. The selection of the largest of a number of means, ab-
stract. Ann. Math. Statist. 19 (1948) 429,

15. Tabachnick, B. G., and Fidell, L.. S. Using Multivariate Statistics,
2nd ed. Harper and Row, New York, 1989,

16. Tong, Y. L., and Wetzell, D. E. Allocation of observations for
selecting the best normal population. In Santner, T. J., and
Tamhane, A, C. (Eds.). Design of Experiments: Ranking and Selec-
tion. Dekker, New York, 1984, pp. 213-224,

17. Wah, B. W_, and Kriplani, H. Resource constrained design of artifi-
cial neural networks. Proc. Int’l Joint Conf. on Neural Networks.
IEEE, June 1990, Vol. I, pp. 269-279.

18. Wah, B. W. Population-based learning; A new method for learning
from examples under resource constraints, IEEE Transactions on
Knowledge and Data Engineering, to appear.

19. Yan, J. C. Post-game analysis—A heuristic resource management
framework for concurrent systems. Ph.D. dissertation, Dept. Elec.
Eng., Stanford Univ., Dec. 1988,

20. Yan, J. C., and Lundstrom, 8. F. The post-game analysis frame-
work—Developing resource management strategies for concurrent
systems. IEEE Trans. Knowledge Data Fng. 1, 3 (Sept. 1989).

21. Yan, J. C. New “‘post-game analysis’’ beuristics for mapping paral-
lel computations to hypercubes, Proc. Int’'l Conf. on Paralle! Pro-

Received December 1991; accepted March 27, 1992

IEUMWANANONTHACHAI ET AL.

cessing. CRC Press, Boca Raton, FL, Aug. 1991, Vol. I, pp. 236-
242,

22. Yu, C, F., and Wah, B. W. Learning dominance relations in combi-
natorial search problems. IEEE Trans. Software Eng. SE-14, §
{Aug. 1988), 1155-1175.

ARTHUR IEUMWANANONTHACHAI received his B.S, degree in
electrical engineering and computer science from the University of
Washington, Seattle, WA, in 1986, and his M.8. degree in computer
science from the University of California, Los Angeles, in 1988. Since
then, he has been working toward his Ph.D. degree in electrical and
computer engineering at University of Illinois, Urbana-Champaign, un-
der the supervision of Professor Benjamin Wah. His research interests
include computer networks, distributed systems, computer vision, and
machine learning.

AKIKO N. AITZAWA received the B.S, degree in 1985, the M.S.
degree in 1987, and the Ph.D. degree in 1990, all in electrical engineer-
ing from the University of Tokyo. In 1990, she joined NACSIS (Na-
tional Center for Science Information Systemy}, Japan. She is currently a
visiting researcher at the University of Illinois at Urbana--Champaign.
Her research interests include communication networks and protocols,
distributed systems, database interface, and artificial inteiligence.

STEVE R. SCHWARTZ is a Software Engineer at Motorola Cellular
in Arlington Heights, 1L.. He is currently working on systems for the
European Digital Cellular standard. He received a BSE in computer
engineering from the University of Michigan in 1989, and an MS in
electrical engineering from the University of IHinois at Urbana—Cham-
paign in 1991. He is a member of Tau Beta Pi, IEEE, and the ACM.

BENJAMIN W. WAH is a Professor in the Department of Electrical
and Computer Engineering and the Coordinated Science Laboratory of
the University of IHinois at Urbana-Champaign, Urbana, 1L. He has
published extensively in the areas of computer architecture, parallel
processing, artificial intelligence, and computer networks. He is a Uni-
versity Scholar of University of Illinois, an Associate Editor-in-Chief of
IEEE Transactions on Knowledge and Data Engineering, member of
the Board of Governors of IEEE Computer Society, and a Fellow of the
IEEE. During part of 1992, he served as Fujitsn Visiting Chair Profes-
sor on Intefligence Engineering at University of Tokyo, Japan.

DR. JERRY C. YAN received his Ph.D. and MSEE from Sianford
University. He was awarded the Siemen’s Memorial Medal and the
Governor’s Prize at Imperial College, University of London, UK,
where he received a BSEE. Dr. Yan is currently working for Sterling
Software as a contractor at NASA Ames Rescarch Center. He is a
member of the Institute of Electronic and Electrical Engineers and
Association for Computing Machinery. His research interests include
parallel processing, performance evaluation, computer architecture,
and operating systems.

